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ABSTRACT 
 

Strategic Sophistication of Adolescents: 
Evidence from Experimental Normal-Form Games* 

 
We examine the strategic sophistication of adolescents, aged 10 to 17 years, in experimental 
normal-form games. Besides making choices, subjects have to state their first- and second-
order beliefs. We find that choices are more often a best reply to beliefs if any player has a 
dominant strategy and equilibrium payoffs are not too unequal. Using a mixture model we 
can estimate for each subject the probability to be any of eight different strategic and non-
strategic types. The econometric estimation reveals that older subjects are more likely to 
eliminate dominated strategies, and that subjects with good math grades are more strategic. 
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1. Introduction 

Standard game theory is the fundamental pillar of research in economics, and more 

generally in the social sciences, since it provides a tool to analyze strategic interaction, like 

interaction in markets, bargaining, or in social dilemma situations. An important implication 

of game theory is the assumption that subjects are sophisticated in a sense that they take other 

subjects’ incentives and the structure of a game into account before deciding on their strategy. 

This is called strategic sophistication. By now, there exists a broad experimental literature on 

the strategic sophistication of individual decision makers in normal-form games (see, e.g., 

Stahl and Wilson, 1994, 1995; Haruvy, Stahl and Wilson, 1999; Costa-Gomes, Crawford and 

Broseta, 2001; Weizsäcker, 2003; Bhatt and Camerer, 2005; Crawford and Iriberri, 2007; 

Costa-Gomes and Weizsäcker, 2008; Fehr, Kübler and Danz, 2009; Rey-Biel, 2009; Sutter, 

Czermak and Feri, 2010a). This literature studies the degree of strategic sophistication. In a 

nutshell, the bottom line of research is the fact that strategic sophistication is often limited. 

Most importantly, many subjects make decisions without taking into account the incentives 

and the rationality of the other players (Costa-Gomes et al., 2001, Weizsäcker, 2003). Another 

important limitation is the frequently observed failure of subjects to best respond to their own 

stated beliefs. For instance, Costa-Gomes and Weizsäcker (2008) report such a failure to 

happen in about fifty percent of cases. While the literature on strategic sophistication has 

developed models to explain this surprisingly large degree of bounded rationality (see Costa-

Gomes and Crawford, 2006, or Costa-Gomes and Weizsäcker, 2008, for a discussion of 

models and new approaches), it has remained silent on the development of strategic 

sophistication with age. All previous studies have relied on university students in their early 

and middle 20ies, however nothing is known yet whether strategic sophistication changes 

with age. Providing evidence to address the latter question is the main purpose of this paper. 

In a survey of simple bargaining experiments Camerer (2003, p. 66) notes that in ultimatum 

and dictator games children are “closer to the self-interest prediction of game theory than 

virtually any adult population”. It is an open question whether this statement applies also 

more generally to strategic sophistication in normal form games, and in particular when 

subjects do not only have to make decisions (as in the games surveyed in Camerer, 2003), but 

are also asked to state beliefs about their opponent’s choices and beliefs. 

In the experiment reported here, we let 196 adolescents, aged 10 to 17 years, make 

decisions in 18 different normal-form games that have been designed by Costa-Gomes et al. 
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(2001) to study strategic sophistication. In addition to asking for choices, we elicited first 

order beliefs about the opponent’s choice, and second-order beliefs about the opponent’s first 

order belief. Eliciting higher-order beliefs allows us to examine not only the decision maker’s 

consistency (where consistency means that choices are a best reply to first-order beliefs), but 

also the opponent’s expected consistency, i.e. how subjects perceive the rationality of their 

opponents by checking whether first-order beliefs are best responses to second-order beliefs. 

In particular, our analysis will focus on the following aspects of strategic sophistication: (i) 

the relative frequency of choosing the strategy which is part of a game’s Nash equilibrium; 

(ii) the factors that increase – or decrease – a subject’s probability to play the equilibrium 

strategy and to expect the opponent to do the same, i.e., the determinants of standard game 

theoretic behavior; (iii) the distribution of eight different decision making types (strategic and 

non-strategic) in our sample. The latter issue is addressed by applying the maximum 

likelihood error-rate analysis developed by Costa-Gomes et al. (2001). It is a mixture model 

in which each decision maker’s type is drawn from a common prior distribution over eight 

different strategic and non-strategic types and the type is assumed to be constant in all 18 

games. 

In the experiment, we find that (i) adolescents play the Nash strategy in about 45% of 

cases. This relative frequency of equilibrium play is well in the range of 40% to 50% which is 

the typical finding in previous studies with adults (e.g., Costa-Gomes and Weizsäcker, 2008; 

Sutter, Czermak and Feri, 2010). In about 60% of cases our subjects choose a best response to 

their own first-order belief. This is slightly higher than what is observed with university 

students (Costa-Gomes and Weizsäcker, 2008; Sutter et al., 2010a). The expected consistency 

of opponents (by matching first- and second-order beliefs) is at a lower level of around 50%. 

The analysis of the determinants of the standard game theoretic behavior shows that (ii) 

the combination of playing the Nash strategy and expecting the opponent to do the same 

becomes more likely if any of the two players has a dominant strategy (i.e., if the level of a 

game’s complexity is low), if a maximax strategy1 contains a high risk of losing payoffs, and 

if payoffs in equilibrium are rather equal for both players. The latter finding indicates clearly 

that social preferences affect standard game-theoretic reasoning. 

Applying the mixture model of Costa-Gomes et al. (2001), we find that (iii) the majority 

of adolescents can be classified as non-strategic decision makers and the modal type is a non-

strategic optimistic type (which plays the strategy that maximizes the maximum possible 

                                                 
1 It is the strategy by which a subject – in the most favorable case – could earn the highest possible payoff. 
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payoff). While we do not find a significant effect of age on the share of subjects classified as 

belonging to any of five different types of strategic decision making, we find that the 

elimination of dominated strategies becomes more likely with increasing age. Hence, 

detecting dominance relationships gets more frequent with older subjects. It is also interesting 

to note that girls are significantly more likely to eliminate dominated strategies than boys. Not 

surprisingly, we also find a relation between math grades and strategic decision making. 

Subjects with better math grades are more likely to be classified as strategic. 

Although the main focus of our paper is to contribute to the literature on strategic 

sophistication, it is also related to the literature on the decision making of children and 

teenagers. The latter literature has been pioneered mainly by Bill Harbaugh and Kate Krause 

and they have shown that in straightforward bargaining games children are obviously able to 

employ simple forms of strategic considerations. This becomes particularly clear when 

comparing children’s behavior in ultimatum and dictator games, where for strategic reasons 

(i.e., fear of rejection) offers are higher in the ultimatum than the dictator game (see 

Harbaugh, Krause and Liday, 2003a). 2  While it seems beyond doubt that children and 

adolescents are able to make strategic inferences and act accordingly in simple economic 

games, the existing literature on the decision making of children and adolescents has not 

studied the extent of strategic sophistication (including not only an examination of choices, 

but also of first- as well as second-order beliefs) in childhood and adolescence. The literature 

also lacks an estimation of decision-making types on the level of an individual subject. In our 

paper we can classify subjects into eight different strategic and non-strategic types and can 

check how socio-demographic factors influence a subject’s type. This is intended to provide a 

deeper analysis of strategic sophistication of adolescents than has been achieved previously. 

The rest of the paper is organized as follows. In section 2 we present the experimental 

design, including the description of the normal-form games used in the experiment, the 

experimental treatments and procedure. In section 3 we report our experimental results, 

beginning with a descriptive analysis of aggregate data, continuing with regressions that 

identify factors promoting standard game theoretic behavior, and concluding with the 

estimation of individual subjects’ most likely decision making types and the impact of socio-

demographics on these types. Section 4 concludes the paper. 

 

                                                 
2 Several other papers study the behavior of children and teenagers in simple interactive games, like public 

goods games (Harbaugh and Krause, 2000), trust games (Harbaugh et al., 2003b; Sutter and Kocher, 2007), or 
ultimatum games (Murnighan and Saxon, 1998; Sutter 2007). 
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2. Experimental design 

2.1. The 18 normal-form games 

Our experimental design is based on the 18 normal-form games used by Costa-Gomes et 

al. (2001) to study strategic sophistication (see Figure 1). These 18 games include 8 pairs of 

isomorphic games that are identical for row and column players except for transformation of 

player roles and small, uniform payoff shifts. One can distinguish two types of games with 

respect to the existence of a dominant strategy. There are 10 “D”-games in which one player 

has a strictly dominant strategy and 8 “ND”-games in which no player has a dominant 

strategy. In all games there is a unique pure Nash equilibrium that is Pareto-dominated by 

another strategy combination of row and column players. The games can also be classified 

according to the number of rounds of iterated pure-strategy dominance that row and column 

players need to identify the equilibrium strategy. This refers to a game’s complexity. In D-

games the number of rounds a player requires to reach his own equilibrium choice is either 1 

or 2, while in ND-games the corresponding number of rounds may be 2, 3 or infinite. Figure 1 

indicates all games’ types, complexities and the order with which the specific games were 

presented to participants.3 

 

Figure 1 about here 

 

2.2. Decisions and payment 

Each game was played only once and in each game subjects had to make three different 

decisions in the following sequence:4 

• Choice: For each given game each player had to choose one of the available strategies. 

• First-order belief (FOB): Subjects had to state their belief about the opponent’s action. 

                                                 
3 This information can be found in the upper left and right corner of each game in Figure 1. The order of 

games in the experiment is indicated by “game # x”, with x ∈ {1, ..., 18}. (D) refers to D-games and (ND) refers 
to ND-games. Numbers in the brackets indicate a game’s complexity for the row and column player, where [xR, 
yR] denotes the number of rounds needed for row (x) and column player (y). 

4 Games were presented to all participants in the same order as in Costa-Gomes et al. (2001) and in a way 
that they saw themselves as a row player. The transformation of the column players’ perspective didn’t have any 
influence on the characteristics of the games and was intended to avoid any influence of the kind of presentation 
on behavior. 
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• Second-order belief (SOB): Subjects were asked for their belief about the opponent’s 

first-order belief. This means they had to indicate the strategy they think they are 

expected to play by the opponent player. 

In sum, each subject was taking a total of 54 decisions during the whole experiment. In 

order to suppress learning and reputation formation there was no feedback until the 

experiment was finished. All details of this procedure were common knowledge to all 

participants. 

At the end of the experiment one of the 18 games was randomly determined for a 

subject’s payment. For this purpose each subject was asked to draw a card from a deck of 

cards showing numbers from 1 to 18. The drawn number determined the game that was 

relevant for payment. In a next step the subject received full information about his/her own 

and the opponent’s choice, first- and second-order belief in the particular game. A second 

card to be drawn by a subject then determined whether choices (card A), first-order beliefs 

(card B) or second-order beliefs (card C) were paid. 

Payments in the experiment were made contingent on the age of participants, calibrated 

on the average weekly pocket money. Based on a survey data from the respective school, we 

knew that subjects aged 14 to 17 years (grades 9 and 11) receive on average slightly more 

than twice as much weekly pocket money as subjects aged 10 to 13 years (grades 5 and 7). 

Accordingly we scaled the payoffs in the following way. If a subject was paid for his/her 

choice, we paid 20 Euro-Cents per experimental point in grades 9 and 11, and we paid 10 

Euro-Cents per point in grades 5 and 7. If subjects were paid for their first-order or second-

order belief 9th graders and 11th graders received 10 Euros if their belief was correct, while 5th 

and 7th graders got 5 Euros for a correct belief, but zero otherwise. Note that all subjects 

received a show up fee, which was 4 Euros in grades 9 and 11, and 2 Euros in grades 5 and 7. 

The all-or-nothing feature for paying beliefs was intended to make the decisions on first- 

and second-order beliefs as salient as possible. Eliciting point beliefs – instead of a 

probability distribution of beliefs over different actions – may be criticized because it might 

make it difficult to check the consistency of actions and beliefs. While eliciting a probability 

distribution of beliefs over actions may look like a remedy to this problem, asking for a 

probability distribution has also problems with checking consistency when first- and second-

order beliefs (one of our central design-features) are involved. The reason is that it is possible 

that a subject’s first-order belief – stated as a probability distribution – fails to be a best 

response to the second-order belief – also expressed as a probability distribution – although 
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both beliefs are optimally stated.5 Given the latter problems with checking consistency, we 

have opted for asking for point beliefs. This design choice is additionally motivated by the 

following practical considerations. Explaining the concept of a probability distribution and 

asking adolescents of age ten to seventeen to express their beliefs in an incentive compatible 

payment scheme like the quadratic scoring rule would have been extremely demanding for 

teenagers. Given the relatively high number of decisions (54) we also opted for eliciting point 

beliefs in order to keep the duration of the experiment shorter. 

 

2.3. Experimental procedure 

The experiment was run at the “Öffentliches Gymnasium der Franziskaner Hall”, a public 

high school located 5 km east of Innsbruck, the capital of the state of Tyrol in Austria. This 

school teaches children in 8 different grades, in Anglo-Saxon terminology grades 5 to 12. We 

conducted the experiment in two classes each in 5th grade (10- to 11-year olds), 7th grade (12- 

to 13-year olds), 9th grade (14- to 15-year olds), and 11th grade (16- to 17-year olds). The 

sessions in both classes of a given grade were always run simultaneously in two separate 

rooms in order to avoid any potential dissemination of information. Students were never 

matched within their own class, but with one student from the other class. This procedure was 

common knowledge. Subjects were also informed that the identities would be kept strictly 

confidential toward other participants. In order to guarantee also anonymity within a class, we 

used sliding walls between subjects so that they could not observe other subjects’ decisions. 

Each session was started with an extensive description and training of the game (see 

supplementary material). Questions were answered in private. Before the start of the 

experiment, each participant had to answer a control questionnaire that checked the 

understanding of how decisions or beliefs mapped into payoffs. Five subjects (out of 196 in 

the beginning) did not answer all questions correctly. They are excluded in the following, 

                                                 
5 We would like to thank Georg Weizsäcker for drawing our attention to the problems of inconsistency 

between first- and second-order beliefs even for situations in which probability distributions are elicited. To 
illustrate the main intuition, consider the two following cases: (i) Subject A expects subject B to have two 
different first-order beliefs such that by 50% subject B expects subject A to play his first strategy for sure and by 
50% he expects subject A to play his second strategy for sure. (ii) Subject A expects subject B to think that 
subject A plays any of his first two strategies by 50%. In both cases an optimally reported second order belief 
assigns a 50% probability to both strategies. Depending on situation (i) or (ii) prevailing, it is possible that 
subject B’s best reply differs between (i) and (ii). As a consequence, subject A’s first-order belief can differ, and 
if case (i) is the true second-order belief, it is possible that the optimal first-order belief for subject A is not a best 
reply to the optimal second-order belief (if we implicitly assume case (ii)). Given that even with probability 
distributions such a problem can occur – and not only when asking for point beliefs – we have opted for the 
easier way of eliciting point beliefs. 
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yielding 191 subjects for the subsequent analysis. The experiment itself was run with paper 

and pen. We handed out the three decision sheets for each game (for choices, first- and 

second-order beliefs) game by game. That means that subjects had to make all three decisions 

for a particular game before proceeding to the next game. In total, each session lasted 2.5 

hours. The average earnings were about 7 Euros for subjects in 5th and 7th grade, and 14 Euros 

for those in 9th and 11th grade. Our incentives can be considered as pretty salient because the 

average earnings were slightly higher than the average weekly pocket money of around 5 

Euros for 10- to 13-year-olds, and 13 Euros for 14- to 17-year-olds. 

 

3. Experimental results6 

3.1. Choices, first- and second-order beliefs 

Table 1 reports in the upper panel the relative frequencies for own choices, in the middle 

and lower panel for first-order, respectively second-order, beliefs. The first column considers 

all 18 games, while columns two and three present separate data for D-games and ND-games. 

We denote the strategy that leads to the Nash-equilibrium by “Nash”, the strategy that would 

yield an outcome that Pareto-dominates the Nash-equilibrium by “Pareto” and other strategies 

by “Other”. 

 

Table 1 about here 

 

We note from Table 1 that Nash is played in 45% of cases. As becomes clear from Table 

S1 in the supplementary material the relative frequency of playing Nash is, in the aggregate, 

roughly the same in all four grades in which we ran the experiment.7 Not surprisingly, the 

relative frequency of Nash is clearly higher in D-games (62%) than in ND-games (24%). 

                                                 
6 All analyses presented in the results section are based on pooled data of row and column players. This is 

justified since there are 16 isomorphic games in the set of 18 games and all decision tasks were presented in a 
way that players saw themselves as row players. Note that all results reported here would also go through if we 
concentrated only on the 16 isomorphic games. 

7 If we assumed that subjects took their decisions randomly, the expected relative frequency of observing 
Nash equilibrium choices, first order beliefs or second order beliefs would be 43%. A comparison of the 
distribution of actually observed relative frequencies of playing Nash – based on the level of individuals – and 
the distribution of theoretically expected ones in case of random play reveals that decisions are significantly 
different from random, though (Kolmogorov-Smirnov one sample test, p < 0.01). 
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Looking at first- and second-order beliefs we note that the relative frequency of the Nash 

strategy is about 10 percentage points smaller according to beliefs than with actual play.8 

 

Table 2 about here 

 

Table 2 shows how the level of a game’s complexity – defined by the type of the 

underlying game and the required rounds of iterated pure-strategy dominance to identify the 

equilibrium choice – affects choices and beliefs. It reports the frequencies of chosen strategies 

in five different categories of “decision-complexity”: D-games with either one or two rounds 

of iterated pure-strategy dominance and ND-games with either two, three or an infinite 

number of rounds. The first column in the upper panel shows that in games with a dominant 

strategy, players having a dominant strategy play Nash in 85% of cases.9 The likelihood of 

playing Nash is drastically reduced once a decision maker has no longer a dominant strategy 

(see the four right most columns in Table 2). The middle and lower panel of Table 2 refers to 

first- and second-order beliefs. While Nash remains at or above 80% in the first column, the 

other columns show that Nash is considerably less often expected (both in first- and second-

order beliefs) than actually played. We summarize the findings in this subsection as follows: 

Result 1: Overall, the equilibrium strategy is chosen in about 45% of cases. First- and 

second-order beliefs of equilibrium play are significantly less frequent by roughly 10 

percentage points. The relative frequency of playing Nash decreases with a game’s 

complexity, i.e., the number of rounds of iterated pure-strategy dominance needed to identify 

the equilibrium. 

3.2. Consistency of choices and beliefs 

Let us define a player’s “own consistency” as the relative frequency of choices that are a 

best reply to her own first-order beliefs and the “opponent’s expected consistency” as the 

relative frequency with which a player’s first-order beliefs are a best reply to her second-order 

beliefs. Basically the latter definition determines a player’s first-order belief about the 

opponent’s consistency. 

                                                 
8 This pattern is consistent with a model of noisy introspection by Goeree and Holt (2004) in which they 

predict more noise – and hence less equilibrium play – with higher-order beliefs than with actual play. 
9 Table S2 in the supplementary material indicates that this relative frequency, and most others discussed in 

Table 2, are very similar in the aggregate if we consider each grade (5th to 11th) separately. 
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Table 3 reports in the upper part for own consistency that in 63% of all cases players’ 

choices are a best-reply to their first-order (point) belief.10 The own consistency is higher in 

D-games than in ND-games, hinting at the influence of dominant strategies on consistent 

behavior. The next subsection will provide more details on this issue. The opponent’s 

expected consistency is (significantly11) lower than the own consistency, with first-order 

beliefs being a best reply to second-order beliefs in 53% of cases. Again, the consistency is 

higher in D-games than in ND-games. 

 

Table 3 and Table 4 about here 

 

Next we consider in more detail the two most frequent types of consistency that appear in 

the data. One type coincides with the standard game theoretic behavior and is a 

straightforward combination of playing Nash and expecting the opponent to play Nash as 

well. We denote this type as “Nash-consistency” (Nash-CON). The other type is a 

combination of a player’s choice and first-order belief that yields the maximal available 

payoff for the player. We call this the “Maximum-consistency” (Max-CON). An important 

feature of our games is that Max-CON cannot coincide with Nash-CON. Table 4 reports the 

relative frequencies of Nash-CON and Max-CON. For a players’ own consistency (see upper 

part) we can see that Nash-CON is much more frequent in D-games than in the ND-games 

(24% vs. 6%; p < 0.05, two-sided Wilcoxon signed rank test).12 However, Max-CON is more 

frequently observed, indicating that subjects are pretty optimistic (by expecting the highest 

possible payoffs from their combination of choices and first-order beliefs). Section 3.4 will 

present more detailed estimations on players’ types. We summarize the findings in this 

subsection as follows: 

Result 2: Choices are a best reply to first-order beliefs in 63% of cases, while first-order 

beliefs are a best reply to second-order beliefs in only 53% of cases. Most of the time, 

consistent choices and beliefs are of the Max-CON type, meaning that subjects expect the 
                                                 

10 Comparisons of theoretically expected relative frequencies of being consistent in the case of random play 
and actually observed relative frequencies of being consistent show that the null-hypothesis of randomness in 
consistency needs to be rejected (p < 0.01; both for own consistency and the opponent’s expected consistency; 
Kolmogorov-Smirnov one-sample tests). 

11 p < 0.05, two-sided Wilcoxon-signed rank tests for all pairwise comparisons. 
12 Comparisons of the theoretically expected distribution of the relative frequencies of being Nash-CON in 

the case of random play and the actually observed distribution show that the null-hypothesis of randomness in 
Nash-consistency needs to be rejected (p < 0.05; both for own Nash-consistency and the opponent’s expected 
Nash-consistency; Kolmogorov-Smirnov one-sample tests). 
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maximal payoffs. Nash-consistency (of playing and expecting the opponent to play Nash) is 

less frequent with 16% on average, and more likely in D-games than in ND-games. 

 

3.3. The determinants of consistency-type Nash-CON 

Standard game theory would predict to observe only Nash consistency. The findings 

summarized in the previous result, however, motivate an analysis of which factors drive 

standard game-theoretic behavior and beliefs – and which ones prevent it. Table 5 reports the 

results of a probit estimation of Nash-CON on various factors which we will explain in the 

following. In our probit estimation standard errors are clustered on the decision maker, since 

each decision maker had to make decisions in all 18 games. 

 

Table 5 about here 

 

The first two independent variables in Table 5 consider the existence of a dominant 

strategy for the player herself (“dominant strategy”) and the existence of a dominant strategy 

for the opponent player (“opponent dominant strategy”). Both variables have a significantly 

positive coefficient, indicating that Nash-CON becomes more likely if any player has a 

dominant strategy (which is the case in D-games). The next three independent variables are 

dummies for the different grades that were included in our experiment, with 5th graders as the 

benchmark.13 None of these dummies for age is significant here, showing that standard game 

theoretic reasoning (i.e., playing and expecting Nash) does not change in the period of age 

covered in our subject pool. 

The final three variables in Table 5 relate to the magnitude and distribution of payoffs in 

a certain game. The variable “risk with maxstrategy” captures the money at risk when a player 

chooses the strategy that could yield the highest possible payoff instead of playing Nash. This 

variable measures the absolute difference between a player’s payoff in the Nash-equilibrium 

and the player’s payoff in case he chooses the strategy in which the game’s highest payoff is 

possible while the opponent played Nash. The estimation shows that Nash-CON gets 

significantly more likely when deviating from the Nash strategy is associated with higher 

                                                 
13 Note that interacting the dummies for the different grades with the other independent variables has not 

produced any significant interaction effects, nor has it changed the main results presented in Tables 5 and 6. 
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potential reductions in payoffs. The final two variables cover distributional preferences by 

examining the influence of inequality aversion in the Nash equilibrium on the consistency of 

decisions. Given that Fehr and Schmidt (1999) show that subjects respond differently to 

advantageous and disadvantageous inequality, we distinguish between “advantageous 

inequality in Nash” (defined as max {own payoff – opponent’s payoff in Nash, 0}) and 

“disadvantageous inequality in Nash” (defined as max {opponent’s payoff – own payoff in 

Nash, 0}). These variables have a negative, but insignificant, impact on the likelihood to 

observe Nash-CON decisions. 

 

Table 6 about here 

 

In Table 6 we present a probit regression which is similar to the one in Table 5, but takes 

as the dependent variable a player’s expectation about the opponent being a Nash-CON-type. 

Basically, we find the same significant relationships as in Table 5, for which reason we do not 

repeat the description of the directional influence of the independent variables. There are two 

exceptions, though. We find a significantly negative dummy for 7th graders, indicating that 

children in 7th grade expect their opponents to be less likely of the Nash-CON-type than 5th 

graders (as well as 9th graders, as a Wald-test shows). Furthermore, “advantageous inequality 

in Nash” (in favor of the opponent, as this variable is defined from the opponent’s point of 

view) is significant and reduces the likelihood with which a player expects the opponent to be 

of the Nash-CON-type. This suggests that players expect their opponents to care for 

inequality that favors the opponent, but harms the player himself. Hence, a player expects 

opponents to be less likely of the Nash-CON-type when playing Nash would result in 

disadvantageous inequality for the player. 

Result 3: The main determinants for Nash-consistency are the existence of a dominant 

strategy (for the player herself or the opponent) and relatively larger losses from deviating 

from Nash. Concerning the opponent’s expected Nash-consistency we find in addition 

inequality aversion to be a significant hindrance of expecting Nash-consistency. Hence, 

distributional preferences affect the degree of standard game-theoretic rationality. 
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3.4. Estimation of strategic and non-strategic types 

In the following we present a maximum likelihood error-rate analysis of players’ choices 

following the framework of Costa-Gomes et al. (2001). It is a mixture model in which each 

player’s type is drawn from a common prior distribution over eight types and where the type 

is assumed to be constant for all 18 games. The eight different types can be classified into 

non-strategic and strategic types and are defined as follows:14 

Non-strategic types: (1) An altruistic type makes an attempt to maximize the sum of 

both players’ payoffs, implicitly assuming that the opponent is also altruistic (see Costa-

Gomes et al., 2001). Note that efficiency-loving would probably be a more appropriate term 

for such a type. Hence, we will call this type altruistic/efficiency-loving. (2) A pessimistic 

type plays maximin, thus is taking choices that secure him the best of all worst outcomes. (3) 

An optimistic type chooses the strategy that maximizes the maximum possible payoff, thus 

ignoring the incentives of the opponent player. As noted by Costa-Gomes et al. (2001), it is 

impossible to distinguish an optimistic type from a naïve type in our 18 games. A naïve type 

assigns equal probabilities to the opponent’s strategies and best responds to this naïve belief. 

While a naïve type might reflect strategic decision making with diffuse beliefs, Costa-Gomes 

et al. (2001) describe naive types as non-strategic. We follow their approach, but talk about 

optimistic types, which are non-strategic for sure. 

Strategic types: (4) Type L2 is choosing a best response to optimistic types. (5) Type D1 

plays best reply to a uniform prior over the opponent’s remaining strategies after applying one 

step of deleting strategies that are dominated by pure strategies. (6) Type D2 goes one step 

further in deleting dominated strategies. After applying two steps of deleting dominated 

strategies he chooses a best reply to the opponent’s remaining strategies. (7) An equilibrium 

type takes equilibrium choices (which are unique in our games). (8) Choices of a 

sophisticated type are based on the actually observed distribution of strategies in the 

experiment’s subject pool. A player of this type takes this distribution as a probability 

distribution for his opponent’s choice and plays best reply to this information. 

For the estimation of the mixture model let i = 1, . . . , N index the different players, let k 

= 1, . . . , K index our types, and let c = 2, 3, or 4 be the number of a player’s possible 

decisions in a given game. We assume that a type-k player normally makes type k’s decision, 

                                                 
14 We follow Costa-Gomes et al. (2001) in the selection of types to be considered. As they indicate, the 

definition of types is largely based on earlier work by Stahl and Wilson (1994, 1995). Note that Costa-Gomes et 
al. (2001) introduce nine types. However, naïve and optimistic types cannot be distinguished in the games used 
in Costa-Gomes et al. (2001) and here. 
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but in each game he makes an error with probability [ ]1,0∈kε , type k’s error rate, in which 

case he makes each of his c decisions with probability 1/c. For a type-k player, the probability 

of type k’s decision is then kc
c ε)1(1 −

− . So the probability of any single non-type k decision 

is 
c
kε . We assume errors are independently and identically distributed across games and 

players. 

The likelihood function can be constructed as follows. Let Tc  denote the total number of 

games in which players have c decisions. In our design we have T2 =11, T3 =6, and T4 =1. 

Then let ic
kx  denote the number of player i’s decisions that equal type k’s in games in which 

he has c decisions with ),,( 432 i
k

i
k

i
k

i
k xxxx = , ),...,( 1

i
K

ii xxx = , and ),...,( Ni xxx = . Let kp  
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1  and ),...,( 1 Kppp = . Let 

kε  denote the k-type error rate and ),...,( 1 Kεεε = . Given that a game has one type-k decision 

and c-1 non-type-k decisions, the probability of observing a particular sample with i
kx  type-k 

decisions when player i is type k can be written as: 
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Weighting the right-hand side by kp , summing over k, taking logarithms, and summing 

over i yields the log-likelihood function for the entire sample: 

 ∑ ∑= =
=

n
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K

k
i
kk

i
kk xLpxpL

1 1
)|(ln)|,(ln εε  (2) 

 

Table 7 about here 

 

In Table 7 we provide an estimation of equation (2). We interpret the estimated 

probability pk as the probability to find a player of type k in the population under observation. 

The bottom line of Table 7 reveals an estimated share of 41% of subjects to be a strategic 

type. Looking at the probability for single types, we note that the non-strategic type optimistic 

is the modal type with a probability of 40%. Three strategic types are significant and have an 

estimated probability of roughly 10%. These are L2 (best replying to optimistic/naïve types), 

D1 (deleting dominated strategies once and then best reply to a uniform distribution of the 
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remaining strategies), and sophisticated (playing best reply to the actually observed 

frequencies of different strategies). 

To measure the effects of gender, age and other individual characteristics on the 

probability to belong to a given type we use the following procedure. Based on the estimation 

of (2), we use the estimated parameters kε̂  and kp̂  to compute the probability by which each 

subject is assigned to a specific type, conditional on the observed pattern of choices.15 

 

 

Table 8 about here 

 

Table 8 presents Tobit regressions in which we regress the probability of subject i being 

classified into each of the eight different types on age (years), gender (1 = male), knowledge 

to play chess, and a subject’s grades in math and German language. Including a dummy 

variable for playing chess was motivated by chess being a highly strategic game where 

players immediately notice that their success depends not only on own choices, but also on 

the opponent’s choices. While the first eight regressions use as the dependent variable a 

subject’s probability to belong to one of the eight types considered here, the ninth regression 

considers a subject’s probability to be classified as a strategic decision making type as the 

dependent variable. 

We see that age has an impact on the altruistic and D1-type. Older subjects are (weakly 

significantly) more likely to be altruistic/efficiency-loving, and more likely to apply one round 

of eliminating dominated strategies (D1-type). There is also a gender effect on these two 

types, such that boys are more likely of the altruistic/efficiency-loving type, while girls are 

more likely to be a D1-type. This holds true even when controlling for the other independent 

variables. Subjects with better math grade – note that lower grades mean better skills in the 

Austrian system – are more frequently classified as a D1-type. The relatively few equilibrium-

types are largely influenced by good math grades and by playing chess in one’s sparetime. 

                                                 
15 For each subject and type, we compute probabilities (1) i.e. the probabilities to observe a given pattern of 

choices conditional on a type; we denote them by P(xi|k=h), where h ∈ {1, …, 8} and, with abuse of notation, xi 
denotes the choices of individual i. Using Bayes Rule, we compute the probability that an individual i is a type-k, 
given the observed choices, i.e., Pi(k=h|xi) where h ∈ {1, …, 8}. For example, the probability that individual i 
belongs to the Altruistic type (k=1), given the observed choices xi, is given by the following equation: 

821

1
ˆ)8|(...ˆ)2|(ˆ)1|(
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Overall, the math grade has also an influence on the general likelihood to be a strategic type. 

However, age or gender has no effect on being a strategic type. This indicates that already 10-

year olds are equally likely to play these normal-form games strategically as 17-year olds. 

Only for a specific strategic type, the D1-type, we have found a (weak, though) influence of 

age. 

We can summarize the main results in this subsection as follows: 

Result 4: The likelihood of subjects to be of any of five different strategic types 

(equilibrium, sophisticated, D1, D2, L2) is about 40%. The modal type, however, is a non-

strategic optimistic type. Age has a positive effect on the probability to be an 

altruistic/efficiency-loving and a D1-type. The performance in mathematics is correlated with 

the probability to be one of the strategic types. Age has no impact on the latter probability, 

though. 

 

4. Conclusion 

In this paper we have studied strategic sophistication of 191 adolescents, aged 10 to 17 

years, in 18 different normal-form games taken from Costa-Gomes et al. (2001). Overall, we 

have found that about 40% of subjects can be classified as strategic, thus taking into account 

their opponent’s incentives and strategies when making decisions. Interestingly, we have 

found no influence of age on the likelihood to be strategic. This result suggests that at the age 

of 10 years strategic sophistication has already reached a level that – in the aggregate – does 

not change in the later teenage years. In fact, many of the stylized facts found in our 

experiment with teenagers are very similar to what is known from experiments with 

university students in their early 20ies. The relative frequency of playing Nash in the 18 

different games is approximately 45% in our subject pool, which is well in the range of 40% 

to 50% of Nash-play reported in other studies (e.g., Costa-Gomes et al., 2001; Costa-Gomes 

and Weizsäcker, 2008; Fehr et al., 2008; Sutter et al., 2010a). The share of consistent 

decisions – as best response to one’s own beliefs – is around 60% in our sample, while it is 

around 55% both in Costa-Gomes and Weizsäcker (2008) and Sutter et al. (2010a) who have 

run their experiments with university students. Hence, our first main finding is that teenagers 

and young adults in their early 20ies play normal form games in a very similar manner. In 

fact, we have only found a few noteworthy effects of age, in particular on the likelihood to be 
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altruistic/efficiency-loving and a D1-type. Both get (weakly significantly) more likely with 

age. Analytic skills, captured in subjects’ math grades, have a positive influence on being a 

strategic type in general, and a D1- or equilibrium-type in particular. Hence, experimental 

behavior in normal-form games is related to math skills. While the previous literature on 

strategic sophistication has not put much emphasis on gender effects, we have found a few 

results. Girls are more likely to be a D1-type, while boys are more likely to be 

altruistic/efficiency-loving.16 In the aggregate, however, we have found no gender differences 

in the likelihood to be strategic. 

While our paper has contributed to the literature on strategic sophistication by showing 

that adolescents are able to play complex games in a way that is very similar to the behavior 

of adults (university students) and that age has no marked impact in strategic behavior, 

another contribution to this literature refers to the analysis of Nash-consistency. We have 

defined this term as playing Nash and expecting the opponent to do so as well. This analysis 

touches on the foundations of standard game-theoretic reasoning, thereby contributing to a 

better understanding of bounded rationality. Our analysis (in section 3.3) has shown that 

dominant strategies (of the player himself or of the opponent) make Nash-consistency more 

likely. However, we have also found out that this type of consistency depends on the possible 

losses from playing Nash and – as far as the opponent’s expected Nash-consistency is 

concerned – on distributional preferences. As payoffs in equilibrium become more unequal, 

consistency between first- and second-order beliefs becomes less likely. Hence, the 

distribution of actual payoffs and the potential alternative payoffs play an important role in 

determining the strategic sophistication of players. We consider this an important finding as it 

documents an interaction of strategic sophistication and distributional preferences. 

Given our results on the stability of behavior in our sample of 10- to 17-year olds, one 

straightforward extension of our study would be studying also subjects who are younger than 

10 years of age in order to determine whether and when noticeable changes in the ability to 

act and think strategically develop. Our experimental design is most likely not the optimal 

choice for younger children below the age of 10 years, because the games used in our study 

and the decisions on first- and second-order beliefs might easily overburden younger children. 

While we have chosen our design due to its suitability for studying different types of strategic 

and non-strategic behavior and because a lot of evidence from college or university students 

in their early 20ies is available for comparison, we regard it as an interesting avenue for future 

                                                 
16 The latter finding resonates in simple distribution experiments where boys are more often found to care for 

efficiency than girls. See Sutter et al. (2010b). 
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research to design simpler games that could provide insights into how strategic sophistication, 

and the interaction of choices and beliefs, develops in the first ten years of human life. 
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Tables and Figures 

Table 1: Choices and beliefs (relative frequencies in %) 
 All games D-games ND-games 
        

CHOICES 
Nash 45.31 62.31 24.08 
Pareto 46.63 34.71 61.52 
Other    8.06   2.99 14.40 

FIRST-ORDER BELIEFS 
Nash 34.20 50.99 13.22 
Pareto 57.88 46.28 72.39 
Other   7.91   2.72 14.40 

SECOND-ORDER BELIEFS 
Nash 34.64 49.84 15.64 
Pareto 57.10 47.38 69.24 
Other   8.26   2.77 15.12 
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  Table 2: Complexity of the game, choices and beliefs (relative frequencies in %) 
Complexity 
(game type)a 1R (D) 2R (D) 2R (ND) 3R (ND) ∞R (ND) 

CHOICES 
Nash 85.34 39.27 35.08   8.11 26.57 
Pareto 12.14 57.28 64.92 47.91 66.62 
Other   2.51   3.46   0.00 43.98   6.81 

FIRST-ORDER BELIEFS 
Nash 87.02 14.98 14.39   9.42 14.53 
Pareto 10.78 81.78 85.61 48.17 77.88 
Other   2.20   3.25   0.00 42.41   7.59 

SECOND-ORDER BELIEFS 
Nash 80.84 18.85 13.61 11.78 18.59 
Pareto 16.54 78.22 86.39 46.60 71.99 
Other   2.62   2.93   0.00 41.62   9.42 
a The columns separate behavior according to (i) the different number of rounds (R) of iterated pure-

strategy dominance a player needs to identify the own equilibrium choice, and (ii) the presence (D) or 

absence (ND) of a dominant strategy in the game. 
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Table 3: Consistency of decisions (relative frequency of best reply) 
 All games D-games ND-games 
    
Own consistency    
Choice is best reply to first- 62.84 66.15 58.71 
order belief    
    
Opponent’s expected     
consistency 52.75 56.17 48.49 
First-order belief is best     
reply to second-order belief    
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Table 4: Relative frequency of consistency-types Nash-CON and Max-CON 
  All games D-games ND-games 
         
Player’s Nash-CON 16.04 24.47   5.50 
own      
consistency Max-CON 39.13 39.43 38.74 
      
Expected Nash-CON   9.11 13.43   3.73 
consistency     
of opponent Max-CON 40.24 40.90 39.40 
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Table 5: Determinants of a player’s consistency-type Nash-CON 

Variable Coefficient Std. error p-value 
    
dominant strategy 1.079 0.163 0.000 
opponent dominant strategy 1.231 0.112 0.000 
dummy for 7th grade -0.053 0.129 0.684 
dummy for 9th grade 0.130 0.139 0.349 
dummy for 11th grade -0.009 0.132 0.948 
risk with maxstrategy 0.017 0.005 0.000 
inequality in Nash (player’s advantage) -0.006 0.009 0.528 
inequality in Nash (players’s disadvantage) -0.014 0.010 0.172 
Constant -1.981 0.246 0.000 

  N = 3.438; standard errors clustered for the 191 decision makers (45 in 5th grade, 52 in 7th grade, 

52 in 9th grade, 42 in 11th grade). 

 

Marginal effects of independent variables 
 Marginal effect Std. error p-value 

dominant strategy 0.283 0.051 0.000 
opponent dominant strategy 0.331 0.034 0.000 
dummy for 7th grade -0.011 0.026 0.684 
dummy for 9th grade 0.028 0.031 0.349 
dummy for 11th grade -0.002 0.027 0.948 
risk with maxstrategy 0.004 0.001 0.000 
inequality in Nash (player’s advantage) -0.001 0.002 0.528 
inequality in Nash (players’s disadvantage) 0.003 0.002 0.172 

  N = 3.438; standard errors clustered for the 191 decision makers (45 in 5th grade, 52 in 7th grade, 

52 in 9th grade, 42 in 11th grade). 
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Table 6: Determinants of the opponent’s expected consistency-type Nash-CON 

Variable Coefficient Std. error p-value 
    
dominant strategy 1.272 0.193 0.000 
opponent dominant strategy 0.710 0.122 0.000 
dummy for 7th grade -0.274 0.135 0.042 
dummy for 9th grade 0.057 0.125 0.648 
dummy for 11th grade -0.072 0.125 0.564 
risk with maxstrategy 0.015 0.006 0.008 
inequality in Nash (player’s advantage) -0.022 0.011 0.046 
inequality in Nash (players’s disadvantage) -0.018 0.012 0.145 
Constant -1.853 0.291 0.000 

  N = 3.438; standard errors clustered for the 191 decision makers (45 in 5th grade, 52 in 7th grade, 

52 in 9th grade, 42 in 11th grade). 

 

Marginal effects of independent variables 
 Marginal effect Std. error p-value 

dominant strategy 0.266 0.053 0.000 
opponent dominant strategy 0.127 0.026 0.000 
dummy for 7th grade -0.036 0.016 0.042 
dummy for 9th grade 0.008 0.019 0.648 
dummy for 11th grade -0.010 0.017 0.564 
risk with maxstrategy 0.002 0.001 0.008 
inequality in Nash (player’s advantage) -0.003 0.002 0.046 
inequality in Nash (players’s disadvantage) -0.003 0.002 0.145 

  N = 3.438; standard errors clustered for the 191 decision makers (45 in 5th grade, 52 in 7th grade, 

52 in 9th grade, 42 in 11th grade). 
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Table 7: Estimated probability pk of types – Own choices 

Age group  

Altruistic / Efficiency-loving 0.039*** 

Pessimistic 0.146*** 

Optimistic 0.404*** 

L2 0.138*** 

D1 0.107*** 

D2 0.040 

Equilibrium 0.026 

Sophisticated 0.100** 

Sum Strategic types 0.410*** 
*** (**) [*] significant at 1% (5%) [10%] level 
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Table 8: Tobit regressions 
   Coefficient    Std. Error        p-value 
     

Alturistic gender (1=male)  0.051 0.029 0.081 
 age (in years)  0.014 0.007 0.069 
 chess  0.041 0.031 0.185 
 mathgrade -0.004 0.017 0.837 
 germangrade  0.002 0.020 0.931 
 constant -0.183 0.091 0.045 
     

Pessimistic gender (1=male) -0.032 0.043 0.458 
 age (in years) -0.004 0.011 0.688 
 chess 0.027 0.045 0.559 
 mathgrade 0.014 0.025 0.569 
 germangrade 0.001 0.029 0.985 
 constant 0.162 0.133 0.224 
     

Optimistic gender (1=male) -0.004 0.072 0.952 
 age (in years) -0.021 0.018 0.254 
 chess -0.001 0.077 0.988 
 mathgrade 0.067 0.043 0.117 
 germangrade -0.036 0.050 0.473 
 constant 0.603 0.225 0.008 
     

L2-type gender (1=male) 0.011 0.050 0.823 
 age (in years) -0.007 0.013 0.569 
 chess -0.064 0.053 0.225 
 mathgrade 0.005 0.029 0.864 
 germangrade -0.048 0.034 0.164 
 constant 0.370 0.154 0.017 
     

D1-type gender (1=male) -0.070 0.035 0.050 
 age (in years) 0.016 0.009 0.071 
 chess -0.030 0.038 0.433 
 mathgrade -0.049 0.021 0.019 
 germangrade 0.048 0.024 0.048 
 constant -0.038 0.110 0.731 
     

D2-type gender (1=male) 0.010 0.013 0.470 
 age (in years) 0.001 0.003 0.808 
 chess -0.008 0.014 0.562 
 mathgrade 0.005 0.008 0.506 
 germangrade -0.005 0.009 0.539 
 constant 0.017 0.042 0.683 
     

Equilibrium gender (1=male) 0.022 0.021 0.301 
 age (in years) 0.002 0.005 0.755 
 chess 0.041 0.023 0.075 
 mathgrade -0.025 0.013 0.049 
 germangrade 0.014 0.015 0.332 
 constant -0.006 0.066 0.923 
     

Sophisticated gender (1=male) 0.012 0.031 0.704 
 age (in years) 0.000 0.008 0.988 
 chess -0.005 0.032 0.866 
 mathgrade -0.014 0.018 0.437 
 germangrade 0.024 0.021 0.255 
 constant 0.075 0.095 0.433 
     

Sum gender (1=male) -0.015 0.070 0.828 
Strategic types age (in years) 0.012 0.018 0.511 
 chess -0.067 0.075 0.373 
 mathgrade -0.078 0.042 0.062 
 germangrade 0.033 0.048 0.490 
 constant 0.418 0.219 0.058 
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Figure 1. The 18 normal-form games 
 game # 3 (D) [1R, 2R]   game #  13 (D) [1R, 2R]   
 1 2   1 2   

1 72, 93 31, 46    1 94, 23 38, 57   
2 84, 52 55, 79   2 45, 89 14, 18   

                  
                  

 game #  1 (D) [2R, 1R]   game #  12 (D) [2R, 1R]   
 1 2   1 2   

1 75, 51 42, 27   1 21, 92 87, 43   
2 48, 80 89, 68   2 55, 36 16, 12   

                  
                  

 game #  7 (D) [2R, 1R]   game #  11 (D) [2R, 1R]   
 1 2 3   1 2   

1 59, 58 46, 83 85, 61   1 31, 32 68, 46   
2 38, 29 70, 52 37, 23   2 72, 43 47, 61   

         3 91, 65 43, 84   
                  
                  

 game #  9 (D) [1R, 2R]   game #  16 (D) [1R, 2R]   
 1 2   1 2 3   

1 28, 37 57, 58   1 42, 64 57, 43 80, 39   
2 22, 36 60, 84   2 28, 27 39, 68 61, 87   
3 51, 69 82, 45            

                  
                  

 game #  6 (ND) [3R, 2R]   game #  15 (ND) [3R, 2R]   
 1 2   1 2   

1 53, 86 24, 19   1 76, 93 25, 12   
2 79, 57 42, 73   2 43, 40 74, 62   
3 28, 23 71, 50   3 94, 16 59, 37   

                  
                  

 game # 14 (ND) [2R, 3R)   game #  2 (ND) [2R, 3R]   
 1 2 3   1 2 3   

1 21, 26 52, 73 75, 44   1 42, 45 95, 78 18, 96   
2 88, 55 25, 30 59, 81   2 64, 76 14, 27 39, 61   

                  
                  

 game #  8 (ND) [∞R, ∞R]   game #  10 (ND) [∞R, ∞R]   
 1 2 3   1 2 3   

1 87, 32 18, 37 63, 76   1 67, 91 95, 64 31, 35   
2 65, 89 96, 63 24, 30   2 89, 49 23, 53 56, 78   

                  
                  

 game #  5 (ND) [∞R, ∞R]   game # 4 (ND) [∞R, ∞R]   
 1 2   1 2   

1 72, 59 26, 20   1 46, 16 57, 88   
2 33, 14 59, 92   2 71, 49 28, 24   
3 28, 83 85, 61   3 42, 82 84, 60   

                  
                  

 game # 17 (D) [1R, 2R]   game# 18 (D) [2R, 1R]   
 1 2   1 2 3 4 

1 22, 14 57, 55   1 56, 58 38, 29 89, 62 32, 86 
2 30, 42 28, 37   2 15, 23 43, 31 61, 16 67, 46 
3 15, 60 61, 88            
4 45, 66 82, 31            
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Supplementary material 
 
 
A. Experimental instructions 
 
Instructions were read aloud at the beginning of each session. Before the experiment started, 

all participants had to answer control questions in order to make sure that they understood 

the instructions. Instructions primarily served as a basic guideline for a very detailed 

explanation of the game. As we wanted to be sure that our participants understood the rules 

of the game we took a lot of effort to explain them the instructions in a very detailed way and 

if necessary even personally. Originally all instructions were in German. In the following we 

present an English translation of the instructions and control questions used. 

Instructions for 5th and 7th graders differ from instructions for 9th and 11th graders with 

respect to payoffs. In the following we present instructions for 5th and 7th graders as a 

baseline and indicate payoffs which were used for 9th and 11th graders in brackets and 

underlined letters.  

 

Welcome! In this game it is very important that you do not communicate with any of your 
class mates for the whole duration of the game. Students who break this rule will be excluded 
from the game. You will earn some money by playing this game which will be paid to you at 
the end of the game. The amount of money you earn strongly depends on your decisions 
during the game. Thus it is very important that you understand the rules of the game. Please 
read the instructions carefully. As soon as you have any questions, please raise your hand and 
an instructor of the game will come to you in order to answer your questions.  
 

Today we will play a game consisting of 18 sub-games. Each sub-game is printed on a 
separate sheet of paper and consists of three decisions each player needs to make. The rules 
for those three decisions will be explained to you soon. Each player gets 18 sheets on which 
he needs to make his decisions. 
You will play in groups of two students. Each student of this room will be matched with a 
student from another room. In this other room students from your parallel-class play the same 
game right now. The student with the number one in this room will be matched with student 
number one in the other room, student number two in this room will be matched with student 
number two in the other room etc. Same as you did, students in the other room have drawn 
numbers randomly. We take care that each student in this room is paired with a student in the 
other room. In the following we will call the student who is matched with you as “the other 
player” or “your interaction partner”.  
 
We would like to explain the rules of the game based on the following examples:  
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Example for decision 1:  
 

 
 
In the upper part of each sheet you need to make a decision. In this example you need to 
choose one of two options. The first option (first row) is indicated with the sign § and the 
second option (second row) is indicated with the sign %. Your interaction partner also has two 
options in this example. His options are columns which are always indicated with two signs of 
the same kind. The first option of the other player is indicated with §§ and the second option 
is indicated with %%.  
Based on the row that you have chosen and the column that your interaction partner has 
chosen the potential payment for both players is determined. This is done as follows: The 
table on the left hand side contains four possible payments dedicated to you and measured in 
game points. The table on the right hand side contains four possible payments dedicated for 
the opponent player – again measured in game points. The cell that is relevant for payment is 
dependent on your own decision and on the decision of your interaction partner.  
Let’s assume you choose the row indicated with the sign § and your interaction partner 
chooses the column indicated with the signs §§. In this particular case you would get 65 
points and your interaction partner would get 57 points. Let’s assume another case in which 
you choose the row indicated with the sign % and the other player chooses the column 
indicated with the signs §§. In this case you would get 23 points and your interaction partner 
would get 85 points.  
You can make your choice by marking the circle next to the sign you want to pick with a 
cross.  
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Example for decision 2:  
 

 
 
In the middle of each sheet we ask you for your opinion about your interaction partner’s 
choice.  
For example if you would belief that your interaction partner chooses the column indicated by 
the signs §§ you need to mark the circle above those signs with a cross. If you think that your 
interaction partner chooses the column marked with the signs %% you need to mark the circle 
above the signs %% with a cross. Please note that correct beliefs can result in considerable 
higher payments. 
 
Example for decision 3: 
 

 
 
In the lower part of each sheet we ask you for your opinion about your interaction partner’s 
belief regarding your own choice. 
For example if you belief that your interaction partner expects you to choose the row 
indicated with the sign § you need to mark the circle next to the sign § with a cross. If you 
think that your interaction partner expects you to choose the row indicated with the sign % 
you need to mark the circle next to the sign % with a cross. Please note that correct beliefs can 
result in considerable higher payments. 
 
In the example illustrated above each player has two options from which he can choose. In 
general there are also games in which one of the two players has not only two, but three or 
four options from which he can choose. 
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Calculation of payments: 
At the end of the whole experiment we will randomly select a sheet which is relevant for 
payment. We have a deck of cards showing the numbers 1 to 18 from which you or the other 
player will be allowed to draw one card. The number shown on this card determines the sheet 
which is relevant for payment. 
 
In addition you will select one decision which will be basis for your payment. 
Your decisions are: 

- which row is your own choice 
- which column chooses your interaction partner according to your opinion 
- which row does your interaction partner pick when he informs about his belief 

regarding your own choice 
 
The selection of the decision that is going to be relevant for payment will be random. You or 
your interaction partner will draw a card from a deck of three cards showing the numbers 1-3.  
 
 
Payment for decision 1: 
In the case that the card showing the number 1 is drawn, you and your interaction partner get 
paid for the first decision. Each point will be converted into Euro according to the following 
exchange rate 
 

1 point = 0.10 Euros (0.20 Euros) 
 

Let’s assume you have chosen § and your interaction partner has chosen %%. In the example 
illustrated before this would mean that you earn 4.7 Euros (9.4 Euros) (0.1 * 47 points) (0.2 * 
47 points) while your interaction partner earns 3.2 Euros (6.4 Euros) (0.1 * 32 points) (0.2 * 
32 points). 
 
Payment for decision 2:  
In the case that the card showing the number 2 is drawn, you and your interaction partner get 
paid for the second decision. In this case you will get 5 Euros (10 Euros) if your prediction of 
your interaction partner’s choice was correct. If your prediction was incorrect you will get no 
payment in this case.  
 
Payment for decision 3:  
In the case that the card showing the number 3 is drawn, you and your interaction partner get 
paid for the third decision. In this case you get 5 Euros (10 Euros) if your prediction of your 
interaction partner’s expectation (regarding your own choice) was correct. If your prediction 
was incorrect you will get no payment in this case.  
 
In addition to the payments described in the former each participant of the game gets a fixed 
amount of 2 Euros (4 Euros) for attending the game. 
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B. Disaggregate data for the four different grades 
 

 
Table S1: Choices and beliefs of adolescents (relative frequencies in %) 

 All games D-games ND-games 
        

CHOICES 
Nash 5th grade 47.90 64.67  26.94  
Nash 7th grade 45.62 62.12 25.00  
Nash 9th grade 45.83 63.08 24.28 
Nash 11th grade 41.53 59.05 19.64 
        
Pareto 5th grade 43.58 31.56 58.61 
Pareto 7th grade 46.80 35.38 61.06  
Pareto 9th grade 46.05 33.85 61.30 
Pareto 11th grade 50.40 38.33 65.48  
        
Other 5th grade   8.52   3.78 14.44 
Other 7th grade   7.59   2.50 13.94 
Other 9th grade   8.12   3.08 14.42 
Other 11th grade   8.07   2.62 14.88 

FIRST-ORDER BELIEFS 
Nash 5th grade 34.81 51.33 14.17  
Nash 7th grade 33.01 49.23 12.74 
Nash 9th grade 34.83 51.92 13.46 
Nash 11th grade 34.26 51.67 12.50 
        
Pareto 5th grade 57.16 46.44 70.56 
Pareto 7th grade 59.94 48.46 74.28 
Pareto 9th grade 57.05 45.19 71.88 
Pareto 11th grade 57.14 44.76 72.62 
        
Other 5th grade   8.03   2.22  15.28 
Other 7th grade   7.05   2.31 12.98 
Other 9th grade   8.12   2.88 14.66 
Other 11th grade   8.60   3.57 14.88 

SECOND-ORDER BELIEFS 
Nash 5th grade 37.90 51.33  21.11* 
Nash 7th grade 32.59 48.27 12.98 
Nash 9th grade 34.19 49.62 14.90 
Nash 11th grade 34.26 50.48 13.99 
        
Pareto 5th grade 55.31 46.00 66.94 
Pareto 7th grade 59.30 49.04 72.12 
Pareto 9th grade 56.52 47.50 67.79 
Pareto 11th grade 57.01 46.67 69.94 
        
Other 5th grade   6.79   2.67  11.94* 
Other 7th grade   8.12    2.69 14.90 
Other 9th grade   9.30   2.88 17.31 
Other 11th grade   8.73   2.86 16.07 

** (*) significant difference at p < 0.05 (p < 0.1) across all age groups for a particular 

set of games and a given strategy according to a two-sided Kruskal-Wallis test. 
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Table S2: Complexity of the game, choices and beliefs (relative frequencies in %) 
Complexity (game 
type)a 1R (D) 2R (D) 2R (ND) 3R (ND) ∞R (ND) 

CHOICES 
Nash 5th grade 89.78 39.56  38.89    8.88  30.00 
Nash 7th grade 86.15 38.08 35.58   7.69 28.37 
Nash 9th grade 83.46 42.69 36.54   7.69 26.44  
Nash 11th grade 81.90 36.19 28.57   8.33 20.83  
       
Pareto 5th grade   6.22 56.89  61.11  42.22** 65.56  
Pareto 7th grade 11.15 59.62  64.42 45.19 67.31 
Pareto 9th grade 15.00 52.69 63.46 55.77  62.98 
Pareto 11th grade 16.19 60.48 71.43 47.62 71.43 
       
Other 5th grade   4.00   3.56   0.00 48.89**   4.44 
Other 7th grade   2.69   2.31    0.00 47.12   4.33 
Other 9th grade   1.54   4.62   0.00 36.54 10.58 
Other 11th grade   1.90   3.33   0.00 44.05   7.74  

FIRST-ORDER BELIEFS 
Nash 5th grade 87.11 15.56 14.44  13.33 14.44 
Nash 7th grade 87.69 10.77 15.38 10.58 12.50 
Nash 9th grade 86.54 17.31 15.38   7.69 15.38 
Nash 11th grade 86.67 16.67 11.90   5.95 16.07 
       
Pareto 5th grade 12.00 80.89  85.56 42.22* 77.22 
Pareto 7th grade 10.00 86.92 84.62 46.15 83.17 
Pareto 9th grade 11.54 78.85 84.62 55.77 73.56 
Pareto 11th grade   9.52 80.00  88.10 47.62 77.38 
       
Other 5th grade   0.89   3.56   0.00 44.44    8.33* 
Other 7th grade   2.31   2.31   0.00 43.27   4.33 
Other 9th grade   1.92    3.85   0.00 36.54 11.06 
Other 11th grade   3.81   3.33   0.00 46.43   6.55 

SECOND-ORDER BELIEFS 
Nash 5th grade 77.78 24.89* 20.00 22.22** 21.11 
Nash 7th grade 82.69 13.85 13.46    8.65 14.91  
Nash 9th grade 77.69 21.54 11.54   8.65 19.71 
Nash 11th grade 85.71 15.24    9.52   8.33 19.05 
       
Pareto 5th grade 18.67 73.33 80.00 44.44  71.67 
Pareto 7th grade 15.00 83.08 86.54 46.15 77.88 
Pareto 9th grade 20.38 74.62 88.46 50.00 66.35 
Pareto 11th grade 11.43 81.90 90.48 45.24 72.02 
       
Other 5th grade   3.56   1.78    0.00 33.33*   7.22 
Other 7th grade   2.31   3.08   0.00 45.19   7.21 
Other 9th grade   1.92   3.85   0.00 41.35 13.94 
Other 11th grade   2.86   2.86   0.00 46.43   8.93 

** (*) significant difference at p < 0.05 (p < 0.1) across all age groups for a particular set of games and a 

given strategy according to a two-sided Kruskal-Wallis test. 
a The columns separate behavior according to (i) the different number of rounds (R) of iterated pure-

strategy dominance a player needs to identify the own equilibrium choice, and (ii) the presence (D) or 

absence (ND) of a dominant strategy in the game. 
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Table S3: Percentages of decisions that comply with equilibrium, contingent on game-type 
 Complexity (game # for rows // game # for columns) 5th grade 7th grade 9th grade 11th grade 
        

1 round of dominance to identify own equilibrium choice 
    2x2 with dominant decision (#3, #13 // #1, #12) 91.11 85.58 82.69 84.52 
    2x3 with dominant decision (#16 // #11) 93.33 90.38 80.77 83.33 
    3x2 with dominant decision (#9 // #7) 82.22 86.54 88.46 73.81 
    4x2 with dominant decision (#17 // #18) 91.11 82.69 82.69 83.33 
2 rounds of dominance 
    2x2, partner has dominant decision (#1, #12 // #3, #13) 41.11 45.19 45.19 34.52 
    2x3, partner has dominant decision (#7 // #9) 40.00 32.69 40.38 33.33 
    3x2, partner has dominant decision (#11 // #16) 31.11 34.62 36.54 35.71 
    2x4, partner has dominant decision (#18 // #17) 44.44 32.69 46.15 42.86 
    2x3 with 2 rounds of dominance (#2, #14 // #6, # 15) 38.89 35.58 36.54 28.57 
3 rounds of dominance 
    3x2 with 3 rounds of dominance (#6, #15 // #2, #14)   8.88   7.69   7.69   8.33 
No dominance 
    2x3, unique equilibrium, no dominance (#8, #10 // # 4, #5) 43.33 37.50 35.58 30.95 

C
ho

ic
e 

    3x2, unique equilibrium, no dominance (#4, #5 // #8, #10) 16.67 19.23 17.31 10.71 

        
1 round of dominance to identify own equilibrium choice 
    2x2 with dominant decision (#3, #13 // #1, #12) 87.78 86.54 89.42 89.29 
    2x3 with dominant decision (#16 // #11) 86.67 98.08 84.62 90.48 
    3x2 with dominant decision (#9 // #7) 82.22 88.46 88.46 80.95 
    4x2 with dominant decision (#17 // #18) 91.11 78.85 80.77 83.33 
2 rounds of dominance 
    2x2, partner has dominant decision (#1, #12 // #3, #13) 15.56 14.42 19.23 16.67 
    2x3, partner has dominant decision (#7 // #9) 26.67 11.54 26.92 16.67 
    3x2, partner has dominant decision (#11 // #16)   0.00   7.69   5.77 11.90 
    2x4, partner has dominant decision (#18 // #17) 20.00   5.77 15.38 21.43 
    2x3 with 2 rounds of dominance (#2, #14 // #6, # 15) 14.44 15.38 15.38 11.90 
3 rounds of dominance 
    3x2 with 3 rounds of dominance (#6, #15 // #2, #14) 13.33 10.58   7.69   5.95 
No dominance 
    2x3, unique equilibrium, no dominance (#8, #10 // # 4, #5) 16.67 19.23 22.12 21.43 

F
ir

st
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rd
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    3x2, unique equilibrium, no dominance (#4, #5 // #8, #10) 12.22   5.77   8.65 10.71 

        
1 round of dominance to identify own equilibrium choice 
    2x2 with dominant decision (#3, #13 // #1, #12) 80.44 82.69 80.77 91.67 
    2x3 with dominant decision (#16 // #11) 71.11 86.54 69.23 76.19 
    3x2 with dominant decision (#9 // #7) 73.33 82.69 88.46 80.95 
    4x2 with dominant decision (#17 // #18) 75.56 78.85 69.23 88.10 
2 rounds of dominance 
    2x2, partner has dominant decision (#1, #12 // #3, #13) 30.00* 16.35* 27.88* 16.67* 
    2x3, partner has dominant decision (#7 // #9) 28.89 13.46 17.31 23.81 
    3x2, partner has dominant decision (#11 // #16) 15.56 13.46 15.38 11.90 
    2x4, partner has dominant decision (#18 // #17) 20.00   9.62 19.23   7.14 
    2x3 with 2 rounds of dominance (#2, #14 // #6, # 15) 20.00 13.46 11.54   9.52 
3 rounds of dominance 
    3x2 with 3 rounds of dominance (#6, #15 // #2, #14) 22.22**   8.65**   8.65**   8.33** 
No dominance 
    2x3, unique equilibrium, no dominance (#8, #10 // # 4, #5) 22.22 19.23 25.96 29.76 

Se
co

nd
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rd
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    3x2, unique equilibrium, no dominance (#4, #5 // #8, #10) 20.00 10.58 13.46   8.33 
** (*) significant difference at p < 0.05 (p < 0.1) across all age groups for equilibrium play in 

a particular set of games according to a two-sided Kruskal-Wallis test. 
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Table S4: Consistency of decisions (relative frequency of best reply) 
  All games D-games ND-games 
     
Own consistency 5th grade 64.44 67.78 60.28 
Choice is best reply to first- 7th grade 61.47 64.32 57.93 
order belief 9th grade 64.42 68.27 59.62 
 11th grade 60.85 64.05 56.85 
     
Opponent’s expected  5th grade 50.99 55.78 45.00 
consistency 7th grade 51.99 53.42 50.24 
First-order belief is best  9th grade 55.98 60.00 50.96 
reply to second-order belief 11th grade 51.59 55.24 47.02 

** (*) significant difference at p < 0.05 (p < 0.1) across all age groups for a particular set of games and 

a given strategy according to a two-sided Kruskal-Wallis test. 
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Table S5: Relative frequency of consistency-types Nash-CON and Max-CON 
  All games D-games ND-games 
         
 Nash-CON 5th grade 15.56 23.78   5.28 
 Nash-CON 7th grade 14.55 21.60   5.77 
 Nash-CON 9th grade 18.38 27.69   6.73 
Player’s Nash-CON 11th grade 15.48 24.76   3.87 
own      
consistency Max-CON 5th grade 40.99 42.00 39.72 
 Max-CON 7th grade 39.77 41.37 37.74 
 Max-CON 9th grade 38.03 37.69 38.46  
 Max-CON 11th grade 37.70 36.43 39.29 
      
 Nash-CON 5th grade 10.13** 14.67**   4.44 
 Nash-CON 7th grade   6.22   9.32   2.40 

 Nash-CON 9th grade 11.22 16.92   4.09 
Expected Nash-CON 11th grade   8.99 12.86   4.17 
consistency     
of opponent Max-CON 5th grade 37.90 39.56 35.83 
 Max-CON 7th grade 42.34 42.54 42.07 
 Max-CON 9th grade 40.92 40.58 41.35 
 Max-CON 11th grade 39.29 40.71 37.50 

** (*) significant difference at p < 0.05 (p < 0.1) across all age groups for a particular set of games and 

a given strategy according to a two-sided Kruskal-Wallis test. 

 
 




