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SEMINAR FÜR WIRTSCHAFTS- UND SOZIALSTATISTIK

UNIVERSITÄT ZU KÖLN
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1 Motivation

Traditional portfolio optimization strategies are susceptible to parameter uncer-
tainty (Jorion, 1986, Kalymon, 1971, Klein and Bawa, 1976, Markowitz, 1952,
Michaud, 1989). Estimation risk is mainly driven by the uncertainty regarding
the expected asset returns rather than their variances and covariances (Chopra and
Ziemba, 1993). However, it can be shown that estimating the covariance matrix
is also problematic if the sample size is small compared to the number of as-
sets (Frahm, 2007, Kempf and Memmel, 2006). Many portfolio optimization ap-
proaches rely on rather simple assumptions about the distribution of asset returns.
However, it is well-known that short-term financial data canbe heavy-tailed or
at least leptokurtic, tail-dependent, skewed or possessing other kinds of asymme-
tries. Financial time series typically exhibit volatilityclusters or even long-memory
which holds especially if log-price changes (so-calledlog-returns) of stocks, stock
indices, and foreign exchange rates are considered. Moreover, high-frequency data
generally are non-stationary, have jumps, and are stronglydependent.

One might argue that the stylized facts do not matter for longinvestment horizons
since Gordin’s central limit theorem (Hayashi, 2000, p. 404) takes effect even for
ergodic stationary processes. For example, many applications in finance rely on the
normal distribution assumption and so low-frequency data are used to estimate the
expected values of long-term, such as monthly or quarterly,asset returns. Indeed,
Merton (1980) showed that the estimation of expected returns generally cannot be
improved by increasing the sampling frequency. However, decreasing the sam-
pling frequency leads to a loss of statistical efficiency since relevant information
about the variances and covariances of asset returns get lost. Today’s availability
of high-frequency data offers new opportunities for statistical analysis, since these
data include much more information than samples of low-frequency data. Never-
theless, by using high-frequency data andignoring the stylized facts of empirical
finance we would also obtain inaccurate estimates of the optimal portfolio weights.
That means when working with high-frequency-data we need anappropriate model
which accounts for the specific characteristics of the data generating process. The
principal goal of this paper is to present a general approachwhich takes account of
both estimation risks and stylized facts. Such kind of approach nowadays is fea-
sible due to the permanent rise of computational power, especially the facilities of
high-performance computing.

In order to incorporate estimation risk we rely on the Bayesian framework. This
will be described in detail in Section 2. The Bayesian framework has several advan-
tages. First of all we are able to makefinite-sampleinferences. This is important
even for a large number of observations since the effective sample size strongly
depends on the number of observations relative to the numberof assets (Frahm and
Jaekel, 2007). Further, Bayesian analysis allows us to consider not only historical
data but also to incorporate prior information such as expert knowledge. This can
lead to more reasonable and well-diversified portfolios rather than relying on pure
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statistical portfolio optimization methods (Black and Litterman, 1992, Herold and
Maurer, 2006, Scherer and Martin, 2007, Ch. 7). The dynamicsof high-frequency
data might become very complicated so that traditional estimation procedures such
as maximum-likelihood estimation quickly hit the wall. In contrast, by using con-
temporary methods of numerical integration such as Markov chain Monte Carlo or
importance sampling, calculating the Bayesian posterior distribution of some pa-
rameter is possible even for very complicated time series models (Geweke, 1989,
1995).

For the purpose of portfolio optimization we are interestedin thepredictive distri-
bution of asset returns. The predictive distribution combines both estimation risk
and market risk. Many Bayesian approaches to portfolio optimization are based
on a purely analytical fundament (Garlappi et al., 2007, Jorion, 1986, Klein and
Bawa, 1976, Polson and Tew, 2000, Meucci, 2005, Ch. 7). However, this is not
suitable if we want to take stylized facts into account and then generally it is not
possible to find the predictive distribution analytically.To avoid limitations of such
kind, we suggest a Metropolis-Hastings-like algorithm forsimulating the posterior
distribution of the unknown parameters. This is derived on the basis of empirical
information obtained from time series data and prior information possibly given
by an expert. The Markov chain Monte Carlo method belongs to the broad class
of tempering algorithms which have been frequently used in natural sciences and
proven to be able to simulate high-order distributions. It is therefore natural to ap-
ply them to high-order financial problems like portfolio optimization. By choosing
a numerical framework, principally we can use almost any probabilistic model for
the data and parameters. In Section 4 we will present a realistic portfolio optimiza-
tion problem which has been performed on a standard PC in reasonable time.

2 The General Approach

2.1 Portfolio Optimization Problem

In the following we consider thediscrete predictive returnsof several assets after
some long investment horizon. We specifically concentrate on discrete or, say,
simple returns instead of log-returns for two reasons:

(1) Traditional portfolio theory is based on and can work only with discrete re-
turns rather than, e.g., log-returns.

(2) Moreover, discrete returns usually differ substantially from log-returns if the
investment horizon is long.

The latter is often neglected in literature. Moreover, we concentrate on long in-
vestment horizons since in practice investors usually do not want to liquidate or
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re-balance a portfolio each day or week. In contrast, we can think of, e.g., quar-
terly or yearly investment periods. The meaning of ‘predictive’ asset returns is to
be understood in the Bayesian sense and will be explained later on in more detail.
Roughly speaking, the distribution of predictive asset returns do not only account
for market risk but also for the parameter uncertainty whichis always present if the
parameters of some model for the asset returns are unknown.

Let R = (R1, . . . , Rd) be ad-dimensional vector of discrete predictive asset re-
turns,µ = IE(R) thed×1 vector of predictive expected returns andΣ = Var(R) <

∞ the correspondingd× d matrix of predictive variances and covariances. We are
searching for

w = arg max
v

ϕ(v′µ, v
′Σ v) , s.t.v ∈ C ⊂ R

d
, (1)

wherev represents a portfolio, i.e. a vector of asset weights andϕ is an appropriate
objective function (i.e.ϕ is strongly increasing in the first and decreasing in the
second argument) such as the well-known mean-variance certainty equivalent

ϕ(v′µ, v
′Σ v) = v

′
µ − α

2
· v′Σ v (2)

with α ≥ 0 . Note thatv′µ represents the expectation andv
′Σ v is the variance

of the predictive portfolio return of a buy-and-hold portfolio after the given invest-
ment period. The principal goal of this work is to show how thepredictive moments
µ andΣ (which incorporate both market and estimation risk) can be calculated if
short-term asset log-returns are not normally distributed, possibly serially depen-
dent, or exhibit other kinds of stylized facts (see below).

2.2 Gordin’s Central Limit Theorem

Now let (Xt | θ) (t ∈ Z) be a strongly stationary process representing the short-
term log-returnsof some asset withIE(Xt | θ) = η(θ). Note that here we consider
a stochastic process under some unknown parameterθ ∈ Θ ⊂ R

p. We assume also
that (Xt | θ) is ergodic. Ergodicity means that any existing and finite moment of
Xt | θ can be consistently estimated by using the corresponding sample moment of
the time seriesX1, . . . ,Xn (n → ∞). This is guaranteed if(Xt, . . . ,Xt+k | θ) is
asymptotically independent of(Xt−n, . . . ,Xt−n+l | θ) asn → ∞ for all k, l ∈ N

(Hayashi, 2000, p. 101). Further, we suppose that the secondmoments ofXt | θ
exist and are finite.

However, for the central limit theorem (CLT) we need some additional assump-
tion. More precisely, the CLT holds for the sample mean of(Xt | θ) if the centered
process(Xt − η(θ) | θ) satisfies Gordin’s condition. LetHt := (Xt,Xt−1, . . . | θ)

be the history of(Xt | θ) at time t ∈ Z . Roughly speaking, Gordin’s condition
implies that the impact ofHt−n on the conditional expectation ofXt | θ vanishes
asn → ∞ and also that the conditional expectations ofXt | θ do not vary too much
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in time (Hayashi, 2000, p. 403). In that case it is guaranteedthat the CLT holds
with an asymptotic or, say,long-run variance

σ
2

L(θ) :=

∞∑

k=−∞

γθ(k) ,

whereγθ is the autocovariance function of(Xt | θ) (Hayashi, 2000, p. 401) given
the unknown parameterθ . This result can be easily extended to anyd-dimensional
stochastic process (Hayashi, 2000, p. 405). Hence, in the following let (Xt | θ) be
an ergodic stationaryd-dimensional process satisfying Gordin’s condition.

¿From Gordin’s CLT it follows that long-term asset log-returns typically tend to
be normally distributed even if the short-term log-returnsare serially dependent
and heavy tailed. A broad class of time series models satisfyGordin’s condition.
Hence, long-term asset log-return vectors are approximately normally distributed,
i.e.

log(1 + R) | θ =

T∑

t=1

Xt | θ =: X | θ ∼ Nd

{
Tη(θ), TΥL(θ)

}
, (3)

where1 represents a column vector of ones andlog(·) is understood as taking
the logarithm of each component separately. HereΥL(θ) denotes the long-run
covariance matrix of the stochastic process (Hayashi, 2000, p. 404) andT ∈ N

represents the number of aggregated short-term log-returns or, say, the investment
horizon. For example, ifX1, . . . ,XT represent daily log-returns, the sum given
by Eq. 3 denotes a quarterly log-return ifT = 63 and a yearly log-return in case
T = 252.

Of course, the Gaussian distribution hypothesis holds onlyapproximately. How-
ever, in the following the additional suffix ‘approximately’ or any corresponding
symbol are suppressed for convenience. It is worth to mention that we generally
suppose that bothη(θ) andΥL(θ) can be computed either numerically or analyti-
cally under the specific time series model which is used for the short-term asset log-
returns provided the model parameterθ is known. Specifically, if(Xt − η(θ) | θ)

is a martingale difference sequence (Hayashi, 2000, p. 104), that means if

IE(Xt |Ht−1, θ) = η(θ) , ∀ t ∈ Z ,

the components of(Xt | θ) are serially uncorrelated. In that case the long-run co-
variance matrixΥL(θ) turns out to be thestationaryvarianceΥ(θ) of (Xt | θ). The
martingale difference property is satisfied for a broad class of time series models,
such as the family of multivariate GARCH processes (Bauwenset al., 2006).

As elucidated in the introduction, estimating the momentsTη(θ) andTΥL(θ) from
long-term asset returns is inefficient. For example, we could estimate the quantity
TΥL(θ) simply by applying the sample covariance matrix to the corresponding
long-term asset log-returns. However in that case we would ignore a large part
of the data and the resulting standard error would increase roughly by a factor of
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√
T relative to the approach based on high-frequency data. Hence, decreasing the

sampling frequency leads to a loss of statistical efficiency.

2.3 Bayesian Framework

In the Bayesian framework the model parameterθ is not assumed to be fixed but
it is considered as a random quantity possessing some prior distributionp(θ). The
posterior distributionp(θ |x) corresponds to the distribution ofθ given some ob-
served datax. More specifically, in the following we shall interpretx as historical
short-term asset log-return data. The likelihood functionL(θ ;x) = p(x | θ) repre-
sents some pre-defined probabilistic model forx. Now the posterior distribution of
θ can be obtained by the Bayes formula

p(θ |x) = L(θ ;x) p(θ)/p(x) ,

so that the posterior involves both empirical and subjective information.

However, in Bayesian analysis the posterior distribution is not always the desired
object. Instead, one can be interested in the predictive distribution of the data. Let
y be some unobserved data wherex andy are conditionally independent givenθ.
Then

p(y |x) =

∫
p(y | θ) p(θ |x) dθ

represents the predictive distribution ofy. In the following discussion this can be
interpreted as the distribution of a long-term asset log-return if we take the pa-
rameter uncertainty additionally into account. Each parameter is weighted by its
posterior probability, i.e. the probability ofθ given the historical observations and
some expert knowledge. Notice that analytical solutions for the portfolio optimiza-
tion problem which are based on the predictive distributionare only available for
relatively simple expressions for the priorp(θ) and the likelihoodL(θ ;x).

The priorp(θ) can be either ‘diffuse’ or ‘informative’. If the prior isdiffusethe
model parameter is assumed to possess some ad-hoc distribution such as the uni-
form distribution or the standard normal distribution. Theprior is calledinforma-
tive if some subjective information is necessary to determinep(θ). The chosen
terminology is somewhat misleading since we do not mean thatdiffuse priors in
general are non-informative in the probabilistic sense since the posterior distribu-
tion might drastically depend on the chosen diffuse prior. Hence, we believe that
Bayesian analysis is inherently subjective and since most practitioners have some
basic opinions about the evolution of asset prices they might want to include that
information in the optimization process (Black and Litterman, 1992). The present
work heavily relies on the idea of using subjective information whenever it is pos-
sible.

One popular example of Bayesian portfolio optimization is the approach of Black
and Litterman (1992). They show how to distill implicit information about the

6



distribution of asset returns from the market by using standard results of portfolio
theory. This is combined with the investor’s own belief which typically leads to
optimal portfolios being more robust against estimation errors than solutions ob-
tained by pure statistical methods. However, in order to be analytically tractable,
the Black-Litterman approach assumes that asset returns are normally distributed.
Other Bayesian portfolio optimization techniques are given by the work of Frost
and Savarino (1986) and Jorion (1986). They all share the same disadvantage,
namely that an analytic expression of the predictive distribution or optimal portfo-
lio is only available by imposing unrealistic assumptions on the underlying data or
otherwise being inefficient, since they have to be applied byusing low-frequency
data.

Scherer and Martin (2007, Ch. 7) suggest to apply so-calledconjugatepriors in
Bayesian portfolio optimization. These are informative priors which, after multi-
plying with the likelihood, lead to a posterior distribution that is of the same type
as the chosen likelihood function. Again, this limitation can be motivated by the
requirement to obtain analytically tractable expressionsfor the posterior distribu-
tion. However, unrealistic assumptions about the distribution of empirical data are
necessary in general and the set of possible prior distributions is substantially re-
stricted. In particular, conjugate priors often are not available if the assumption
of normally distributed asset returns is relaxed. Scherer and Martin (2007, Ch. 7)
refer to a Markov chain Monte Carlo method (which will be discussed later on
in Chapter 3) to simulate the posterior distribution of the mean and variance of
a single asset return. In this work we will show how this idea can be extended
to incorporate arbitrary prior information given the assetreturns are not normally
distributed.

For choosing some likelihood function forθ we have to consider an appropriate
model for the data, that means to take account for the stylized facts of empirical
finance. These can be subsumed by the following anomalies (see McNeil et al.,
2005, p. 117):

(1) Short-term asset returns are heavy-tailed and particularly not Gaussian.

(2) Asset returns are not independent and identically distributed although they
show little serial correlation.

(3) In contrast, squared asset returns show strong serial correlation.

(4) Asset volatility varies over time and appears in clusters.

There are several alternatives to deal with these phenomena. For instance, GARCH
processes (Bollerslev, 1986, Engle, 1982) can be used to model volatility clusters.
Another possibility is to work with stochastic volatility models (Barndorff-Nielsen
et al., 2002, Jacquier et al., 1994, 2004).
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2.4 Predictive Moments

In the last section we mentioned that the parameterθ is considered as a random
quantity and from Section 2.2 we know that

X | θ ∼ Nd

{
Tη(θ), TΥL(θ)

}
,

whereX | θ denotes a long-term log-return vector given the unknown parameterθ.
Hence, the vector of long-term discrete returns is given by

R | θ = exp(X | θ) − 1 ,

whereexp(·) shall be interpreted as a component-wise function. Thus each com-
ponent ofR | θ is log-normally distributed and it can be easily shown that

IE(R | θ) = exp
[
T

{
η(θ) + diag(ΥL(θ))/2

}]
− 1

and

Var(R | θ) = exp
[
T

{
η(θ)1′ + 1η(θ)′ + D(θ)

}]
⊙

[
exp

{
TΥL(θ)

}
− 11

′
]
,

where⊙ denotes the Hadamard (i.e. component-wise) product, and

D(θ) =
diag{ΥL(θ)}1′ + 1diag{ΥL(θ)}′

2
.

Finally, we obtain the predictive moments of the long-term log-return vector by the
law of total expectations and the variance decomposition theorem, viz

µ = IE(R) = IE
{
IE(R | θ)

}

and
Σ = IE

{
Var(R | θ)

}
+ Var

{
IE(R | θ)

}
.

Interestingly, the conditional means of the discrete returns are also determined by
the long-run variances. Moreover, predictive expectations and variances of discrete
returns arenonlinearfunctions of the investment horizonT . Hence, the investment
horizon can have a substantial impact on the optimal portfolio. In Section 3 we will
see how the predictive moments can be approximated by Monte Carlo simulation.

3 Numerical Implementation

Now we will discuss several Markov chain Monte Carlo algorithms for simulating
the posterior distributionp(θ |x) even if this has a rather complicated analytical
structure. There is a big number of different simulation techniques like for instance
importance sampling(Gamerman and Lopes, 2006, Ch. 3.4). However, we got the
best simulation results in reasonable time using a Markov chain Monte Carlo algo-
rithm, which will be presented in the following sections. Inour case we want to use
Markov chains only to sample from a complex posterior distribution. Hence, we
have to guarantee that the stationary distribution of the considered Markov chain
corresponds top(θ |x).
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3.1 Gibbs Sampling

A simple approach is known asGibbs sampling. That means for simulatingθ we
could principally start with some initial parameter vectorθ = (θ1, . . . , θp) and
draw a new realizationθ′

1
of the first component from the conditional distribution

of θ1 givenθ2, . . . , θp . Then we can take the new parameter vector(θ′
1
, θ2, . . . , θp)

into consideration and simulate the second component ofθ by drawing from the
distribution ofθ2 under the new conditionθ′

1
, θ3, . . . , θp , etc., until we obtain the

parameter vectorθ′ = (θ′
1
, . . . , θ

′
p). If the same procedure is repeated withθ

′

and so on we obtain a Markov chain whose stationary distribution corresponds to
the posterior distribution ofθ. Scherer and Martin (2007, Ch. 7) give an exam-
ple of how to use Gibbs sampling for simulating the posteriordistribution of the
mean and variance of a normally distributed single asset return by using a conju-
gate prior. However, in our case this is not a useful approachsince drawing from
the conditional posterior distributions ofθ is not substantially easier than drawing
directly fromp(θ |x).

3.2 Metropolis-Hastings Algorithm

Another MCMC scheme which is frequently used in Bayesian statistics is the
Metropolis-Hastings algorithm (Hastings, 1970, Metropolis et al., 1953). An ap-
plication to the Bayesian analysis of stochastic volatility models is presented by
Jacquier et al. (2004). The Metropolis-Hastings algorithmis very similar to the
Gibbs sampler, but unlike that, it does not require to samplefrom the conditional
stationary distribution. In contrast, the sampling part iscompletely reduced to
sampling from an arbitraryproposal distributionwhich is easy to draw from. The
stationary distribution is then only needed to calculate the acceptance probability
of each new state in the chain, which comes from the proposal distribution. This is
why we choose a Metropolis-Hastings-like algorithm to simulate the distribution
of θ|x. First, we will present the Metropolis-Hastings algorithmand after that an
extension calledparallel temperingwill be discussed.

Assume there exists sometarget distributionπ(θ) which shall be simulated. The
current state of the chain will be denoted byφ . In case of the Metropolis-Hastings
algorithm, the simulation is done by introducing an ‘easy todraw from’ proposal
distributionq(φ, φ

′) which denotes the distribution of a proposal to move from state
φ to stateφ′. However, the actual probability to move fromφ to φ

′ is determined
by the acceptance probability

α(φ, φ
′) = min

{
1,

π(φ′) q(φ′
, φ)

π(φ) q(φ, φ′)

}
. (4)

Note that if we have a symmetric proposal distribution, the acceptance probability
is simply given byα = min{1, π(φ′)/π(φ)}.
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The probability density of a new stateφ′ given an old stateφ, that is the so-called
transition kernelK(φ, φ

′) (Gamerman and Lopes, 2006, p. 194) of the Markov
chain, is given by

K(φ, φ
′) = q(φ, φ

′)α(φ, φ
′) + δ(φ′ − φ)

(
1 −

∫
q(φ, ξ)α(φ, ξ) dξ

)
,

whereδ is the Dirac distribution. It can be shown that for the acceptance probability
given by Eq. 4, thedetailed balance condition

π(φ)K(φ, φ
′) = π(φ′)K(φ′

, φ)

is satisfied for allφ andφ
′. Thus we obtain a reversible Markov chain (Gamer-

man and Lopes, 2006, Ch. 4.6). That means by the presented Metropolis-Hastings
algorithm in fact we are able to simulate realizations from the target distributionπ.

3.3 Parallel Tempering

Though the Metropolis-Hastings algorithm is very powerful, one big problem can
easily occur: The Markov chain can get stuck in local optima for a very long time.
Assume for instance a univariate bi-modal distribution. Ifthe chain is currently
in a region around one of the two modes, there is almost no incentive to move to
the region around the other mode, since the acceptance probability α(φ, φ

′) ap-
proaches zero ifπ(φ′) is much smaller thanπ(φ). To avoid this problem, the idea
of heatedequilibrium distributions has been introduced. Instead ofsimulating only
one stationary distributionπ(θ) at a time,m parallel chains are used, each having
an equilibrium distribution

πi(θ) ∝ π1(θ)(1/Ti), ∀ i = 1, . . . ,m ,

whereTi is the temperatureof the distributionπi(θ). The temperature of the de-
sired stationary distributionπ1(θ) is T1 = 1. At each iteration of the algorithm, an
exchange between the statesφi andφj of chaini andj is proposed. The acceptance
probability of this swap is

αij(φi, φj) = min

{
1,

πi(φj)πj(φi)

πi(φi)πj(φj)

}
.

One disadvantage of this method is that only the outcome of chain1 contains sam-
ples from the desired distribution and all the other samplesare dropped. However,
especially for very complex distributions the advantage ofnot getting stuck in lo-
cal modes overcomes the disadvantage of high computationaleffort. For further
details and applications of tempering algorithms see for instance Gamerman and
Lopes (2006, Ch. 6 and Ch. 7).
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In our case the stationary distribution which has to be simulated is the posterior
distribution of the model parameters which can become very complex. In our em-
pirical study we will usem = 2 different chains. For the proposal distribution we
choose a composite distributionq(θ, θ

′) by taking account of the specific domains
of the different components ofθ. Of course we could also choose a proposal dis-
tribution which probably leads to realizations outside ofΘ but, however, if some
parameter is proposed to exceed the parameter set, the priorprobability and thus
also the acceptance probability becomes zero. Hence, it cannot happen that we get
some realizations ofθ such thatθ /∈ Θ.

Our implementation of the parallel tempering algorithm is as follows:

1. Create the initial parameter vectorsθ1 andθ2 .

2. Repeat the following steps very often:

(a) Generateθ′
1

andθ
′
2

by randomly drawing from the proposal distribu-
tions.

(b) Calculatep(θ′
1
|x) ∝ L(θ′

1
;x) p(θ′

1
) andp(θ′

2
|x) ∝ L(θ′

2
;x) p(θ′

2
).

(c) Calculate

α1 = min

{
1,

p(θ′
1
|x) q(θ′

1
, θ1)

p(θ1 |x) q(θ1, θ
′
1
)

}

and

α2 = min

{
1,

p(θ′
2
|x)(1/T2)

q(θ′
2
, θ2)

p(θ2 |x)(1/T2)q(θ2, θ
′
2
)

}
.

(d) Setθ1 = θ
′
1

with probability α1, andθ2 = θ
′
2

with probability α2 ,
otherwise keep the oldθ1 or θ2 , respectively.

(e) Swap the statesθ1 andθ2 of the chains with probability

α12(θ1, θ2) = min

{
1,

p(θ2 |x) p(θ1 |x)(1/T2)

p(θ1 |x) p(θ2 |x)(1/T2)

}
.

As mentioned above we only consider the realizations of the first chain which are
obtained after some burning-in phase.

4 Empirical Study

In this section we will present an empirical study based on the framework devel-
oped in the previous sections. First, we create a model for high-frequency asset
log-returns by taking account of stylized facts. It is a multivariate extension of
the GARCH model developed by Bollerslev (1986). A comprehensive overview
on different multivariate GARCH (MGARCH) models is given inBauwens et al.
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(2006). MGARCH processes are martingale difference sequences and so Gordin’s
condition (see Section 2.2) is automatically satisfied. Further, the predictive mo-
ments (see Section 2.4) can be easily calculated by the MCMC algorithm discussed
in Section 3. After the data generating process is developed, we present the chosen
prior information for the unknown model parameterθ. Then we will apply our
method to time series data to find optimal portfolios.

4.1 Modeling the Distribution of Asset Log-Returns

In this section we will describe a way for modeling the distribution of daily asset
log-returns. We will concentrate on risky assets. The risk-free asset or, say, money
market account does not possess any market risk per definition. That means we do
not need any stochastic model and so there exists no parameter uncertainty.

In order be provide a flexible framework for the asset returns, we rely on the broad
class of elliptically symmetric distributions. Ad-dimensional random vectorX is
said to beelliptically symmetric distributed(Cambanis et al., 1981) if and only if

X
d
= η + ΓRU

with η ∈ R
d being a location vector,Γ ∈ R

d×k is a transformation matrix,U a
k-dimensional random vector uniformly distributed on the unit hypersphere, and
R is a non-negative random variable stochastically independent ofU . The positive
semi-definite matrixΩ := ΓΓ′ is referred to as thedispersion matrixof X andR
is called itsgenerating variate. By choosingR properly, we are able to account
for stylized facts like heavy tails. Further, it can be shownthat

V := Var(X) = IE(R2)/k · Ω

is the covariance matrix ofX providedIE(R2) < ∞ .

A d-dimensional MGARCH process(Xt) is characterized by

Xt |Ht−1

d
= η + V

1

2

t ǫt ,

whereη is ad×1 vector of time-independent expected log-returns,Vt is a function
only ofHt−1 and denotes thed× d positive definite conditional covariance matrix
of the log-return vectorXt, andǫt is an independent and identically distributedd×1

vector of perturbations withIE(ǫt) = 0 and covariance matrixVar(ǫt) = Id . If ǫt

is assumed to be spherically distributed, i.e. elliptically symmetric with location 0
and dispersion proportional toId , then the MGARCH model perfectly fits into the
class of elliptically symmetric distributions.

There are various specifications of the time-dependent covariance matrixVt. For
a thorough discussion of MGARCH processes see Bauwens et al.(2006). Since
MGARCH specifications often require a huge number of parameters and are hardly
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applicable to practical problems, for complexity reduction we suggest to use a prin-
cipal components model for the asset log-returns. The underlying idea of principal
components is that most of the dynamics of the observed data can be explained by
a small number of uncorrelated factors. The spectral decomposition theorem as-
sures that the covariance matrixV of an elliptically symmetric distributed random
vectorX can be decomposed intoV = OΛO′, where

• Λ is the diagonal matrix of the eigenvaluesλ1, . . . , λd of V and

• O is an orthogonald × d matrix containing the associated eigenvectors.

By applying this decomposition for the vector of asset log-returns we can specify
the MGARCH model as

Xt |Ht−1

d
= η + OΛ

1

2

t ǫt

and define
Yt := Λ

1

2

t ǫt = O′(Xt − η) .

This reduces the number of required model parameters tremendously, since the el-
ements ofYt are uncorrelated per definition. However, we have to presumethat the
eigenvectors do not change over time. Speaking economically, the factors which
drive the dynamics of the asset log-returns do not change buttheimpactof each fac-
tor can vary over time. For modeling the components ofΛt we can simply assume
that Yt consists ofd unrelated univariate GARCH(1,1) processes. The resulting
process is sometimes calledorthogonalGARCH (Bauwens et al., 2006).

Principally, we can choose any elliptically symmetric distribution for modeling
the perturbationǫt as long as the corresponding density function can be computed
either numerically or analytically. However, here we assume thatǫt is multivariate
t-distributed, i.e.

ǫt ∼ td

(
0 ,

ν − 2

ν
· Id , ν

)

with ν > 2 degrees of freedom and the dispersion matrix is such thatVar(ǫt) = Id .
Hence, the random vectorXt |Ht−1 possesses the density

p(xt |Ht−1) =
Γ(d+ν

2
)

Γ(ν
2
)

·
√

detΛ−1

t

(νπ)d
·
(

1 +
(xt − η)′OΛ−1

t O′(xt − η)

ν − 2

)− d+ν

2

,

whereΛt is a diagonald × d matrix with main diagonal elements

λit = γi + αiY
2

i,t−1 + βiλi,t−1 , i = 1, . . . , d , (5)

representing the conditional variances of thed principal components. Note that
the orthogonal matrixO (d × d) contains

(d
2

)
free parameters and there are3d

GARCH parameters. Altogether, the resulting data generating process contains
only d (d + 7)/2 + 1 parameters.
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4.2 Modeling the Prior Information

There are several ways to implement prior information. In case of a diffuse prior
there is no explicit information that is incorporated into the prior distribution. This
is often done to get an analytical expression for the posterior distribution and so
to obtain an analytical result for the optimal portfolio. However, it can be shown
that the diffuse prior approach can lead to paradox results (Berger, 2006) and the
concrete choice of the diffuse prior can have a substantial impact on the optimal
decision. Therefore, as already mentioned, it is suggestedto use informative priors
whenever it is possible.

Our hierarchical approach is very general. First of all notethat our model param-
eters are given byη, α, β, λ,O, ν. Hereη (d × 1) is the vector of expected asset
log-returns,α (d×1) andβ (d×1) contain the GARCH(1,1) parameters according
to (5) and thed × 1 vectorλ contains theunconditionalvariancesλ1, . . . , λd , i.e.

λi =
γi

1 − αi − βi
, i = 1, . . . , d .

Note that the parametersγi = λi (1 − αi − βi) (i = 1, . . . , d) follow implicitly
from α, β, andλ . That means we use the following re-parameterization of Eq.5:

λit = λi (1 − αi − βi) + αiY
2

i,t−1 + βiλi,t−1 , i = 1, . . . , d .

We will substituteO by an estimate based on the sample covariance matrix of the
time series data. That meansO is fixed for the sake of simplicity. Finally, the
number of degrees of freedomν is set to 3 to account for the typical heavy tails
of daily log-returns. We did not observe any improvements byintroducing some
prior distribution forν. Hence, we obtain the parameter vectorθ = (η, α, β, λ)

and suppose that they are a priori stochastically independent, i.e.

p(θ) = p(η) p(α) p(β) p(λ) .

Sinceα, β ∈ (0, 1) we decided to use flat priors forα andβ where the components
of α andβ are assumed to be mutually independent. So the prior forθ can be
simply expressed asp(θ) = p(η) p(λ).

Also the components ofλ are assumed to be mutually independent but each one fol-
lows a gamma distribution, i.e.λi ∼ Γ(κ2 , λ0/κ2) (i = 1, . . . , d) andλ0, κ2 > 0 .
Hence, we expect a priori that each principal component has the same proportion
of total variation. Note thatIE(λi) = λ0 is constant butVar(λi) = λ

2
0
/κ2 . That

meansκ2 can be interpreted as the investor’s confidence that the unconditional
variances of the principal components indeed correspond toλ0 . In our empirical
study we chooseλ0 = 0.22

/T andκ2 = 2 .

For the expected values of the daily log-returns we use the prior proposed by Jorion
(1986), i.e.

η |V ∼ Nd(η0, V/κ1) ,
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USA UK JPN ITA GER FRA CAN
µ̂ 5.98% 12.50% 12.78% 17.63% 14.27% 14.53% 20.97%
σ̂ 16.07% 13.70% 21.55% 14.68% 23.44% 17.90% 22.10%

Table 1: Descriptive statistics of yearly discrete returns.

whereη0 is a vector of prior expected returns. We decided to chooseη0 = 0 since
sample means of daily log-returns are typically close to zero (McNeil et al., 2005,
p. 117). The scale parameterκ1 represents the confidence of the investor in their
a priori assumption concerningη and can be seen as a virtual sample size. For
instance, if there aren = 1260 observations (i.e. 5 trading years) thenκ1 = 1260

would mean that the investor trusts in their own belief aboutη as much as the
empirical evidence given by the time series.

Note thatV = OΛO′ whereO is fixed andΛ is random. Hence, we can write
Jorion’s prior equivalently as

η |Λ ∼ Nd(0 ,OΛO′
/κ1)

such thatp(η) = p(η |Λ) p(Λ) can be easily calculated, since

p(Λ) = p(λ) ∝
d∏

i=1

λ
κ2−1

i exp

(
−κ2λi

λ0

)

and

p(η |Λ) ∝ exp

(
−κ1

2
· η′OΛ−1O′

η

)
.

4.3 Data Description

In our empirical study we use daily log-returns of seven MSCIstock indices of
the countries USA, UK, Japan, Italy, Germany, France, and Canada. The indices
are adjusted by dividends, splits, etc. and are calculated on the basis of USD stock
prices. We haven = 1260 daily observations ranging from 2001-12-03 to 2006-
09-29 and the whole sample is divided chronologically into 5subsets where each
subset contains 252 observations. In Table 1 we can see the sample means and
standard deviations of the yearly discrete returns of each country. In our study
we assume that the investment horizon corresponds to 1 year,i.e. T = 252 and
the quantities given in Table 1 are based on the available 5 observations of yearly
discrete returns. Of course, since the sample size is very small, these values are
strongly affected by estimation errors.

The process(Xt | θ) of daily log-returns is assumed to be an ergodic stationary
martingale difference sequence as described in Section 2.2. Hence, both the sample
meanη̂ and the sample covariance matrix̂Υ of the daily log-returns are strongly
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USA UK JPN ITA GER FRA CAN
µ̂ 6.29% 13.41% 13.46% 18.54% 15.23% 15.73% 20.71%
σ̂ 17.42% 19.60% 24.13% 20.42% 28.14% 24.52% 19.29%

Table 2: Descriptive statistics of yearly discrete returnsbased on daily log-returns.

λ̂1 λ̂2 λ̂3 λ̂4 λ̂5 λ̂6 λ̂7

6.45 e-4 1.64 e-4 0.94 e-4 0.48 e-4 0.32 e-4 0.21 e-4 0.14 e-4
63.35 % 16.09 % 9.21 % 4.75 % 3.17 % 2.09 % 1.33 %

Table 3: Eigenvalues of the sample covariance matrix of daily log-returns.

consistent estimators forη(θ) andΥL(θ), respectively. Now we can also estimate
the first and second moments of yearly discrete returns by using the formulas given
in Section 2.4 based on daily log-returns, viz

ÎE(R | θ) = exp
[
252

{
η̂ + diag

(
Υ̂

)
/2

}]
− 1

and

V̂ar(R | θ) = exp
[
252

{
η̂1

′ + 1η̂
′ + D̂

}]
⊙

[
exp

{
252 Υ̂

}
− 11

′
]
,

where

D̂ =
diag

{
Υ̂

}
1
′ + 1diag

{
Υ̂

}′

2
.

The corresponding values are given in Table 2. Note that there are only slight
differences between the results in Table 1 and Table 2 regarding the means but for
the standard deviations the results can differ substantially.

Table 3 contains the eigenvalues ofΥ̂ as well as their proportions of the total vari-
ation. As described earlier, each eigenvalue can be interpreted as the unconditional
variance of a principal component. In our case, the first component (i.e. the sys-
tematic risk of the market) almost explains two third of the total variation and the
impact of the other components are relatively small. Similar results for financial
data have been frequently observed in literature (see, e.g., Plerou et al., 1999). Note
that our prior expectation forλi corresponds toλ0 = 0.22

/252 =1.59 e-4, which
reflects a relatively conservative assumption relative to the empirical results. For
the confidence inλ0 we choose the parameterκ2 = 2 which leads to an a priori
standard deviation ofλi roughly corresponding to 1.12 e-4 (i = 1, . . . , d).

4.4 Results

In this section we present the results of our simulation. Ourmain objective is to
demonstrate the practical applicability of our approach. We want to show how
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prior information can be used to account for estimation risk– even if the under-
lying model is complex – and to obtain well-diversified portfolios. The parameter
κ1 , which reflects the investor’s confidence in their prior assumption about the ex-
pected log-returns, is varied in order to see how expert knowledge determines the
optimal portfolio. Asset return variances and covariancescan be estimated quite
good by using short-term asset returns. In contrast, it is well-known that portfolio
selection is very sensitive to expected asset returns whichcannot be estimated ac-
curately. Hence, investors preferably have a strong confidence about expected asset
returns in order to reduce estimation risk. This is the reason why we keptκ2 = 2

fixed, which indicates that there is only little confidence inthe prior information
about the eigenvalues.

We performed standard Markowitz portfolio selection (Markowitz, 1952). Our ob-
jective function is the traditional mean-variance certainty equivalent given by Eq. 2
where we choose a risk aversion ofα = 1. In many practical situations constraints
are included in the optimization problem. For instance, investors might be will-
ing to forbid short-selling. Other constraints might be given by legal issues and
so on. We do not want to provide optimal portfolios for each imaginable investor,
but instead we present a flexible framework which can be adapted to most kinds of
situations.

Each additional constraint limits the space of alternatives. Therefore, in the first
part of the study (P1) we have only one constraint, namely thebudget constraint
CB : w

′
1 = 1 . The short-selling constraintCS : w ≥ 0 is additionally considered

in the second part of the study (P2). In our study we are searching for the optimal
portfolio given by (1) using the objective function

ϕ(v) = v
′
µ − 1

2
· v′Σ v , s.t.v ∈ C ,

whereC = C1 = CB in P1 andC = C2 = CB ∩ CS in P2.

Table 4 contains our results of the portfolio optimization.These can be com-
pared with the portfolio weights obtained by traditional Markowitz optimization,
i.e. searching for theMarkowitz portfolio(MP), viz

MP = arg max
v

v
′ÎE(R | θ) − 1

2
· v′V̂ar(R | θ)v , s.t.v ∈ C ,

and the so-calledglobal minimum variance portfolio(MVP), i.e.

MVP = arg min
v

v
′
V̂ar(R | θ)v , s.t.v ∈ C .

The MVP has been advocated by many authors as an alternative to the traditional
mean-variance optimal portfolio since there are no expected asset returns which
have to be estimated and thus the impact of estimation errorscan be substantially
reduced (Frahm, 2007).

As we can see in Table 4 the Markowitz portfolios tend to overrate assets with
large expected returns. In P1 the MP suggests a short-selling of 484.01% of USA
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empirical USA UK JPN ITA GER FRA CAN

µ̂ 6.29% 13.41% 13.46% 18.54% 15.23% 15.73% 20.71%
σ̂ 17.42% 19.60% 24.13% 20.42% 28.14% 24.52% 19.29%
MP1 −484.01% −195.93% −13.18% 373.62% −2.45% −65.10% 487.05%
MP2 0% 0% 0% 0% 0% 0% 100%

MVP1 50.37% 37.72% 20.13% 43.27% −28.86% −28.46% 5.84%
MVP2 42.49% 19.17% 23.88% 4.64% 0% 0% 9.83%

κ1 = 1 USA UK JPN ITA GER FRA CAN

µ 5.25% 12.44% 19.57% 16.29% 13.32% 14.52% 25.29%
σ 17.96% 20.66% 27.29% 21.39% 29.02% 25.80% 21.53%
w1 −553.87% −208.89% 54.80% 200.23% −25.00% 2.05% 630.68%
w2 0% 0% 0% 0% 0% 0% 100%

1260 USA UK JPN ITA GER FRA CAN

µ 4.76% 9.06% 14.02% 11.77% 11.94% 11.52% 15.26%
σ 17.57% 19.39% 24.97% 19.97% 27.98% 24.39% 18.83%
w1 −373.32% −190.63% 62.17% 98.56% 64.67% 33.79% 404.76%
w2 0% 0% 14.70% 0% 0% 0% 85.30%

2520 USA UK JPN ITA GER FRA CAN

µ 4.51% 7.73% 10.81% 9.67% 10.74% 10.01% 11.67%
σ 17.31% 18.93% 23.91% 19.33% 27.41% 23.81% 17.93%
w1 −278.63% −159.50% 52.44% 55.36% 79.64% 44.51% 306.18%
w2 0% 0% 18.69% 0% 0% 0% 81.31%

6300 USA UK JPN ITA GER FRA CAN

µ 4.06% 5.86% 7.00% 7.05% 9.05% 7.91% 7.55%
σ 17.14% 18.36% 22.48% 18.66% 26.53% 22.96% 17.11%
w1 −147.49% −108.20% 40.34% 8.29% 88.43% 49.15% 169.47%
w2 0% 0% 19.46% 0% 36.04% 0% 44.50%

12600 USA UK JPN ITA GER FRA CAN

µ 2.96% 4.15% 5.11% 4.84% 6.72% 5.70% 4.88%
σ 16.80% 18.00% 22.10% 18.15% 25.83% 23.37% 16.55%
w1 −76.83% −60.97% 43.01% −6.15% 71.30% 35.85% 93.78%
w2 0% 0% 31.10% 0% 43.28% 0% 25.62%

Table 4: Empirical and predictive moments of yearly discrete returns as well as the
corresponding portfolio weights for the constraintsC1 andC2 .

and investing487.05% in CAN - a strategy which would certainly not be pursued
in practice. When short-selling is forbidden, all the available capital is invested in
CAN. Compared to that the two minimum variance portfolios are far more diver-
sified. However, it can be clearly seen that these portfoliosare not optimal in the
sense of expected return maximization, since the asset withthe smallest estimated
return, USA, possesses the highest weight in both minimum variance portfolios.

The optimal portfolios in caseκ1 = 1, which almost corresponds to a diffuse prior
information about the expected asset returns, are similar to the Markowitz port-
folios. However, using an appropriate model for high-frequency data apparently
leads to slight changes of the expected returns, variances,and covariances which
alters the optimal portfolios. Nevertheless, the optimal portfolio for κ1 = 1 in P2
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is the same as in the empirical case, where all the capital is invested in CAN.

The more confident the investor is about the expected asset returns, the more the
optimal portfolios tend to be diversified. In caseκ1 = 1260 the investor relies
on their prior assumption about the expected returns as muchas on the empirical
information. The optimal portfolio in P1 does not possess weights which are such
excessive as for traditional Markowitz optimization or in the caseκ1 = 1. For
instance the amount of capital invested in CAN reduces to404.76%. In P2 not all
the capital is put into CAN anymore. Instead,14.70% is invested in JPN now. The
reason for that is that the expected predictive asset returns are shrunk towards the
prior assumptionη0 = 0. So increasing the confidence in prior information clearly
reduces estimation risk. This effect even strengthens whenκ1 is further increased.

In fact, κ1 = 6300 is a configuration which can be seen as typical for practical
investment problems. Here the investor trusts their own assumption about the ex-
pected returns 5 times more than the empirical information.Recall that we use a
time series of daily log-returns lasting 5 years, which means that the estimation of
yearly expected returns is based on 5 observations. So from apractical point of
view, when it comes to estimating expected returns it makes sense to trust far more
in expert knowledge than in time series information. The optimal portfolio in P2 is
more diversified than the Markowitz portfolio on the one hand. On the other hand,
in contrast to the MVP, it also takes account for the expectedpredictive returns and
the investor’s will to reap the profit.

The optimal portfolios forκ1 = 12600 are even more diversified. However, here
almost all of the empirical information about the expected returns is lost, since
the confidence in the corresponding prior assumption is 10 times higher than the
empirical evidence.

5 Conclusion

We develop an approach to incorporate the stylized facts of high-frequency finan-
cial data and arbitrary prior information into the portfolio optimization process.
Our approach is characterized by rather weak assumptions about the underlying
stochastic process. Using Gordin’s central limit theorem,we are able to approxi-
mate the distribution of asset log-returns of long investment horizons by the normal
distribution. In order to avoid estimation risk, we rely on the Bayesian framework
which allows us to include subjective prior information such as expert knowledge.
By using a Markov chain Monte Carlo algorithm we simulate theposterior distri-
bution of the unknown model parameters and after that we calculate the first two
moments of the discrete predictive asset returns after the given investment period.
In a last step, we perform a standard portfolio optimizationusing these predictive
moments, which incorporate both empirical information contained in the data and
subjective prior information of the investor.
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We give a practical example to demonstrate the applicability of our approach to
real-world problems. For that purpose, we use 7 time series of daily log-returns.
For the data generating process, we propose an orthogonal MGARCH model. The
investor’s subjective prior information about expected asset returns and eigenvalues
of the covariance matrix is modeled using a hierarchical approach. The suggested
portfolios show that prior assumptions have a substantial impact on the optimal
decision. Our portfolios become well-diversified comparedto the outcomes of tra-
ditional portfolio optimization strategies and reflect theinvestor’s assessment about
the market. The computational performance of our algorithmencourages applying
our approach to higher-dimensional problems in practice, where both empirical
information contained in time series and expert knowledge are available.
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