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Abstract

Starting from the Merton framework for firm defaults, we provide the analytics and
robustness of the relationship between default probabilities and default correlations.
We show that loans with higher default probabilities will not only have higher vari-
ances but also higher correlations with other loans. As a consequence, portfolio
standard deviation can increase substantially when loan default probabilities rise.
This result has two important implications. First, relative prices of loans with differ-
ent default probabilities should reflect the differential impact on portfolio standard
deviation. Second, the standard deviation of loan portfolios and of default rates, as

well as the required economic capital will vary significantly over the business cycle.
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1 Introduction

During the last two decades portfolio considerations have become a central issue in credit
risk management. A crucial ingredient for any portfolio consideration in the credit risk
context are the correlations of loan returns. They are termed default correlations in
the literature since the probabilities of joint defaults are the major building blocks of
loan correlations. In this paper we examine the relationship between (univariate) default

probabilities and default correlations. The analysis is motivated by two questions.

The first question concerns the pricing of loans with different default probabilities. In
current practice, loan prices usually merely reflect the impact of higher default proba-
bilities on expected returns. If, however, loans with a higher default probability also
contribute more to the portfolio standard deviation (as we will show to be the case), then
the marginal increase of economic capital when adding such a loan to the portfolio will
be higher than for loans with lower default probabilities. Moreover, if these differences
are substantial (as we will also show), then it is important for loan prices to reflect these
differences. By the variance-covariance formula, the contribution of a loan to a portfolio’s
standard deviation consists of its own standard deviation and of its correlations with other
loan returns, i.e. its default correlations. In the simplest setting, the standard deviation of
a loan is a multiple of \/m where p is the firm’s default probability.! Therefore it is
easy to see that the standard deviation will increase in p. This is called the variance effect
of an increase in default probabilities. However, it is not clear how default correlations

will react to changes in p. This effect is called the correlation effect.

Second, it has long been recognized that default probabilities change with the state of the
economy and that credit risk models should take this into account, since higher default
probabilities imply higher expected losses.? However, the way in which these changes
in default probabilities affect the second important building block of the loan portfolio
distribution - the portfolio standard deviation - has only recently been addressed. Using a
simulation approach, GERSBACH AND LIPPONER (2000) have demonstrated that adverse
macroeconomic shocks - by increasing default probabilities - can raise default correlations.
They show that this effect may account for more than 50% of the increase in the credit
risk caused by the shock. In this paper we will provide an analytic foundation for the

connection between negative macroeconomic shocks and loan default correlations.

Following the structural approach to credit risk, we construct our model along the same

!In such a setting, the return on the loan can be described as multiple of a Bernoulli variable that is
either equal to 1 (default) with probability p or equal to 0 (no default) with probability (1 — p).
2See e.g. WILSON (1998) or, more recently CROUHY, GALAI, AND MARK (2000).



lines as MERTON (1974). The returns on a firm’s assets are assumed to be normally
distributed and loans are modeled as a claim on the value of the firm. This value is
measured by the price at which the firm’s total liabilities can be purchased; it is thus
equal to the value of the stock and the value of the debt. Default on loans occurs if
the market value of the firm falls below a certain threshold which depends on the firm’s
liability structure. In a sufficiently simple framework, the joint default behavior of two
firms can therefore be described by two indicator variables 1{Z; < 21} and 1{Z, < 2}.?
Zy and Zs are two normalized, correlated, jointly normally distributed random variables
that describe the firm’s standardized returns. If, for example, the standardized returns
of the first firm fall below the threshold z;, the firm will default. We call z; and 2, the
respective default points of the firms. An increase in default probabilities will shift default
points to the right. We examine how such a shift changes the default correlation of the

two firms.

Our findings are as follows. Default correlations increase under a homogeneous shift to
the right (i.e. both default points increase by the same amount). The same is true if
the shift is more pronounced for the firm with the lower likelihood of default. Default
correlations may only decline if the downward shift for the lower rated firm is significantly
higher than that for the higher rated firm.

Furthermore, at a structural level the correlation effect is made up of two interwined ef-
fects. First, when default points move to the right, the skewness of each of the indicator
variables will be reduced.* As a consequence, they will reveal more information about the
correlated underlying firm returns. Default correlations rise and move closer towards re-
turn correlations. We call this phenomenon the skewness effect (SE). Second, the distance
d := 2z — 21 between default points may change. Default correlations should decrease in
d since it will become harder to infer the state (default/no default) of one firm when
observing the state of the other firm. We call this effect the distance-of-default-points
effect (DDE). However, changing the distance between default points necessarily changes
the distance from zero for at least one default point. Hence DDE cannot be completely
separated from SE. If the default point of the firm with the lower probability of default
increases more than that of the other firm, skewness increases and d decreases, which im-

plies that both effects work in the same direction and default correlations increase. In the

3Note how the indicator function 1{-} is defined. 1{A} is equal to 1 if statement A holds and equal
to 0 if statement A does not hold.

4The term “skewness” in the context of Bernoulli variables refers to the fact that the probability of one
outcome is higher than the probability of the other one. In our case both indicator variables would be
unskewed for z; = 2o = 0. Moreover, note that default probabilities of loans are usually lower than 50%,
implying that z; and 2 are smaller than zero and that the binary default variables are skewed towards
zero. A shift to the right will therefore reduce skewness.



opposite case, both effects work in different directions and it will depend on the parame-
ters (the location of 2; and z; and the asset correlation) whether the default correlations

increase or decrease.

With respect to the two questions posed at the beginning of this introduction, our results
suggest that loan prices should reflect the higher contributions to economic capital of
loans with a higher default probability. Moreover, we indicate that portfolio standard
deviation and hence economic capital can increase significantly under negative macroe-
conomic shocks. While for the pricing of loans both effects (SE and DDE) are relevant,
we argue that, for the impact of macroeconomic shocks on credit portfolios, the distance-
of-default-points effect will tend to cancel out while the skewness effect remains. We will
also discuss the consequences of these results for the adaptation of credit risk models to

the business cycle.

Finally, our results remain robust under various generalizations of our original model.
First, we allow for endogenous recovery rates where the severity of the default determines
the value of firm assets that can be recovered. Second, by considering loan maturities
that are longer than the risk management horizon, we address scenarios where changes in
the portfolio value stem from rating migrations rather than from firm defaults. We show
that the qualitative nature of our results is robust with respect to such scenarios. Finally,
we demonstrate that any alternative distribution for asset returns yields the same results

as long as a monotonic transformation into a bivariate normal distribution exists.

The paper is organized as follows. In the next section we introduce the model and present
our analytic results. Moreover, we discuss and illustrate the consequences of these results
for credit risk management. In section 3 we investigate the robustness of our results with

respect to crucial assumptions. Section 4 presents our conclusions.

2 Analytic Results and Applications

In this section we analyze the relationship between default probabilities and default cor-
relations, and discuss the consequences of this analysis for the impact of macroeconomic
shocks on portfolio standard deviation and for the pricing of loans. In section 2.1 we
present the model, and in section 2.2 we analyze the relationship between default prob-
abilities and default correlations qualitatively, deriving our main analytic results. The

applications of these results are discussed in section 2.3.



2.1 The Model

As a starting point, we employ the risk-of-ruin or option-pricing model developed in
WiLcox (1973), MERTON (1974) and ScOTT (1981). The probability of a firm going
bankrupt depends on both the market value of the firm’s assets relative to its outside

debt and on the volatility of the market value of the assets.

Using ¢ as time index, we consider a bank holding a credit portfolio consisting of loans
to two firms (1 and 2) and undertaking risk management in ¢ = ¢;. The loans are due in
t = ty, and we assume that the bank’s risk management horizon is identical with the date
at which the loans mature, i.e. the bank is interested in the distribution of the ¢ = ¢, value
of its portfolio.” We denote the two firms’ asset values in ¢ by Vi, and V5, respectively,
and assume that the debt obligations of both firms are due in ¢ = ¢, (we denote the sum
of these obligations by v; and vy respectively). According to the option-pricing model,
default of firm 7 in ¢ = 5 occursif V;;, < v;. We assume that in this case the firm will repay
an exogenously determined fraction of the loan’s principal (recovery rate),® while in the
other case the complete amount is repaid. Therefore, the stochastics of the portfolio payoff
in t = t, can be characterized by the joint distribution of the binomial random variables
1{Vis, <wvi}and 1{Vs;, <wv,}. In the standard framework of the option pricing approach,
this distribution is characterized via the distribution of the continuously compounded
rates of asset returns Z;;, := log(Vi,/Viy,). The vector (Zy4,, Za4,) is assumed to be
independent of (Vi,,, V2,4, ) and bivariate normally distributed with correlation coefficient

p > 0.7 Note that the event Vit < v; can be equally well described as
Zigy < log(vi) —log(Vig, ). (1)

Moreover, from a ¢ = t; perspective the vector (Vi,,,Vay,) is fixed and the joint distri-
bution of (Z,,, Z24,) does not depend on the realization of this vector. Hence we can
normalize equation (1) with respect to mean and variance of Z;;,. We conclude that
it is sufficient to analyze the joint distribution of the Bernoulli variables 1{Z; < 2z}

and 1{Zy < 25} where (Z;, Z5) are standardized, bivariate normally distributed random

°In section 3.2 we consider the case where the loans mature after the risk management horizon.

6We consider the case of endogenously determined recovery rates in section 3.1.

"Note that this scenario is usually derived from an extension of the MERTON (1974) framework. Asset
values in time are described by a two dimensional geometric Wiener process. This model is described in
more detail in section 3.2.



variables with correlation p and

_ IOg(UZ') - log(‘/i,tl) - E Zi,t2
Var(Zith)

P (i =1,2). 2)

Throughout the paper we will assume that z; < z;. The correlation between the two

Bernoulli variables is termed default correlation and is denoted by pdef = pdef(

21, %2, P).
Note that since default probabilities are given by p; = ®(z;),® the relationship between
default points (z1,22) and p® monotonically translates into a respective relationship
between default probabilities (p, ps) and p?*f. We will use either of these representations

as convenient.

2.2 Analytic Results

In this section we describe the relationship between default probabilities and default
correlations in qualitative terms. If default probabilities change, default points will also
change accordingly. Such a shift in default points has two consequences that prove to
be important in understanding the relationship between default probabilities and default
correlations. First, the distance of the default points from zero will change. Second, the
distance d = 29 — 2; between default points may change. In order to isolate these two
effects, we first consider an increase of z; and 2, with the distance between the default

points remaining constant. We denote the partial derivatives of pdef

and 2 by p{e' and pd°f respectively and obtain the following result.

with respect to z;

Proposition 1
Consider a homogeneous move of both default points to the right (i.e. a move where the

distance between default points remains constant).

(i) If p1,po < 50%, then default correlations increase (pd + pdef > 0);

(ii) If p1,ps > 50%, then default correlations decrease (pdf + pdf < 0 ).

As for all other propositions, the proof of proposition 1 is given in appendix A. The
reasoning behind proposition 1 runs as follows: If z; < 0 (i = 1,2), then a homogeneous
shift of z; and 25 to the right will reduce the skewness of the binary variables 1{Z; < z;}
and 1{Z5 < z5}. The less skewed these binary variables are, the more information they
reveal about the correlated underlying variables Z; and Z5. Accordingly, default correla-

tions increase towards the higher correlations of returns. If zy, 29 > 0, skewness increases

8®(-) denotes the cumulative standard normal density function.
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when default points shift to the right and hence default correlations decrease. We call
this phenomenon the skewness effect (SE). In practical applications we are mainly inter-
ested in the case 21,29 < 0 since default probabilities higher than 50% are not relevant.
Nevertheless, the result for zy, 29 > 0 confirms the reasoning we propose. For the rest of

the analysis we will focus on the case 2z;, 25 < 0.°

Std. Returns of Firm 2
o

[EnY
N
w

-3 -2 -1 0
Std. Returnsof Firm 1

Figure 1: Scatter plot of two standardized, bivariate normally distributed random variables with

correlation p = 50%.

Why does a reduction of skewness increase default correlations? Figure 1 shows the scatter
plot of two normally distributed correlated random variables describing realizations of the
pair (71, Zy). Note that the corresponding scatter plot for the derived binary variables
{Z; < 2} (i = 1,2) would depict only four points ((0,0), (0,1), (1,0) and (1,1)).
The frequency with which each of these four possible realizations occurs can be inferred
from figure 1 by counting the number of points in the respective quadrants of the two
“coordinate systems” inserted in the figure. The system depicted with solid lines illustrates
the case 21 = zo = —2. In this case the distribution of the indicator variables is strongly
asymmetric: nearly all data points lie in (0,0) (both firms survive) while there are only

very few points in (1,1) (both firms default).

9Note that results for z1,2, > 0 and for negative correlations are also available in most cases. But
since these parameter constellations are not relevant in practice we will not discuss them.
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Figure 2: Stylized “Scatter Plot” of the in- Figure 3: Stylized “Scatter Plot” of the indi-
dicator variables: asymmetric (skewed) case. cator variables: symmetric (unskewed) case.
Almost no upward sloping tendency in the Strong upward sloping tendency in the data.
data.

What happens to the frequencies when we move the origin of the coordinate system along
the (broken) 45° line from (—2,—2) to (0,0) (the origin of the system with the broken
lines)? The major effect is that point mass is shifted from (0,0) to (1,1) which reduces
the asymmetry of the distribution. As a consequence, the upward sloping tendency in the
data increases and this is a manifestation of a higher correlation coefficient p®*f. This is
illustrated in figures 2 and 3. The size of the circles around the four possible realizations
is used to illustrate the number of observations (big circle - many observation, small circle

- few observation).

Finally, note that the skewness effect consists of two counteracting effects concerning the
information revealed about 1{Z; < 25} when observing 1{Z; < z;} (or vice versa). The
information content of the event 1{Z; < z;} = 1 decreases when default points increase
jointly, while the information content of the event 1{Z; < z;} = 0 increases. This is
because the information about the underlying return realizations decreases (increases),
which in turn impacts on the information revealed about the other binary variable. If
firm 1 defaults, then one can infer that Z; € (—oc, z;). This interval increases with z;
decreasing the information available about Z; from the default event. This in turn implies
that less information about Z; and, hence, about 1{Z; < z9} is obtained. The opposite is
true for the non-default event. If firm 1 does not default, then Z; € (21, 00), an interval

decreasing in size if z; increases.

We illustrate this point for fully correlated firm returns (p = 100%). Conditional on the
default of firm 2, the probability that firm 1 will also default is ®(z;)/®(29), and the



ratio of conditional and unconditional default probability for firm 1 is therefore given
by 1/®(z;). Hence, this ratio (and therefore the information content of firm 2’s default)
decreases if z; and 2z, increase. The contrary is true for the information content of the
event where firm 1 has not defaulted. Conditional on the information that firm 1 has
survived, the probability that firm 2 has also survived is [1 — ®(23)]/[1 — ®(z1)]. Hence
the ratio of the conditional and unconditional probability that firm 2 will survive is given
by 1/[1—®(z;)] and increases if skewness is reduced. As can be seen from the arguments in
the previous paragraphs, the effect of non-default event information increasing dominates

the effect of default event information decreasing.

We now turn to the second consequence of a change in default probabilities, namely that
the distance d between default points can change. The reasoning based on information
revelation about return realizations implies that default correlations should decrease in
d. We call this effect the distance-of-default-points effect (DDE). Unfortunately, DDE
cannot be completely separated from SE since changing the distance between default
points necessarily changes the distance from zero for at least one default point. Suppose,
for example, that one default point is fixed while the other one moves to the right. If the
smaller of the two points, z;, moves, then both effects should work in the same direction.
Skewness is reduced and the distance between default points decreases, which should
increase default correlations. If, however, z, moves, then the two effects work in opposite
directions and it is no longer clear which one dominates the other. Proposition 2 shows
that whether pd¢f decreases or increases depends on the default point ratio A := 2, /2

and on the asset-return correlation p. To prepare for the formulation of proposition 2, we

define
pi(\) == (25/32){)\ N 24/25}.

Proposition 2

Suppose that py, ps < 50% and consider a move of only one default point to the right.

(i) If z; moves, then default correlations increase (pi > 0) if p < py()\). Note that
this inequality is fulfilled if A\ < 96% or if p < 56%.

(ii) If zo moves, then default correlations
e increase (pde > 0) if p < py(1/N)
e decrease (pdef < 0) if p > 2)\/(1 + \2).

Figures 4 and 5 visualize the parameter sets for which, according to our theoretical results,

default correlations will increase (DC+) or decrease (DC-). Figure 4 depicts the case where

9
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Figure 4: The set DC+ contains all points Figure 5: The set DC+ contains all points
below the solid line and visualizes all combi- below the solid line and visualizes all com-
nations (A, p) that fulfill the inequality p < binations (A, p) that fulfill the inequality
P+ (). p < p4(1/X). The set DC- contains all

points above the broken line and visualizes
all combinations (X, p) that fulfill the in-
equality p > 2X/(1 + \2).

7 moves. In this case, default correlations increase if (A, p) lies in DC+. The intuition
developed for SE and DDE would imply the more general statement that p*' > 0 for all
0 < A< landO < p < 1. While a formal proof is not in reach yet, our simulation exercises
have confirmed this conjecture. Figure 5, on the other hand, depicts the case where 2z,
moves. In this case, default correlations increase if (), p) lies in DC+ and decrease if (), p)

lies in DC-.

Figures 6 and 7 illustrate the two effects identified in propositions 1 and 2. Figure 6
demonstrates the skewness effect for the symmetric case where both firms have the same
default probability. Default correlations are maximum when the binary variables are
unskewed, i.e. when default probabilities are equal to 50%. Figure 7 visualizes the
distance-of-default-points effect for the case where firm 1 has a default probability of
0.05% and the default probability of firm 2 varies from 0.05% to 50%. In this case default

correlations first increase (high A\) and then decrease (low ).

Finally, figure 8 summarizes the major insights from propositions 1 and 2 and our conjec-
ture. Default correlations increase if default points move to the right and if the move of
the default point associated with the lower default probability is more pronounced. An
analogous result holds if default points move to the left. In the question-mark ranges both
default points move to the left or to the right but it depends on the parameter vector

(A, p) whether default correlations will increase or decrease.

10
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Figure 6: The skewness effect. The figure Figure 7: The distance-of-default-points ef-
depicts the default correlation of two firms fect. The figure depicts the default correla-
with the same default probability p when p tion between firm 1 (p; = 0.05%) and firm 2
ranges from 0 to 100% (p = 50%). (p2 ranging from 0 to 50%) (p = 50%).

The next proposition completes our picture of p! by exploring the boundary cases z; =

2o =0 and z;, 20 — —oc.

Proposition 3

(i) p? has a local maximum in z; = 2, = 0 and
def 2 :
p°“(0,0, p) = — arcsin(p).
T

(ii) If p <1, then lim, ,_. p®(z, 2, p) = 0. Moreover, p®(z,2,1) =1 for all z.

The intuition of the SE and DDE effects developed above suggests that (0,0) is also a
global maximum, which is confirmed by our simulation results. Hence, (2/m) arcsin(p)
can be used as an upper boundary for default correlations. We conclude this section by
stating a result expressing how default correlation changes due to shifts in default points

depend on the return correlation p.

Proposition 4
Suppose that zi, zo < 0. Then there are real numbers p;, = pr,(z1, 22) and py = pu (21, 22)

with p;, < pg such that the following statements hold:

(i) (pdef + pdef) is increasing in p for p < py and decreasing in p for p > py.

(ii) pg

is increasing in p for p < pr, and decreasing in p for p > pr.
Moreover, if 1075 < py, py < 0.46, then py € [0.53,0.89].

11
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Figure 8: For a given combination of default points (=3, —1.5), the figure depicts the default-
point range in which default correlations are higher than p¢f(—3,-1.5) (i.e. DC+) and the
range in which they are lower (DC-).

2.3 Applications

After stating our analytic results, we will now discuss their potential applications.

2.3.1 Default Correlations and Macroeconomic Shocks

In this section we explore how macroeconomic shocks impact on credit portfolios. In

particular, we address the following questions:

1. Can default correlations of two firms decrease after a negative macroeconomic shock?
2. Which correlation effect (SE or DD) is most relevant at the portfolio level?

3. What can be said about the size of the effects?

We start with the first question. Suppose that a macroeconomic shock scales down the
t = t; asset value of firm ¢ by the factor A; (Viy, — A;Viy, ). Then, according to equation

(2), z; increases by
—log(A;
R ®)
Var(Zi,h)

ie. z; = z; + 6;.'° Hence, such a macroeconomic shock will move both default points to

the right, but generally by different magnitudes. We can describe this shift by a move

ONote that §; > 0 since A; < 1.

12



of &1 units in direction (1,d) where § := d,/d;. Note that according to propositions 1
and 2 and our conjecture, the default correlation between firm 1 and 2 can only decrease
if 6 > 1. Moreover, we can describe the marginal change of default correlations by the

derivative in the direction of (1,6), i.e. by
P+ 0Py = (P o) + (6 — 1), (4)

Since pdf + pdf > 0, we obtain that p*' + 609! can only be negative if pdf < 0. Note that

for arbitrary asset correlations p we can find a pair (21, z5) for which pdf < 0 by simply
choosing 21 close enough to zero (see figure 5). However, if we restrict our analysis to
default points associated with default probabilities lower than, say, 10 percent and higher
than 10~* percent we obtain that A > 27% and can infer from figure 5 that pd°’ can only
be negative if p > 9.9%. Moreover, our simulation results suggest that for fixed § and
fixed default points z; and z, there is a critical value p = p(6, 21, z5) so that pdef 4 §pdef
is increasing in p for p < p and decreasing in p for p > p.!! Hence, default correlations

will only decrease if p exceeds a certain threshold p(d, 21, 22).

Summing up, we have found that default correlations will only increase if both variables
0 and p are high. In order to assess which combinations of § and p can occur, it is
important to keep in mind that the firms’ exposure to the macroeconomic shock in ¢ = t;
might explain quite a large part of the correlation between returns in ¢ = t,. For greater
concreteness, we add a third point in time, ?y, define the asset returns from %, to t; by
Zit, = 10g(Vis, /Vit,), and assume that the firms’ normalized returns depend linearly on

a macroeconomic factor Z° and on idiosyncratic components ¢;:

Ziy —IE Ziy

=0,7° 46, (i=1,2,t=1,15). 5
Varz ~ A e 1) %)

The random variables (¢; ¢, Zés)izl’g;t:tl’h are assumed to be mutually stochastically in-
dependent, and #; and 6, are positive real numbers. Inserting equation (5) in equation
(2) and using the fact that log(V;,) = log(Vi,) + Zit,, we finally obtain that the default

points z; and 2o can be written as

HNote that for p < pr, and p > py this observation is backed by proposition 4. For g, < p < pg, we

only know that (p§ef + pdef) increases in p while (§ — 1)p9°f decreases.
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z; and Z, are constants that depend on (Vi 4., Vay,) 5 (v1,v2), (€14, €24, ), and on the means
and variances of Z; 4, and Zy,, respectively.!? By normalizing the variance of Zt*z to 1 we
obtain that p = 6,05, 6 = 05/60; and that 0 < §; <1 (i = 1,2). This in turn implies that
§<1/p.

What can we learn from this exercise? First, since the macroeconomic factor responsible
for the scale-down in asset values will also explain a certain fraction of the asset-return
correlation p,'? there is a structural relationship between p and §. Second, for fixed p this
relationship limits the possible values for ¢ from above, since p determines a minimal joint
exposure to the macroeconomic factor. Hence, an increase in p will be associated with
a decrease of the upper boundary for 6. Whether a macroeconomic shock can decrease
default correlations at all will therefore depend on how strongly the upper bound for ¢ is
depressed when p rises, i.e. on the extent to which the asset correlations are explained
by the macroeconomic factor that has triggered the shock. In our example, where the
macroeconomic factor fully explains the correlation, simulation results suggest that default
correlations always increase if the default probabilities p; and py lie between 10~ and 10

percent.

We now turn to the portfolio level. In an average portfolio, the DD effect will tend to
cancel out, since there should be as many pairs of loans where d decreases as pairs where
d increases. As a benchmark, consider a portfolio where for each loan in the portfolio
with default points (21, zo) and exposure direction (1,d) there is another loan with (2, z2)
and the opposite exposure direction (0,1). If we add correlation effects pairwise across

the portfolio, the marginal effect of each pair is given by
(P14 0p5) + 0pi + 5 = (1 +8) (pi" + p) > 0.

On a more practical level, suppose that loans are subdivided into classes according to
their default probability (for example by rating classes). Now calculate the § of each class
by summing all single exposures of loans in that class. If the values for ¢ in all classes
are about the same, then DDE should approximately cancel out and the whole effect of
the shock on portfolio correlations can be described by SE. If, however, class exposures
differ significantly, then DDE might modify or intensify the rise of default correlations
caused by SE. However, even if DDE is significant at portfolio level and thus modifies SE,

12Here we have assumed that Var(Z;+,) = Var(Z;4,) (i = 1,2). In the Merton framework, which is
more precisely described in section 3.2, this is equivalent to the assumption that (t2 — t1) = (¢1 — to).
Hence we assume that the risk management horizon and the period during which the macroeconomic
shock is analyzed have the same length.

13In our example the macroeconomic factor fully explains p.
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then the reasoning above suggests that the overall effect should still be a rise in default
correlations. Moreover, in terms of the whole economy, the argument that DDE cancels
out could be made even stronger, since if credit portfolios of all banks are considered, the
0 for each loan class is averaged over a much higher number of firms. This in turn should
imply that the values of § are much more similar among classes. Therefore, as we turn to

the third question posed at the beginning of this section, we will concentrate on SE.

In order to give an impression of the size of the effects at work, we have calculated default
correlations for different loan types and different macroeconomic scenarios. The default

probabilities associated with these scenarios are shown in table 1.

AV A B C

Initial .05 .20 7.12
Shock 1 | -15% || .12 .43 11.20
Shock 2 | -30% || .31 1.01 17.96
Shock 3 | -50% || 1.35 3.56 34.52

Table 1: Default probabilities in percent for different loan types and different shock scenarios.

The first scenario (initial scenario) serves as a benchmark and the three others describe
deviations from the initial scenario induced by macroeconomic shocks of different intensi-
ties. We have chosen three different loan types (labeled A, B and C) which have different
initial default probabilities. The initial default probabilities for each loan type have been
chosen as average one-year default rates of the high, medium and low rating segments
of Moody’s.'* In the three shock scenarios, asset values will be reduced by 15, 30 and
50 percent (i.e. A = 0.85, 0.7 and 0.5 respectively). In order to calculate the resulting
changes in default points we finally need to fix the standard deviation of returns (see
equation (3)). We have chosen an average value 0.64 for yearly returns from BERNDT
(1991). We have then calculated default correlations in the initial scenario and derived
the factors by which these correlations increase under the three shock scenarios. All cal-
culations have been made for all possible combinations of the three loan types and for
different asset correlations (p = 10%, p = 30% and p = 50%). Table 2 shows the results

of these calculations.

4More precisely, we have divided all firms that were rated by Moody’s in 2000 into three equal-sized
groups. The highly rated segment (labeled A) includes firms with ratings from Aaa to A3, the medium-
rated segment (labeled B) includes firms with ratings from Baaal to Ba2 and the low-rated segment
(labeled C) includes firms with ratings from Baa3 to C. See MooDnY’s (2000).
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A1 .98 4.21 | .18 1.38 5.18| .53 2.35 5.02

1.89 1.58 1.36 | 1.80 1.53 1.33 | 1.54 1.39 1.28
A 3.75 2.62 191|338 244 184 | 2.43 1.98 1.67
10.11 5.46 3.17 | 8.28 4.76 293 | 4.48 3.18 2.43

30 2.03 6.89| .92 3.92 8.45

1.72 149 1.31 | 1.47 1.34 1.24
B 3.04 227 1.75| 2.18 1.81 1.56
6.77 413 2.66 | 3.65 2.70 2.10

3.10 11.30 22.65

126 119  1.13
C 156 1.39 1.27
1.95 165  1.43

Table 2: Default correlations (bold) in percent and scaling factors by which default correlations
increase under the shock scenarios. The scaling factor describes the multiplier by which default
correlations change compared to the initial scenario. In each cell of the matrix, the columns
correspond to the different asset correlations chosen. Asset correlations p increase from left to
right (p = 10, 30, and 50 percent). The rows correspond to the different shock scenarios. The
intensity of the shock increases from the top to the bottom row.

In each cell of the matrix, initial default correlations are bold and are followed by the
scaling factors by which default correlations increase under the different shock scenarios.
The different columns correspond to the different asset correlations chosen. For example,
the third line in each cell shows the factors by which default correlations increase under
the shock scenario 2 for the different values of p. The second entry in this line presents the
factor for p = 50%. The reported results suggest that the changes in default correlations
may be substantial. Moreover, default correlations rise most strongly relative to their
pre-shock value if return correlations and initial default probabilities are low. The effect

becomes less pronounced if those parameters increase.

At this point we have concluded that at portfolio level, the increase in variances caused by
higher default probabilities after a macroeconomic shock will be reinforced by an increase
in default correlations. We now give an impression of the size of these effects for an
average loan portfolio. Table 3 shows the characteristics of the portfolios used in order
to illustrate our theoretical results. Note that the principal is chosen such that all loans

have an expected repayment of 1.
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Principal | Recovery rate | p | Number of firms
1/(1—p) 0 50% 300

Table 3: Characteristica of the portfolios used for illustration.

We have considered three different types of such portfolios: portfolios only consisting of
type A loans (labeled AAA), portfolios only consisting of type C loans (labeled CCC), and
portfolios with 100 loans of each type (labeled ABC). Table 4 illustrates how the standard
deviations (Std) and the economic capital (EC) of an ABC portfolio increase under the
different shock scenarios we have considered. For example, if asset values decrease by 15%,
then portfolio standard deviation will increase by 33%. In order to identify the size of the
correlation effect, we have calculated the increase in portfolio standard deviation that is
achieved when only the increase in loan variances is considered and default correlations

are fixed to their pre-shock levels. These results are reported in column (Std-Corr).

AV | Std-Corr Std EC

-15% 24 33 24
-30% 29 79 51
-50% 105 167 100

Table 4: Percentage increase in standard deviation (Std) and economic capital (EC) after
macroeconomic shocks for an ABC portfolio. The column (Std-Corr) gives the percentage in-
crease in portfolio standard deviation when the increase in default correlations is not taken into
account.

A more exhaustive study of the relevance of the correlation effect for standard deviation
and economic capital of credit portfolios under macroeconomic shocks has been provided
by GERSBACH AND LIPPONER (2000) and LIPPONER (2000). Using a simulation ap-
proach, they isolate the correlation effect of a macroeconomic shock. After the shock has
occurred, they scale down return correlations until default correlations are at the same
level as before the shock. Comparing standard deviation and economic capital obtained
with the correct and the scaled-down return correlations enables them to measure the
size of the correlation effect relative to the other effects. They show that the correla-
tion effect may account for more than 50% of the increase in credit risk induced by the

macroeconomic shock.
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An important further implication of our results is that the standard deviation of default
rates will vary throughout the business cycle, as is the case with the standard deviation
of credit portfolios. This observation is important since the currently proposed reduced-
form credit-risk models use default rate distributions as input for the value-at-risk analysis
of credit portfolios.'> In table 5 we illustrate how default-rate standard deviations vary
throughout the business cycle. Considering an industry with an ABC firm portfolio,
we have calculated the percentage increase of the standard deviation when the economy
moves from the expansion to the recession state of the business cycle.'® Three different
expansion /recession scenarios - where the asset values increase (decrease) by 10, 20 and
30 percent compared to the average case - have been evaluated. Our results suggest
that - when using default rate distributions as an input for credit risk models - the
standard deviations of default rates should be adapted to the business cycle. For example
the simulation results in GORDY (2000) show that the percentile values calculated by
reduced-form models are very sensitive to changes in default-rate standard deviation. For
the portfolios considered by Gordy, an increase of variances by 100% increases percentiles

by two to three times.

AV Std-Corr Std

+10% 34 47
+20% 78 114
+30% 135 214

Table 5: Percentage increase of default-rate standard deviation when the economy moves from
the expansion to the recession state of the business cycle. We have assumed that the firm portfolio
of the sector or industry under consideration is of type ABC.

2.3.2 Pricing of Loans

The price of a loan should reflect the costs of the additional amount of capital that has
to be held against the credit portfolio when the specific loan is added to the portfolio. In
current practice, interest rates on loans in most cases merely reflect the impact of higher
default probabilities on expected returns. Our results suggest that the impact on portfolio

standard deviation should also be taken into account. We believe that the following two

15 Among them are Credit Risk™ from Credit Suisse Group and Credit Portfolio View from McKinsey.
See CREDIT SUISSE (1997) and MCKINSEY (1998)

6 Employing an ABC portfolio, we have in particular assumed that the number of firms in the industry
is 300. However, the figures in table 5 do not change substantially for a larger number of firms.
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observations are especially important in this respect. First, as can be seen from table 2,
the contribution of a loan to the standard deviation of the credit portfolio varies with the
composition of the portfolio. For example, the default correlation of a C loan with loans in
an AAA portfolio is 5.02%, while default correlations will rise to 22.65% if the considered
portfolio is of type CCC (distance-of-default-points effect). Second, the variance effect
(loans with higher default probability have a higher standard deviation than loans with
lower default probability) is reinforced by the correlation effect (they also have a higher

correlation with other loans).

Table 6 illustrates that it is important to recognize that a loan’s contribution to the
portfolio standard deviation varies strongly with its default probability. We compare
standard deviation and economic capital of an AAA and a CCC portfolio by calculating
the ratio by which both of these measures increase when moving from the analysis of
a CCC portfolio to the respective values for an AAA portfolio. For example, the CCC
standard deviation is 25.28 times higher than the AAA standard deviation. As before, we
have calculated the increase in portfolio standard deviation when the increase of default
correlations is not taken into account in column (Std-Corr). Note that all of these ratios
also reflect differences in the principals of the loans in both portfolios (see table 3). Since
we are mainly interested in the variance and correlation effect, the second row of the
table calculates the respective ratios when the principals of the loans in both portfolios

are normalized to 1.

Principals Std-Corr  Std EC

Heterogeneous 12.10 27.20 57.13
Homogeneous 11.24 25.28 53.1

Table 6: Ratios by which standard deviation (Std) and economic capital (EC) increase from
AAA to CCC portfolios. The first column (Std-Corr) displays the ratio for portfolio standard
deviation when the increase of default correlations is not taken into account. The second row
shows the ratios in the case where the loans’ principals are normalized to 1.

3 Robustness

In the preceding section we established the theoretical foundation of the correlation effect
and illustrated its importance for credit portfolio management. In this section we explore

the robustness of our results with respect to the assumptions made during the specification
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of the model. In section 3.1 we consider endogenous recovery rates, in section 3.2 we
examine the case where the risk management horizon is not identical with the maturity of
the loans, and in section 3.3 we discuss how alternative distributional assumptions would

affect our results.

3.1 Endogenous Recovery Rates

In this section we uphold the assumption of bivariate normally distributed returns but
consider endogenous recovery rates. To account for endogenous recovery rates, we assume
that a certain fraction [ of the asset value V5 can be recovered in the event of default.
Recall that Z;;, = log(Vi4,/Vis,) and hence Vi, = Vi, exp(Z;4,). Normalizing the loan
repayment in the case of non-default to 1, the payoff of a portfolio of two loans is given
by 2 — I — I, where

L=1{Z, < zi}(l — BV, exp(Zi’tZ)) (i=1,2).

We standardize V34, to 1 and adjust 8 and V5, such that a certain fixed fraction B of the

loan is recovered for 7, ;, = 2 and Z,;, = 2, respectively. Hence,
B = Bexp(—zl) and Vo, = Bexp(—zz)/ﬁ.

Finally, by normalizing the mean of (Z,4,, Z24,) to zero and by assuming, for simplicity,

that Z; 4, and Z,,, have the same variance o2, we can calculate the building blocks of the

correlation between loan repayments. Variances can be derived from!”

2

EP - /Zi/”(l—ﬁexp(ac—z») o(¢) dc

o

L = [ (1 Be(og - 20)p(0) de

o0

and the covariance from the formulas for IE[; (i = 1,2) and from
z1/o 22/ B B
EnLL = / / <1 — Bexp(a¢ _Zl)> (1 — Bexp(a¢s —22))90/)((1,(2,[)) dGy dGs

z1/o N 2
= %\/%7,02/00 (1 — fexp(oC — 21)) eXP{—ﬁ}g(C) d¢

174(-) denotes the density function of the standard normal distribution.
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where

2 _ 2
©p(C1, Coy p) {_<1 2pC1Co + (5 }

2(1 - p%)

1
= ————exp
24/1 — p?

9(z) == e 1—3exp(a(—22) exp _CQ—# dc.
oo 2(1-p?)

and

For the robustness analysis we have relied on numerical results for three reasons. First, the
analytic tractability of the problem seems questionable. Second, there is a quite clear-
cut intuition of how default-correlation changes for the endogenous case relate to such
changes in the exogenous case. If recovery rates are endogenous, loan repayments in the
event of default provide full information about realized returns. This implies that default
correlations in general should be higher than in the exogenous case, where the default event
only reveals that the firm’s standardized returns are below the default point. Moreover,
with higher default probabilities, the event of full information revelation is more likely
which increases the information about joint returns available from loan repayments. This
adds to the skewness effect and default correlations should therefore increase even more if
recovery rates are endogenous. Third, the log-normal specification of asset values implies
that the amount that can be recovered in the event of default decreases exponentially
when returns decrease (see e.g. the equations for IE I? or IE I ;). This suggests that the
difference between the endogenous and the exogenous case should decrease rapidly when
returns decrease from default points, which in turn implies that the correlation measures

should not differ very strongly.

We have calculated default correlations for a wide variety of parameter constellations.
The results obtained confirm the intuition outlined above. Table 7 documents the case
oc=1and 3 =0.238.

3.2 Rating Migration

In the last section we suggested that endogenous recovery rates do not affect our qualita-
tive results. We now return to the assumption of exogenous recovery rates in examining
the robustness of our results with respect to the relationship between risk management
horizon and loan maturity. In this section we investigate how our results are affected when
loans do not mature at the end of the risk management horizon. In order to conduct this
analysis we add an additional point in time, 3. We assume that the bank does risk man-
agement in £ = ¢y, uses the risk management horizon ¢ = ¢, and holds zero-coupon loans

maturing in ¢ = ¢3. As in the previous section, the loans default if the firms’ asset values
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.10 1.03 4.80| .18 1.46 5.91| .54 2.61 6.20

1.89 1.58 1.35|1.81 1.54 1.33| 1.56 1.41 1.29
A 3.78 2.62 190|342 245 183 | 2.51 2.03 1.70
10.36  5.50 3.14 | 854 483 291 | 4.84 3.40 2.56

B0 214 7.81| .93 4.29 10.11

173 149 1.30 | 1.49 1.35 1.25
B 3.09 228 1.75| 2.26 1.86 1.58
7.03 421 2.66 | 3.97 2.88 2.21

3.20 12.32 25.83

128 120 1.14
C 1.64 145  1.29
220 1.81 152

Table 7: Default correlations for endogenous recovery rates (0 = 1 and 3 = 0.8). The table can
be read in the same way as table 2.

fall below the respective default points, i.e. if Vi, ; < v; (i = 1,2). Note that in such a
setting the loans have to be reevaluated in ¢ = ¢5. In order to derive a complete valuation

framework, we make the following assumptions:

1. The asset values of both firms follow a two-dimensional geometric Brownian motion,

ie.:
dVi 4/ Vi
( 1,t/ 1,t ) — dW,.
dVa/Vay
W = (Wi)icpo,00) is a two-dimensional Brownian motion with mean vector pu =

(1, p2)” and covariance matrix

2

( 07 010320 )

9 .
0102p0 g5

Y=

1i, 0; and p describe the mean, variance and correlation of the two firms’ instanta-

neous assets returns respectively (i = 1, 2).

2. The instantaneous risk-free interest rate is r, i.e. a dollar invested from time ¢ to

time s in risk-free securities yields e"¢~% dollars.
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When pricing both loans in ¢ = t5, we work with the standard risk-neutral or martingale
probability measure.'® We use pj}, to denote the risk-neutral conditional probability that
firm ¢ defaults in ¢ = t3, given all the information available in ¢. Since under the risk-
neutral probability measure, the expected return on all securities is the risk-free rate r,
the risk-neutral default probabilities are given by the probabilities of the corresponding
risk-neutral asset value processes V" := (V)ic[0,00) falling below the firms’ respective
default points v; and v, in t = 5.1

Note that V.* is defined in the same way as the asset value process V; except that the

)

return rates p; are replaced by the riskless return r. Hence, the log increments

(10g(V;2) —log(Vi2)) _ (s> 1)

i=1,2

of the risk neutral processes are distributed jointly normally with means (s —t)(r —o?/2),
2
i

therefore obtain that

variances (s — t)o;? and correlation p, and are independent of V;%.** For t < s = t3 we

. IP{log( iftg) — log(WTt) —(r—o0;/2)(t3 — t) - log(v;) — log(Vij‘t) — (r—0;/2)(ts — 1) }
" otz — 1t = N
_ <1>{ log(v;) —log(Vi,) = (r = ai/2)(ta — t1)  log(Vi3) — log(Via,) = (r — 0i/2)(t — 1)
oty —1 R —
_ @{\/ﬁz* [t =ty log(Viy) —log(Viy,) — (r — 0s/2) (1 —tl)}
ty—1 " l3—1t oI — 1,
where

o log(vi) —log(Viy,) — (r —0i/2)(ts —ta)
z = P (1=1,2).

For ¢ = t; we obtain pj, = ®(z), which allows us to fix the ¢ = #; risk-neutral default

probabilities by choosing appropriate values for z;. Once these values are fixed, the ¢t =1,

8For a description of the martingale-measure approach to the pricing of securities see e.g. JARROW
AND TURNBULL (1996), ch. 5 and 6. Note that this approach is the state of the art for repricing
loans before maturity. It does, however, not take into account problems arising from the fact that - due
to asymmetric information - the bank might not be able to sell its loans to the market in t = ¢y at
the martingale measure price. To our knowledge there is currently no risk management approach that
combines risk neutral pricing and asymmetric information among market participants to reprice loans.

9Gee CrOUHY, GALAI, AND MARK (2000), p.100.

20See e.g. JARROW AND TURNBULL (1996). Of course the same is true for the asset value processes
themselves. The only difference is that in this case the means for the log increments are given by

(s = ) (s — 52/2).
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risk neutral default probabilities are given by

Pisy = <I><\/T +1z2f — \/7_'ZZ>

where
gy 08V —10802) — o/t
oiVita — 1ty ’
and
to — 1
Tt —ty
Note that 7 describes the relative sizes of the
ol \ C T =05 risk management period and the loan duration
08 L Y10 | after the risk management horizon. Using the
o6 | \ \ : | t=1 risk-neutral default probabilities, we
§ O can describe the ty value V% 1, of loan 7 in the
04 A 1 following way:
02 -
Vi, = Lie 71— pr, (1= ).
o —|7 —Ie —|5 —|4 —|3 j\2‘ —|1 0

z L; is the principal that has to be paid back

. ) ) in t3 and ( is the (exogenous) recovery rate.
Figure 9: The function H 99 ,(-) for differ-

ent values of 7. Note that from a ¢ = t; perspective, only the

probabilities pj ,, and pj ,, are random, imply-
ing that
L /L
V to "/Q,t;))

orr(Vy.
= r(p’{, P1,)

= Corr( H, . (Z ),HZQ,T(Z2)>-

H, ; is defined by
H,.(Z)=01+12—+T2)

and (7, Z,) is a standard bivariate normally distributed random vector with correlation p.
Comparing p™® with pd°f, we observe that the functions 1{- < z;} are replaced by H,, ,(-)
(i = 1,2). Figure 9 depicts the indicator function and the function H for z; = z9 = —2.9
(which corresponds to a risk-neutral default probability of 0.2%, i.e. a B loan) and for
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different values of 7. It can be seen that H is a “continuous version” of the indicator
function and that H converges towards the indicator form for 7 — oo. The intuition
about the relationship between default probabilities and default correlations that led to
the analytic results in section 2.2 should therefore still apply qualitatively. In order to
confirm this reasoning we have calculated p™8 for different values of 7. The results for

7 =1 are displayed in table 8.2!

A B C

11 1.05 4.81 | .18 1.48 5.91| .55 2.59 6.00

1.90 1.58 1.35|1.81 1.54 1.33| 1.56 1.40 1.28
A 3.79 262 1.89|342 245 1.82 | 248 1.99 1.67
10.37  5.48 3.11 | 851 4.80 2.88 | 4.68 3.26 2.42

31 218 7.80| .96 4.29 9.83

1.73 149 1.30 | 1.48 1.34 1.24
B 3.09 228 1.74| 2.23 1.83 1.55
6.99 4.17 2.63 | 3.82 2.77 2.10

3.28 12.32 25.29

127 119  1.13
C 1.60 1.42 127
206 171 145

Table 8: Loan correlations p™® for 7 = 1. The table can be read in the same way as table 2.

Note that the results do not differ substantially from the ones obtained in section 2.3.
Moreover, the differences should be most pronounced for low 7, since H,, -(-) will differ
the stronger from the indicator functions the lower the values for 7 are. But even for
7 = 0.05 (which implies that loan duration is 20 times longer than the length of the risk
)22

management period)* no significant deviations from the values in table 8 result.

3.3 Distributional Assumptions

In the last two sections we derived the stability of our results with respect to recovery

rates and the relationship between risk management horizon and loan duration. We now

2INote that the labeling of the different loan types in this section refers to the risk neutral default
probabilities (e.g. an A loan has an initial risk neutral default probability of 0.05%).

22The typical length of a risk management period in the banking industry is one year (see e.g. JP
MORGAN (1997)).

25



return to the assumptions that loans mature at the end of the risk management horizon
and that recovery rates are exogenous, and examine the robustness of our results with

respect to the assumptions about the distribution of asset returns.

We will show that the crucial point of our assumptions is in fact not that returns are
bivariate normally distributed but that an arbitrary monotonic transformation of the
asset value process has this property. Let us describe the general framework we have in
mind in more detail. Suppose that there is a monotonic transformation 7 of the asset
values V7 ;, and V5, which may depend on some aspects H;,, of the asset value history up
to time ¢1,? so that the transformed variables Z; ;, :== T (Vi,,, Hi4, ) are bivariate normally

distributed. The transformation has to fulfill the following two conditions:

1. Zy;, and Zy,, are independent of H,,, and Ho,,;

2. T (-, Hiy,) is strictly increasing for all realizations of #,, .

In this case the random variable 1{V;;, < v;} that describes the default behavior of firm
i can be equivalently written as 1{Z;;,, < z;} where z; = z;(v;, His,) is increasing in
v;. We call the transformation 7 the “correlation model”. Note that the model we have
formulated in section 2.1 is a special case of this general framework. The transformation

used in section 2.1 was

T(‘/i,ty ‘/i,t1) = log(‘/tQ/‘/h)a
and hence ,,, is the o - algebra generated by V;,, (i = 1,2).

As can be seen from the preceding arguments, the robustness of our analysis with re-
spect to the underlying distributional assumptions boils down to the robustness of the
correlation model chosen and has nothing to do with assumptions about the univariate
distribution of returns. If the correlation model is a good approximation for the corre-
lation structure, then our whole analysis applies, since arbitrary univariate distributions

are supported by our model.?*

Moreover, we conjecture that the intuition developed in section 2.2 about the relationship
between default points and default correlations should apply more generally for linear cor-

relation models, i.e. for models where asset-return correlations are derived from a common

ZMore technically, H; ¢, is assumed to be an arbitrary sub o - algebra of 0((‘/}73)391).

24Note that, given a continuously distributed random variable R with distribution function F' and given
any other distribution function G, we can find a monotonic transformation of R which is distributed
according to G. This transformation 7 is given by T =G o F .

26



linear dependency on some independent factors.?> For example, it has long been argued
that stable-law distributions might provide a better description of actual returns than
the normal distribution.? Moreover, since the sum of independent stable-law-distributed
random variables also follows a stable law law, a straightforward specification of a linear
correlation model is possible. It might therefore be insightful to test our conjecture for

such random variables.

The most important empirical objection against the linear correlation model for asset
returns is that correlations of large negative returns seem to be much greater than expected
under bivariate normality.?” Moreover, there are quite a few theoretical arguments of why
this may be the case, ranging from contagion from some markets to others, joint credit
constraints, to changes in market structures and practices.?® In an exteneded version
of this paper (ERLENMAIER AND GERSBACH 2001) we explore the consequences of this
(potential) deviation from a linear correlations model for our results. We find that higher
return correlations for low returns will tend to moderate the skewness effect or even reverse
it. Whether this mechanism has a significant impact on default correlations will have to

be assessed by empirical research.

4 Conclusions

In this paper we have established the structural relationship between default probabilities
and default correlations. Loans with higher default probabilities will not only have higher
variances (variance effect) but also higher correlations with other loans (correlation effect).

Hence, the variance effect (which is an obvious consequence of higher default probabilities)

25Note that multivariate normally distributed random variable are a special case of linear correlation
models.

26See FAMA (1970) for a discussion of the literature or RACHEV, SCHWARTZ, AND KHINDANOVA (2000)
for a more recent contribution. Stable-law distributions can capture two important empirical deviation
from normality (thick tails and excess kurtosis).

2TSee LONGIN AND SOLNIK (1999). Note that LONGIN AND SOLNIK (1999) investigate equity returns.
Of course it is not clear whether these results can be extended to asset returns. However, since asset
returns are not directly observable, the results for equity returns can be seen as a first indication that
similar results may be obtained for asset returns, especially since for highly rated firms, asset and equity
returns should exhibit similar patterns if the value of debt does not vary too much.

28Recent discussions of possible routes of contagion include DRAZEN (1998), EICHENGREEN, ROSE,
AND WYPLOSZ (1996), and GERLACH AND SMETS (1995). The CGFS report (COMMITTEE ON THE
GLOBAL FINANCIAL SYSTEM 1999) on the events following the Russian default in August 1998 presents
a narrative account of how the effects of shocks were reinforced and spread to other markets by market
practices. Concerning the literature on credit constraints see HOLMSTROM AND TIROLE (1997) and
references therein.
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is reinforced by the correlation effect. We have seen that due to these effects, portfolio
standard deviation can increase substantially with higher loan default probabilities. These

results have important implications for banks and regulators.

First, when determining relative prices of loans with high and loans with low default
probability, banks should take into account the differences in the contribution to the
overall standard deviation of their portfolio and hence to the economic capital needed to

be held against the credit portfolio.

Second, during economic downturns default probabilities will increase. This will not only
increase expected losses but also the standard deviation of loan portfolios. Hence the
increase of required economic capital during downturns will stem from at least these two
sources. We feel that this observation is important for regulators in seeking to gain a more
complete picture of the consequences of macroeconomic shocks for the banking system. It
will also be important for banks which attempt to hedge against fluctuations in required

economic capital caused by macroeconomic risk.

Third, consider the consequences for current credit risk models.?? Academics and regula-
tors have pointed out that credit risk models should take into account the fact that default
probabilities increase during economic downturns, since the banks’ expected losses will
increase. Our results emphasize this point, showing that not only expected losses but also
default correlations and, accordingly, portfolio standard deviation will increase. More-
over, the correlation effect has different consequences for structural models on the one
hand and reduced-form models on the other. The structural approach to credit events is
used by Credit Portfolio Manager from KMV and (indirectly) by Credit Metrics (CM)
from JP Morgan. This approach essentially employs the framework outlined in section
2.1 to derive joint default probabilities. While KMV uses a firm’s stock market value and
its debt structure to derive default points (a method sensitive to changes in asset values),
CM uses historical rating class default frequencies to calibrate default points. Our results
emphasize that adjusting the CM default points to the business cycle is important. Once
these default points have been appropriately adjusted to changed default probabilities,

CM will also take the variance and correlation effect into account.

Reduced-form models, on the other hand, are used by Credit Risk™ (CR) from the Credit
Suisse Group and Credit Portfolio View from McKinsey (McK). A major building block
of these models is the distribution of default rates. While BAR (2000) has demonstrated
that default rates can be predicted quite well using macroeconomic variables, thereby

presenting a method of how to adjust default rate means to the current economic envi-

29 A review of these models is given in CROUHY, GALAI, AND MARK (2000).
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ronment, it is much less clear how to adjust the standard deviation of default rates. Our
results suggest that default-rate standard deviation will vary significantly throughout the
business cycle and that reduced-form models should reflect such changes. How to estimate
default rate variances conditional on the business cycle therefore emerges as an important

empirical issue that still awaits a satisfactory answer.3°

We have derived our results for a fairly simple joint default model. However, we have
shown that they remain robust under endogenous recovery rates, loan reevaluation at
the end of the credit risk horizon and under alternative distributional assumptions for
asset returns (as long as a monotonic transformation into a bivariate normal distribution
exists). To gain a more complete picture, two issues have to be taken up in future research.
First, rather than assuming that default can only occur at the date of the loan’s maturity,
it should be more realistic to model default as an absorbing barrier to a firm’s asset value
process, which can be reached at any point before the loan’s maturity. The robustness of

our results in such a modeling framework should be investigated.

An equally important issue is whether the linear correlation model used by KMV and CM
is appropriate. We have indicated that for correlation models where the return correlation
is higher for low returns than suggested by the linear correlation model, the relationship
between default probabilities and default correlations might even be reversed. These
results suggest that a detailed empirical assessment may become necessary of whether
other correlation models should enter credit risk frameworks of the structural type. In

the interim, simple regime-switching correlation models could be used for stress testing.!

Finally, while the impact of the macroeconomic environment on expected default rates
(and hence on average default probabilities) has been studied quite carefully, changes in
default correlations are much more difficult to handle empirically. We have highlighted the
difficulties of both modeling approaches in assessing the changes of default correlations due
to macroeconomic shocks. When determining the bank capital needed to hold against a
credit portfolio, it might therefore be useful to increase the default correlations calculated
by the models by a “security factor”. The expected losses produced should be more stable

across time.

30Note that formally, McK does not need default rate distributions as input. These distributions are de-
rived from the distributions of macroeconomic variables that are supposed to explain default rate changes.
However, in order to justify that the implied default rate variances not only reflect the variances of the
underlying macroeconomic variables, conditional default rate variances need to be predicted accurately.
But this again rises the question of how to estimate these conditional variances.

31Gee e.g. ANG AND BEKAERT (1999).
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A  Proofs

In this part of the appendix we prove our main results concerning the relationship between

default probabilities and default correlations. First of all note that

Cov(l{Z1 <z}, H{Z; < Z2}> D
- \/Var(l{Zl < 21}) Var(1{Z; < 23}) N

pdef _ pdef (

21, %2, P)
In section A.1 we derive some useful expressions for D and N and for their first and second
derivatives. This will be helpful in proving our main results in section A.2. The following
notation will be used throughout the appendix: ®” for the distribution function of (7, Z3),
©(-) and ®(-) for the one-dimensional standard normal density and distribution function
respectively. Moreover, throughout the appendix we will use subscripts to indicate partial
derivatives. D; for example will denote the partial derivative of D with respect to z; and
Dy, is a short form for 0°D/9z,0z. Finally note that z; always indicates the default
point associated with the lower default probability (z; < 2,).

A.1 The Building Blocks D and N

Since D = ®°(zy, z9) — P(21)P(29), we will first derive a formula for ®*(zy, z9). Note that
(Z1, Z5) has the same distribution as (7, Zg) where Z, = pZy + ¢, and € is distributed
according to N(O, 1-— p2) and independent of Z;.32 Hence,

Pz = [ o220 d (©
B Oy

Note that by the theorem of Lebesgue, formula (6) also applies for the case p = +1. In
this case the limit of the right-hand side of the equation is taken. In the next sections we
will take first and second derivatives of the right-hand side of equation (6). Again by the
theorem of Lebesgue, the respective derivatives for p = +£1 can be obtained by taking the

limit of the formulas derived for |p| < 1.

32N (u,0?) denotes the normal distribution with mean p and variance 0.
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A.1.1 The Functions D and N

From equation (6) we obtain

—oo 1—p?

D= [ / ) (22 () d<] — D(21)(2).

The function N can be represented as

N = \/q>(z1) (1 — QI>(Z1)) \/q>(z2) (1 - ‘I>(Z2))

and?? 1 1
D=z = garcsin(p) and N |,,—.,—0 = T

A.1.2 The First Derivatives of D and N

Dy = plan) [0 F==) - @)

Ny = %[@(22)(1 ()] 2 [#(z) (1 - ()] ) (1-20(z1)).

Moreover,
Dl |z1:22:0 = 0 and N1 |21:22:0 = 0

A.1.3 The Second Derivatives of D and N

Dy = —z10(21) [‘b<%) - (I)(ZQ)] —¢(21) 1— ngp( 221__10212)
Dy = p(z1) [\/11_ pQQD( f;l__p;) - 80(22)]

o = 3o (1= o)) {-3fote0 (1 000)] [ 12000

o) (1- (P(zl)>]l/2 a0 (1 - 28(20)) — 20()] }

33The proof for the arcsin representation of D is given in GERSBACH AND LIPPONER (2000).
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Ny = %[@(22)(14@(22))]1%(22) (1-28(=)) [0(=) (1—@(21)>]1/2g0(21) (1-22(21)).
Moreover,
Dy |z1:z2:0 = _%\/%7,02 and Dy |21:22:0 = %(ﬁ - 1)7

1
Nuy |21222:0 = _90(0)2 = _% and Nio |Z1222=0 =0.

A.1.4 Derivatives of Fractions

The following general formulas provide the link between the derivatives of D and N and
those of pd¢f. We define

D(Zla 22)
F=F =
and observe that
DN — DN,
F=2 L
N2
DN — DN, (DN, + DNH)N2 — DN{2NN;
Ry = 2D o (1)
D N — DNy — 2DV, 2DN12
- N? HE (12)
and
DN — DNy, (DyN; + Dng)N2 — DN{2N N,
F12 - 2 - 4 (13)
N N
DisN — DNyy — DiNy — DsN;  2DN; N,
= e + N (14)
A.2 Proofs

In this section we present the proofs of propositions 1, 2 and 4, all of which cover the
case 21,22 < 0. The proof of proposition 3, which is concerned with the boundary cases
21 = 29 = 0 and z; = 29 — 00 is given in an extended version of this paper (ERLENMAIER

AND GERSBACH 2001).

def

To derive our results we first of all calculate the derivative of p® with respect to z; and

Z9.
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Lemma 1
If |p| < 1, then

I—p
where o |- 23(2)
2@(2)(1 . q)(z))
For p =1 we obtain
dof ¢(21) (1 - ‘5(22))
S 2N (1- (=)
pgef _ _90(22)‘1’(21)

Remark 1
The formulas for p =1 can be derived as limits of the formulas (15) and (16) for p — 1.

Corollary 1

Ir
2\

>7
p 14+ 227

then pdef < 0 34

Proof of corollary 1.

Use equation (16), and note that ®°(21,23) > ®(21)®(22)* and that ¢(z) > 0 if z < 0.

34Remember that A = z2/21.
35This inequality follows from the more general inequality, IE (f(Z)g(Z)) >E (f(X)) IE (g(Z)) , which

applies for arbitrary real-valued random variables Z and monotonically increasing functions f and g (see
e.g. HARDY, LITTLEWOOD, AND POLYA (1991)). In our case we can choose f(z) := 1{z < z;} and

g(z) := <I>((,22 —pz)/(/1- pQ)). Note also that in this case the strict inequality applies, which can be

seen by examining the proof in HARDY, LITTLEWOOD, AND POLYA (1991). We thank Lutz Duembgen
for this suggestion.
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Hence, pdef < 0 if

which is equivalent to (1 — pA)? > (1 — p?).%

Proof of lemma 1.

First of all note that by the theorem of Lebesgue the formulas for p = 1 can be derived

as limits of the respective formulas for [p| < 1 and that by symmetry pi®(zy, 29, p) =

pdf (29, 21, p). Tt is therefore sufficient to derive the formula for pie' if |p| < 1. But this

formula follows directly from
w_ Di DN,

equations (8) - (10) and the fact that D = ®#(zq, z9) — ®(21)P(22).

O
To derive our main results, we draw on the fact that p{*' and pd°' are increasing (decreas-
ing) functions of p in certain areas. Therefore, we now examine how p{¢' and pd°’ depend
on p. The derivatives of p* and p3* with respect to p will be denoted by p{¢ and pg<
respectively.
Lemma 2
pPz2 — 21
Pf,e,f = 5{172 - ¢(Z1)80(21)}
—p
pPz1 — 22
Pg,e,f = 5{172 - 1/)(22)%0(22)}
—p
where
5 e(2)¢((z2 = p21) VT = 72)
o Ny/1—p? '
Hence

e ef __ _(Zl + ZQ)
oy Al ==~ vee(a) — da)e()

36Note that z; < 0.
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Proof.

First we calculate the derivative of ®” with respect to p. In order to do so we use that

0 ( z—pC pza — ¢
o (=) - )
Hence
22=p¢1
0 “ 0 [Vin2
S = [ g [T e dad
1 1 29 — pC
= W/M(PZQ - Cl)@(CI)QD(\;Tipz) dg.
But since v27p(¢) = e ¢*/2, we obtain
zg—=pC\ CH(1— p?) + 25 — 229pC + P*C2Y
2w<<)so(1—_p2) = exp{ - ) b= exp().
Moreover, T' can be written as
4z —2mpC
Ty
(€ —zp)® +23(1 = p?)
2(1—p?)
(= mp)? 4
21 —p) 27
Hence ¢ ¢
29— pC\ — Z9p
Qe (=) = = el (18)

and therefore

d (%) “ ¢ — 22p
Y = o] a0

But since the integrand can be integrated analytically to

(1- pQ)w(%),

we obtain

0 ©(22) 21— P2o
— PP = }
dp \/1_p280(\/1_p2)

35



We are now able to calculate the derivative of pdf with respect to p. Recall that

def 80(21) Z9 — P21 p
gt = 22 { (@(ﬁ) - %)) — () <<I> (21, 2) — @(zn@(zz)) }

Therefore, using equations (17) and (18), we find:

A {M_%(Zr”zl)—w<zl)so<z2>so(—zl‘%)}

Ny1—-p2| 1-p° V1= p? 1= p?
 elee((2 - 0/ VT ) (225 )
= NJL 2 1— 2 1)P\21) (-
Moreover, since p§*(21, 22, p) = p3” (22, 21, p), a formula for pg% is obtained by interchang-

def def
1,p* 2,p

lemma can then be derived by using that - according to equation (18) - the following

pla)p( TLE) = pla)e( 222 ).

1= p? 1= p?

ing the roles of z; and 2, in the formula for p The expression for pS given in the

statement holds:

Lemma 2 provides the key to our main results. Note that according to lemma 2 the

following holds:

nG = «SH(gA(p),zl) (19)
py = EH (gm(p), zz) (20)
1 1
def def
) () s
pa+ oty = €H(rm) +H (7 (21)
where
(1-20(2) ) (2)
H(a,2) == —az—¢(2)p(z) = —az —
20(2) (1 - @(z))
1—pA
gr(p) = W
Since ¢ > 0, the signs of p‘f?pf, pgfpf and p(ff/f + pgfpf are equal to the signs of the right-hand

sides of equations (19), (20) and (21) respectively. To prepare for the proofs, we will

therefore - in the next two lemmata - derive some properties of the functions H and g.
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Lemma 3
Suppose that z < 0. Then the following statements hold.

(i) If a > 0.5, then H(«, z) > 0 for all

< 404—1_.___()
z ”204—1_'z_za'

(ii) H(a,z) > 0 for all a > 0.65.

(iii) If107% < ®(z) < 0.46, then H(c,2) < 0 for all o < 0.52.

Proof.
(i) First we observe that
®(2)

' 1Tep

is strictly decreasing in z and converges to 1 for 2 — —oo. Hence

H(a,z) > —az — 2 (2) =: hy(2).

Note that the anti-derivative of hy is given by

Lr
/h1 = -3 [az + log(@(z))}
1 e
— Zlog(S—).
2 °g<quz))
We will show that hy(z) := e %" /®(z) is strictly increasing in z for z < Z, which implies

that [ hy is strictly increasing in z; this in turn leads to hy(z) > 0 for z < z. To show

that hy(-) is strictly increasing in 2, note that

—e " 2020 (2) + ¢(2)
®(2)?

Moreover,
hy(2) = 2a — 1)z¢(2) + 2a9(2)
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and hY(z) = ¢(2)[(4a — 1) — (2ac — 1)2?]. Hence, if o > 0.5, then h(z) < 0if z < Z and
therefore hly(2) < lim,_, o hy(2) = 0. Therefore, hy(2) < lim,_, o hy(z) = 0, implying
that A (z) > 0 for z < Z.

(ii) Note that H is increasing in « and that it is therefore sufficient to show that H(0.65, z) >
0 for all z < 0. Moreover, according to (i), H(0.65,2) > 0 for z < 2(0.65). But since
Z(0.65) > —2.31, we only need to consider the interval [—2.31,0). The proof will proceed
in two steps. For z € [—2.31,0.1] we have relied on numerical methods. These meth-
ods use an approximation of the second term of H, which is no longer feasible when 2

approaches zero. The area [0.1,0) is therefore treated in the second step.

For the numerical analysis we have chosen a grid of 40,000 equidistant points and have

evaluated the function

(1-20())(2)
2@(2)(1 - (D(z)) '

The values on the grid have been approximated by standard numerical integration (for

U(2)e(z) =

®(2)) and Taylor series expansion (for ¢(z)). The values between grid points have been

approximated from above by the mean value theorem of differential calculus, using that

£ (62)0(2)) 1 < 2*;(()) (Bl ;z"()) i ggz;}

for 2 € [21, 29).%7

Now we turn to the second step of the proof, where we show that H(.65,z) > 0 for
z € [<0.1,0). We use the fact that hs(z) := ¢(2)/®(2) is strictly decreasing in z for
z < 0.3 This implies that if z > z; then

H(z) > —az — g[l - 1(_1)(7;22)} =: hy(2)

3T"We denote the nominator of 21/(z)¢(z) by fi and the denominator by f». Note that f5 = f; and that
we can therefore write the derivative of 2¢(2)¢(2) as (f1/f2) — (fi/f2)2. But fo(z) > ®(z1) (1 - <1>(Z2))
and

£(2) = =2(1-28(2)) p(2) - 20(2)*.

Finally, f1/fs < ¢(22)/®(21).
38Note that

hy(2) is strictly increasing in z since Ry(2) = zp(2) + ®(2) — 2¢(z) = ®(z) > 0. Therefore hy(z) >
lim,_,_ h4(z) = 0 and hence hj5(z) < 0.
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where ¢ := ¢(z1)/®(21). On the other hand,

Py(z) = [ (2)(1-2(2)) +0(2)2()|

B
(Z)

and hence we obtain that hj(z2) cd for z < z9 where

d:= #(2) 5
2(1 . @(22))

For z; = —0.1 and 2, = 0 we have ¢ < 0.74 and d < 0.8. Hence h\(z) < 0 if @ > 0.65 and
therefore hy(2) > hy(0) = 0.

(iii) Since H is increasing in «, it is sufficient to show that H(0.52,z) < 0 for all
$~1(107%) < 2 < ®7'(0.46). This result has been derived by the same numerical method

as used in the proof of (ii).

Lemma 4

(i) If A > 1, then g,(-) is strictly decreasing in p.

(ii)) If0 < A <1, then gy(-) is strictly decreasing for 0 < p < pmin and strictly increasing
for pmin < p < 1 where

1—vV1—= )2
Pmin ‘= f

(iii) The equation gx(p) = ¢ has the following solutions:

p1/2(c) = %{)\$ VA2 — 4e(1 — C)}

(iv) For all A > 0 we have g)(p) > .64 for 0 < p < p;(.64). Moreover,

25

oA VB = )

p1(.64) =
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Proof.

Note that )
(p) = AT —2p+ A
P T 2y

All results can be obtained by straightforward calculations.

Proof of proposition 1.

First of all note that by symmetry the statement for z;, 2o > 0 can be deduced from the

statement for 21,20 < 0. If 21, 20 > 0, we can use that
WZi<zd=1-1{Z >z} (i=12)
and that
Corr([l —HZ1 >z}, [1-1{Zy > 22}]) = Corr(1{21 >t {Zy > 22})
But by the symmetry of the bivariate normal distribution we have®’
(147> 21}, 12 > %)) 2 (UZ < -2}, 1{Z < —2})

and thus it is sufficient to consider the case zy, 29 < 0 for the rest of the proof.
Recall from lemma 2 that

Pcfif+ Pg,e,f _ A1tz
3 L+p

—¥(z)e(z1) — P(22)p(z2) = ha(p),

which implies that h; determines the sign of p‘fif + pgf’;. First of all note that h; is strictly
decreasing in p. Hence, h; is either always higher or always lower than zero or there is a
po = po(z1,22) such that hy is positive for p < py and negative for p > py. Concluding

that the same statement applies for p‘fif + pgif, we obtain that

A4 (p) + 4 (p) > min{ [{*(0) + 3 (0)]. [p5(1) + o8 (1)]}

for 0 < p < 1. But p{*{(0) = p¢¢f(0) = 0 and it remains to show that p{¢f(1) + pgef(1) > 0.

3By X 2V we mean that X and Y have the same distribution.
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Recall from lemma 1 that for p =1

o) (1 - 2(=2)

At = 2N(1 - <I>(z1)>
gt p(22)@(z1)
P2 = TONG(y)
Hence:
s+ e fon (1 - @) )0(20) b = 0(2)®(2) (1 - B(22)) — p()2(2) (1 - @(an)
=: hy(z)
and

B (21) = w(zl){—z@(@) (1 _ <I>(22)> — o(2) (1 _ 2@(@) }

The following three statements imply that he(2;) > 0 for all —oo < z; < 25, which in turn

proves that pfef + pdef > 0.

1. There is a z (—oo < Z < 29) such that hi(z;) > 0 for z; < z and hb(2z) < 0 for

21 > Z.
2. limy, s o ha(z1) =0 .

3. hQ(ZQ) = 0.

Statements 2 and 3 are obvious. To prove statement 1 it is sufficient to show that

ha(21) 1= —21®(20) (1 — @(22)) — o(2) (1 — 2@(21))

has the proposed property. But

By(21) = = () (1= @(22) ) + 20(22) (1)

and statement 1 follows from

1. hg(ZQ) < 0 and

2. thereis a Z (—oo < Z < 29) so that hj(z1) < 0 for all z; < Z and h%(2;) > 0 for all

zZ > Z.
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Point 2 is obvious and 1 is equivalent to

_2 #(2) (1 B 2(1)(22)) _ H(1722) - 0,

2 20(z) (1 . @(zQ)) 2

which is true according to lemma 3.

Proof of proposition 2.

The second part of statement (ii) has already been derived as corollary to lemma 1.

Concerning the other statements, recall that, according to lemma 2, p(fflf(p) > 0 as long
as H(g,\(p),zl) > 0, and that pgf/f(p) > 0 as long as H(gl/,\(p),zz) > 0. By lemma 3

this is the case if g\(p) > .64 and g;/x(p) > .64 respectively. But according to lemma 4,
the latter conditions are fulfilled for all p < p, (A\) and p < p;(1/)) respectively. For p in

these areas we therefore obtain that pf(p) > pef(0) = 0.

Proof of proposition 4.

(i) Recall that the sign of p‘llfpf + pgf/f is the same as the sign of

1
—.21) + H(—, 20).
1+p 1) (1+p 2)

H(
Obviously, 1/(1 + p) is decreasing in p which implies the existence of py. Moreover, if

def def
Lp + P2,p

positive. The opposite is true if they are negative, which is the case for 0.52- (1+ p) > 1.

both summands are positive, which is the case for 0.64-(1+p) <1, p will also be

These conditions translate into p < 0.54 and p > 0.89 respectively.

def
2,p

4 we know that gy/»(-) is strictly decreasing for A < 1, which implies the existence of p;,.

(ii) By lemma 2, the sign of p3° is the same as that of H(gl/)\(p), z2>. But from lemma

Moreover, since g;(p) = 1/(1+4 p) and g1/x(p) < g1(p) for A < 1, we obtain that p;, < pg.

O
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