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Namwon Hyung
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$EVWUDFW

This paper systematically studies the use of mixed-frequency data sets and suggests that the use of high
frequency data in forecasting economic aggregates can improve forecast accuracy. The best way of
using this information is to build a single model, for example, an ARMA model with missing
observations, that relates data of all frequencies. The implementation of such an approach, however,
poses serious practical problems in all but the simplest cases. As a feasible and consistent alternative,
we propose a two-stage procedure to obtain pseudo high frequency data and to subsequently use these
artificial values as proxies for macroeconomic or financial models. This alternative method yields a
sub-optimal forecast in general but avoids the computational problems of a full-blown single model.
Our approach differs from classical interpolation since we only use past and current information to get
the pseudo series. A proxy, which is constructed by classical interpolation, may fit very well in sample,
but it is not useful for out-of-sample forecasts. As applications of linking series generated at different
frequencies, we show that the use of monthly proxies of GDP improves the predictability of absolute
stock returns and the unemployment rate compared to the use of industrial production as an alternative
proxy.
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,��,QWURGXFWLRQ

It is common to have data with different frequencies in a system of time series. GDP,

for example, is reported quarterly, industrial production data are monthly, interest rates or

stock prices can be collected at any interval. When observing a time series at a very short

interval, that is, high frequency, it is difficult to relate the slow-moving components of the

market or economy with the rapidly changing parts of the variables. Researchers usually

convert the higher frequency data to the lower frequency data by temporal aggregation or by

the stock-end method. A model for linking series generated at different frequencies can utilize

all of the available information, which otherwise might be used inefficiently by excluding

data at different frequencies. In theory, the best way to use these data is to build a single

model that relates data of all frequencies. Unfortunately, though, building such a

comprehensive model is very complicated (see Miller and Chin, 1996; Howrey, 1991). The

implementation of such an approach poses serious practical problems in all but the simplest

cases.

For small linear systems parameter estimation is relatively straightforward-at least in

principle. Various methods can be used to estimate the parameters of vector ARMA models

with different frequency data. The prediction error variance decomposition of the Gaussian

likelihood function, combined with recursive calculations of the Kalman filter, can be used to

calculate the value of the likelihood function implied by a OLQNHG�$50$ model1. However, it

is not easy to use full information maximum likelihood to estimate linked-model parameters

in a system as large as those that are commonly utilized for estimation or forecasting in

macroeconomics.

It should be possible to improve the accuracy of forecasts or estimations by

combining different frequency data but, nevertheless, it may not be possible to implement a

OLQNHG� $50$ model with multivariate systems of even moderate size. As a feasible and

consistent alternative, we could use the OLQNHG�$50$ model of a sub-system to get pseudo

high frequency data (or virtual reality variable, hereafter VRV; Granger (1998)). In a second
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step we can use these artificial values as proxies for macroeconomic or financial models. This

would yield a sub-optimal estimator or forecast in general but alleviates the computational

problem of a full-blown OLQNHG�$50$ model. Consistent estimation or forecast procedures

that are based on proxies for the missing data are usually computationally attractive.

The plan of the article is as follows: Section 2 discusses the temporal properties of

linked ARMA process and Kalman filter estimation. Section 3 sets up the prediction using

higher frequency information with an application to forecasting U.S. GDP. The VRVs of

monthly output are introduced and assessed through their use in predictions of absolute stock

returns and the unemployment rate in Section 4 and Section 5 concludes.

,,��(FRQRPHWULF�PRGHOV�RI�OLQNLQJ�VHULHV�JHQHUDWHG�DW�GLIIHUHQW�IUHTXHQFLHV

Suppose some series of N-dimensional vectors +
W
\  are not observable systematically

because the sampling interval is longer than the interval of data generation, leading to

temporal aggregation of flow series and systematic sampling of stock series. (Weiss, 1984)

However, assume the whole +
W
\  series (including unobservable observations) are generated

by a N-dimensional vector ARMA (S, T) process, which we call the OLQNHG�$50$�PRGHO,

(2.1) ( ) ( )
WW

/E\/D ε=+ ,

where ( ) S

S
/D/DD/D −−−= L1

10 , ( ) T

T
/E/EE/E −−−= L1

10  and the DM and EM are

(N×N) coefficient matrices, D� is nonsingular and εW is vector white noise, so that EεW = 0, EεWεW′

= Σ and�EεWεV′�= 0 for W�≠�V. We will show how to construct the likelihood of a linked ARMA

model, and the computation is carried out by using the Kalman filter in the next section. In the

following subsection, the properties of the linked ARMA model and a transformed version of

the linked ARMA model which does not have missing observations are illustrated. It is

important to note the potential effect of temporal transformation on estimating, testing, and

predicting the linked-ARMA model.

                                                                                                                                                                     
1 Also called an ARMA model with missing observations. After a transformation of this model to a
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,,����7HPSRUDO�WUDQVIRUPDWLRQ�RI�D�OLQNHG�$50$�PRGHO

To see the effect of temporal transformation on the linked ARMA model, define a

macro ARMA model (Lütkepohl, 1984). Given an integer P, we define a corresponding PN-

dimensional PDFUR ARMA (3, 4) SURFHVV,

(2.2) ( ) ( )
WW

/%</$ Ε=+ , for W = Pτ, τ = 1,2,…

where 
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respectively. Here 3 = min{n∈N | nP  ≥ S}, and 4 = min{n∈N | nP�≥ T}.

We have to transform (2.1) to another structure because of data-availability by using

(2.2). The following is a direct application of temporal and contemporaneous transformation

techniques. A popular and easy but inefficient method is converting to the low frequency

model by temporal transformation. For example, define a temporally transformed series \W

(aggregating +
W
\  over P periods or point sampling at the end of every P period) as

+=
WW

)<\

where 
NP
,O) ⊗′= , ( )’1,,1L=

P
O  for temporal aggregation, 

NP
,H) ⊗′= , ( )


P
���H 001 L=

for point sampling at the end of period. This method can be easily modified to consider the

                                                                                                                                                                     
model without missing observations, it can be used easily for practical purposes.
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more general case where aggregated processes have different weights for the lagged values by

defining the matrix ). One simple example will be presented in section 3.3. (R&R model).

3URSRVLWLRQ� �� Let +
W
\  be as in (2.1), +

W
<  as in (2.2) and ) ≠ 0. Then +=

WW
)<\  has an

$50$��S��T� representation with S�≤ NS and�T�≤ NS if P�≥ S�≥ T, T�≤ NS+1 if P�≥ T�≥ S,

T�≤ NS+4 otherwise.

3URRI� See /�WNHSRKO (1984).

We could get a temporally transformed model by following this procedure. First we could

rearrange (2.2) as below,

( ) ( ) ( )
WW

/%/$</$ Ε= ++

where DDD +=  and D� is the adjoint of D. Premultiplying by ) will produce \W

( ) ( ) ( )
WW

/%/)$)</$ Ε= ++ , for W = Pτ��τ =1,2,....

So \W�is a VARMA (S�T) process of Proposition 1. Then the resulting model would be

(2.3) ( ) ( )
WW

O'\OF ν= , for W = Pτ��τ =1,2,....

where ( ) *
*10

S

S
OFOFFOF −−−= L , ( ) *

*10
T

T
O'O''O' −−−= L , ( )

NW
,,0~ν  and O = /P.

As an example, consider a bivariate series, [ ]\ \ \
W W W

+ + +=
′

1 2, , where the series \
W2,

+  is

not observed at all the points in time W = 1,2,… . Instead, observations are available every end

of quarter. For a stock variable,

+=
WW

\\ ,2,2 , W = 3τ, τ = 1,2,…,

or the observations could be temporal aggregates for a flow variable,

∑
=

+
−=

2

0
,2,2

U

UWW
\\ , W = 3τ, τ = 1,2,…,

while for the value of W ≠ 3τ, \
W2,

+  is unobservable. Let the series \
W1,

+  be available every

month, e.g., Industrial Production and the temporal aggregates of the series \
W2,

+  available

every 3 month, e.g., GDP,

\ \ \ \
W W W W2 2 2 1 2 2, , , ,= + ++

−
+

−
+ , W=3τ, τ = 1,2,….
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For the given a bivariate example the following temporal transformation
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will produce a quarterly ARMA model from a linked ARMA model (or monthly ARMA

model with missing observations). Additionally this framework permits the treatment of low

and high frequency variables simultaneously in one system by appropriate choice of the

matrix )� We call such a system a PL[HG� $50$ model. Consider a mixed temporal

transformation, i.e., transform the variable which we can not observe at the monthly

frequency by the following ) matrices,
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Then the resulting model will be a PL[HG�$50$�model with mixed frequency.

In the case of a temporal transformation of some variables in the system, it is possible

to provide a more precise upper bound for the AR orders of \W that are lower than those given

in proposition 1. It can be obtained from the modified Wei-Weiss procedure as mentioned by

Marcellino (1996).

&RUROODU\��� Let +
W
\  be as in (2.1). Suppose without loss of generality that the first variable

needs a temporal transformation because it is not available at high frequency. Then the P�N���

vector \W� with appropriate matrix )� such as

( )′== +−+−−
+

13121221 ,,,,,,, PNWWPWWWWWW \\\\\\)<\ LL , for W = Pτ, τ = 1,2,..., has an $50$

�S��T� representation with S� �S��and T�= min{Q∈1 | QP�≥ S�P����T}.

3URRI. Without loss of generality, consider the first equation of (2.1).

(2.4) ( ) ( ) ( ) ( )
WNWNWW

/E\/D\/D\/D 111212111 ε=+++ +++ L

let ( ) ( )( ) ( )////D Sγ−γ−γ−= 111 2111 L ,

( ) 
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( ) ( ) ( )( ) ( )PP

S

PPPPP ////D/D γ−γ−γ−= 111 211111 L . Premultiplying the equation (2.4)

by ( )/DP11  gives ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
W

P

NWN

P

W

P

W

P /E/D\/D/D\/D/D\/D/D 11111112121111111 ε=+++ +++ L .

The degrees of polynomials, denoted by deg(•), are ( ) ( )( ) PS/D/D
M

P =111deg  for M�= 1,...,N,

( ) ( )( ) SPT/E/DP )1(deg 111 −+= , respectively. If we define a corresponding P�N���-

dimensional mixed ARMA process of \W using the similar method of defining macro ARMA

process, then we get an AR of order PS�P and an MA of order T�= min{Q∈1 | Q�≥ (S�P�

���T)/P}.  Q.E.D.

,,����(VWLPDWLRQ�RI�D�OLQNHG�$50$�PRGHO�XVLQJ�.DOPDQ�ILOWHULQJ

The first step toward estimating the model (2.1) is to cast it into a state space form so

that the Kalman filter can be used to evaluate the likelihood function. The state equation

describes the evolution of the unobservable state vector +
W
\  and the observation equation

relates the observed variables, \W, to the element of the state vector.

Think about the bivariate series, ( )′= +++
WWW

\\\ ,2,1 where the series \
W2,

+  is not

observed at all the points in time W = 1,2,… . Instead, observations are available every 3

months. For a stock variable

+=
WW

\\ ,2,2 , t = 3τ, τ = 1,…,T.

Or the observations could be temporal aggregates of a flow variable,

\ \ \ \
W W W W2 2 2 1 2 2, , , ,= + ++

−
+

−
+ , W=3τ, τ = 1,…,7.

while for the value of W ≠ 3τ, \
W2,

+  is unobservable.

�������7KH�VLPSOHVW�&DVH��6WRFN�9DULDEOHV

Suppose the DGP of \
W

+  follows a VAR(1) as below,

6WDWH�(TXDWLRQ�
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2EVHUYDWLRQ�(TXDWLRQ�
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W 0
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2212

12114 .

The Kalman filter is a well-known way to compute the Gaussian likelihood function

for a trial set of parameters; for a discussion, see Hamilton (1994). The filter recursively

constructs minimum mean square error estimates of the unobserved state vector, given

observations on \W. The filter consists of two sets of equations, the forecast and updating

equations. Let +
τ|W\  denote the estimate of +

W
\  based on ( \�,..., \τ ), and let τ|W3  denotes

( )( ) 



 ′

−− ++
τ

++
τ WWWW

\\\\( || . With this notation, the forecast and the updating equations of the

Kalman filter follow as below.

)RUHFDVWV�DQG�DVVRFLDWHG�06(
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8SGDWLQJ�WKH�,QIHUHQFH�DERXW� +
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The Kalman filter equations permit recursive calculation of the predicted state vectors

and the covariance of this estimate given the assumed parameters in )�and 4 for given initial

values for +
WW

\ |  and 
WW

3 | . If we assume that the initial state and the innovations are Gaussian,

then

( ) τ=∼ −
+

−− PWLI3\1<\
WWWWWW 1|1|1 ,|

( ) RWKHUZLVH3\1<\
WWWWWW

11
1|1|,11,1 ,| −

+
−− ∼

where Yt-1 ≡ (\W��
′, \W��

′,…)′ and \�W is not observable unless W=Pτ, τ=1,2,… That is,

( ) ( ) ( ) ( ) τ=






 ′
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The sample log likelihood is then computed as follows:

( ) ( )∑∑
=ττ≠

−
=ττ=

− +=
,..2,1,

1,1
,..2,1,

1 |log|log
PW

WW

PW

WW
<\I<\I/

The Gaussian maximum likelihood estimates of the parameters are found by maximizing /

over the parameter space.

,,������$�'LIIHUHQFH�6WDWLRQDU\�3URFHVV�RI�$JJUHJDWHG�)ORZ�9DULDEOHV

Suppose the '*3 of \
W

+  follows a difference stationary 9$5(1) as below,
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Since the difference of the temporally aggregated flow variable is given by,
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its state-space form is given by:

6WDWH�(TXDWLRQ�
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,,,��)RUHFDVWV�XVLQJ�KLJKHU�IUHTXHQF\�LQIRUPDWLRQ

When researchers have data with different frequencies in a system of time series, they

usually convert the higher frequency data to the lower frequency data by temporal

transformation. Such a method might be utilizing the information inefficiently by excluding

data at different frequencies.



12

Rathjens and Robins (1993) show that quarterly forecast can be improved by using

within-quarter variation of monthly data. In their paper, they did not exploit all of the within-

quarter information of monthly data. Instead they used the monthly growth rate of industrial

production at the end of each quarter by comparing the third month to the quarterly average.

Also they use a model which can not be immediately extended to a multi-step forecast.

Instead they change the specification slightly and show that within-quarter movement of

monthly data is not useful for multi-step forecasts.

In this section, we will show that forecasts using all of the monthly data can predict

more accurately than forecasts using part of the monthly data, and compare our results with

the model of Rathjens and Robins (1993).

The following proposition states that our method will be better than Rathjens and

Robins (1993).

3URSRVLWLRQ��� ()RUHFDVW�(IILFLHQF\�RI�/LQHDUO\�7UDQVIRUPHG�9$50$�3URFHVVHV)

Let \W be a stable, invertible, 1-dimensional VARMA(S�T) process, let ) be an (0 ×

1) matrix of rank 0 and let ]W = )\W. Furthermore, denote the MSE matrices of the optimal K-

step predictors of \W and ]W by Σ\(K) and Σ](K), respectively. Then

Σ](K) - )Σ\(K))′

is positive semidefinite.

3URRI��See Lütkepohl(1987, Chapter 4, p.101), It can be shown that )\W�K� is the optimal

predictor based on a Hilbert space +W generated by the \V, s ≤ t. Since ) is an (0 × 1) matrix

of rank 0, ℜ(\W) ⊃ ℜ(]W) where ℜ(•) is a vector space. Since the ]V, s ≤ t generate only a

subspace of +W the predictor based on that space can not be better than )\W�K��

4�(�'�

These results hold for VARMA processes for which all the parameters are known.

They do not necessarily carry over to estimated processes. With properly specified equations

there are two sources of forecast error. The first one is due to unobserved innovations in the

equation for the forecast period, and the second one is coefficient uncertainty. That is,
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estimated coefficients of the equation deviate from the true coefficients in a random fashion,

so the results of Proposition 2 could be not true sometimes.

,,,����0RGHO����/LQNHG�$50$

For simplicity, let µ1 = µ2 = 0, +=
W2

2

W
<)< , where W = 3τ, τ = 1,…,7.

[ ]′∆∆∆∆= −−
T

W

P

W

P

W

P

W

2

W \\\\< ,22,11,1,1

[ ]′∆∆∆∆∆∆∆∆∆∆= +
−

+
−

+
−

+
−

++
−

+
−

+
−

+
−

++
4,23,22,21,2,24,13,12,11,1,1 WWWWWWWWWWW \\\\\\\\\\<



















=

1232100000

0000000100

0000000010

0000000001

0)

,,,����4XDUWHUO\�0RGHO��9$5���

2

W4W4

4

W <)<)< 1== + , where W = 3τ, τ = 1,…,7.

[ ]′∆∆= T

W

T

W

4

W \\< ,2,1









=

1232100000

0000012321
4)









=

100000

012321
14)

Let 2

WW
<\ =  and 4

WW <] = , then W4W \)] 1= . By Proposition 2 the Quarterly model will

produce sub-optimal forecasts compared to Model I.

,,,����5DWKMHQV�DQG�5RELQV¶�0RGHO

Rathjens and Robins show how to improve quarterly forecasts by using within-

quarter variations of monthly data. Within-quarter movements may contain valuable

information for forecasting across quarter movements. They find the variable ([τ) defined as

the difference between the third month of the quarter and the average of the quarter to be

useful in one-step-ahead forecasting.
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∆ ∆ ∆\ D \ E \ F [2 2 1 1 1 1, , ,τ τ τ τ τµ ε= + + + +− − − , where τ�= 3N, N�= 1,…,7.

They drop the lagged difference of GDP and industrial production from the regression

because adding a new variable, [,�makes these terms insignificant.

∆ \ F [2 1,τ τ τµ ε= + +− , where τ�= 3N, N�= 1,…,7.

We can compare this model to our model as follows. Let
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Let 2

WW
<\ =  and 5

WW
<] = , then 

W5W
\)] 1= . By Proposition 2, Rathjens and Robins’ Model

will produce a sub-optimal forecast compared to Model I. No other model can produce a

better forecast than Model I for a given dataset in terms of MSE.

,,,����$SSOLFDWLRQ�WR�*'3�DQG�,3

In this section, the empirical results of our model, a quarterly VAR model, and the

Rathjens and Robins’ model are compared by the one-quarter-ahead forecastability of the

GDP. We convert monthly industrial production data to quarterly data by averaging within-

quarter data. In the previous section we have demonstrated that monthly data can improve the

accuracy of forecasts of quarterly aggregates. The usefulness of a linked ARMA model is that

it can use monthly data systematically rather than in an informal way.
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7DEOH����0RQWKO\�06)(�IRU�RXWSXW�HTXDWLRQ�LQ�WKH�/LQNHG�$50$�PRGHO

K 1 2 3 4 5 6 9 12
06)( 0.0669 0.0872 0.1131 0.1042 0.0927 0.0957 0.0994 0.0991
(1) The full sample is 1959:10 ~ 1995:12. For the estimation, we select 1959:10 ~ 1983:03, 294 observations. All
of the comparison of out-of-sample predictability uses the sample 1983:04 ~ 1995:12, 141 monthly observations
(2) K denotes a K�PRQWKV ahead forecast
(3) 3, 6, 9 and 12 months ahead forecasts are identical to 1, 2, 3 and 4 quarters ahead forecasts in the table 2.

Table 1 shows different forecasting exercises were performed for each sample period

to duplicate the amount of information available over the course of the quarter. It tests the

forecasting capabilities of the linked ARMA model for the quarterly GDP. These GDP

forecasts are only testable when a predicted month is corresponding to the end of quarter.

Now consider moving through time. The information set now available is previous

information and the current month’s information. We are in the second month of the quarter,

when we have one more observation for monthly series, so it is 2 or 5-month-ahead forecasts.

Finally we do 1 or 4 month-ahead forecasts at the end of the second month of each quarter.

For the short horizon (one or two month ahead forecasts), the use of within-quarter

information clearly improves predictability as seen in table 1.

7DEOH����,Q�VDPSOH�&RPSDULVRQ�IRU�RXWSXW�HTXDWLRQ

/LQNHG
$50$

4XDUWHUO\
9$5���

5DWKMHQV
	�5RELQ

665 6.0018 14.9557 11.6136
': 2.0946 1.8045 1.8475
$,& -2.5888 -1.8078 -2.0607
%,& -2.3258 -1.7281 -1.9811
3URE�)�VWDW�       - 0.0007 0.0000
/RJOLN -2.2031 -46.9604 -34.6940

The full sample is 1959:10 ~ 1995:12. For the estimation,  \we select
1959:10 ~ 1983:03, 294 monthly observations of Industrial production
and 98 quarterly observations of GDP.
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7DEOH����2XW�RI�VDPSOH�&RPSDULVRQ��06)(��IRU�RXWSXW�HTXDWLRQ

/LQNHG
$50$

4XDUWHUO\
9$5���

5DWKMHQV
	�5RELQ

/LQN�9$5 /LQN�5	5

K=1 0.1131 0.0959 0.1158 1.18 -0.83
K=2 0.0957 0.0889 0.0908 1.45 1.02
K=3 0.0994 0.0952 0.0962 1.08 0.83
K=4 0.0991 0.0966 0.0994 1.26 -0.20
(1) The full sample is 1959:10 ~ 1995:12. For the estimation, we select 1959:10 ~ 1983:03, 294

observations. All of the comparison of out-of-sample predictability uses the sample 1983:04 ~
1995:12, 47 quarterly observations

(2)    K denotes a K�TXDUWHUV ahead forecast
(3) For comparison, select quarterly aggregated observations and do monthly forecasts and

aggregated these predicted values to get predicted quarterly aggregated values in the /LQNHG�$50$
model

(4) Columns 4 and 5 show test statistics of predictability between two different models, which follow
standard normal distributions. See Granger and Newbold (1976) and Meese and Rogoff (1987).

The next two tables show the comparison between three methods of combining two

different series. Table 2 shows the in-sample comparison and table 3 presents the mean

squared forecast error of out-of-samples for these 3 methods. A linked ARMA method

improves the in-sample explanation but no significant improvement of out-of-sample

forecastability is evident. For the short forecast horizon, this method shows a marginal but not

significant improvement over Rathjens and Robins’ method. None of these methods can beat

the other method in terms of out-of-sample predictability.

�,9��9LUWXDO�UHDOLW\�YDULDEOHV

To get a longer time series, one can observe the same time span but at a higher

frequency rate, going from quarterly to monthly2. Observing data more frequently clearly

provides more data but it does not necessarily provide more information. However, in applied

work several estimators have been proposed which are based on approximations substituting

for the missing data (Bernanke, Gertler and Watson (1997), Bernanke and Mihov (1995).

Frequently the model is too large to be jointly estimated or it is only specified in part. It may

thus be necessary to use a consistent estimation method instead of a fully efficient estimator

to reduce the problem of complexity. Consistent procedures that are based on proxy variables

                                                          
2 See Granger (1998) for an extensive discussion of this topic
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for the missing figures are usually computationally attractive. In this section we will show

how such consistent estimates using proxy variables can be obtained.

Consider several methods of constructing pseudo high frequency data. The first

approach consists of assuming a univariate model, which could be interpreted as the marginal

processes of some linear simultaneous system (see Zeller and Palm 1974). It is proposed to

avoid a considerable loss of information which is induced by aggregation to get consistent

frequencies of the data. For example, Chan (1993) did not consider the case which

disaggregates annual series to quarterly series without any additional information from other

related series.

Second, related variables that are observed more frequently can be included in the

conditioning set of the expectation of the missing variables. The regression model analyzed

by Chow and Lin (1971) or Palm and Nijman (1984) will be an appropriate tool for

estimating the missing observations. It is likely that even though the monthly conditional

expectation of a variable which is observed quarterly, given its information set, is not

identified, those of its conditional expectation given some indicator variable may be

identified. An indicator variable will be required for estimating the missing values. In their

method, they are using interpolation to get missing data rather than prediction. The third

method, which we will focus on in this section, is using the same technique but using an

information set that is different from the one used in the second method.

Consider the following example to illustrate the third method. Let one variable be

measured quarterly in a model of variables which are otherwise all observed monthly.

Suppose that a VAR type of model is being considered relating the vector of monthly series

and a vector of a quarterly series. We could envisage a model that exists monthly, estimating

a value for the process each month and then, with each month as a base, forecasting the

missing monthly value of the quarterly series. The estimated "monthly" values of quarterly

series can be thought of as being a virtual reality variable (VRV) of the “monthly “ values of

the quarterly series. The idea can obviously be extended to higher frequencies. Few of the

virtual GDP figures are actually observed, they are estimated from some model using
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previous values and other data of similar frequency but can be compared to the actual value

when it is observed each quarter. The model will need to contain an "error-correction" term in

case the predicted GDP figures deviate from the observed values to bring the sequence back

onto course.

In this section we focus on the estimation and forecasting properties of the VRV

method and present some empirical evidence for the VRV approach forecasting absolute

stock returns and the unemployment rate.

,9����7KH�0RGHO��$VVXPSWLRQV��DQG�1RWDWLRQ

In matrix notation, the model considered is

(4.1) εβ += [\

(4.2) νπ += ][

where (4.1) is the structural equation of interest, \ and [�are 7×1 vectors of 7 observations,

(4.2) is the reduced form equation where the observations on the incompletely observed

variables, [, are regressed on auxiliary variables, ]� 7×1 vector. The regression disturbances εW

and νt are i.i.d. with mean zero and variances σε
� and σν

� respectively, have finite fourth

moments, are independent of the corresponding regressors and satisfy [ ] 0=τνε
W

(  for all W, τ.

Further assume,

(4.3) 47]] S→′ , where 4 is finite and non-singular.

(4.4) [ ] 0=ετW
](  for all W, τ.

To show how consistent proxy variable estimators can be obtained, consider equation

(4.1). Define ;W� = (\W, [W)′. Assume that the conditional expectation of ;W given some

information set ]W exists, and define,

(4.5) [ ]π�]_;(;
a

WWW
=  and [ ]πÖ�]_;(;Ö

WWW
=

where π and π̂  are vectors of parameters in the conditional expectations and their estimate,

respectively.
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When ;W is not observed for some or all W, 
W

;Ö  can be used as proxy for ;W, provided a

consistent estimate π̂  is available. The proxy equals the observed value, whenever the latter

is available. Substitution of 
W

;Ö  into (4.1) yields

(4.6) 
WWW
X[\ += βˆ

where 
W
[̂  is the appropriate element of 

W
;Ö , and ( )πε ˆˆ

WWWW
[[X −+=  since \W is observable for

all the time periods.

3URSRVLWLRQ� �� Suppose that (4.1) and (4.2), and assumptions (4.3) and (4.4) hold. Then

ordinary least squares (OLS) applied to (4.6) will be consistent for β.

3URRI� It suffices to show that

0ˆˆ
1

1

1

2 →




 ∑∑

=

−

=

S
7

W

WW

7

W

W X[[ .

With a little algebra,

( ){ }

( )∑∑∑

∑∑

===

==

π−ππ+νπ−επ=

π−ν+ππ−επ=

7

W

W

7
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WW
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W

WW

7
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WWWWW
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W

WW

]]]

]]]X[
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1
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ˆˆˆˆ

ˆˆˆ

From (4.5), (4.4) and if a consistent estimate π̂  is available, then

0ˆ
1

→∑
=

S
7

W

WWX[ .  Q.E.D.

Variables that are independent of εW are also asymptotically independent of XW,

provided they are included in the conditioning set of (4.6). If we can calculate a consistent

proxy 
W
[̂  from (4.2) under the usual conditions of the two-stage least squares structure of IV

estimation, then OLS applied to (4.6) will yield a consistent estimate. In this case, a consistent

proxy 
W
[̂  is an appropriate instrumental variable to estimate β consistently from (4.2).

Next, we will show that the VRV procedure can forecast better than monthly or

quarterly VAR procedures by using proposition 2 in section 3. Under the previous

assumptions, we can compare the forecastability of various models. Let
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[ ]′= −−
+

−
+

−
+

−−
+

231332212221111 WWWWWWWWWW
\\\\\\\\\\ , where + denotes unobservable

variables and W = 3τ, τ = 1,…,7. For example, let \� be stock returns, \� be GDP and \� be the

Industrial production index which is an auxiliary variable in this system.

(1) Linked ARMA model: 

( )97
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)
 where [ ]′= 1113O

(2) Quarterly model 1: Use quarterly aggregated data of three variables

( )93
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×
′⊗= O,)

(3) Quarterly model 2: Use quarterly aggregated data not including auxiliary variables

( )92
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′
=

O

O
)

(4) Monthly model: Use monthly proxy instead of quarterly aggregated data

( )96

00

00

3

3

×








=
,

,
)

(5) VRV model: Generate monthly proxy (VRV) and do VARMA regression using VRV,

where VRV is calculated by a linear projection using the Kalman Filter method.

3URSRVLWLRQ��� ()RUHFDVW�(IILFLHQF\�RI�959�0HWKRG) Let +
W
\  be a stable, invertible VARMA

process with missing observations. Then a linked ARMA and VRV model can produce better

forecasts than the quarterly or monthly models introduced above.

3URRI��Show the equivalent predictability of linked ARMA and VRV model under certain

conditions by proving ℜ(
W
< ) = ℜ(

W
<̂ ), where <W = (\�W�� \�W�������� \�W�� \�W��������� \�W�� \�W������),

( )LLL ,,,,ˆ,ˆ,,,ˆ
133122111 −−−=

WWWWWWW
\\\\\\< . 

W
\2ˆ  is a linear projection of +

W
\2  on ℜ(,W)

where ( )LL ,,,,, 133322 −−=
WWWWW

\\\\, , 12ˆ +W\  is a linear projection of +
+12W

\  on ℜ(-W��) where
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( )LL ,,,,, 313322 WWWWW
\\\\- +−=  and 22ˆ +W\  is a linear projection of +

+22W
\  on ℜ(+W) where

( )LL ,,,,, 1323322 ++−=
WWWWW

\\\\+ . Since 
W

\2ˆ  is a linear combination of its past available

information, 
W
<̂  is only the linear combination of 

W
< . By the projection theorem (Theorem

7.6.5 of Anderson (1971)) for Hilbert spaces, the optimal K-step predictors of \W based on a

Hilbert space generated by 
W
<  is unique and equivalent to the optimal K-step predictors of \W

based on a Hilbert space generated by 
W
<̂ .

It is easy to show that a linked ARMA model produces better forecasts than the

quarterly or monthly model. Let \W = (\�W�� \�W���� \�W���� \�W�� \�W�� \�W���� \�W��)′ where

+
−

+
−

+ ++= 221222 WWWW
\\\\ , then ) can be defined as the following: for the quarterly model 1,
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′
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00
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00
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) , rank ) = 3. For the quarterly model 2, 






 ′
=

010

003O) , rank ) = 2. For

the monthly model, 







=

3

3

00

00

,

,
) , rank ) = 6. By Proposition 2, all of these

transformations produce less efficient forecast than a linked ARMA model. Q.E.D.

Using proposition 4, we could conjecture that a VRV method using the FMGDP of

the following sub-section may produce a better forecast than any other model. In the

empirical study of section 4.3 we compare the forecastablity of the method using various

VRVs and the method using industrial production as a monthly proxy of output. Also, in

practice, we use a two-stage estimation method which is introduced in this section, i.e., first,

construct the VRV using an auxiliary variable, then estimate the structural equation by using

the VRV. This method will produce the same result under the assumption of (4.4).

,9����9LUWXDO�5HDOLW\�9DULDEOHV��([DPSOHV

The properties of estimated missing observations depend on the information set of the

conditional expectation, whether it includes its past, current or future information. The
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following methods have different information sets using the Kalman Filters of section 2,

which are applied to calculate monthly proxies of GDP using the Industrial production index.

a. Interpolation: Interpolation is a technique often used to increase data frequency or

to estimate missing observations. It involves generating new data points connecting two

available and consecutive data points with additional information available from other related

series. The problem with this approach is that one is using the future information to get

pseudo-high-frequency data. Therefore interpolated data cannot be used for true out of sample

forecasting.

e.g., ( ) +∆+= 7_W�

� \60*'3*'3RI&KDQJH0RQWKO\ 29

µ

b. Filtering: This is an inference about the value of current pseudo-high-frequency

data using the current and past information with additional information available from other

related series.

e.g., ( ) +∆+= W_W�

� \)0*'3*'3RI&KDQJH0RQWKO\ 29

µ

c. 1-step Prediction: Using the past information only, 1-step forecast of pseudo-high-

frequency data can be calculated.

e.g., ( ) +
−∆+= 129 W_W�

� \30*'3*'3RI&KDQJH0RQWKO\
µ

,9����(PSLULFDO�H[DPSOHV

To illustrate the usage of VRVs, we forecast the absolute stock returns and

unemployment using output. We start the empirical analysis by constructing a VRV using the

system which is introduced in section 2.2. A brief analysis of estimates of monthly figures of

U.S. output follows in table 4 and we plot the series of industrial production and VRVs in

Figure 1. The plot of PMGDP appears to be smoother than the plots of other proxies. FMGDP

shows the highest correlation with industrial production in table 4. In the following sub-

section we use various proxies of output to explain the model.
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7DEOH����&RUUHODWLRQ�0DWUL[�EHWZHHQ�959�DQG�,QGXVWULDO�3URGXFWLRQ

,3 60*'3 )0*'3 30*'3
,3  1.0000  0.5065  0.6711  0.0964
60*'3  0.5065  1.0000  0.7281  0.4284
)0*'3  0.6711  0.7281  1.0000  0.6131
30*'3  0.0964  0.4284  0.6131  1.0000

IP: Difference of log industrial production (1959:10 ~ 1997:03)
SMGDP: Monthly change of log GDP estimated by interpolation
FMGDP: Monthly change of log GDP estimated by filtering
PMGDP: Monthly change of log GDP estimated by 1-step ahead forecast
GDP (1959:IV ~ 1997:I)

)LJXUH����0RQWKO\�3UR[LHV�RI�WKH�&KDQJHV�RI�*'3
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��D��2XWSXW�DQG�$EVROXWH�6WRFN�UHWXUQ�'\QDPLFV�LQ�WKH�8�6�

It is now well established that the stock market returns themselves contain little serial

correlation which is in agreement with the efficient market hypothesis. But this empirical fact

does not necessarily imply that returns are independently and identically distributed as many

theoretical financial models assume. It is possible that the stock market series is serially

uncorrelated but shall exhibit dependence. For example, studies using ARCH models with

daily or lower frequency returns have provided strong evidence of a high degree of

intertemporal volatility dependence. Granger and Ding (1994) show that absolute stock

market returns3 have a long memory property.

Also we have some evidence of macroeconomic news on market volatility

(Bollerslev, Cho and Kroner, 1992). A rapidly growing body of research documents

forecastable components in security returns. Asset prices are commonly believed to react

sensitively to economic news. Since aggregate output is serially correlated and hence

predictable, the theory suggests that stock returns can be predicted based on forecasts of

output. In this section we will investigate the predictable components of absolute returns

using output.4

Table 5 shows a comparison of the fit in sample using different monthly proxies of

GDP. As expected, SMGDP and FMGDP can explain the absolute stock returns better than

industrial production since these two proxies are constructed by using monthly industrial

production and quarterly GDP together. Since SMGDP is also using future information in its

derivation, it is not surprising that it has the best in-sample explanatory power. PMGDP is the

worst one, even worse than IP, since this proxy is constructed from one-month past IP

information and past GDP.

                                                          
3 Granger and Ding (1993) suggest absolute stock returns instead of the variance be used as a measure
of risk.
4 If we use returns instead of absolute returns, all monthly proxies of output have similar
forecastability.
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7DEOH����,Q�VDPSOH�&RPSDULVRQ�IRU�DEVROXWH�VWRFN�UHWXUQ�HTXDWLRQ�LQ�WKH�ELYDULDWH
V\VWHP

,3 (3) 60*'3�(3) )0*'3�(3) 30*'3�(4)
�5�� 0.0451 0.0681 0.0514 0.0409

25 0.0294 0.0528* 0.0358 0.0197

665 0.2940 0.2870* 0.2921 0.2937
': 1.9972 1.9995 1.9944 1.9960
$,& -7.1053 -7.1297 -7.1119 -7.0929
%,& -7.0315 -7.0559 -7.0381 -6.9979
)�VWDW 0.0095 0.0002 0.0036 0.0544
/RJOLN 800.74 805.27* 801.96 798.30
The full sample is 1959:10 ~ 1997:03. Select 1959:10 ~ 1990:12 (375) as in-sample.
The numbers in psrentheses denote lags of the bivariate VAR chosen by BIC
* denotes the most preferred model

Table 6 contains some diagnostics associated with these models. Residuals are tested

against a fourth-order ARCH using the LM test and checked with the Jarque-Bera normality

test. The skewness and excess kurtosis of the residuals are also reported. As pointed out by

Granger and Ding (1993), the marginal distribution of absolute returns is exponential,

skewness is 2 and kurtosis is 9 regardless of the value of the parameter. The residuals of the

models are not normal but are close to an exponential distribution.

7DEOH����7HVW�VWDWLVWLFV�DQG�S�YDOXHV�RI�$5&+�DQG�-DUTXH�%HUD�QRUPDOLW\�WHVWV��DQG

VNHZQHVV��H[FHVV�NXUWRVLV�PHDVXUH�RI�UHVLGXDOV�IURP�WKH�HVWLPDWHG�PRGHOV�XVLQJ�YDULRXV

*'3�SUR[LHV

,3 60*'3 )0*'3 30*'3
$5&+�/0��� 2.60 2.60 2.78 2.52
S�YDOXH 0.62 0.63 0.60 0.64
6NHZQHVV 2.02 1.96 2.00 2.02
.XUWRVLV 11.60 11.59 11.51 11.59
-DUTXH�%HUUD 1374.13 1357.54 1344.03 1359.22
S�YDXH 0.00 0.00 0.00 0.00

Another way of evaluating the estimated model using different proxies is post-sample

forecasting, although the insight to be gained depends on what happens in the time series

during the prediction period. The forecasts were made without re-estimating the model during
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the prediction period. In all cases the MSFE of 1, 3, 6 and 12-month ahead forecasts were

calculated. Because of the construction method of SMGDP, the forecast using this series is

not available even though it has the best in-sample fit. From table 7, the use of VRV may

improve the predictability of absolute stock returns. PMGDP provides a clear improvement

and FMGDP has marginal improvement against monthly industrial production alone. Since IP

alone cannot reflect all of the economy and GDP is a wider index, combined information can

improve predictability as well as the in-sample fit.

7DEOH����2XW�RI�VDPSOH�&RPSDULVRQ�IRU�DEVROXWH�VWRFN�UHWXUQ�HTXDWLRQ�LQ�WKH�9$5

K � ,3 60*'3 )0*'3 30*'3
%LDV -0.006312 - -0.006816 -0.005155
0$' 0.015577 - 0.015788 0.015061
06)( 0.000389 - 0.000393 0.000372*
K �
%LDV -0.006513 - -0.006651 -0.005600
0$' 0.015677 - 0.015708 0.015250
06)( 0.000393 - 0.000390 0.000373*
K �
%LDV -0.007476 - -0.007460 -0.006949
0$' 0.015675 - 0.015670 0.015500
06)( 0.000385 - 0.000384 0.000375*
K ��
%LDV -0.007845 - -0.007832 -0.007494
0$' 0.016033 - 0.016032 0.015891
06)( 0.000395 - 0.000394 0.000390*
(1) The full sample is 1959:10 ~ 1997:03. For the estimation, we select 59:10 ~ 90:12, 375 observations. All of the
comparison of out-of-sample predictability uses the sample 91:01 ~ 97:03, 75 observations
(2) K denotes a K-month ahead forecast
(3) * denotes the best model in terms of MSFE
(4) Forecast comparison using Granger-Newbold, Meese-Rogoff methods
     IP vs Filtered: -0.85(1-step), 0.66(3-step), 0.85(6-step) and 0.52(12-step)
     IP vs Predicted: 1.86(1-step), 2.15(3-step), 1.97(6-step) and 1.06(12-step)
     Filtered vs Predicted: 1.68(1-step), 1.76(3-step), 1.88(6-step) and 1.07(12-step)

�E��2XWSXW�DQG�8QHPSOR\PHQW�'\QDPLFV�LQ�WKH�86

A bivariate VAR model to describe output-unemployment dynamics is used in this

section. We examine the advantage of VRV over industrial production in this system. Since

GDP figures are not available on a monthly basis, researchers usually use an index of

industrial production as their measure of real economic activity. A natural question that

emerges is whether their analyses are sensitive to the use of different output data. However,
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GDP is simply a better indicator of output than industrial production since the industrial

production index does not include the activity of the service sector5 (see Christiano and

Eichenbaum, 1987, p79). Like GDP, employment measures reflect activity in almost all

sectors of the economy6 Therefore monthly industrial production is

not a good measure of output for output-unemployment dynamics.

Table 8 shows the in-sample comparison of the unemployment equation using

different proxies of monthly output. SMGDP and FMGDP are better indexes than IP.

PMGDP is not better than IP because of the information set which was used in the

construction of the proxy. In the comparison of out-of-sample forecastability, table 10, the

uses of VRV have clear gains for short horizons but not for long horizons.

7DEOH����,Q�VDPSOH�&RPSDULVRQ�IRU�XQHPSOR\PHQW�HTXDWLRQ�LQ�WKH�ELYDULDWH�V\VWHP
,3 (3*) 60*'3�(5) )0*'3�(5) 30*'3�(5)

�5�� 0.9892 0.9899 0.9895 0.9877
25 0.9890 0.9896 0.9892 0.9874

665 9.8574 9.1641* 9.5270 11.1528
': 2.0156 1.9733 1.9411 2.0609
$,& -3.4099 -3.4503 -3.4115 -3.2702
%,& -3.3259 -3.3177 -3.2789 -3.1620
)�VWDW 0.0000 0.0000 0.0000 0.0000
/RJOLN 96.2368 105.9267* 99.9070 76.2296
The full sample is 1959:10 ~ 1997:03. Select 1959:10 ~ 1985:12 as in-sample period
The numbers in parentheses denote lags of the bivariate VAR chosen by BIC
* denotes the most preferred model

7DEOH� ��� 7HVW� VWDWLVWLFV� DQG� S�YDOXHV� RI� $5&+� DQG� -DUTXH�%HUD� QRUPDOLW\� WHVWV�� DQG
VNHZQHVV��H[FHVV�NXUWRVLV�PHDVXUH�RI�UHVLGXDOV�IURP�WKH�HVWLPDWHG�PRGHOV�XVLQJ�YDULRXV
*'3�SUR[LHV

,3 60*'3 )0*'3 30*'3
$5&+�/0���         7.20        6.23       10.82        9.29
S�YDOXH         0.126        0.182         0.029        0.054
6NHZQHVV         0.18        0.09         0.36        0.41
.XUWRVLV         3.64        3.80         3.74        4.14
-DUTXH�%HUUD         6.89        8.44       13.18      24.85
S�YDXH         0.032        0.015         0.001         0.000

                                                          
5 The only industry included is total manufacturing, mining, and utilities.
6 %XVLQHVV� &RYHUHG� Industrial - mining, manufacturing; electricity, gas and water; construction;
wholesale and retail trade; transport, storage, and communication; finance, insurance, real estate, and
business service; community, social, and personal services; local, state, and federal government.
1RW�LQFOXGHG� Agriculture, hunting, forestry, fishing, private household, and the military.
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7DEOH�����2XW�RI�VDPSOH�&RPSDULVRQ�IRU�XQHPSOR\PHQW�HTXDWLRQ�LQ�WKH�9$5

K � ,3 60*'3 )0*'3 30*'3
%LDV -0.027265 - -0.034210 -0.009511
0$' 0.119640 - 0.115031 0.119512
06)( 0.022856 - 0.020871* 0.022441
K �
%LDV -0.065524 - -0.077901 -0.030582
0$' 0.195516 - 0.184105 0.183185
06)( 0.056974 - 0.050701* 0.052422
K �
%LDV -0.122193 - -0.139128 -0.069888
0$' 0.323407 - 0.314386 0.292311
06)( 0.143687 - 0.134976 0.126823*
K ��
%LDV -0.224345 - -0.229381 -0.158275
0$' 0.537131 - 0.494063 0.494589
06)( 0.390404 - 0.341613* 0.344671
(1) The full sample is 1959:10 ~ 1997:03. For the estimation, we select 1959:10 ~ 1985:12, 315 observations. All
of the comparison of out-of-sample predictability uses the sample 1986:01 ~ 1997:03, 135 observations
(2) K denotes a K-month ahead forecast
(3) * denotes the best model in terms of MSFE
(4) Forecast comparison using Granger-Newbold, Meese-Rogoff methods

IP vs Filtered: 2.14(1-step), 1.82(3-step), 0.64(6-step) and 0.98(12-step)
IP vs Predicted: 0.35(1-step), 1.04(3-step), 0.54(6-step) and 1.23(12-step)
Filtered vs Predicted: -1.11(1-step), -0.33(3-step), 0.54(6-step) and –0.07(12-step)

As a summary, both models confirm the usefulness of VRV against IP alone. When

we use stock returns instead of absolute stock returns, the evidence is much weaker because

of the properties of stock returns themselves. By the same reasoning as for the absolute stock

returns, VRV is a better proxy of monthly output in the output-unemployment dynamics.

Since unemployment measures reflect activity in almost all sectors of the economy, VRV is a

better measure than IP. The usefulness of VRV will depend on what kind of data is used in

the analysis and also on whether we can construct a better VRV for the specific purpose of

research by adding additional information.

9��&RQFOXVLRQV�DQG�IXWXUH�UHVHDUFK

We consider the use of mixed frequency data sets in a systematic way and find that

incorporating high frequency data into forecasting models of economic aggregates potentially
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improves forecast accuracy. The most efficient method of dealing with mixed frequency data

is building and estimating one single, highly complex model. However, such an approach

usually suffers from numerous numerical difficulties, such as poor convergence and high

dependence on starting values. In this paper we show that a two-stage procedure using proxies

that are based only on current and past information has far better numerical properties at the

expense of only a minor loss in efficiency. Contrary to standard interpolation these proxies

are constructed without the use of future information and can therefore be incorporated into a

forecasting model.

These results hold for VARMA processes for which all the parameters are known, but

do not necessarily carry over to estimated processes. In the application, we conjecture that this

also holds for the case of estimated processes. We need to investigate the case of estimated

processes further. Also one could extend this procedure to higher frequency data, for example,

weekly or daily GDP series which might be more useful for the real economic world.
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