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Feature Extraction with Hybrid

Neural Networks

Neural networks (NN) and fuzzy logic systems (FLS) are used successfully
for financial forecasting, credit rating and portfolio management. In search
for more sophisticated modeling techniques a mixture of NN and FLS
has proved to be worth consideration. \We propose the novel constructive
approach by which a neuro fuzzy network is built up with the help of a
constrained optimizer. The mathematical motivation for such hybrid
networks is presented, using the Kolmogorov theory of metric entropy.

As an application of the proposed approach we build a neuro fuzzy network
model which is able to explain the prices of call options written on the
S&P 500 stock index. While option pricing theory typically requires a
highly complex statistical model to capture the empirical pricing
mechanism, our results indicate that this algorithm leads to more
parsimonious functional specificationes which have a superior out-of-
sample performance.

Georg Wegmann
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Abstract

Neural networks (NN) and fuzzy logic systems (FLS) are used successfully for finan-
cial forecasting, credit rating and portfolio management. In search for more sophisti-
cated modeling techniques a mixture of NN and FL S has proved to be worth consid-
eration. We propose the novel constructive approach by which a neuro fuzzy network
Is built up with the help of a constrained optimizer. The mathematical motivation for
such hybrid networks is presented, using the Kolmogorov theory of metric entropy.

As an application of the proposed approach we build a neuro fuzzy network model
which is able to explain the prices of call options written on the S& P 500 stock index.
While option pricing theory typically requires a highly complex statistical model to
capture the empirical pricing mechanism, our results indicate that this algorithm leads
to more parsimonious functional specificationes which have a superior out-of-sample
performance.
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1 Introduction

Science has evolved from trying to understand and predict the behavior of the
universe and the systems within it. Most scientific work is based on finding
models which agree with the observations and subsequently analyzing the impli-
cations. However, the extraction of a model from observed data using traditional
linear methods leads to poor results if the underlying real world system is of an
unknown and nonlinear form, which is the case most of the time. Such instances
require more sophisticated modeling techniques and this is where modern function
approximation methods based upon the parallelism paradigm of neural computa-
tion have gained prominence in recent years. A good illustration of this trend can
be found in the field of finance where both, neural networks (NN) and fuzzy logic
systems (FLS), are used for many complex nonlinear tasks such as financial fore-
casting, credit rating, portfolio management, event risk analysis and automated
trading systems. However, one also finds in finance that the two aforementioned
methods are generally considered distinct and hence treated seperately. While
there are potentially empirical reasons to do so, since the intuitive content of the
two systems varies significantly, this imposed seperation is unnecessary and can
be downright inefficient from the standpoint of approximation. For a start both
NNs and FLSs are asymptotically equivalent since both of the associated func-
tional families are dense on compacta in many spaces of interest (e. g. the space
of continuous functions, of square integrable functions, etc.). Moreover, NNs and
FLSs can both be represented in single hidden layer feedforward network forms
indicating a strong relationship of their functional families not only asymptoti-
cally but also on a small scale. Since in any empirical application of nonlinear
modeling the most pertinent question is generally which functional form to use
it follows that efficient approximation requires the careful consideration of the
aforementioned relationship between neural networks and fuzzy logic systems.
This issue of how the functional specification affects the small sample approx-
imation precision is mostly ignored in the literature even though it is the key
consideration for any nonlinear model building approach.

The individual problem of approximation efficiency for either a NN or an FL.S
can be sketched as follows: in any practical application the purpose of nonlinear
modeling is to capture some underlying functional relationship between the inde-
pendent variable(s) (inputs) and the dependent variable(s) (outputs) as precisely
as possible given the available data. In general, the more data is available the
more exact the result, because more data allows for more complex models with
the same number of observation points per parameter. Increased model complex-
ity in turn implies that the resulting function of the model is increasingly close
to the underlying target function, if the approximator is asymptotically dense in
that space. This relationship has even been shown to be strictly monotonic in
many cases of interest.



The comparative problem of approximation efficiency of NNs and FLSs is
given by the question, which of these methods — corresponding to different func-
tional representations — to start with since there is no means to know a priori
which function is closer to the unknown target function. All we know is that
we can capture the target function with increasing precision if we increase the
complexity of either individual model (NN or FLS). As an ignorant argument
in this context one often receives the suggestion to try out both and choose the
better fitting function ex-post. While this belies the often extensive computing
efforts for either of these methods, the more critical aspect is the model or data
snooping bias introduced through this strategy (see Campbell et. al. 1997).

On the other hand, while casual empiricism and statistical evidence in the
literature suggest, that there can indeed be merit in the combination of nonlinear
systems, there is neither a known approximation theoretic foundation for these
claims nor an efficient strategy for the combination of said systems (NN and
FLS).

While the arguments above are not limited solely to these two nonlinear ap-
proaches, in this paper we concentrate only on NNs and FLSs and derive a) the
theoretical basis reasoning that underlies the aforementioned observed facts and
b) an efficient incremental combination strategy for NNs and FTLSs.

The remainder of the paper is organized as follows the 2nd Section, we provide
a brief review of NNs i.e. their history, their construction and a sketch of a proof
of the relevant universal approximation theorem. Common types of algorithms
for optimizing values of parameters in a network are also mentioned. Section 3
provides an analogous overview of FLSs.

Section 4 contains the derivation of the proposed new neuro fuzzy network
(NFN). Also, the algorithm which allows for an incrementally efficient construc-
tion procedure of such a network is given. In Section 5 we derive sufficient condi-
tions under which the hybrid network (NEN) has the desired greater denseness in
function space relative to either FL.S or NN. Section 6 presents an application to
finance, where an NFN is developed to estimate the daily market closing prices of
SPX (Standard & Poors 500 Index) options, using transactions data for several
years. Finally, Section 7 concludes and points to directions for further research.



2 Neural Networks

2.1 Introduction

NN are a particular class of functions whose specification was originally inspired
by the parallel processing of the human brain. Hence, the processing elements
in NNs are called neurons, or hidden nodes. A human brain consists of approxi-
mately 10" neurons of many different types [Lin,1995]. This number is close to
the number of stars in the Milky Way, and the number of galaxies in the known
universe. As many as 10* synaptic junctions may about a single neuron, that
gives roughly 10 synapses in the human brain. The brain hence represents an
asynchronous, nonlinear, massively parallel system of cosmological proportions
[Kosko,1992].

Fach biological neuron receives input signals which is the information from
other nodes or external points. This information is processed locally through an
activation or transfer function and produces a transformed output signal to other
nodes or external outputs. The receiving neuron fires if the electric potential
reaches a threshold, and a pulse or action potential of fixed strength and duration
is sent out through the synaptic junctions to other neurons.

A schematic diagram of a typical biological neuron is shown in Figure 2.1:

—— Synapse Axon

Nucleus ’

O Cell body

Dendntes

Fig. 2.1: Biological neuron

Figure 2.2 shows a simple mathematical model of the above mentioned bio-
logical neuron proposed by McCulloch and Pitts [1943]. In this model, the ith
processing element computes a weighted sum of its inputs and outputs y; = 1
(firing) or 0 (not firing) according to whether this weighted input sum is above
or below a certain threshold 6; :

=1

where the activation function ¥(+) is a unit step function s.t.:

4



hidden node e ement i

Fig. 2.2: Example for a proessing element

The weight w;; represents the strength of the synapse connecting neuron j
to neuron 7. A positive weight corresponds to an excitatory synapse, and a
negative weight corresponds to an inhibitory synapse. If w;; = 0, then there is
no connection between the two neurons.

As shown in Fig.2.2 the information processing of a processing element or hid-
den node can be viewed as consisting of two parts: input and output. Associated
with the input of a node i is a function g; which serves to combine information
from an external source or other nodes. This is usually a linear function of the
inputs z; :

m
gi = E Wi L5 — 0;,
7=1

where 6; is the threshold of the ith node. More complex functions g; can also
be considered as follows.

Quadratic function:
m

_ 2
9i = E Wi X5 — 0;,

Jj=1



Spherical function:

m

gi=p> Z (z; — wy)? — 6;,

Jj=1

where p and w;; are the radius and the center of the sphere, respectively.

Nonlinear functions (g;) of the input allow the formation of complex partitions
of the feature space called decision boundaries. However, the more complex and
powerful the functions g; become, the more complex interactions are required in
NNss.

A second action of each node is the output of an activation value as a function
of its net inputs through an activation function or transfer function ¥(-). The
activation function of the node can also vary, but with less effect. What seems to
be of most importance is the smoothness of the individual node. Some commonly
used activation functions are as follows.

Gaussian function:

Tangents function:

Sigmotd function:
" B 1
) = T e @)

The shape of the above function (eq. 2,1) is shown in Fig. 2.3, where it can
be observed that as A\ — oo, the sigmoid function reduces to a step function.

,A>0 (2.1)

Fig. 2.3 : ¥(g(x)) for A =10,2,0.5



An NN consists of a set of interconnected nodes or neurons such that each
node’s output is connected, through weights, to other nodes or to itself. The
structure of these nodes and the connection geometry among them are the defin-
ing features of any NN.

Besides the simplest single-node neural network (Fig.2.2), four basic types of
connection geometries exist (Fig.2.4).

W, W,
Xl = O yl )(l : Q 'O—> yl
; 7/4'/\ == <
X, w7 oo @ . ,=O—>yz
’ N \/ .
W, SO
. . 4 AN '
' . e X, Ot Y,
Xm VV\m 1\ yn . "’O—' n
Hidden layers
(a) Single-layer feedforward network (b) Multilayer feedforward network

(c) Single-layer recurrent network (d) Multilayer recurrent network
or feedback network

Figure 2.4

We can first take a node and combine it with other nodes to make a layer of
nodes. Inputs can be connected to these nodes with various weights, resulting in
a series of outputs, one per node. This results in a single hidden layer feedforward
network as shown in Fig. 2.4(a). We can further interconnect several layers to
form a multilayer feedforward network as shown in Fig.2.4(b). When outputs
can be directed back as inputs to the same layer or to a preceding-layer of nodes,
the network is a recurrent network (Fig. 2.4 ¢,d). More than one of the basic
connection geometries summarized in Fig. 2.4 can be used together in an single
NN.

However, for the remainder of this paper we will focus on a particular struc-
ture of NNs, namely the feedforward networks (see Fig. 2.4(a)), which are the



most prominent design in many applications including finance. Figure 2.5 below
shows how feedforward neural networks are capable of spatial partitioning and of
constructing complex continuous regions.
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Figure 2.5.a Figure 2.5.b Figure 2.5.¢
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Figure 2.5.d Figure 2.5.e Figure 2.5.1

Note that all the surfaces in Fig.2.5 are constructed by a single-layer feed-
forward network with two neurons and two input variables, which indicates the
scope of potential functional forms inherent in a single, simple, network specifi-
cation. It is this richness of the single hidden layer feedforward networks, which
we focus on in the next chapter.



2.2 Single Hidden Layer Feedforward Networks

The single hidden layer feedforward network is the most commonly applied neural
network due to its simplicity and since it is dense in the space of continuous func-
tions and measurable functions on compacta, it can be considered sufficient for
most approximation tasks. Due to this eminence, we will review two key aspects,
namely their construction and a sketch of the proof of their aforementioned dense-
ness characteristic.

Since there is a bijective correspondence between any network diagram and
the underlying mathematical function, we can analyze general network mappings
by considering their respective network diagrams (as depicted in Fig. 2.4.(a-d)):

Wi

Single hidden layer feedforward network
Figure 2.6: NN with ¢ hidden nodes

The network diagram in Fig. 2.6 corresponds to a function of the explanatory
(independent) variable vector X = [1,zy,...,z,] and the network weights 6 =
(w10, w11, ..., Wer, By, ..., B3,), which are to be estimated in the learning phase. r
is the number of input variables and ¢ the number of hidden nodes or neurons.
Therefore the NN in Fig. 2.6 has the following functional form:

y=f(X.8) =Y 8,7, (Z m) ,
j=1 i—0

with U,(+) as the activation function (see equation 2.1).
This functional form shows that an NN consists of a weighted average of
shifted superpositions of the bounded nonlinear activation function ¥,(-). The



main difference of neural network functions relative to the popular polynomial
approximation lies in the full support and asymptotic boundedness of the NN,
features which are inherited from the well definedness and boundedness of its
components.

These aspects of NNs are attractive, especially in the context of forecasting,
where values outside the known model boundaries occur frequently. Additionally
for some choices of the activation function, NNs possess all the approximation
properties of Fourier series (White, 1992), including a well understood group of
mathematical functions as true subsets.

2.3 Universal Approximation

We will now formally establish the denseness property of NNs in the space of con-
tinuous functions which we have frequently asserted in the previous paragraphs,
since it is pivotal for any nonlinear modeling approach. Recalling figures 2.5,
the intuitive richness of the available functional forms inherent in a given neural
network family has to be sufficient to have for any given function of interest a
neural network, that is approximately equal to the former. This condition is
necessary for nonlinear models in the sense that without it one cannot ever put
an upper bound on the approximation error. Note that — as emphasized in the
introduction — the result is only asymptotic. The proof given here corresponds
to the one derived originally by Hornik et al. (1989). Definitions and notation
are as follows:

Definition 1 For anyr € {1,2,...}, let A" be the set of all affine functions from
R — R; t.e. Ai(x) = w; - x+ wip where w; and x are vectors in N7, 77 denotes
the dot product of vectors, and w;y € N s a scalar.

In the present context (sece Fig. 2.6), z correspond to the network input,
w; = (W1, Wya, ..., Wy ) and wy corresponds to network weights from the input
to the intermediate layer, i = (1,...,q).

Definition 2 For any continuous function U : R — R and r € {1,2,...} let the
NNs of interest Y (V) be defined by:

{f R RS

Zﬁ‘y R:E%Tl/gjEéRJAjEATJqE{]'JZJ"'}}'

Definition 3 For any continuous function U : R — R and r € {1,2,...} let the
following extended set of NNs Y II(U) be defined by:

f() =i g, L 0(A(0))

—Z/O’ H ‘I’(Z WikiT; + Wiko))
re R ﬁw]kl,w]kOE%AkEAl],qEHZ 3

FiR - R
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The strategy of the proof is to establish the denseness result for the more
complex > II(¥) networks and subsequently extend them to simpler > (¥) net-
works, since the latter are a special case of Y II(¥) networks (I; = 1 for all

7).
Definition 4 Let C" be the set of continuous functions from X" — R.

The class C"contains many functions relevant in applications (The extension
of these results to the class of measurable functions follows easily i.e. Hornik,
Ripley, Wang etc.). Closeness of functions f and g belonging to C” is measured
by a metric, p. Closeness of one class of functions to another class is described
by the concept of denseness.

Definition 5 A subset S of C" is said to be uniformly dense on compacta in
C", if for every compact subset K C R, S is p,-dense in C”, where for f,g €

C"px(f,9) =sup |f(z) — g(z)].

Theorem 6 Let U be any continuous nonconstant function from £ — N. Then
S II() is uniformly dense on compacta in C”.

Proof. We use the Stone-Weierstrass theorem. Let K C " be any compact set.
We need that > II(V) is separating on K and Y II(V) vanishes at no point of
K. For any U, Y II(¥) is an algebra on K. If z,y € K,x # vy, then there is an
A € A" such that W(A(z)) # U(A(y)). This ensures that > II(¥) is separating
on K. Second, there are W(A(-))'s that are constant and not equal to zero. To
see this, choose b € R such that ¥(b) # 0 and set A(x) = 0-x + b. For all
x € K, U(A(x)) = ¥(b). this ensures that Y II(V) vanishes at no point of K.
The Stone-Weierstrass theorem thus implies that Y II(V) is py-dense in C™ on
K. Because K 1s arbitrary, the result follows. B

In other words ) II(¥) networks can approximate any continuous function
arbitrarily well. In the next step we will show that the simpler ) (¥) networks,
despite their less complex structure are sufficient for this task.

Lemma 7 Y (¥) is uniformly dense on compacta in C".
Proof. By Theorem 6 the trigonometric polynomials
Q L
h() =2 Bi][eos(An () : Q1 €{1,2,..}, 8, R Ay € A (1)
j=1

k=1

are uniformly dense on compacta in C". Applying the trigonometric identily

11



(i.e cos(a) cos(b) = cos(a + b) — cos(a — b)) equation (1) becomes to

h(:) = {Z ageos(A (1) T e{1,2,..},as e R A € Ar}

T
and for any h(z) = ) aycos(A; (z)) andz € K , K CR" arbitrary compact
=1

set and arbitrary e > 0 there ezist an f€>2(¥) such that
sup,ek |R(z) — f(x)] < = (see White (1992, Lemma A.4, p. 24). The result
follows. B

The last lemma proves, that standard feedforward networks with only a single
hidden layer can approximate any continuous function uniformly on any compact
set. An extension of the above lemma to any Borel-measurable functions, regard-
less of the dimension of the input space 7, is also given in (Horink et al., 1989).
This establishes > (¥) networks as a class of ”universal approximators”, which
implies that any lack of success in application must arise from inadequate learning
(see section 2.6), insufficient numbers of hidden nodes, or lack of a deterministic
relationship between input and desired output.

2.4 Neural Networks in Statistics

So far we have just considered deterministic nonlinear relationships, which can
be approximated by NNs, however, their domain of application also overlaps sig-
nificantly with statistics. Let Y;, X; with ¢ € {1,2,...} be sequences of identically
distributed random variables. Suppose we are interested in the functional rela-
tionship between Y; and X;. For example in classification or pattern recognition
problems, Y; is a binary or multinomial variable creating class membership and
X, is a set of variables influencing the classification. In forecasting problems, Y;
is the set of variables (or one variable) that we would like to forecast on the help
of variables X;, which may itself have past values of Y;.

Regardless of whether a deterministic or stochastic relationship exists between
Y, and X, the mathematical object of interest in such situations is the conditional
expectation of Y; given X, written E(Y;|X;). This can be written as a regression
function,

0(X,) = E(Y;|X,).

When Y; can assume a continuum of values, 6(z) gives the expected value for
Y; given that X; = . We may also write

}/t = Q(Xt) + Ety

where ¢, = Y; — E(Y;|X}) is a random error with conditional expectation zero
given X;. When the relationship between Y; and X, is deterministic, £; is always

12



zero; else, 4 1s nonzero with positive probability. The regression function 6 is
assumed to be unknown. Hence problem is to learn (estimate, approximate) the
mapping # from a realization of the sequences Y;, X;.

In practice, we observe a realization of only a finite part of the sequences
Y:, X;, a “training set” or "sample”. Since € is an element of the space of all
functions (©) it is not possible of learning ¢ in any complete sense from a sample
of finite size. But it is possible to approximate 6 to some degree of accuracy
using a sample of size T, and to construct increasingly accurate approximations
with increasing T'. We will refer to such a procedure interchangeably as learning,
estimation or approximation. We estimate 6 by a network of the form:

f(X,,6) Z 3,9, (Z wﬁxti) : (2.2)

where § is the parameter vector, X; = (1,z¢1,. .., %) € R at time .

The simplest form of error function for regression problems is the method
based on the minimization of a sum-of-squares error function. To get an estima-
tion f(Xy, 8) of § we have to minimize the quadratic distance between Y; and the
values of f(X,6) by manipulating the parameter vector 6.

The sum-of-squares error function (SSE) is given by a sum over all patterns
in the training set, and over all outputs, of the form:

SSE(8) = XT:(Yt — f(X;,6))* — min! (2.3)

t=1

where Y = (Y,...,Yr) € RT and X = (X;,..., X;,..., Xp) with X; =
(1,z31,...,2;5) € RTL T is the sample size.

If we take the mean of the squared errors we get a measure for the regression:
MSE = ! SSE
T

The mean squared error (MSE) of each model f(X¢,6) can be divided in two
parts, the systematic error (MSFE,) and the non-systematic error (MSE,) :

MSE=E(Y - [(X,5))’]

=E[(Y = 0(X) +0(X) - f(X,9))’]

g"’"hv

6))
=E[(Y = 0(X))’] + E[(0(X) — [(X,8))’] +
2B[(Y = 0(X))(6(X) = F(X, 6)]
=E[(Y = 0(X))’] + E[(0(X) — f(X,8))’]
= MSE, + MSE;,

13



The last but one row follows from the iterated expectation (i.e. FE[Y]| =
Ex[E[Y|X]]) and given that Elz|X] =0 :

EI(Y = 0(X)(0(X) — (X, 6)] = E[(=)(0(X) — F(X, 8)
— Bx[E[(£)(0(X) — [(X.8)|X]]
— B [EEXI(0(X) — [(X.5)]
=0

The non-systematic error MSE,, is random and no model can approximate this
error since it comes from £ =Y — 0(X) and 0(X) is unknown. The systematic
error MSE; is the only error we can use to measure the regression. If we consider
each point of the function f(-) as an estimator for the correspondent point of
the function 6(-), we can divide MSE,, too. The MSE of each estimator can be
divided into the bias and the variance of the estimator.

Let f; be any point of f(:) and 6; be the correspondent point of 6(-), then

MSE, = MSE[f,] = E[(6; — f,)%]
= Bias[f,]* + Var[f,]

with Bias[f;] = E[f;] — 60;., Var[f] = E[(f: — E[f:])%.

Bias specify the distance from the expected mean of f; and #;. Thus the bias
is a systematic distortion of the approximation.

From the variance of f; we can calculate the area around E|[f;] where the
estimated function f(-) can also be. Hence the deviation of any approximation
f() of 6(-) is caused by the distortion of the expectation, by the variance of the
function or by a combination of bias and variance.

A small model f(-) with less estimable parameter is very inflexible and thus
it can not fit the error terms. It is also unable to approximate 6(-). What we get
is a big bias with low variance.

A large model f(-) can fit every observed data point, thus the bias of the
estimation vanishes but the variance is very large.

The following pictures illustrate these extreme cases.

14



Fig.(2.7.a) Variance of too large model f(-) Fig.(2.7.b) Bias of too small model f(-)

In the empirical application of an approximation it is impossible to prevent
an error caused by a bias or the variance. This dilemma is termed the ”Bias-
Variance-Dilemma” (e. g. German/Bienenstock/Doursat (1992)). Bias and vari-
ance are complementary quantities, and the best generalization is obtained when
we have the best compromise between the conflicting requirements of small bias
and small variance.

In order to find the optimum balance between bias and variance we need
to have a way of controlling the effective complexity of the model. In the case
of neural networks, the complexity can be varied by changing the number of
parameters in the network, which is proportional to the number of hidden nodes
(see Fig.2.6). Alternatively, one can remove individual weights. However, as we
will show, the hidden nodes can be considered as the pivotal and defining elements
of both NNs and FLSs, therefore we vary complexity solely by the addition and
deletion of hidden units, with the goal of arriving at an optimal network structure.

We next consider how such a network can learn a suitable mapping from a
given data set.

2.5 Learning Algorithms

Besides the network structure another major characteristic of an NN application
is the form of optimization, learning or training the network undergoes.
Traditional optimization is often described in NN slang by the term ” supervised
learning”, because target values for the network outputs are used to minimize the
error of the mapping from the input to the output. The remainder of this section
is concerned with the networks techniques for training or ”learning”. The problem
of minimizing continuous, differentiable functions of many variables is one which
has been studied extensively in applied mathematics, and many of the conven-
tional approaches to this problem are directly applicable to neural networks. Gen-
erally one can distinguish among two major types of learning algorithms. On one
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side there are the stochastic (global) methods like Simulated Annealing, Simplex
Simulated Annealing, Threshold Accepting, Genetic Algorithm and on the other
side there are gradient descent (local) methods like Newton-Raphson, Quasi-
Newton, Levenberg-Marquardt and Back Propagation. Many standard textbooks
cover non-linear optimization techniques including Polak (1971), Gill(1981), Den-
nis and Schnabel (1984), Luenberger (1984), and Fletcher (1987). For didactic
reasons we will contrast one representative of each class of learning algorithms,
namely the genetic algorithm for the stochastic class and the backpropagation
algorithm for the deterministic class and discuss their domains of application and
their limitations.

2.5.1 Genetic Algorithm

Similarly to NNs, Genetic algorithms (GAs) were inspired by processes observed
in nature, namely evolution. The basic concept behind this technique is as follows.
Any set of network weights is associated by a cost or "fitness” function with its
degree of relevance for the output indicating its effectiveness. For example, the
fitness can be simply given by —F, where F is the value of the cost function or
error function for that set of weights. Starting with a random population of such
weight vectors, successive generations are constructed using genetic operators
to construct new vectors out of old ones such that fitter strings (weights) are
more likely to survive and to participate in crossover operations. The crossover
operations can in principle bring together good building blocks such as hidden
units that compute certain logical functions found by chance in different members
of the population. Hence it is natural that GAs have been used to search the
weight space of an NN without the use of any gradient information [Montana and
Davis, 1989, Whitley and Hanson, 1989, Ichikawa and Sawa, 1992]. Stochastic
methods like GAs perform a global searches and are thus on one hand not prone
to converge to local minima, on the other hand their speed of convergence is very
slow.

2.5.2 Back Propagation

The Back Propagation learning algorithm is one of the most important historical
developments in neural networks. It has reaweaken the scientific and engineer-
ing community to the modeling and processing of many quantitative phenomena
using NNs. This learning algorithm requires the NN to have continuously differ-
entiable activation functions (see figure 2.3). The basis for this weight update
algorithm is simply the gradient-descent method. For a given input-output pair
{(X5,Ys)},k=1,2,...,T, the back propagation algorithm performs two phases
of data flow. First, the input pattern X} is propagated from the input layer to the
output layer and, as a result of this forward flow of data, it produces an actual
output f(Xj,6). Then the error signals resulting from the difference between
f(Xg,6) and Y are back propagated from the output layer to the previous layers
for them to update their weights according to the gradient-descent method. For
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more detail description to back propagation we recommend Bishop (1995).

Gradient descent methods like back propagation converge fast, but often be-
come stuck at local minima and are thus often unable to find satisfactory solu-
tions. Repeating the process with random initializations of the weights provides
a remedy in this case, but reduces the convergence speed.

Given the pros and cons of these methods it is hardly surprising that we use
for the empirical application in section 6 a combination of stochastic optimization
technique with local deterministic procedures.

Based on above paragraphs, NNs in conjunction with a learning algorithm
can be described as data-driven self-adaptive methods. In other words, they learn
from examples and find out functional relationships among the data even if the
underlying relationships are unknown or hard to describe. Thus NNs are suited
for problems whose solutions require knowledge that is difficult to specify but for
which there are enough data or observations. In this sense NNs can be treated as
one of the multivariate nonlinear nonparametric statistical methods [White, 1989;
Ripley, 1996]. This makes them useful for many complex problems, since it is
often easier to get data than to have good theoretical guess about the underlying
laws of the systems from which the data are generated. NNs are hence often
called model-free estimators. However, they are far from unique in that capacity
and they do have the drawback that their parameters are quite meaningless for
the researchers intention. This is the main difference between NNs and the FLSs
which we consider next.
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3 Fuzzy Logic

3.1 Introduction

Analogously to NNs, FLSs are inspired by the workings of the human brain. In
contrast to NNs, which are modeled after the physical architecture of the brain,
FLSs are based upon the way the brain deals with inexact information.

Fuzzy sets (Zadeh, 1965) are a way to quantify the vagueness inherent in lin-
guistics; mathematically they can be considered a generalization of classical set
theory. In a classical set, an element of the universe either belongs to or does
not belong to the set. That is, the membership of an element is crisp (binary).
A fuzzy set is a generalization of an ordinary set in that it allows the degree of
membership for each element to range over the unit interval [0,1]. One of the
biggest differences between crisp sets and fuzzy sets is that the former have a
single unique membership function, whereas for fuzzy sets there exists an infinite
number of admissible membership functions that may represent it. Any crisp set
can be fuzzified and hence generalized by replacing the binary membership func-
tion by the concept of a fuzzy membership function. Such fuzzification yields
greater generality through the distinction between degrees of set membership
among members of a single set. Due to the mostly unfamiliar nature and termi-
nology, we proceed to introduce the principal concepts and mathematical notions
of fuzzy set theory in the following paragraph.

3.2 Basic Concepts of Fuzzy Sets

Definition 8 Fuzzy Set: Let U be a collection of objects, for example, U = R",
and be called the universe of discourse. A fuzzy set F' in U is charactlerized by
a membership function pp : U — [0,1], with pp(u) representing the grade of
membership of u € U in the fuzzy set F'.

Example 9 Let U = R and let the crisp set A represent ” real numbers greater
than or equal to 5 7; where the characteristic function is

0 <5
1A($):{1’§>5$€U,

which is shown in figure 3.1.(a). Now let fuzzy set B represent ” real numbers

close to 5 7 where the membership function is

() = T
RBV = 1100z — 5)2

z e U,

which is shown in figure 3.1.(b).
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Consider another example, the fuzzy variable temperature, which can be de-
scribed by many different adjectives each with its own fuzzy set. A typical par-
tition of the universe of discourse, 0 - 40°C, is shown in figure 3.2., where the
fuzzy sets cold, warm and hot are defined. Here, the crisp temperature 20°C
has a grade of membership of 0.5 for both the cold and warm fuzzy sets i.e.
:U’cold(ZOOC) = :U’warm(ZOOC) =05.

It is clear that the definition of fuzzy sets are non-unique and are very context-
dependent i.e. these sets may seem wrong to an Eskimo, or even to the reader.
This is the nature of language and shows that the actual definition of the sets
are both application and user specific.

membership 19

Ha

Temperaturein®C

Figure 3.2: Fuzzy sets defined for temperature.

This inaccuracy in language, described by fuzzy sets, can also be thought as
uncertainty. This view has lead to the fuzzy versus probability debate, where
probabilists question the uses and effectiveness of fuzzy set theory. I do not wish
to enter this debate here.

Another way of representing a fuzzy set is through use of support or center
of a fuzzy set.
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Definition 10 Support , Center and Fuzzy Singleton: The support of a fuzzy set
F' is the crisp set of all points u € U such that pp(u) > 0 . The center of a fuzzy
set F' is the point(s) uw € U at which pp(u) achieves its mazimum value. If the
support of a fuzzy set F' is a single point in U at which pp =1, then F is called
a fuzzy singleton.

Definition 11 Fuzzifier: A mapping f from a crisp point v € U to a fuzzy set
F' is called fuzzifier. There are at least two possible choices of this mapping :

e Singleton fuzzifier: I is a fuzzy singleton with support u, that is , pp(u) = 1
for v =w and pp(u') =0 for all other ' € U with v/ # u .

e Nonsingleton fuzzifier: pp(u') =1 and pp(u') decreases from 1 as u' moves
away from u , for example, pp(u') = exp[—(“’*“):#] where o2 is a

parameter characterizing the shape of pp(u') .

Y

We will only consider singleton fuzzifiers.

Definition 12 Defuzzifier: A mapping f from a fuzzy set A to a crisp point
u € U is called defuzzifier.

The three basic operations on crisp sets — complement, intersection and union
— can be generalized to fuzzy sets in more than one way. However, here are the
operations that are usually referred to as standard fuzzy set operations.

Definition 13 Intersection, Union, and Complement: Let A and B be two fuzzy
sets in U. The intersection AN B of A and B is a fuzzy set in U with membership
function defined for allu € U by

panp(u) = min{p,(u), pp(u)}.

The union of AU B of A and B is a fuzzy set in U with the membership defined
for allu e U by

paop(u) = max{p,(u), pg(u)}.

The complement A of A is a fuzzy set in U with the membership function defined
for allu e U by

pr(u) =1 — py(u).
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Applying these standard operations to the fuzzy sets in figure 3.2 we can find
for example, that cold N hot = warm. The construction of cold N hot is shown in

figure 3.3.(c).

degree of 1 degree of L A
membership membership
Hasa Hes
0 | ] » 0 | | »
1 T T > T T T -
15 25 35 15 25 35
Temperaturein®C Temperaturein®C
@ (b)
degree of warm
membership
IJ coldn hot
0 | »
1 T T >
15 25 35

Temperaturein°C
(©
Figure 3.3. (a),(b),(c) : Hlustration of standard operations on fuzzy sets

The equation cold N hot = warm makes sense: If the temperature is not cold
and not hot then it is warm!

We now introduce the extension principle it is one of the most important tools
of fuzzy set theory. This principle allows the generalization of crisp mathemat-
ical concepts to the fuzzy set framework and extends point-to-point mappings
for fuzzy sets. It provides a means for any function f that maps an n-tuple
(21,...,%y) in the crisp set U to a point in the crisp set V to be generalized to
mapping n fuzzy subsets in U to a fuzzy subset in V. Hence, any mathemati-

cal relationship between nonfuzzy elements can be extended to deal with fuzzy
entities.

Definition 14 The Extension Principle: Let U and V' be two universes of dis-
course and be a mapping f : U — V. For a fuzzy set A in U, the extension
principle defines a fuzzy set B in 'V by

(0) = sup {pus(u) su € [ (v)}.

That is, pg(v) is the superium of p,(u) for all w € U such that f(u) = v,
where v € V and we assume that f~'(v) is not empty. If f~'(v) is empty for
somev € V, define pg(v) = 0.
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The notion of relations is basic in science and engineering, which is essentially
the discovery of relations between observations and variables. The traditional
crisp relation is based on the concept that everything is either related or unrelated.
Hence, a crisp relation represents the presence or absence of interactions between
the elements of two or more sets. By generalizing this concept to allow for various
degrees of interactions between elements, we obtain the fuzzy relation.

Definition 15 Fuzzy Relation: Let U and V' be two universes of discourse. A
fuzzy relation R is a fuzzy set in the product space U x V; that is, R has the
membership function pg(u,v), where u € U and v € V.

A crisp relation among crisp sets Xy, ..., X, is a crisp subset on the cartesian

product Xy X -+ x X,. This relation is denoted by R(Xj,...,X,). Hence

R(Xl:---;X'r)CXlX"'XXr;
where Xy x -+« X X, ={(x1,...,2,) 1z, € X; foralli e {1,...,7}}.

It is interpreted that the relation R exists among {Xy,..., X}, if the tuple
(x1,...,x,) is in the set R(Xy,...,X,); otherwise the relation R does not exist

among {Xi,..., X,}. A fuzzy relation is a fuzzy set defined on the cartesian
product of a crisp sets {X1y,..., X, }, where tuples (zy,...,z,) may have varying
degrees of membership pg (x1,...,2z,) within the relation.

In the simplest case, consider two crisp sets X, Xy. Then

R(X],XQ) = {((.’E],.’Eg) s MR (.’E],.’Eg)) : (.’E],.’Eg) S X] X )(2}1

is a fuzzy relation on X; x Xs. It is clear that a fuzzy relation is basically a
fuzzy set. Since the fuzzy relation is a fuzzy set, the operations for fuzzy sets
(see Def.13) can be extended to fuzzy relations. A special kind of fuzzy relation
are the fuzzy implications.

Definition 16 Fuzzy Implication: Let A and B be fuzzy sets in U and V', re-
spectively. A fuzzy implication, denoted by A — B, is a fuzzy relation in U X V
with the following membership functions:
o Fluzzy product rule:
fap(u,v) = pa(u) - pp(v)

o Fuzzy minimum rule:

pasp(u,v) =min{p,(u), pp(v)}
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o Fuzzy conjunction:
pap(u,v) = max {0, py(u) + pp(v) — 1}
o Generalization of modus ponens:
i p(1,0) = sup fe € [0,1]  max {0, () + ¢ — 1} < pig(0))
o Generalization of modus tollens:
pasp(u,v) =inf{c € [0,1] :min {1, pg(v) + c} < pa(u)}

A fuzzy implication A — B can be understood as a fuzzy IF-THEN rule:

If wis ATHEN v is B, where u € A and v € B and "u is A” stands for the
degree of membership of v in A ; A and B are fuzzy sets. A collection of fuzzy
IF-THEN rules is called Fuzzy Rule Base.

Definition 17 Fuzzy Rule Base: A fuzzy rule base consists of a collection of q
fuzzy IF-THEN rules in the following form:

R':IF xy is Fl and --- and x, is !, THEN vy is G',

where F! G are fuzzy sets and F} € Uy C R and G' € V C R and X =
(1,...,x,) €Uy X+ x U, andyeVil=1,...,q.

There are several ways to combine the fuzzy IF-THEN rules into a mapping
from fuzzy sets in Uy X --- X U, to fuzzy sets in V as in Def.15 . The rule in
which way this IF-THEN rules are combine is called Fuzzy Inference Rule. We
only be concerned with the product rule of fuzzy implication (Def. 16) i.e. the
product inference rule. For simplicity we denote F} x - x F! = A and G' = B,
with the help of the product rule we get out of the IF-THEN rules the following
mapping from the fuzzy set A to fuzzy set B :

a5 (T y) = ps(@) - p15(y)
= Upl . x F! (7) - np(y)
—Hy (1) T (@) - pp(y).

As fuzzy sets are extensions of classical crisp sets, fuzzy logic is an extension
of classical two-valued logic. Classical bivalence logic deals with propositions that
are required to be either true or false, the latter are called the truth values of
the propositions. Propositions are sentences expressed in some language and can
be expressed, in general, in a canonical form, "u is A” like in Def.16. The truth
values of propositions in fuzzy logic are allowed to range over the fuzzy subsets
of the unit interval [0,1] or point in the interval.

Fuzzy logic systems (FLS) is the name for systems which have a direct rela-
tionship with fuzzy concepts like fuzzy sets, fuzzy relations and fuzzy logic.
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3.3 Fuzzy Logic Systems

A fuzzy logic system is a nonlinear model whose behaviour is described by a set
of rules such as:

IF temperature is cold Then set output of the heater high
or
IF temperature is warm Then set output of the heater zero

describing a typical relationship between room temperature and the desired
output of a heater. To represent the complete relationship a collection of such
rules called the rule base is used. Real valued (crisp) inputs are converted to
vague fuzzy variables by the fuzzifier, these are then presented to the rule base.
The rule base produces a collection of fuzzy output variables from the conse-
quences of the rules. In a fuzzy inference engine, fuzzy logic principles are used
to combine the fuzzy IF-THEN rules in the fuzzy rule base into a mapping from
fuzzy sets in U to fuzzy sets in V. The defuzzifier converts these fuzzy sets in V/
into real-valued outputs. The basic structure of a fuzzy logic system, as described
by Wang, is shown in figure 3.4 and a description of these elements are introduced
in Section 3.2.

Fuzzy Rule Base
xinU fuzzy rule - yinV
— | Fuzzfizier If A thenB Defuzzifizier |—
| Fuzzy Inference Engine 4] _
fuzzy st AinU fuzzy st BinV

Figure 3.4: The basic components of a fuzzy logic system

Definition 18 Fuzzy Logic System: A mapping from " — R consisting of a fuzzi-

fier, a fuzzy rule base with a fuzzy inference engine and a defuzzifier is a fuzzy
logic system.

Example 19 The class of functions of interest in this paper is f : R"— R s.t.

f(z) = Zﬁ] *Hpi (ﬁ]) (1)
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with
s () = sup {@ € A pyg g pi(@.8) (@) }

where x = (z1,...,2,) € ACU; X -+ xU, CR", p € R. Ais a fuzzy set in
R"and be the input to the fuzzy inference engine; then each fuzzy IF-THEN rule
1s interpreted as a fuzzy implication Ulj X x Ul — B7 in R" xR and determines
a fuzzy set B? in N. The star x stands for composition. x is a twoplace function
from [0,1] x [0,1] to [0, 1], which includes fuzzy intersection (a b = min{a,b})
or algebraic product (a b= ab), where a,b € [0,1].

Lemma 20 For the product rule as fuzzy implications (Def. 16) and a singleton
fuzzyifier (Def. 11) the fuzzy logic system in (1) can be simplified to:

= 2/3] : HMUg(xk) (3.1)

where © = (z4,...,x,) € R".
Proof. (See Wang (1994) section 2.6.2).

Note that there are many more possible fuzzy logic systems (or fuzzy logic
approximator) based upon different choices for the four components given above.

3.4 Universal Approximation

Analogously to NNs (see Section 2.3) the denseness property of FLSs in the
space of continuous and measurable functions has also been investigated in the
literature. Since the FLSs depend not only on the membership functions but
also on the implication rule, it should be clear that there are vast numbers of
different classes of FLSs resulting from different implication rules, which need to
be analyzed individually with regard to their denseness property. Hence there
exists a rather diverse literature in the fields of engineering and finance dealing
with the respectively relevant fuzzy logic systems. Due to the resulting diversity
of the literature and terminology, we will only give a list of the presently known
results, relevant to us and not attempt to provide all the individual proofs.

e Fuzzy logic systems such as (3.1) with a center average defuzzifier, product
inference rule, a singleton fuzzifier, and a Gaussian membership function p
are dense in C" and L? (Wang 1994) and have the following form:

x)zzq;ﬁj-lf[lum Z/o’ Ha]kexp< (“3“5))

k

with x = (331,. o ,337«) S %T;O{jk,ﬁj,(fjk,éjk e Rn.
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e An extension of the above to membership functions of positive integer pow-

ers of Gaussians is given by Gottschling (1997) such that (3.1) is given
by:

:Z/Bj ‘ H,“(xk)

-3 Ha]k<eXp< (“5)))

o) € Ny, By, 04,05 € Rand no€ {1,2,.. .},

where z = (21, ..

e Minimum inference FLSs with symmetric unimodal and nonnegative mem-
bership functions are known as universal approximators on L (Gottschling

and Kreuter, 1999).

z) ZZ/o’j ~min {p(21),. .., pla)}

_Zﬁ mln{exp( <$1_]16]1)2),...,exp<— <$0_j‘51)2)}

,Zp) €N B, 05k, 65 €N

where z = (24, . ..

e Multiplicative FLSs such as (3.1) with arbitrary continuous, nonconstant
and integrable membership functions g have also been shown to be dense

in C"and L? (Gottschling and Tatur, 2000).
Thus, if g : R — [0,1] is a sigmoid functions of the following form:

1
1 + exp(—(wg + wlxk))

/,L(.’Ek) = ; Wo, W, T € §R

then (31) becomes to:

:Z/Bj . H,u(xk)
q T 1
! G ). o

Wiko + Wikt * Tx))

and f(x) is also a universal approximator.
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3.5 Fuzzy Logic Systems in a Neural Network Context

Sofar we have treated NNs and FLSs as completely distinct nonlinear modeling
approaches. However, given the fundamental inspirations for these two fields it
should not come as too surprising a result that there are numerous parallels in the
resulting functional representations. By observing the functional form of equation
(3.2), it follows that a representation of a FLSs as single hidden layer feedforward
networks exist (Figure 2.5). It then becomes straightforward to apply all the
learning algorithms in section 2.5 to adjust the parameters 3,, w0, wjz1 € R. For
given input-output pairs (X, Y;), Xy = (z41,...,2) € R, e Rt =1,...,T
and the parameter vector 6 = (3y,..., 3, Wi, - .-, Wero, W111, - - - , Wgpy) OUr task
is to determine a fuzzy logic approximator of the form (eq. 3.2) such that an
error function e. g.:

T
SSE(8) =Y (f(X:,6) - Y3)’
t=1

is minimized. Where T" is the number of samples or input-output pairs and
f(X¢,6) is the FLS from (see eq. 3.2), with the parameter vector § as the 2nd
variable. For any given ¢ this constitutes the number of the IF-THEN rules,
equivalent to the number of hidden nodes in neural network language. The cor-
responding functional representation of f(Xy, ) is given by figure (3.5):

w O 1
NI N
- M ' T Bl
X — O
f(X)
1 W

W \

q21

qu

Fig. 3.5: Fuzzy Network with ¢ nodes
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Hence we can interpret the fuzzy logic systems of interest e. g. (eq. 3.2)
as special cases of networks, which we will refer to as Fuzzy Networks (FN)
henceforth. We now proceed to consider the differences and similarities of FNs

and NNs.

4 Integrating Neural Networks and Fuzzy Logic Systems

The structural and approximation theoretic similarities point to an area of overlap
between fuzzy and neural approximation that can all be analyzed in the context
of neural network terminology due to the observations in the last paragraph.

4.1 Differences between Fuzzy Networks and Neural Net-
works

Recalling the definition of the sigma pi network (Def.3), which was used in the

derivation of the universal approximation property for single hidden layer feed-

forward networks (see section 2.3), one can gain the following insight: a reduced

case of the Y TII network, the » II is already a sufficiently rich superstructure

which contains both the FNs and the NNs (Gottschling, 1997). The original

contribution for the nestedness of network structures is recapitulated below.

Definition 21 For any r € {1,2,...}, let A" be the set of all functions of the
form: A(X) = wX + wo;w, X = (21,...,2,) € R, we € R. For any continuous
nonconstant functions W : R — R, let Y I be the class of functions f : R — R
8.1

700 =328, [ #(A() (1)

with /6]- S %,A]‘k S AT, lj,q S {1,2,}

Theorem 22 We can derive a fuzzy logic system (equation 3.1) of the form:

100 =308, [ s an)

from the above Y I structural equation (4.1) by imposing 3 restrictions on
(4.1):

1) lj =T

2)U: R — [0,1]

9)A(X) = {all A(X)

with w = (0;---;0;wjk1;0;---;0);
wjkl%O,k:1,2,...,r;j:1,...,q; '
Proof. By inspection after substitution of 1,2 and 3 . R
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Theorem 22 gives as a network representation of a fuzzy logic system (see
equation 3.2) which is in fact a restricted Y II network of the form:

q r
f(X) = Z/ﬁj : H‘I’(wjkl Ty + Wiko); Wik1, Wiko € T X € N (4.2)

j=1 k=1

Implications: From Hornik et al. [1989] we know that a neural network :

f(X) = Zﬁj‘I’(Aj(fﬂ)) = Zﬁj‘l’(wio + sz‘j%‘) (4.3)

are the result of the restriction I; = 1 on the Y []-structure in (4.1). Thus
we can define the > []-structure (4.1) as the superstructure containing both the
neural network (NN) and the fuzzy network (FN).

The following pictures (Fig. 4.1, Fig 4.2) gives the possibility to compare the
two network structures:

X

W,
Figure 4.1: Fuzzy network with 2 nodes Figure 4.2: Neural network with 2 nodes

The difference of the two network types is the processing of the input variables.
In an FN each input variable z; uses alone one processing element or activation
function (¥), whereas in an NN an affine image of all input variables uses only
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one activation function. Thus in FNs the focus is on the functional relation
between each individual input variable (z;) and the output, whereas in NNs the
focus is on the functional relation between the sum of all inputs variables and
the output. This provides also the basis for the interpretability of FNs since
the direct mapping from variables to output allows for intuitive reasoning with
respect to the parameters whilst in an NN the noninvertable subspace projection
leads to the "black box” issue.

Since in an FN each input variable has a mean and a scaling parameter as-
sociated with it, whilst only one mean parameter is associated with the sum of
the inputs in NN, it follows that the former has more parameters for the same
number of hidden nodes. It is this last fact that is partly responsible for the
significant difference in practical approximation applications of the NNs and FNs
with their asymptotic equivalence notwithstanding. Given the consideration at
the outset of the paper, we now have the framework to look into the realm of hy-
brid (mixed) network structures, which are shown to be highly relevant in small
samples for several reasons.

4.2 Motivation of Hybrid Networks

A significant part of statistical literature has considered the problem of robustify-
ing forecasts by combination, both in linear (e. g. Granger) as well as nonlinear
contexts (Breimann, Wolpert). While this phenomenon can be explained by vari-
ance reduction alone, the question is whether there is also arguments for such
a mixture of functions in a purely deterministic context (bias reduction). This
has been first addressed by Stinchcombe (1995) by a formalization of the fol-
lowing argument. The universal approximation property or dense span of single
hidden layer feedforward network means that the family of functions defined by
the network reaches some amount into each and every dimension of the infinite
dimensional space of functions. That neural network functions extend into each
and every dimension of function space does not imply that they extend either
very far into every dimensions or that they extend equally far into all dimen-
sions. However, without both of these criteria, there will exist some functions
that can be approximated better than others. Which functions can be approxi-
mated well and which ones can not, depends among other criteria on the network
structure and activation function. This brings about the issue of precision. In-
tuitively, functions that are close in structure to some particular neural network
representation will be fitted by that representation more precisely than those that
are far away. The practical implication is that, there will be functional relations
between inputs and outputs that cannot be captured very precisely whilst others
can. While it is easy to increase precision in any given network by adding hidden
nodes, this strategy is also constrained because the growthrate of number of neu-
rons (g) is limited by the available data points (see section 2.5). It is here that
the crucial problem occurs, since growing a network at the rate that does not
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increase the variance results in decreasing precision with increasing dimensions.
More and more additions to ¢ may be needed to capture the next feature of the
functional relation being estimated.

As a suggested remedy it was put forward — however without proof — that a
mixture of different types of networks could solve the precision problem. Similar
to the variance reduction by combination of forecasts (e. g. Granger), one can
potentially gain precision by combining different networks since it means that one
combines a function which individually reaches only far into very few dimensions
with other functions that achieve the same for dimensions that are not captured
well by the first function. As remarked in the introduction, the relevance of
this hypothesis has only been substantiated by empirical research and even then
the strategy for the combination of networks of different types has always been
top-down in the sense that ex-post combinations of networks were analyzed with
respect to their joint performance. Neither a theoretical basis nor an efficient
strategy has been suggested how to build combined networks bottom-up. That
however is necessary to avoid the model selection bias (see Campbell, (1997)).

In the following paragraph we derive a new hybrid network, which is designed
around these considerations of precision and subsequently we shall prove that
this strategy is both theoretically sound as well as efficient for combining NNs

and FNs.

4.3 A Hybrid Construction Approach for Neuro Fuzzy
Networks

Starting out from the network diagrams or equivalently equations 4.2 and 4.3 , one
can deduce that the idiosyncratic differences of FNs and NNs can be pinpointed
at the hidden node level and the input to hidden node weight structure. We can
thus first define a hybrid hidden node by constructing the minimal structure that
can be used as either a neural or a fuzzy hidden node:

Definition 23 For 6 = (wg,wl e W W e Wr—1)0, W - - - ,w(r,l)l) € w31
the parameter vector and any v € {2,3,...} and any continuous nonconstant
functions ¥ : R — R, let h(X) be a hybrid node of the class of functions
MX): R — R s.t:

hMX) = U(wg+ ijaij) : 1:[ (w12 + Wio) (4-4)

with X = (x1,...,z,) € R". A network f(X) made out of q¢ hybrid nodes has
the following form:

PO =" B i(X)
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q

= Z Bi (‘I/(wio + Z Wi x;) - 1:[ U(wig1zy + wim)) (4.5)

=1 k=1

One hybrid node h;(X) with r input variables has the following diagram as-
sociated with it.

=

1
X
\Nlll
%,
\Ni21
X4
\Nl(r—l)l

Figure 4.3: Hybrid node h;(z) with r input variables

Consider that the hybrid unit includes both unit types, the neural hidden node
(compare Figure (4.2 )) and the fuzzy hidden node (see Figure (4.1)). However,
note that it is not possible for the hybrid unit to have a simultaneous realization
of both nodes and thus the hybrid unit enforces a choice among the functions
during the course of the optimization. For example to get a neural unit out of
the hybrid unit we have to set the parameters w;;; =0 forallk =1,... ,r—11n
equation 4.5. With this restriction h;(X) in 4.5 becomes to:

r—1

hi(X) = (w + Z wijzy) - | [ ¥ (wiro)- (4.6)

k=1
Since no input variable and only parameters are involve in the last term of
4.6, we can replace this term by a single parameter 3, € 8. Thus we get :

hi(X) = ¥ (wio + Zwijxj) B = B, ¥ (Ai(m)),
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which is equal to the definition of a neural unit (equation 4.3).
To get a fuzzy unit out of the hybrid unit we have to set the parameters
wy; =0forall j=1,...,7—1in 4.5, then h;(X) becomes to:

r—1
hi(X) = U(wio + wirz,) - H w1y, + wiko)

k=1
T

k=1

Set w;o = ;o and Wy, = Wiy, Equation 4.7 is the definition of a fuzzy unit (see

equation 4.2).

Estimation process fuzzy unit
with constraint : T

hybrid unit |w,| fing| =0 ) .I'I1

ll‘l W =0 " W, Wz\TV\:J
1/ N\ L= 1M XX
o/\ow

neuro unit

Fig.: 4.4 How a hybrid unit with two variables works

We are now able to get a neural unit or a fuzzy unit out of a hybrid unit
(eq. 4.4), just by a simple restriction on the parameters w; = 0 or respectively
wj; = 0 with j =1,...,7—1; r stand for the number of the input variables. One
possible constraint condition to get this restriction on a hybrid unit (see Fig:4.4)
is:

(fn] + -+ Jween|) - (lwnl + -+ + Jwean|) = 0,vr. (4.8)

This constraint can be use in a process or algorithm to construct a neuro fuzzy
network (NFN). All we need is a constraint fit to estimate all parameter of the
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NFN simultaneously to fulfilling the constraint (eq. 4.8). Consider the flowchart
on the next page to demonstrate this algorithm.

Let 7" be number of the input-output pairs (X;,Y;), ¢ = 1,...,T which
describes the wanted function; r be the number of the input variables X; =

(41, ..., 2er) € N and f(Xy,6) be the NEN and 6 is the parameter vector and
T
let B(6) =Y (f(Xy,6) — Yt)2 be the error function, which should be minimized

=1
with respect to the constraint belonging the hybrid unit. We start with a minimal

network which contains just one hybrid unit and then add neural or fuzzy units
as the problem requires during the learning process, with the goal of arriving at
an optimal network structure.

We estimate the network f(X;,6) by a constraint estimator which allows,
beside minimizing F(§), also to keep the constraint condition for the parameters
of the hybrid unit. We choose all parameter of f(X;,$) randomly and start the
estimator. If the estimator after a appropriate time does not converge, we choose
other start parameters randomly again until the estimator converges. Then we
consider E(6), if E(6) = 0 we are finished with our regression, else we have to
look at the constraint or respectively at the hybrid unit. If the parameters of the
hybrid unit w; = 0 or respectively w;; = Oforall j =1,...,r—1, we take a neural
unit or respectively a fuzzy unit (see Fig.:4.4) and continue with the values of the
non-zero parameters as our new start parameters of f(Xy,6). Our new f(Xy,06)
has now one neural unit or one fuzzy unit and we start a new estimation with a
further hybrid unit and a constraint belonging to this hybrid unit.

We end up adding hybrid units and converting hybrid units into fuzzy or
neural units when E(6) &~ 0. The new neuro fuzzy network has the following
functional form.

The output of a ¢ hidden unit feedforward NFN with [ neural network units
and m fuzzy network units given input X; is defined as

1 m r
f(Xe,6) = Bot Z B ¥ (znwiit- - A2pwi+wio)+ Z /BZ(H (2 wiki +Wiro) ),
=1 =1 k=1

(4.9)
where [ +m = gq,

6= (B, By Wit, .., Wip, Wig, -+ -, Wig, W11t - -+ Winp1; W1105 - - - Winpo) € R
is the vector of network parameters with n =g+ 1+1(r+ 1)+ 2mr; I,m,q,r € R
and ¥ is a sigmoid function (seec equation 2.1.).
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Algorithm to construct a Neur o-Fuzzy Network:

Start

La T(X,9):=0

>
'

f(X,0):= f(X.,0)+ hybrid unit

>
>

Y

Choor?eev\rlandomly Edtimate the parameter of f (X[ ,5) with congtraint for hybrid unit

Start-parameter
@
Yes
No

No
Yes
Regression finish @

Congtraint showsif W = 00w, =0 )
(seeequation 4.8)
Yes No

Replace the hybrid unit | -
by afuzzy unit and take Eﬁﬁ Ig/:e at Egﬂébnd
over the correspondent unit and take over
parameter v the correspondent

f(X,0):= (X ,0)— hybrid unit + fuzzy unit parameter

f(X,0):=f(X,0)— hybrid unit + neural unit
|

> <
> <

A
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While the construction is achieved by a well defined algorithm, the properties
of the the hybrid network have yet to be established. The next section therefore
considers the approximation capability of the NFN.

4.4 Universal Approximation

For completeness we establish that NENs are also universal approximators (see
section 2.3 and 3.4), since they have the same denseness properties as NNs. The
required denseness are given by the next result.

Lemma 24 For any r,l,m € {1,2,...},the following extended set of NF'Ns
SN () defined by

1 r

g(X,6) = Bo+ > B,9(3 mawyn)

ZNFN(\I}) _ g: %7' N §R N (:, j=1 n—~0

+ > Bi( 1] (zpwirs + wiro))
k=1

=1

is a "universal approzimator”. Where g(X,6) shows the output of NFN
with l-neural network units and m-fuzzy network units and given wnput X =
(1,zq,...,2,) € R
Proof. It s clear that an arbitrary neuro-fuzzy network ZNFN(\II) with the same
number of neural units as a correspondent neural network has at least the same
denseness properties as the Y (V) (see Def.2). In other words, we will always
find for a arbitrary f € S.(¥) a g € SSVN(W), such that p(f,g) < = for a
given € > 0, just take over the neural units of f in g and adding redundant fuzzy
units. Since Y (V) is a universal approzimalor (see section 2.5), it follows that
SNIN(W) is also a universal approzimator. B

Given our original interest in constructing efficient networks for small sample
problems, we have just established that the NEF'N is a third type of nonlinear
model available for approximation purposes based upon asymptotic arguments.
However, in this context all the methods that we consider in the previous sections
will work, even the complex > II network (see Def.:3) which contains both NNs
and FNs simultaneously. In small samples, however, the question of comparative
advantage of one network type over another matters. Based upon the problems of
the bias-variance dilemma (see section 2.4), it should be clear that the complexity
of the network which we consider is proportional to the variance and inversely
proportional to the bias. Hence, keeping the number of parameters small is what
focuses the attention on the NFN. The key achievement is that the NFN is capable
of modeling significant special cases of the much more complex > II network (see
Def.:3), namely NN and FN without suffering from the same variance. The NEN
is also more flexible than either the pure FN or the pure NN, since apart from
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reducing to these extreme cases it can end up as a mixture. This is the aspect
which makes it relevant in the sense of Stinchcombe discussed above (see section
4.2). In the latter case it is exactly the type of combined network, which is
purportedly better, but no formal result has been given. Thus in the next section
we will compare the NFN to the NN which was considered by Stinchcombe and
formally establish that the NFN provides indeed the improved approximation
precision, that was discussed in section (4.2).

5 The Metric Entropy of Neuro Fuzzy Networks

It is not clear how the structure of the different hidden node specifications of a
NEN relative to NNs will affect the modeling performance a priori in general. Tt
should be obvious that no single choice of model can be superior to the other for
all possible data generating processes, because of the following: if for example
the particular functional specification is a member of a NN family then this will
give an exact fit up to the limits of the error term. Thus the NFN would be
correctly specified, but based on the unnecessary additional parameters, it would
be inefficient. The same reasoning applies in reverse if the process is correctly
modeled by the neuro fuzzy network. The question that arises then is: can
one find conditions under which an NEN performs better than an NN? This is
equivalent to analyzing whether the space spanned by an NFN is more extensive
in the space of all continuous function than the space spanned by an NN based
on the arguments of section 4.2. To answer this question we turn to the theory
of metric entropy developed by Kolmogorov and Tihomirov as it allows us to
quantify a measure of denseness of different functions in function space.

5.1 Entropy and Capacity

We consider some well-known definitions and describe the idea of entropy and
capacity, following the original idea by Kolmogorov and Tihomirov (1959). Let
A be a nonvoid set in a metric space R and £ > 0.

Definition 25 : A family Uy, .-+, U, of subsets of R is called an -covering of A
if the diameter of each Uy, does not exceed 2= and if the sets Uy, cover A : A C|J Uy.
1

Definition 26 :A finite sel of points xq,-+-,xy of R is called an =-net of A if
for each x € A there is al least one point xy, of the nel al a distance from x not
exceeding € : p(z,xy) < .

Definition 27 :The points yi, -+, ym € A are called e-separable if the distance
between each two of them exceeds € : p(y;,yy) > < for alli # k.

Corollary 28 :The following three properties of the set A are equivalent.
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(a) For every =, there exists a finite e-covering of the set A.
(b) For every , there exists a finite e-net of the set A.
(c) For every =, every c-separated set is finite

The proof is straight forward. If zq, -,z is an e-net for A, then according to
Definition 25 and 26 , there is also an e-covering of A that consists of h sets; for
the U, we can take the closed balls with centers z; and radius €. Each compact set
A contains a finite e-net for each £ > 0. Hence, there is also a finite s-covering
for each ¢ > 0 . Moreover, a compact set A can contains only finitely many
g-separable points. From now on , we suppose that A is compact.

It is clear, that for a given £ > 0, the number of n of sets Uy in a covering
family (Def 25) depends on the family, but the minimal value of n, N.(A) = minn
is an invariant of the set A, which depends only upon £ > 0. Also the maximum
value of m, M.(A) = maxm, the points which are e-separable (Def. 27) is an
invariant of the set A.

We introduce the following two functions, which characterize the " massive-
ness” of the set A.

Definition 29 :N.(A) is the minimal number of sets in an e-covering of A.
M_.(A) is the mazimal number of points in an c-separated subset of A.

We take the logarithms to the base 2 of the functions, because N.(A), M.(A)
are often so large that it can not be dealt with conveniently.

H.(A) =logy N.(A) is called the c-entropy of the set A.
C-(A) =logy, M.(A) is called the e-capacity of the set A.

H.(A), C.(A) depend only on the compact metric space A itself and not on the
larger space R O A. Both functions are monotone-increasing in A and decreasing
in €. We now introduce the main general results about entropies.

Theorem 30 :For each £ > 0, and each compact set A,
My (A) < N.(A) < M.(A)
and consequently
Cy.(A) < H.(A) < C.(A).

Proof. Ifyy, -+, ym are 22-separable points of A, and Uy, - -+, U, is an £-covering
of A, then m < n, for otherwise two different points y; will be contained in the
same set Uy. Thus Ma.(A) < N.(A); Finally, if v1,- -+, ym are e-separable points
of A, m = M.(A), then they also form an c-net for A; hence, N.(A) < M.(A) . &
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Example 31 If A is the interval [a,b] with the euclidean metric, then N.(A) is

the smallest n with n > *=% and M,.(A) is the largest m with m < 52, hence

T M) = [

5 2e

Ne(A) = [

|.

This gives us H.(A), C-(A).

In most cases we cannot determine the entropy of A exactly, we may have to
be content with finding it only up to a strong or weak equivalence. H.(A) ~ ¢(z)
or H.(A) = ¢(c), where ¢(¢) is a known function.

Definition 32 Let R® be the s-dimensional space with an arbitrary Banach met-
1

s P
ric p(x,y) = ||z —yl, = | X |z —wl"| withp€{1,2,...} andz,y € R°.
i1

Note that it is generally known that an arbitrary Banach metric defines one
and the same topology in R®. Also the concept of measure does not essentially
depend upon the choice of the metric.
A set U C R of diameter 2¢ is called centerable in R, if U has a center zg, that
is a point g € R such that p(xg,z) < ¢ for all x € U. If all sets Uy, in Def.25
are centerable, then their centers form an s-net for A. In what follows, we shall
be mainly concerned with the determination of entropies of subsets of spaces
of continuous functions R = C[B] where B is a compact metric space. In this
connection, the following is of interest: each compact A of C|[B] is centerable,
this follows by Arzela’s theorem. Hence, if A is a compact subset of C[B], then
the minimal number of sets in an e-covering of A is equal to the minimal number
of points in an e-net of A.

The entropy of a Cartesian product can be estimated if the entropies of all

factors are known. Assume for example that A = ﬁ Ay is a subset of the s-
dimensional euclidean space 2%, and that each Ay, is aksfﬁoset of the k:th coordinate
axis. Then all possible products H Us,r with 1 <, < N.(A;) are H N.(4;) in
number form an g—covering of A. Hence N.(A) does not exceed the last product,

and H.(A) < Z H.(A) and for the capacity we get C.(A) > Z C.(Ap).

We followmg propostion helps as to get a closer lower bound and an upper
bound for the metric entropy N.(A).
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Proposition 33 For bounded sets A C R® and under some non-essential (mild)
conditions, there exist constants Ag, p1y such that

N.(A) =X, |Ale™?
Mae(A) = 1, | A] =

Here | A is the s-dimensional volume or the polycylinder of A, and A, p, are some
positive constants which depend on s, but not on A.(For the proof see Kolmogorov

(1959), Theorem IX).

The precise values of A; and p, are not known. The determination of Ay, g, is
equivalent to the problems of finding the most economical covering in the space
R? by balls of radius 1, and finding the tightest packing of balls into this space.
But for an arbitrary s, we can get bounds for A, p,;

1
S SHS1SA S, (2)

(see Kolmogorov(1959), Theorem X, Chapter 3).

Corollary 34 From the Theorem 30 and the Proposition 33 and equation (2) it
follows that for a compact set A C R® , there exist a lower bound and an upper
bound for the metric entropy N.(A) such that for all = < min(e1,£9) (see Theorem

30), we have
1
> |A| e < My.(A) < N.(A) < 2°|Ale°. (3)

Proof. By Inspection B

For more details see Kolmogorv and Tihormirov ”s—entropy and £—capacity
of sets in function spaces” (1959).

Since we have (with Corollary 34) at least rough calculable lower and upper
bounds for the metric entropy N.(A), we are now able to compare the entropy of
the set of functions spanned by arbitrary NNs with those of arbitrary NFNs.

5.2 The Entropy Calculation

Assuming that the data generating process Z; = (V;, X;) is bounded (without
loss of generality by the hypercube I"*! = x7*![0,1]), we can derive bounds on
the metric entropy of the set of functions by the various network types.

For concreteness we write the output of a g-hidden unit NN given input X,

as:
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FU(Xe, 67) = Byt Z 3,9 (Xpw;) (5.2)

where 67 = (B%, w?) is the p x 1 (p = q(r + 2) + 1) vector of network pa-
rameters. Let 37 = (f,,...,0,) € R wl = (wy,...,w,) € RICHD with
w; = (wjo,...,wj) for 5 = 1,...,¢ . ¥ is the sigmoid function and X; =
(1,241, ..., 24,) € I

Definition 35 For any q € {1,2,...} and A € R, define T(¥,q,A) as

T(¥,q,A) = {ae@ 0(-) = f1(-,6% Z],B]<A ZZ’wﬂ’<qA}

7=1:=0

18 the set of output functions of all NNs with q hidden units having activation
functions U, and with weights satisfying a particular restriction on their sum
T
norm , indexed by A. For latter condition , it suffices that y_ |wy| < A.
i—0

We write the output of a g-hidden unit feedforward NFN with /-neural net-
work units and m-fuzzy network units given input X; as

1 m T
9(X0,6%) = Bot Y B0 (Xew)+ > B(] [ lwuwin + wino)), (5.3)
=1 =1 k=1

where [ + m = ¢,67 = (B, w?) isthe px 1 (p=q+1U(r+1)+2rm+1)

vector of network parameters. Let 67 = (8,,...,0,) € R w? = (v, w™) €
%l(r+l)+2rm;wl = (U)]1 e ,wl) with w; = (U)j(]1 e ;jr) for _] = ].1 e ,l wm o=
(Wi, ..., W) with w; = (Wio, Wi1, ..., Wiro, Wirr,) for i = 1,...,m. ¥ is the
sigmoid function and X; = (1,24, ..., 24,) € I

Definition 36 For any q € {1,2,...} and A € R", define a G(¥,q,A) as
q
0€0:0()=g'(- 6%, Z 18,1 < A,

ZZ |wjil+ ZZZ |wris| < (14 2m)A

j=11= =1t=1s=

G(¥.q,A) =

18 the set of oulput functions of all NFNs with [-neural network units and m-
fuzzy network units having activation functions U , and with weights satisfying a
particular restriction on their sum norm, indexed by A.
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The bounds for the metric entropy of a NEN and a NN is given by the following
result, which is a generalization by Gottschling (Theorem 4, 1997) and by White
(Lemma 4.3, Chapter 10, 1992).

Theorem 37 Let q.l,m,r € {1,2,...} and AL, K € R" be given. Let p_, de-
note the uniform metric, p. (01,05) =sup |01(x) — O5(z)| and U be the sigmoid

xzel”
function,

o o) Let 01,04 € G(U,q,A) and let HNTN (W g, A) denote the metric entropy
of G(V,q,A) with respect to p,, . Then for all £ > 0 sufficiently small

1
HY™N(0,q.0) < (g +p+1) <1og2 ( ) +log2<4sA>) + plog,(l + 2m)

£

1 A
HYN (U, q,A) > (g +p+1) <log2 <g> + log, <87>> +plogy (L +2m)

with s = (1+ AL(r + 1) + 2ALr (14 2K)), p= (I(r + 1) + 2rm).

o 3) Let 01,05 € T(V,q,A) and let HNV (U, q, A) denote the metric entropy
of T(V,q,A) with respect to p,, . Then for all = > 0 sufficiently small,

1Y (8,0.8) < (tog (2) +om (A1 + AL(+ 1)) +a(+D o (0

1N (.0.8) 2 p (1o, (2) +1om, (SR ) kgt Do

with p = q(r +2) + 1.

Proof. «)

We construct an e-net for the G(¥,q,A) : ( Recall that G. = {gy,...,gxn} is
an e—net for G if for each ¢ € G there is at least one element g, € G, such that
Poc(gr, ) < £, then the metric entropy of G is at most log h).

Let > 0 be given, and let B, ={by € B,k =1,... s},

Co={cx€l,k=1,...,n} bennetsfor B={3: || <A} C R and

s.t. max |\ —w| < K|\ — wy
je{l,...,n}

{w:||w||S(l—|—2m)A]Vw,)\€FandVé€{1,...,n} 1<K <o ,}
I'= ;
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I C R withn =1(r+1)+ 2rm. ( w; denotes the j-th component of w, while

||| here denotes the l-norm ie. |z| = > |z;| in RY of whatever dimension),
l+m=q. -

For each U and A | G(¥,q, A) is a compact set, as it is the continuous image
of the compact set B x I', that is a necessary condition to the existence of an
e-net for the G(¥, ¢, A). Let D, = B, x C,, and é’n ={teG(¥,q,A):de D,}.
We choose 7 so that én is an e-net for G(,q, A):

Let 6 € G(¥,q,A) be arbitrary, with corresponding parameters 6 = (3, w) €
B xT. Then there exists d = (b, ¢) € D, such that |3 —b|| <nand ||w—c| <7,
since B, and C, are n-nets for B and I.

Let ¢ be the element of én with corresponding to d such that:

Pocl0,t) =sup |0(x) — t(z)| =sup |¢%(x,6) — §%(x,d)| < ¢,

xel™ xel™

We now try to find out how 1 have to look like, such that Gn is an £-net for
G(¥,q,A), consider:

119(33) —(z)| = g%z, 6) — 9°(x,d)]
= fot ; B, ¥ (zw;)+ Zl /3i(k1:[1 U(zpwipy + wiro))
—bo— 2131 by ¥ (2c;)— il bi( 1 U (zxcint + Cino))
Jj= 1= k=1
The triangle inequality gives
1 m T
< |Bo — bot+ Z (B; = b;) ¥ (2w;)+ Z (B; — bz)(H U (zrwir + wiko))‘ *)
j=1 =1 k=1
1
+ Y bi(W(zwy) — U(acy)) (**)
j=1
+ Z bz((H ‘I’(kaikl + Wiko)) — (H \Il(xkcikl + Cikﬂ)))‘ (***)
i=1 k=1 k=1

Using the fact that ¥ is bounded (set the bound to unity) and the triangle
inequality, then the first term (ref:(*)) becomes to:

Bo — bot Z (8; = b;)¥(zw;)+ Z (B = o) (] [ ©wnwins + wikﬂ))‘
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m

<|Bo—bot D (B; = b)+ D _ (5 —b)

=1

q
<3718~ bl = 18— 1] < 7 (see assumption) ()

i—0
For the second term(ref:(**)) the triangle inequality yields:

l

Z bi(¥(zw,;) — ¥(zc

=1

) SZ 1b;] [ ¥ (zw;) — U(ze;)]

< (Z !bj!) (Z ¥ (zw;) — ‘1’(3301‘)!) <A [U(aw;) — Uwey)| -

Jj=1 Jj=1

The Lipschitz condition imposed on ¥ (Lipschitz condition is fulfil since
|W(-)| <1) and the triangle inequality give

AZ]\Ilazw] xc]]<AZL]3:w]—3:c]]—ALZ

=1

<AL ZZ ] Jwis — i

j=1 =0

! r ”
j=1 \i=0 i=0
l r
<AL Z (r+1) (Z lw;; — Cij’) since z € I"!
l r
<AL(r+1) Z (Z lw;; — c“])
=1

l

=AL(r+1) Y (wj—¢;) S AL(r +1) |w — |
=1

wi(wij — cij)

=0

<AL(r+1)ny (5)

For the third term(ref:(***)), the triangle inequality yields:
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k=1 k=1

((H U(zpwipt + Wiko)) — (H U(zpcim + Ciko)))‘

((H ‘I’(kaikl + Wiko)) — (H \Il(xkcikl + CikO))‘

H U(zpwikt + Wiko)) — (H U(zpem + cikO))‘

<A Z O (zywinr + Wino)|" — Y (zeci1 + ino)|"] (6)
where

T

H U(zpwik1 + Wiko)

k=1

<||¥(ZyWin1 + Wino)|"| with

"I’(xuwiul + win)’ = m]?x "I’(ﬂikwikl + wikO)’

and where

T

H ‘Il(xkcikl + Ciro)

k=1

> | W (@1 + cio)|"| with

"I’(xtcitl + CitO)’ kain ’\Il(xkcikl + CikO)’ .

(6) becomes:

A Z ¥ (2ywin1 + Wino)|" — [ ¥ (zeCi1 + Cino)]"|

m ("I’(xuwiull + win)’ — "I’(xtcitl + C;‘to)’) :
=A Z < "I’(xuwz‘ul + wiuﬂ)ri + "I’(ﬂiuwiul + win)Lri "I’(xtcitl + CitO)’ 1)
+ oo (g winr + Wino) | [P (Zecin + cio)|” T+ [C(zecin + Ciro)|

Since all a,b € R fulfil (a" —b") = (a —=b)(a" '+ a2+ ...+ ') Vr e
{1,2,...} we get:

45



<A Z (| ¥ (zywin1 + Wino)| — [¥(z1cit1 + cio)]) 7| by the boundedness of ¥, |¥(-)| <1
=1
<Ar L | w1 + Wiwo — T4Ci1 — Ciro| by the Lipschitz property of ¥
i=1
<ArL Z Z Zj(Wij — Citj)| with o = 1 and 1 = max(z,, z)
i=1 | j=0
m 1 m 1 1
<AL 5] [wiug — g | < APLY (Z !%‘!) (Z |Wing — Citj!) ‘
i=1 | j=0 i=1 | \j=0 =0
m 1
S ArL2 Z Z ]ww] - citj’) since ’.’E]’ S [0, 1]
i=1 | \j=0
m 1
=Arl2 Z Z (Wij = Cikj + Cjki — Wikj + Wiy — Citj’) ‘
i=1 | \j=0
m 1 1 1
<ArL2 Z Z ’wiuj - Cikj’ + Z ’Cikj - wikj’ + Z ’wikj - Citj’) ‘
i=1 | \j=0 =0 =0

The first and the last sum in the brackets can be bounded because of the
assumption

’wiu]‘ — Cikj’ S vk II%/ZZX ’wiu]‘ — Cikj’ S K ’w]‘ki — Cjki’; s.t.:

m 1 m 1
ZZ ’wiuj - Cikj’ <K ZZ ’wikj - Cikj’

=1 j=0 =1 j=0
m 1 m 1

and E E (Wirj — cij| < K E E [Wikj — Cirjl -
=1 j=0 =1 j=0

Thus our inequality becomes

m 1
<ArL2(K +1+ K) (ZZ |wir; — Cika")

i=1 j=0
m r 1

<Arl2(K+1+ K) (ZZZ Wik — Cikj’)
i=1 k=1 j=0

<ArL2(1+42K) |w— |

<ArL2(1+2K)n, (7)
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because |[w — ¢|| < 7.

It follows from (4),(5) and (7) that

Pool0.t) =sup |0(z) —t(z)| <n+ AL(r+1)n+ ArL2(14+2K)n ==«

xel”

provided that we choose

&
TZUH AL+ 1) + 2ALr (1 + 2K))

Because 6 is arbitrary and ¢ € é’n , G = ég/[1+AL(T+1)+2ALT(1+2K)] 1s an e-net

for G(U,q,A).

Let # be the cardinality operator. Because #Gn =#D, and D, = B, x C,
we have #G, = (#B,)(#C,).
Repetition B, = {b; € B,k =1,...,s} be n-net for B ={g: ] <A} C Re*!
and C, = {cz €T, k=1,....n}, be p-net for I' = {w: |w| < (I+2m)A} C
RI+D+2rm - Form the Corollary 34 in Section 5.1 and elementary geometrical
arguments it follows that for all £ ( hence 1) sufficiently small

g+1 g+1
2n n

(r+1)+2rm
<M) < 20, <

4(l + 2m)A I(r+1)+2rm
2n '

Note that the volume of the polycylinder B, is bigger than A?*! and smaller
than (2A)4F

Therefore with s = (1 4+ AL(r 4+ 1) + 2ALr (1 +2K)), n = (2).p = (I(r +
1) + 2rm) we get:

log, (#G.) < (g + 1) log, <%) + (I(r + 1) + 2rm) log, <M>

n
4A
= (q +p+ 1) log, <T) +plog2(l + Zm)

AA(1+ AL(r +1) + 2ALr (1 4 2K)
&

Z(q—l—p—|—1)10g2 < ) +plog2(l—|—2m)

=(g+p+1) <log2 <§) + log2(48A)) + plogy (1 + 2m)
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1%A#Gaz@+iﬂ%aﬁf) ““*”*“”mb&<gi%@é)

1
=(¢g+p+1) <log2 <g) + log, <—)) + plog, (I + 2m).
Since HNFN (W q, A) = log,(#G.) we have the result of o). W

Proof. )

The proof is analog to part «) , set I = ¢ and m = 0. It follows from the
corresponding bounds of (4) and (5 ) that

Poolip: 1) =sup [p(x) — h(@)| < (1 + AL{r + 1))y =

provided that we choose
€
(1+AL(r+1))

’}”:

Because ¢ € T(¥,q,A) is arbitrary and h € fn L = fg/[HAL(TH)] is an ¢ -
net for T'(¥,q, A).
The corresponding B, = {by, € B,k =1,...,s}, benpnetfor B={g: || <A} C
Rt and C, = {e, €T k=1,...,n}, be gnet for T = {w: |w|| <gA} C
R4+ Form the Corollary 34 in Section 5.1 and elementary geometrical ar-
guments it follows that for all ¢ (hence 7) sufficiently small we get analogous to

part @) the bounds:
g+l g+1
@) =#5=(5)
2n U

(r+1) q(r+1)
qA) a <4qA)
- <#C, < [—
<277 U

Therefore with p = ¢(r 4+ 2) 4+ 1 the result follows:
4A 4qA
HIM(T,q,A) < (q+1)log, < p ) +q(r + 1) log, < y )

=pb&<%§)+ar+nkgx@
_ plog, <4A(1 +AL(r+1))

e R )

—pQ%Qe)+b&MAO+AL&+DD)+ﬂr+Db&@)
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HYN (0, ¢, A) > p <1og2 G) +log, <A + L(?;r UN)) +q(r + 1) log,(q).

As mentioned before, to compare the "size” of a set of functions G(¥, g, A)
spanned by an NFN to the size of the set of functions T'(¥, ¢, A) spanned by an
NN, it suffices to compare their respective metric entropies for different functional
specifications. Since ¢ (= number of hidden notes), I (= number of neural hidden
notes in G(¥,q,A)), m(=number of fuzzy hidden notes in G(¥,q,A)) and r(=
number of input variables ) are all arbitrary non negative integers and bigger than
unity, one can compare the metric entropies of all functional specifications by sim-
ply comparing the metric entropy of G and T for arbitrary values of q, m, 1, and r.

The next Theorem shows that for sufficiently big A > 0 the "size” of G(¥, ¢, A)
is bigger than the "size” of T(¥,q, A).

Theorem 38 Let q.l,m,r € {1,2,...} and AL, K,c € R", then for alle > 0

and all A > (W), with K > 2 and r = ([(4[(—775)} + 1) (-] denotes the
Gauss brackets) we have

HYTN (0, q,8) > HIN(P,q,4)
withl +m = q andl = cm.

Proof. From Theorem 37 follows:

HYN(2,q,A) 2 log,

As q+1 (l + 2m)As (r+1)+2rm
) =) |

AAL T 4g AR\ 7D
(=) ()
withs =14+ AL(r+1) + 2ALr (1 4+ 2K), t = 1+ AL(r +1).

We have to show that:
<4At) g+1 <4th) q(TH)]
_— =
5 5

<AS) q+1 <(l + zm)As)l(’r‘+l)+2m_
= M s > log,
AN T (4gA\ Y
=) )]

10g2 Z H;VN(‘IIJQJA)

log,

2e 2e

<A8) q+1 <(l + 2m)As) l(r+l)+2rm:

2_5 2e

>
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Since ¢ =1+ m we get:

g+1 I(r+1)+2rm g+1 q(r+1)
<%> <%> (l + 2m)l(r+l)+27'm > <4_At> <4_At> (l + m)Q(T+l) RN
€ € € €
q+l Hr+1)+2rm q+] (l+’m)(’r+l)
E E 1+ 2m)l(r+l)+27‘m > 4_At 4_At (I+ m)(l+M)(r+1).
2e 2e € €
We show the validity of the following three inequations to get our main result:
A\ faAn T
—— S d.
=) () 0
Hr+1)+2rm (l+m)('r+l)
As 4At
= > — 5.5
= ) o
(l 4 zm)l(f+1)+2rm > (l + m)(l+m)(r+l) (5 6)

For 5.4 we get:
A\ raan\ Tt
) (%) -
A (480
2e £
5> 8 &

1+ AL(r+1) + 2ALr (14 2K)>8 (1 + AL(r + 1)) &
AL(r +1) + 2ALr (14 2K) > 8AL(r +1) +7 <

)
ALQ2r(1+42K)-7(r+1))>7 <
AL(r(4K —=5)-7)>7%
<L(r(4K8—5)_7)>L(T(4K—5)—7)>7(:)
8>17,

with A > (W) (see assumption above).

The inequation 5.5 is true since the exponent l(r 4+ 1) 4 2rm > (I+m)(r +1)

for all r, and the base is (%) > (4—At) (see above (5.4)). Analogous the inequation

&€

5.6 is also true since the exponent l(r + 1) + 2rm > (I 4+ m)(r+ 1) for all v, and
the basis is (I 4+ 2m) > (I + m). The result follows. A

This result gives us the certainty that there are circumstances in which the
"size” of the function set, spanned by an NEFN is "bigger” than those set of a
correspondent NN. Hence, with an NF'N we maybe reaching into more dimensions
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at given levels of precision for any given number of nonlinear units than if we just
use NNs alone. However, the above results which indicate a potential advantage of
applying NENs is based on an average over all possible functional specifications
and is therefore only of theoretical value. Since it is difficult to argue for the
relevance of one functional specification over another, we analyze the applicability
of the NFNs to a popular problem in finance.
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6 Option Pricing with Neuro Fuzzy Networks

Two general approaches can be distinguished in the treatment of option pricing in
finance. On one side there exists the analytical approach, pioneered in the seminal
articles by Black and Scholes (1973) and Merton (1973), in which closed form
option pricing formulas were obtained. The basis for these results are numerous
assumptions, such as a no-arbitrage condition, normal returns, fixed volatility
and interest rates. See for example the models of Merton (1973, 1976) and Cox
and Ross (1976). Many extensions and refinements have been proposed and
developed, however the lack of empirical substantiation of many of these models
has led to a second school of thought. Instead of starting with many assumptions,
one considers the option market pricing mechanism to be a complex unknown
function of the same inputs as the theory, and then extract an approximate
functional form by fitting observed prices via a multivariate nonlinear model.
This approach was successfully pioneered in the context of neural networks by
Hutchinson et al. (1994). Such a model, once estimated can be used to calculate
prices and hedge parameters analogously to its theoretical counterpart. Since
option pricing theory is based upon highly nonlinear relations between the option
price and its determining variables, a flexible functional form is not only sufficient
but also necessary to capture empirical pricing mechanisms since linear models
are a failure in this context. Due to the ability of NNs, FNs and NFNs to
approximate arbitrary continuous as well as large sets of measurable functions,
they seem a priori well suited for this task.

We present a NFN developed to estimate the market prices at closing of S&P
500 options using transactions data for the period January 1, 1986 to December
31, 19%9.

In this section we apply the algorithm of section 4 to build a NEN model
which is then to fit to the prices of SPX call options. Comparisons with regard
to NNs and the Black-Scholes model are made subsequently.

6.1 Option Pricing

In this study we use the Black-Scholes model as a reference point. The derivation
of the option price formula relies on the following assumptions: asset prices follow
a geometric Brownian motion; mean returns and volatilities are constant over
time; interest rates are both constant over time and equal for all maturities;
trading occurs continuously on frictionless markets and no arbitrage opportunities
exist. From these assumptions one can derive the following formula for the price
of a Furopean call option written on a non-dividend paying stock:

Cps(t) = SN(dy) — X exp(—r(T —t))N(ds), *
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where

dl:ln(%)%—(r%—%)(T—t)}

dQZdI—O'\/T—t

with

S = Price of the underlying stock

X = Strike price of the option

o = Volatility of the stock returns

r = Interest rate

T — 1t = Time to maturity of the option contract

and N(zx) is the cumulative distribution function of the standard normal dis-
tribution.

The equation (*) shows that the call option price C' depends on five variables.
Merton (1973, Theorem 9) shows that the option price is linear homogeneous of
order one in X and S for every "normal” pricing model, if the return distribution
of the underlying stock does not depend on the stock price level. As this condition
is valid for the Black-Scholes model, the number of input variables can be reduced
to four by treating C'/X as a function of S/X,o,r and (T — t), now the pricing
formula becomes:

CBs(t)
X

= N () — exp(—r(T ~ ) N(da).

6.2 The Data

In our study, we use transactions data on call options (SPX) issued on the Stan-
dard & Poor’s 500 index (S&P 500). The index is comprised of 500 stocks from a
broad range of industries. The component stocks are weighted according to the
total market value of their outstanding shares.
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Fig.: 6.1

SPX Option prices are quoted in points. One point equals $100, the minimum
tick size is 1/16 ($6.25) points and for all other series, 1/8 ($12.50). The option’s
exercise prices have fixed increments of five points and 25-point intervals for far
months. The expiration date is the Saturday immediately following the third
Friday of the expiration month and the expiration months are the three near-
term months followed by three additional months from the March quarterly cycle
(March, June, September and December). The maximum time to maturity of an
option contract is nine months.

Our data set contains data on SPX calls traded on the Chicago Board Op-
tions Exchange (CBOE) from January 1986 the end of December 1989. Fach
transaction record contains the option price C' the exercise price X and the time
of maturity (7" — t).

Since this data set is too large it had to be restricted. For the empirical investi-
gation we remove uninformative and non-representative option records employing
exclusion criteria along the lines of Rubinstein (1985) and Xu and Taylor (1994)
as follows:

1. Option that are traded at less than $100 (1 point).
2. Options for which the lower boundary condition is violated:

C<S—Xexp(—r(T'—1t))

3. Option which are deep-in or deep-out-of the money: % < 0.8 or % > 1.2.

When the option value is very low then it leads to high percentage deviations
between observed and theoretical prices. Thus, criterion 1 excludes options with
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low prices. The second criterion excludes options whose prices are not consistent
with a no-arbitrage pricing model. With criterion 3 options that have almost no
informational content are also thrown out, since the trading volume is very low
for these. Our resulting data set then consists of 5056 observations.

To obtain the theoretical price according to the Black-Scholes formula as well
as for inputs to the networks, we use the underlying S&P 500 (S), the riskfree
interest rate (r) and the return volatility (¢). Our interest rate data consists of
average daily London interbank offer rates (LIBOR) for a three month maturity.
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2 TT T T[T T T T[T T TT [T TT T[T T T T[T T TT [T T TT[TTTT[TTTT[TTTT[TTTT]TTTT
8/31/87 "7/01/91 '5/01/95 | 3/01/99

‘ — riskfree interest rate\

Figure 6.2

As an estimate of the volatility () we calculate the historical 30-day-volatility
using 0 = s-v/254, where s is the standard deviation of the returns for the close-
to-close S&P 500 levels of the most recent 30 days. The factor 254 corresponds
to the number of an average trading year. To calculate the volatility we take the
returns of the S&P 500 without the crash of the ”Black Monday” the 19.10.1987,
since that outlier was solely responsible for most of the volatility during that time
period (see picture 6.3).

95



10 10

51 51

0 0

-5 -51
-10- -101
-15- -15-
20 20 e e e e
8/31/78 5/01/86 12/30/93 8/31/78 5/01/86 12/30/93

— without crash

returns of the close-to-

| — with crash on the 19.10.87|
close S&P 500

Figure 6.3

The 30-day-volatility which we calculate also seems to match the published
volatility index VIX, which is available from the CBOE for more recent time
periods than our sample.
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Fig.:6.4

6.3 Optimal Neuro Fuzzy Networks

To gain an insight into the different behaviours of the nonlinear models we use
the following three models:
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1. Black Scholes

2. Neuro-Fuzzy Network (NEFN)

3. Neural Network (NN)

While the first is a case of straightforward arithmetic, the optimization of the
networks requires a method for solving constrained nonlinear (minimax) opti-
mization problems (due to the constraint in equation 4.8), which was supplied by
the Institute of Systems Research from the University of Maryland, USA. This
code is an implementation of two algorithms based on a monotone line search
(Armijo type arc search) and a nonmonotone search along a straight line. The
merit function used in both searches is the minimum of the error function with
respect to the constraint. Partitioning into two random subsamples consisting of
2500 data records and 2555 data records, respectively, the networks were opti-
mized on the former subsample and then tested on the latter. Using this in our
specification algorithm (see section 4.3) we get the following "optimal” solution

for the NF'N:
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Fig. 6.5:0Optimal NFN with 4 input variables. The numbers are estimated
weights.

This NEN consists two neural units and one fuzzy unit, where ¥ is a sigmoid
function. Figure 6.6 shows systematic differences in the pricing accuracy between
the pricing errors of the Black-Scholes model and the NFN.
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Fig. 6.6:Pricing error of Black-Scholes model and NFN plotted against S&P 500

The NEN errors are spread more evenly than the Black-Scholes errors, indi-
cating a clear bias reduction and there are far less outliers resulting from the NFN
than the Black-Scholes model. The results of the three models are now formally
compared by the following measures.

6.4 Pricing Accuracy

To compare empirical prices (C/ X ) with those obtained from the different models,
the following measures of fit were computed:

e Root Mean Squared FError statistics depend on the scale of the dependent
variable. This is used as a relative measure to compare forecasts for the
same series across different models; the smaller the error, the better the
forecasting ability of that model according to that criterion.

RMSE = | 7 (7K, — (/X))

where /X are the fitted option prices and C/X are the observed prices.

e R-squared (R?) statistic measures the success of the regression in predicting
the values of the dependent variable within the sample. R? is the fraction
of the variance of the dependent variable explained by the independent
variables. The statistic will equal one if the regression fits perfectly, and
zero if it fits no better than the simple mean of the dependent variable.

S (TR, — (TP
R2 _ t—=1

3

U(C/X), - @R
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where C'/—X = [i(C/X)t] /T is the mean of C'/X.

=1
e Adjusted R-squared (adjR?)

One problem with just using the ordinary R? as a measure of goodness of fit
is that the R? will never decrease as you add more regressors (parameters).
In the extreme case, you can always obtain an R? of one if you include as
many independent regressors as there are sample observations. The adjR?
penalizes the R? for the addition of regressors which do not contribute to
the explanatory power of the model. The adjR? is computed as

T-1

iR’ =1-—(1—- R>)——
adj R (1= B

where k is the number of regressors. adjR? decrease as you add regressors,
and for poorly fitting models, it may be negative.

The measures aim to highlight different aspects of the pricing accuracy. While
adj R? provides a measure of correlation between observed and fitted option prices,
the RM S E give absolute measures of price discrepancy. Table 1 shows the perfor-
mance measures for both the estimation using the first subsample (2500 records)
and the out-of-sample evaluation with the second supsample (2555 records).

Some general results can be easily seen now. Firstly, the neuro fuzzy network
(NFN) and the neural network (NN) are superior in performance to the Black-
Scholes formula, as was to be expected by above mentioned studies. Both, the
in-sample as well as out-of-sample measures of error are similarly low, indicating a
successful treatment of the bias variance problem (see section 2.5) since excessive
complexity would show up in a significant difference between both subsamples.
Also the generally small RMSE gives no indication of model bias, which is in
line with existing results for networks of similar complexity (e. g. Campbell et
al.). Black-Scholes prices on the other hand are in general not only less accurate
than the empirically derived pricing functions, given their RMSFE, they are also
highly biased (see picture above) with a lower R
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in-sample RM SE adjR’

Black-ScholesModel | 0.0059 0.9745
Neural Network 0.0043 0.9873
Neuro Fuzzy Network |  0.0040 0.9893
out-of-sample RM SE adjR?

Black-ScholesModel | 0.0062 0.9653
Neural Network 0.0045 0.9854
Neuro Fuzzy Network | 0.0041 0.9881

Table 1.: Performance measures of competing models

Both network models clearly dominate the Black-Scholes results and the NFN
has a small edge even with respect to the NN. It has the highest pricing accu-
racy with respect to the measures RMSE and adjR? both in-sample and out-of-
sample. While certainly far from all-encompassing, this result is supportive of our
theoretical approximation results, because the neuro fuzzy network manages to
derive a specification which improves on the fit even of the very accurate neural
network without adding complexity. This is achieved by the richer functional
relationships that are within the approximation bounds of NFNs but beyond the
possibility of NNs. One should note though that given its relative implicity and
analytical convenience the fit of the Black Scholes is quite impressive. While there
is certainly enough margin for improvement on an economic level, its statistical
accuracy issue with most of the underlying assumptions invalidated by empirical
financial research it remains study benchmark.
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7 Summary and Conclusion

In this paper we achieve a contribution to several key issues in nonlinear modeling
with neural networks. Initially, we show that the nonlinear structures of NN and
EFN are sufficiently similar to construct an efficient hybrid model (NFN) based
on a constraint. It is then proved that the combination of different hidden nodes
in an NEF'N can improve generalization through bias reduction without increasing
complexity. Also, we propose an algorithm which can achieve an efficient com-
bination of different specifications constructively. Finally we study a common
nonlinear problem in finance and find that our theoretically motivated method
also offers an empirically viable approach to improve nonlinear approximation.
Since the performance comparison based on equivalent parameter space dimen-
sions yields a slight edge of the NFN relative to either NN or FN as well as a
distinct advantage over the Black-Scholes option pricing model.

Further research should certainly be comprised of simulation studies of the
proposed NE'Ns’ properties in comparison to NNs and FNs on a variety of data
generating processes to increase the understanding of optimal domains of appli-
cation for the new technique.
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