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1 Motivation

Traditional portfolio optimization strategies are sudi@p to parameter uncer-
tainty (Jorion, 1986, Kalymon, 1971, Klein and Bawa, 197@rkbwitz, 1952,
Michaud, 1989). Estimation risk is mainly driven by the uriamty regarding
the expected asset returns rather than their variancesoaadances (Chopra and
Ziemba, 1993). However, it can be shown that estimating tvartance matrix
is also problematic if the sample size is small compared ¢éornthmber of as-
sets (Frahm, 2007, Kempf and Memmel, 2006). Many portfofitnoization ap-
proaches rely on rather simple assumptions about theldison of asset returns.
However, it is well-known that short-term financial data d#nheavy-tailed or
at least leptokurtic, tail-dependent, skewed or possgssimer kinds of asymme-
tries. Financial time series typically exhibit volatilityusters or even long-memory
which holds especially if log-price changes (so-caltmgireturng of stocks, stock
indices, and foreign exchange rates are considered. Mergugh-frequency data
generally are non-stationary, have jumps, and are stratepgndent.

One might argue that the stylized facts do not matter for lomgstment horizons
since Gordin’s central limit theorem (Hayashi, 2000, p./@ées effect even for
ergodic stationary processes. For example, many apjplicain finance rely on the
normal distribution assumption and so low-frequency ded¢auaed to estimate the
expected values of long-term, such as monthly or quartaslyet returns. Indeed,
Merton (1980) showed that the estimation of expected retgamerally cannot be
improved by increasing the sampling frequency. Howevetreaiesing the sam-
pling frequency leads to a loss of statistical efficiencycsinelevant information
about the variances and covariances of asset returns gefTtm$ay’s availability
of high-frequency data offers new opportunities for st analysis, since these
data include much more information than samples of lowtfesgpy data. Never-
theless, by using high-frequency data aguboring the stylized facts of empirical
finance we would also obtain inaccurate estimates of thenapportfolio weights.
That means when working with high-frequency-data we neexpgnopriate model
which accounts for the specific characteristics of the daterating process. The
principal goal of this paper is to present a general approdtbh takes account of
both estimation risks and stylized facts. Such kind of appghonowadays is fea-
sible due to the permanent rise of computational power,cgspethe facilities of
high-performance computing.

In order to incorporate estimation risk we rely on the Bagesramework. This

will be described in detail in Section 2. The Bayesian framdvhas several advan-
tages. First of all we are able to mafimite-samplanferences. This is important
even for a large number of observations since the effecavepte size strongly
depends on the number of observations relative to the nuaflassets (Frahm and
Jaekel, 2007). Further, Bayesian analysis allows us toi@densot only historical

data but also to incorporate prior information such as eéx{pewledge. This can
lead to more reasonable and well-diversified portfoliobegathan relying on pure



statistical portfolio optimization methods (Black andteiman, 1992, Herold and
Maurer, 2006, Scherer and Martin, 2007, Ch. 7). The dynaofitsgh-frequency
data might become very complicated so that traditionahedton procedures such
as maximum-likelihood estimation quickly hit the wall. lordrast, by using con-
temporary methods of numerical integration such as MarkainctMonte Carlo or
importance sampling, calculating the Bayesian postetigridution of some pa-
rameter is possible even for very complicated time seriedaiso(Geweke, 1989,
1995).

For the purpose of portfolio optimization we are interestethe predictive distri-
bution of asset returns. The predictive distribution combine$ lestimation risk
and market risk. Many Bayesian approaches to portfoliontigtition are based
on a purely analytical fundament (Garlappi et al., 2007i080r1986, Klein and
Bawa, 1976, Polson and Tew, 2000, Meucci, 2005, Ch. 7). Hewdhis is not
suitable if we want to take stylized facts into account arehtgenerally it is not
possible to find the predictive distribution analytically avoid limitations of such
kind, we suggest a Metropolis-Hastings-like algorithmdnulating the posterior
distribution of the unknown parameters. This is derivedlmntasis of empirical
information obtained from time series data and prior infation possibly given
by an expert. The Markov chain Monte Carlo method belongfiédoroad class
of tempering algorithms which have been frequently usedainnal sciences and
proven to be able to simulate high-order distributionss thierefore natural to ap-
ply them to high-order financial problems like portfolio mpization. By choosing
a numerical framework, principally we can use almost anypabdistic model for
the data and parameters. In Section 4 we will present atieglisrtfolio optimiza-
tion problem which has been performed on a standard PC inmebte time.

2 The General Approach

2.1 Portfolio Optimization Problem

In the following we consider thdiscrete predictive returnef several assets after
some long investment horizon. We specifically concentrataliscrete or, say,
simple returns instead of log-returns for two reasons:

(1) Traditional portfolio theory is based on and can workyonlth discrete re-
turns rather than, e.g., log-returns.

(2) Moreover, discrete returns usually differ substalytitbm log-returns if the
investment horizon is long.

The latter is often neglected in literature. Moreover, waaamtrate on long in-
vestment horizons since in practice investors usually donamt to liquidate or



re-balance a portfolio each day or week. In contrast, we kik ©f, e.g., quar-
terly or yearly investment periods. The meaning of ‘prad&tasset returns is to
be understood in the Bayesian sense and will be explaineddatin more detalil.
Roughly speaking, the distribution of predictive assainet do not only account
for market risk but also for the parameter uncertainty whschlways present if the
parameters of some model for the asset returns are unknown.

Let R = (Ry,..., Ry) be ad-dimensional vector of discrete predictive asset re-
turns,u = E(R) thed x 1 vector of predictive expected returns and= Var(R) <

oo the corresponding x d matrix of predictive variances and covariances. We are
searching for

w = argmax p(v'p, v’ v), s.tweC c R?, Q)
v

wherev represents a portfolio, i.e. a vector of asset weightsaiscan appropriate
objective function (i.e is strongly increasing in the first and decreasing in the
second argument) such as the well-known mean-variancamgrequivalent

@(U'M,U'EU):U'M—%-U'EU 2

with @ > 0. Note thatv’'u represents the expectation an@ v is the variance
of the predictive portfolio return of a buy-and-hold polifoafter the given invest-
ment period. The principal goal of this work is to show howphedictive moments
1 andX (which incorporate both market and estimation risk) candleuated if
short-term asset log-returns are not normally distribupsbsibly serially depen-
dent, or exhibit other kinds of stylized facts (see below).

2.2 Gordin’s Central Limit Theorem

Now let (X;|0) (¢t € Z) be a strongly stationary process representing the short-
termlog-returnsof some asset witli( X, | §) = n(#). Note that here we consider

a stochastic process under some unknown pararfietegd C RP. We assume also
that (X, | 0) is ergodic. Ergodicity means that any existing and finite rantof

X | 0 can be consistently estimated by using the correspondimglsanoment of

the time seriesXy, ..., X,, (n — o0). This is guaranteed {fX;,..., X1« |0) is
asymptotically independent 0X;_,,,..., Xy ,1;|0) asn — oo forall k,l € N
(Hayashi, 2000, p. 101). Further, we suppose that the sewmmdents ofX; | ¢
exist and are finite.

However, for the central limit theorem (CLT) we need someitimithl assump-
tion. More precisely, the CLT holds for the sample meaf| ) if the centered
procesg X; — n(0) | 0) satisfies Gordin’s condition. L&{; := (X, X;—1,... |0)
be the history of X, |6) at timet € Z. Roughly speaking, Gordin’s condition
implies that the impact of,_,, on the conditional expectation df; | § vanishes
asn — oo and also that the conditional expectationsef # do not vary too much
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in time (Hayashi, 2000, p. 403). In that case it is guarantbatithe CLT holds
with an asymptotic or, sajpng-run variance

oo

ot (0) == > k),

k=—o0

where~y is the autocovariance function 0K, | 6) (Hayashi, 2000, p. 401) given
the unknown parametér. This result can be easily extended to @ngimensional
stochastic process (Hayashi, 2000, p. 405). Hence, in tleviag let (X, | 0) be
an ergodic stationany-dimensional process satisfying Gordin’s condition.

¢From Gordin’s CLT it follows that long-term asset log-resi typically tend to
be normally distributed even if the short-term log-retuame serially dependent
and heavy tailed. A broad class of time series models safsfglin’s condition.
Hence, long-term asset log-return vectors are approxiynatgmally distributed,
ie.

T
log(1+R)|0 = X;|0=:X[0~Ng{Tn(6), TYL(0)}, (3)
t=1
where1 represents a column vector of ones dogl(-) is understood as taking
the logarithm of each component separately. H€fd) denotes the long-run
covariance matrix of the stochastic process (Hayashi, 200804) andl’ € N
represents the number of aggregated short-term log-setuyrsay, the investment
horizon. For example, X1, ..., X7 represent daily log-returns, the sum given
by Eq. 3 denotes a quarterly log-returrif/if= 63 and a yearly log-return in case
T = 252.

Of course, the Gaussian distribution hypothesis holds apfyroximately. How-
ever, in the following the additional suffix ‘approximatelyr any corresponding
symbol are suppressed for convenience. It is worth to merkiat we generally
suppose that both(#) andY',(6) can be computed either numerically or analyti-
cally under the specific time series model which is used fstiort-term asset log-
returns provided the model paramefeis known. Specifically, if X; — 7(0) | 6)

is a martingale difference sequence (Hayashi, 2000, p, fi#)means if

E(Xt|Ht,1,9):’l’](9), \V/tEZ,

the components dfX; | §) are serially uncorrelated. In that case the long-run co-
variance matrix('y, () turns out to be thetationaryvarianceY (9) of (X, | 6). The
martingale difference property is satisfied for a broadsctzEdime series models,
such as the family of multivariate GARCH processes (Bauvetias., 2006).

As elucidated in the introduction, estimating the momé&nj&?) andT Y, (#) from
long-term asset returns is inefficient. For example, wedtestimate the quantity
TY1(0) simply by applying the sample covariance matrix to the spoading
long-term asset log-returns. However in that case we waidre a large part
of the data and the resulting standard error would increasghty by a factor of
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VT relative to the approach based on high-frequency data. ¢{elecreasing the
sampling frequency leads to a loss of statistical efficiency

2.3 Bayesian Framework

In the Bayesian framework the model paramétés not assumed to be fixed but
it is considered as a random quantity possessing some pstobdtion p(6). The
posterior distributionp(# | ) corresponds to the distribution éfgiven some ob-
served data:. More specifically, in the following we shall interpretas historical
short-term asset log-return data. The likelihood funciidfi; ) = p(z | 0) repre-
sents some pre-defined probabilistic modelkfoNow the posterior distribution of
6 can be obtained by the Bayes formula

p(0|z) = L(0;2)p(0)/p(x)

so that the posterior involves both empirical and subjedtiformation.

However, in Bayesian analysis the posterior distribut®nat always the desired
object. Instead, one can be interested in the predictivetiiton of the data. Let
y be some unobserved data wherandy are conditionally independent givén
Then

p<y|x>=/p<y|e>p<e|x>d0

represents the predictive distributionsf In the following discussion this can be
interpreted as the distribution of a long-term asset Idgrreif we take the pa-
rameter uncertainty additionally into account. Each patamis weighted by its
posterior probability, i.e. the probability éfgiven the historical observations and
some expert knowledge. Notice that analytical solutiomsHe portfolio optimiza-
tion problem which are based on the predictive distribuiom only available for
relatively simple expressions for the prig(¥) and the likelihoodl (6 ; z).

The priorp(#) can be either ‘diffuse’ or ‘informative’. If the prior idiffusethe
model parameter is assumed to possess some ad-hoc distributh as the uni-
form distribution or the standard normal distribution. Tréor is calledinforma-
tive if some subjective information is necessary to determif@®. The chosen
terminology is somewhat misleading since we do not meandiffaise priors in
general are non-informative in the probabilistic senseestihe posterior distribu-
tion might drastically depend on the chosen diffuse prioentt, we believe that
Bayesian analysis is inherently subjective and since mastifioners have some
basic opinions about the evolution of asset prices they twigimt to include that
information in the optimization process (Black and Litterm 1992). The present
work heavily relies on the idea of using subjective inforimatwhenever it is pos-
sible.

One popular example of Bayesian portfolio optimizatiorhis &pproach of Black
and Litterman (1992). They show how to distill implicit infoation about the

6



distribution of asset returns from the market by using saathdesults of portfolio
theory. This is combined with the investor’s own belief whigypically leads to
optimal portfolios being more robust against estimatiamrsrthan solutions ob-
tained by pure statistical methods. However, in order torizygically tractable,
the Black-Litterman approach assumes that asset retuensoamally distributed.
Other Bayesian portfolio optimization techniques are itsg the work of Frost
and Savarino (1986) and Jorion (1986). They all share thee sfisadvantage,
namely that an analytic expression of the predictive diigtion or optimal portfo-
lio is only available by imposing unrealistic assumptionstioe underlying data or
otherwise being inefficient, since they have to be appliedidisg low-frequency
data.

Scherer and Martin (2007, Ch. 7) suggest to apply so-caltegugatepriors in
Bayesian portfolio optimization. These are informativeops which, after multi-
plying with the likelihood, lead to a posterior distributithat is of the same type
as the chosen likelihood function. Again, this limitatiosncbe motivated by the
requirement to obtain analytically tractable expressimnghe posterior distribu-
tion. However, unrealistic assumptions about the distidiouof empirical data are
necessary in general and the set of possible prior disimitsiis substantially re-
stricted. In particular, conjugate priors often are notilate if the assumption
of normally distributed asset returns is relaxed. SchemndrMartin (2007, Ch. 7)
refer to a Markov chain Monte Carlo method (which will be dissed later on
in Chapter 3) to simulate the posterior distribution of theam and variance of
a single asset return. In this work we will show how this idea e extended
to incorporate arbitrary prior information given the assttirns are not normally
distributed.

For choosing some likelihood function férwe have to consider an appropriate
model for the data, that means to take account for the sti/fiaets of empirical
finance. These can be subsumed by the following anomaliesMs&leil et al.,
2005, p. 117):

(1) Short-term asset returns are heavy-tailed and paatiguhot Gaussian.

(2) Asset returns are not independent and identicallyibiged although they
show little serial correlation.

(3) In contrast, squared asset returns show strong serialaton.

(4) Asset volatility varies over time and appears in cluster

There are several alternatives to deal with these phenarkeninstance, GARCH
processes (Bollerslev, 1986, Engle, 1982) can be used telmolatility clusters.
Another possibility is to work with stochastic volatilityadels (Barndorff-Nielsen
et al., 2002, Jacquier et al., 1994, 2004).



2.4 Predictive Moments

In the last section we mentioned that the paramétisr considered as a random
guantity and from Section 2.2 we know that

X160~ Na{Tn(0), TTL(O)},

whereX | 6 denotes a long-term log-return vector given the unknowarpaters.
Hence, the vector of long-term discrete returns is given by

R|0=exp(X|0)—1,

whereexp(-) shall be interpreted as a component-wise function. Thus eam-
ponent ofR | # is log-normally distributed and it can be easily shown that

E(R|6) = exp[T{n(#) + diag(Y1(9))/2}] — 1
and
Var(R|6) = exp [T{n(e)r +1n(8) + D(@)}} ® [exp{TTL(e)} - 11'] ,
where® denotes the Hadamard (i.e. component-wise) product, and

_ diag{T1,(6)}1' + 1diag{Y1.(6)}’
> .

Finally, we obtain the predictive moments of the long-teagrteturn vector by the
law of total expectations and the variance decompositienrém, viz

p=TE(R) = E{E(R|0)}

D(0)

and

S =E{Var(R|0)} + Var{E(R|6)} .
Interestingly, the conditional means of the discrete retuare also determined by
the long-run variances. Moreover, predictive expectatamd variances of discrete
returns argonlinearfunctions of the investment horizdh Hence, the investment
horizon can have a substantial impact on the optimal paotféh Section 3 we will
see how the predictive moments can be approximated by Mamie §imulation.

3 Numerical Implementation

Now we will discuss several Markov chain Monte Carlo alduoris for simulating

the posterior distribution(6 | z) even if this has a rather complicated analytical
structure. There is a big number of different simulatiorhtéques like for instance
importance samplingGamerman and Lopes, 2006, Ch. 3.4). However, we got the
best simulation results in reasonable time using a Markainckonte Carlo algo-
rithm, which will be presented in the following sections.olir case we want to use
Markov chains only to sample from a complex posterior disttion. Hence, we
have to guarantee that the stationary distribution of thesiclered Markov chain
corresponds tp(é | x).



3.1 Gibbs Sampling

A simple approach is known &3ibbs sampling That means for simulating we
could principally start with some initial parameter vector= (6,,...,6,) and
draw a new realizatiofl; of the first component from the conditional distribution
of 0, givends, ..., 0, . Then we can take the new parameter ve(#ros, . .., 6,)
into consideration and simulate the second componefithyf drawing from the
distribution offy under the new conditio#i}, 6, . .., 6, , etc., until we obtain the
parameter vectod’ = (01,...,0,). If the same procedure is repeated with
and so on we obtain a Markov chain whose stationary distabutorresponds to
the posterior distribution of. Scherer and Martin (2007, Ch. 7) give an exam-
ple of how to use Gibbs sampling for simulating the postedistribution of the
mean and variance of a normally distributed single assetrrdty using a conju-
gate prior. However, in our case this is not a useful appraaote drawing from
the conditional posterior distributions éfis not substantially easier than drawing
directly fromp(6 | x).

3.2 Metropolis-Hastings Algorithm

Another MCMC scheme which is frequently used in Bayesiatissiizs is the
Metropolis-Hastings algorithm (Hastings, 1970, Metrapei al., 1953). An ap-
plication to the Bayesian analysis of stochastic volgtifitodels is presented by
Jacquier et al. (2004). The Metropolis-Hastings algoriirmrery similar to the
Gibbs sampler, but unlike that, it does not require to sarfrpla the conditional
stationary distribution. In contrast, the sampling partdnpletely reduced to
sampling from an arbitrarproposal distributionwhich is easy to draw from. The
stationary distribution is then only needed to calculateatceptance probability
of each new state in the chain, which comes from the propastikdition. This is
why we choose a Metropolis-Hastings-like algorithm to dees the distribution
of #|z. First, we will present the Metropolis-Hastings algoritlamd after that an
extension callegbarallel temperingwill be discussed.

Assume there exists sont@rget distributionr(6) which shall be simulated. The
current state of the chain will be denoteddy In case of the Metropolis-Hastings
algorithm, the simulation is done by introducing an ‘easyltaw from’ proposal
distribution¢(¢, ¢) which denotes the distribution of a proposal to move frortesta
¢ to stateg’. However, the actual probability to move frapto ¢’ is determined
by the acceptance probability

(4)

a(4, ) :mm{l,w}.

() q(, ¢')

Note that if we have a symmetric proposal distribution, tbeeptance probability
is simply given by = min{1, 7 (¢') /7 (¢)}.



The probability density of a new staté given an old state, that is the so-called
transition kernelK (¢, ¢') (Gamerman and Lopes, 2006, p. 194) of the Markov
chain, is given by

K(¢,¢') = (¢, &) a(e, &) + 0(¢' — ¢) (1 - /qw, §) a(,€) d§> :

wheres is the Dirac distribution. It can be shown that for the acaapé probability
given by Eq. 4, theletailed balance condition

(@)K (¢,¢) = m(¢") K (¢, ¢)

is satisfied for allp and¢’. Thus we obtain a reversible Markov chain (Gamer-
man and Lopes, 2006, Ch. 4.6). That means by the presentedpdis-Hastings
algorithm in fact we are able to simulate realizations frben target distributionr.

3.3 Parallel Tempering

Though the Metropolis-Hastings algorithm is very powertuie big problem can
easily occur: The Markov chain can get stuck in local optioreefvery long time.
Assume for instance a univariate bi-modal distributionthi chain is currently
in a region around one of the two modes, there is almost nanfiveeto move to
the region around the other mode, since the acceptancehjigba(¢, ¢') ap-
proaches zero if-(¢') is much smaller tham(¢). To avoid this problem, the idea
of heatedequilibrium distributions has been introduced. Insteasimiulating only
one stationary distribution (6) at a time,m parallel chains are used, each having
an equilibrium distribution

mi(0) oc wp (0) /), Vi=1,...,m,

whereT; is thetemperatureof the distributionr;(#). The temperature of the de-
sired stationary distribution (0) is 7} = 1. At each iteration of the algorithm, an
exchange between the statgsindg; of chaini and; is proposed. The acceptance
probability of this swap is
. m‘(qﬁj)ﬂj(@)}
Qg ¢27¢ :mln{17 .
(95 95) mi(¢:) mj(9;)

One disadvantage of this method is that only the outcomeaifidhcontains sam-
ples from the desired distribution and all the other samatesdropped. However,
especially for very complex distributions the advantageatfgetting stuck in lo-
cal modes overcomes the disadvantage of high computatidfoat. For further
details and applications of tempering algorithms see fetaimce Gamerman and
Lopes (2006, Ch. 6 and Ch. 7).
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In our case the stationary distribution which has to be siteal is the posterior
distribution of the model parameters which can become vemypiex. In our em-
pirical study we will usen = 2 different chains. For the proposal distribution we
choose a composite distributiarid, 6') by taking account of the specific domains
of the different components & Of course we could also choose a proposal dis-
tribution which probably leads to realizations outsidesobut, however, if some
parameter is proposed to exceed the parameter set, theppoimability and thus
also the acceptance probability becomes zero. Hence,ribt&mappen that we get
some realizations df such that) ¢ ©.

Our implementation of the parallel tempering algorithmsadalows:

1. Create the initial parameter vectéisandd; .
2. Repeat the following steps very often:

(a) Generat#; andd) by randomly drawing from the proposal distribu-
tions.

(b) Calculatep(0} | ) oc L6} ;x) p(6)) andp(6} | x) o LB} ;) p(6)).

(c) Calculate

/ /
aq = min {1 p(07 | ) Q(‘91791)}

"p(01|x)q(01,0")
and

oy = min< 1 p(0; | x)(l/TQ)Q(%aHZ)
" p(02 | 2)1/T2)q(02,05) |

(d) Setf; = 6; with probability oy, andfs = 65 with probability o,
otherwise keep the oléh or 6, , respectively.

(e) Swap the statedy andf, of the chains with probability

(02| 2) p(07 | )1/ T2) }
E ~

. p
01,02) = 1
0412( 1 2) mll’l{ ’p(el )p(92|$)(1/T2)
As mentioned above we only consider the realizations of tisedhain which are
obtained after some burning-in phase.

4 Empirical Study

In this section we will present an empirical study based enftamework devel-
oped in the previous sections. First, we create a model fyir-fiequency asset
log-returns by taking account of stylized facts. It is a rvaltiate extension of
the GARCH model developed by Bollerslev (1986). A comprahenoverview
on different multivariate GARCH (MGARCH) models is given Bauwens et al.
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(2006). MGARCH processes are martingale difference samseand so Gordin’s
condition (see Section 2.2) is automatically satisfied.tl&ur the predictive mo-
ments (see Section 2.4) can be easily calculated by the MAitCihm discussed
in Section 3. After the data generating process is developegresent the chosen
prior information for the unknown model parameter Then we will apply our
method to time series data to find optimal portfolios.

4.1 Modeling the Distribution of Asset Log-Returns

In this section we will describe a way for modeling the diaition of daily asset
log-returns. We will concentrate on risky assets. The fisk-asset or, say, money
market account does not possess any market risk per dafinitttat means we do
not need any stochastic model and so there exists no parammegstainty.

In order be provide a flexible framework for the asset retunresrely on the broad
class of elliptically symmetric distributions. &dimensional random vectoX is
said to beelliptically symmetric distributedCambanis et al., 1981) if and only if

X< p+TRU

with € R? being a location vectol, € R?*¥ is a transformation matrix;/ a
k-dimensional random vector uniformly distributed on thdt inypersphere, and
‘R is a non-negative random variable stochastically independfU. The positive
semi-definite matrix) := I'T” is referred to as thdispersion matribof X andR

is called itsgenerating variate By choosingR properly, we are able to account
for stylized facts like heavy tails. Further, it can be shdinait

V= Var(X) = E(R?)/k-Q

is the covariance matrix of providedE(R?) < cc.
A d-dimensional MGARCH processX;) is characterized by

4 1
Xi|Hir =0+ Ve,

wheren is ad x 1 vector of time-independent expected log-retuiiridgs a function
only of H;_1 and denotes thé x d positive definite conditional covariance matrix
of the log-return vectoX;, ande; is an independent and identically distributéc1
vector of perturbations witliE(e;) = 0 and covariance matriXar(e;) = I. If €

is assumed to be spherically distributed, i.e. ellipticaymmetric with location 0
and dispersion proportional g , then the MGARCH model perfectly fits into the
class of elliptically symmetric distributions.

There are various specifications of the time-dependentriemae matrixV;. For
a thorough discussion of MGARCH processes see Bauwens @08I6). Since
MGARCH specifications often require a huge number of pararaetnd are hardly
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applicable to practical problems, for complexity reductie suggest to use a prin-
cipal components model for the asset log-returns. The yidgridea of principal
components is that most of the dynamics of the observed datae explained by
a small number of uncorrelated factors. The spectral deositign theorem as-
sures that the covariance matiixof an elliptically symmetric distributed random
vectorX can be decomposed intd = OAQ’, where

¢ A is the diagonal matrix of the eigenvalugs, ..., Ay of V and

e O is an orthogonafl x d matrix containing the associated eigenvectors.

By applying this decomposition for the vector of asset leiims we can specify
the MGARCH model as

1
X[ Hi1 L0+ OAZe,

and define )
Y, = Aler = O (X — ).

This reduces the number of required model parameters tidwosly, since the el-
ements ofY; are uncorrelated per definition. However, we have to preghatehe
eigenvectors do not change over time. Speaking economitiadél factors which
drive the dynamics of the asset log-returns do not changeéumpactof each fac-

tor can vary over time. For modeling the componentd gfve can simply assume
that Y; consists ofd unrelated univariate GARCH(1,1) processes. The resulting
process is sometimes calledhogonal GARCH (Bauwens et al., 2006).

Principally, we can choose any elliptically symmetric dizition for modeling
the perturbation; as long as the corresponding density function can be compute
either numerically or analytically. However, here we assuhate, is multivariate

t-distributed, i.e.
v—2
etwtd(O, ~Id,V>
14

with v > 2 degrees of freedom and the dispersion matrix is suchhat,) = 1, .
Hence, the random vectdf, | H;_, possesses the density

T(42)  [detA;? (20— ) ON Oz — )\~ 5
(o | Hi—1) = ryy \ omT (1 + — ) ;

whereA; is a diagonall x d matrix with main diagonal elements

)‘it =% + a’i}/i?t—l + /Bi)"i,t—l ) 1= 17 e 7d7 (5)

representing the conditional variances of therincipal components. Note that
the orthogonal matridx® (d x d) contains(g) free parameters and there &@
GARCH parameters. Altogether, the resulting data gemaygtrocess contains
onlyd(d+ 7)/2 + 1 parameters.

13



4.2 Modeling the Prior Information

There are several ways to implement prior information. Isecaf a diffuse prior
there is no explicit information that is incorporated inte fprior distribution. This
is often done to get an analytical expression for the pastelistribution and so
to obtain an analytical result for the optimal portfolio. Wever, it can be shown
that the diffuse prior approach can lead to paradox resBisger, 2006) and the
concrete choice of the diffuse prior can have a substamtiphtt on the optimal
decision. Therefore, as already mentioned, it is suggéstase informative priors
whenever it is possible.

Our hierarchical approach is very general. First of all thtg our model param-
eters are given by, o, 5, A, O, v. Heren (d x 1) is the vector of expected asset
log-returns (dx 1) andg (d x 1) contain the GARCH(1,1) parameters according

to (5) and thel x 1 vector\ contains thainconditionalvariances\y, ..., A4, i.€.
Vi .
N=—"— =1,...,d.
(2 1 _ al _ /BZ 7 Z 7 7

Note that the parameterg = X\; (1 — «; — ;) (i = 1,...,d) follow implicitly
from «, 5, and\ . That means we use the following re-parameterization obEq.

Ait =N (1= a; — B;) + Y4 1 + Bidig—1, i=1,...,d.

We will substitute© by an estimate based on the sample covariance matrix of the
time series data. That meadsis fixed for the sake of simplicity. Finally, the
number of degrees of freedomis set to 3 to account for the typical heavy tails
of daily log-returns. We did not observe any improvementsnitgoducing some
prior distribution forv. Hence, we obtain the parameter vedio= (n, a, 3, \)

and suppose that they are a priori stochastically independe.

p(0) = p(n) p(a) p(B) p(N) -

Sinceq, 5 € (0, 1) we decided to use flat priors farand3 where the components

of o and 8 are assumed to be mutually independent. So the priof fcan be
simply expressed gag6) = p(n) p(\).

Also the components of are assumed to be mutually independent but each one fol-
lows a gamma distribution, i.8; ~ I'(k2, A\g/k2) (i = 1,...,d) and)\g, ky > 0.
Hence, we expect a priori that each principal componentiisame proportion

of total variation. Note thaE()\;) = )\ is constant bular()\;) = A3/k2. That
meansk, can be interpreted as the investor’s confidence that thendlitcanal
variances of the principal components indeed correspong tdn our empirical
study we choos@g = 0.22 /T andrs = 2.

For the expected values of the daily log-returns we use tibe proposed by Jorion
(1986), i.e.
NV ~ Na(no, V/k1),
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USA UK JPN ITA GER FRA CAN
5.98% 1250% 12.78% 17.63% 14.27% 14.53% 20.97%
16.07% 13.70% 21.55% 14.68% 23.44% 17.90% 22.10%

Q> T

Table 1. Descriptive statistics of yearly discrete returns

wherer is a vector of prior expected returns. We decided to ch@ggse 0 since
sample means of daily log-returns are typically close t@ ZbtcNeil et al., 2005,

p. 117). The scale parameter represents the confidence of the investor in their
a priori assumption concerning and can be seen as a virtual sample size. For
instance, if there are = 1260 observations (i.e. 5 trading years) then= 1260
would mean that the investor trusts in their own belief abpats much as the
empirical evidence given by the time series.

Note thatV = OAQ’ whereO is fixed andA is random. Hence, we can write
Jorion’s prior equivalently as

1A ~ Ny(0, 0N [k1)

such thap(n) = p(n|A) p(A) can be easily calculated, since

d
)\4
A) =p(X Al - >
P =p0) = [ exp (-2

and
p(n|A) o< exp (—% : n’OAlO’n> :

4.3 Data Description

In our empirical study we use daily log-returns of seven MStkk indices of
the countries USA, UK, Japan, Italy, Germany, France, anth@a The indices
are adjusted by dividends, splits, etc. and are calculatatdeobasis of USD stock
prices. We haves = 1260 daily observations ranging from 2001-12-03 to 2006-
09-29 and the whole sample is divided chronologically insubsets where each
subset contains 252 observations. In Table 1 we can see mii@esaneans and
standard deviations of the yearly discrete returns of eacimtcy. In our study
we assume that the investment horizon corresponds to 1iyedf, = 252 and
the quantities given in Table 1 are based on the availableséreations of yearly
discrete returns. Of course, since the sample size is veal,stinese values are
strongly affected by estimation errors.

The procesg X, | 0) of daily log-returns is assumed to be an ergodic stationary
martingale difference sequence as described in Sectiofirire, both the sample
meann and the sample covariance matfixof the daily log-returns are strongly
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USA UK JPN ITA GER FRA CAN
A 6.29% 13.41% 13.46% 18.54% 15.23% 15.73% 20.71%
o 17.42% 19.60% 24.13% 20.42% 28.14% 24.52% 19.29%

Table 2: Descriptive statistics of yearly discrete retusased on daily log-returns.

M Ao A3 s As As Ay
6.45e-4 1.64e-4 0.94e-4 048e-4 0.32e4 0.21e-4 0.14e-4
63.35% 16.09% 921% 475% 317% 209% 1.33%

Table 3: Eigenvalues of the sample covariance matrix ofydad-returns.

consistent estimators for(#) and Y1, (#), respectively. Now we can also estimate
the first and second moments of yearly discrete returns Inguke formulas given
in Section 2.4 based on daily log-returns, viz

B(R|0) = exp 252 {7 + diag(T) /2} | -1
and
Var(R|0) = exp [252 (i’ + 14 + f)}} ® [exp{252 T)— 11’] ,

where

H_ diag{?}l’ + ldiag{'/f}/
= 5 )
The corresponding values are given in Table 2. Note thatthee only slight
differences between the results in Table 1 and Table 2 ragatde means but for
the standard deviations the results can differ substintial

Table 3 contains the eigenvaluesfs well as their proportions of the total vari-
ation. As described earlier, each eigenvalue can be iregbias the unconditional
variance of a principal component. In our case, the first aorapt (i.e. the sys-
tematic risk of the market) almost explains two third of th&at variation and the
impact of the other components are relatively small. Sinmégults for financial
data have been frequently observed in literature (se¢Rdggou et al., 1999). Note
that our prior expectation fok; corresponds td, = 0.22/252 =1.59 e-4, which
reflects a relatively conservative assumption relativheoempirical results. For
the confidence in\g we choose the parametes = 2 which leads to an a priori
standard deviation of; roughly corresponding to 1.12e-4€ 1,...,d).

4.4 Results

In this section we present the results of our simulation. @am objective is to
demonstrate the practical applicability of our approache Want to show how
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prior information can be used to account for estimation #iskven if the under-
lying model is complex — and to obtain well-diversified poliths. The parameter
k1, which reflects the investor's confidence in their prior asgtion about the ex-
pected log-returns, is varied in order to see how expert kedye determines the
optimal portfolio. Asset return variances and covarianmas be estimated quite
good by using short-term asset returns. In contrast, it Iskmewn that portfolio
selection is very sensitive to expected asset returns wdainhot be estimated ac-
curately. Hence, investors preferably have a strong camfielabout expected asset
returns in order to reduce estimation risk. This is the reagby we keptk, = 2
fixed, which indicates that there is only little confidencehe prior information
about the eigenvalues.

We performed standard Markowitz portfolio selection (Mawitz, 1952). Our ob-
jective function is the traditional mean-variance cetiagguivalent given by Eq. 2
where we choose a risk aversionmf= 1. In many practical situations constraints
are included in the optimization problem. For instanceegtors might be will-
ing to forbid short-selling. Other constraints might beegivby legal issues and
so on. We do not want to provide optimal portfolios for eaclagimable investor,
but instead we present a flexible framework which can be adaptmost kinds of
situations.

Each additional constraint limits the space of alternativ€herefore, in the first
part of the study (P1) we have only one constraint, namehbtitget constraint
Cp: w'l = 1. The short-selling constraiidls : w > 0 is additionally considered
in the second part of the study (P2). In our study we are sigydébr the optimal

portfolio given by (1) using the objective function

1
Lp(v):vl,u—§-?/2v, stvecl,

whereC =C; =CginPlandC = Cy = Cg NCg in P2.

Table 4 contains our results of the portfolio optimizatiomhese can be com-
pared with the portfolio weights obtained by traditional fdawvitz optimization,
i.e. searching for th#larkowitz portfolio(MP), viz

. 11—
MP = arg max v'E(R | 0) — 3 -v'Var(R|0)v, stvecC,
and the so-calledlobal minimum variance portfoligMVP), i.e.
MVP = argmin v'@(R |0)v, stvelC.

The MVP has been advocated by many authors as an alternatikie traditional
mean-variance optimal portfolio since there are no expeatset returns which
have to be estimated and thus the impact of estimation ecearde substantially
reduced (Frahm, 2007).

As we can see in Table 4 the Markowitz portfolios tend to aterrassets with
large expected returns. In P1 the MP suggests a shortgselliti’4.01% of USA
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empirical USA UK JPN ITA GER FRA CAN
i 6.29% 13.41% 13.46% 18.54% 15.23% 15.73% 20.71%
o 17.42% 19.60% 24.13% 20.42% 28.14% 24.52% 19.29%
MPq —484.01% —195.93% —13.18%  373.62% —2.45% —65.10%  487.05%
MP2 0% 0% 0% 0% 0% 0% 100%
MVPq 50.37% 37.72% 20.13% 43.27% —28.86%  —28.46% 5.84%
MVP> 42.49% 19.17% 23.88% 4.64% 0% 0% 9.83%
k1 =1 USA UK JPN ITA GER FRA CAN
n 5.25% 12.44% 19.57% 16.29% 13.32% 14.52% 25.29%
o 17.96% 20.66% 27.29% 21.39% 29.02% 25.80% 21.53%
w1 —553.87%  —208.89% 54.80% 200.23%  —25.00% 2.05% 630.68%
w2 0% 0% 0% 0% 0% 0% 100%
1260 USA UK JPN ITA GER FRA CAN
m 4.76% 9.06% 14.02% 11.77% 11.94% 11.52% 15.26%
o 17.57% 19.39% 24.97% 19.97% 27.98% 24.39% 18.83%
w1 —373.32% —190.63% 62.17% 98.56% 64.67% 33.79% 404.76%
w2 0% 0% 14.70% 0% 0% 0% 85.30%
2520 USA UK JPN ITA GER FRA CAN
m 4.51% 7.73% 10.81% 9.67% 10.74% 10.01% 11.67%
o 17.31% 18.93% 23.91% 19.33% 27.41% 23.81% 17.93%
w1 —278.63%  —159.50% 52.44% 55.36% 79.64% 44.51% 306.18%
w2 0% 0% 18.69% 0% 0% 0% 81.31%
6300 USA UK JPN ITA GER FRA CAN
m 4.06% 5.86% 7.00% 7.05% 9.05% 7.91% 7.55%
o 17.14% 18.36% 22.48% 18.66% 26.53% 22.96% 17.11%
w1 —147.49% —108.20% 40.34% 8.29% 88.43% 49.15% 169.47%
w2 0% 0% 19.46% 0% 36.04% 0% 44.50%
12600 USA UK JPN ITA GER FRA CAN
m 2.96% 4.15% 5.11% 4.84% 6.72% 5.70% 4.88%
o 16.80% 18.00% 22.10% 18.15% 25.83% 23.3™% 16.55%
w1 —76.83% —60.97% 43.01% —6.15% 71.30% 35.85% 93.78%
w2 0% 0% 31.10% 0% 43.28% 0% 25.62%

Table 4. Empirical and predictive moments of yearly disereturns as well as the
corresponding portfolio weights for the constrai@{sandC, .

and investingt87.05% in CAN - a strategy which would certainly not be pursued
in practice. When short-selling is forbidden, all the aahbiié capital is invested in
CAN. Compared to that the two minimum variance portfolios far more diver-
sified. However, it can be clearly seen that these portf@msnot optimal in the
sense of expected return maximization, since the assethé@tbmallest estimated
return, USA, possesses the highest weight in both minimumanee portfolios.

The optimal portfolios in case; = 1, which almost corresponds to a diffuse prior
information about the expected asset returns, are singiléing Markowitz port-
folios. However, using an appropriate model for high-freoey data apparently
leads to slight changes of the expected returns, variaacescovariances which
alters the optimal portfolios. Nevertheless, the optinatfplio for x; = 1 in P2
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is the same as in the empirical case, where all the capitavésied in CAN.

The more confident the investor is about the expected agsehsethe more the
optimal portfolios tend to be diversified. In casg = 1260 the investor relies
on their prior assumption about the expected returns as msicim the empirical
information. The optimal portfolio in P1 does not possesgyiits which are such
excessive as for traditional Markowitz optimization or hetcasex; = 1. For
instance the amount of capital invested in CAN reducef®)#076%. In P2 not all
the capital is put into CAN anymore. Instedd,70% is invested in JPN now. The
reason for that is that the expected predictive asset eamnshrunk towards the
prior assumptiomy = 0. So increasing the confidence in prior information clearly
reduces estimation risk. This effect even strengthens whésfurther increased.

In fact, k1 = 6300 is a configuration which can be seen as typical for practical
investment problems. Here the investor trusts their ownrapsion about the ex-
pected returns 5 times more than the empirical informati®acall that we use a
time series of daily log-returns lasting 5 years, which nsethat the estimation of
yearly expected returns is based on 5 observations. So frpractical point of
view, when it comes to estimating expected returns it maéesesto trust far more

in expert knowledge than in time series information. Themoal portfolio in P2 is
more diversified than the Markowitz portfolio on the one ha@d the other hand,

in contrast to the MVP, it also takes account for the expeptedictive returns and
the investor’s will to reap the profit.

The optimal portfolios forc; = 12600 are even more diversified. However, here
almost all of the empirical information about the expectetums is lost, since
the confidence in the corresponding prior assumption isri@gihigher than the
empirical evidence.

5 Conclusion

We develop an approach to incorporate the stylized factgbEtiequency finan-

cial data and arbitrary prior information into the portfolbptimization process.
Our approach is characterized by rather weak assumptianst #fee underlying

stochastic process. Using Gordin’s central limit theorem,are able to approxi-
mate the distribution of asset log-returns of long investni@rizons by the normal
distribution. In order to avoid estimation risk, we rely ¢retBayesian framework
which allows us to include subjective prior information Buas expert knowledge.
By using a Markov chain Monte Carlo algorithm we simulate plosterior distri-

bution of the unknown model parameters and after that weulzgte the first two

moments of the discrete predictive asset returns afterittes gnvestment period.
In a last step, we perform a standard portfolio optimizatising these predictive
moments, which incorporate both empirical informationteamed in the data and
subjective prior information of the investor.
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We give a practical example to demonstrate the applicghilitour approach to
real-world problems. For that purpose, we use 7 time sefiesity log-returns.
For the data generating process, we propose an orthogonARE model. The
investor’s subjective prior information about expecteskaseturns and eigenvalues
of the covariance matrix is modeled using a hierarchicat@ggh. The suggested
portfolios show that prior assumptions have a substantglact on the optimal
decision. Our portfolios become well-diversified compati@the outcomes of tra-
ditional portfolio optimization strategies and reflect thieestor’s assessment about
the market. The computational performance of our algoriémeourages applying
our approach to higher-dimensional problems in practiceere both empirical
information contained in time series and expert knowledgeasailable.

References

O.E. Barndorff-Nielsen, E. Nicolato, and N. Shepard (2002pme recent devel-
opments in stochastic volatility modellingQuantitative Finance, pp. 11-23.

L. Bauwens, S. Laurent, and J.V.K. Rombouts (2006), ‘Maliigte GARCH mod-
els: a survey’Journal of Applied Econometrical, pp. 79-109.

J. Berger (2006), ‘The case for objective Bayesian anajyBeyesian Analysi4,
pp. 385-402.

F. Black and R. Litterman (1992), ‘Global portfolio optiration’, Financial Ana-
lysts Journal8, pp. 28—43.

T. Bollerslev (1986), ‘Generalized autoregressive cood#l heteroskedasticity’,
Journal of Econometric81, pp. 307-327.

S. Cambanis, S. Huang, and G. Simons (1981), ‘On the theceifipfically con-
toured distributions’JJournal of Multivariate Analysid1, pp. 368—385.

V.K. Chopra and W.T. Ziemba (1993), ‘The effect of errors ierans, variances,
and covariances on optimal portfolio choicdgurnal of Portfolio Management
19, pp. 6-11.

R.F. Engle (1982), ‘Autoregressive conditional heterdsigticity with estimates of
the variance of United Kingdom inflationEconometricab0, pp. 987-1007.

G. Frahm (2007), ‘Linear statistical inference for globatidocal minimum vari-
ance portfolios’, Discussion paper, University of CologBepartment of Eco-
nomic and Social Statistics, Germany.

G. Frahm and U. Jaekel (2007), ‘Tyler's M-estimator, randoatrix theory, and
generalized elliptical distributions with applicatiorssfinance’, Discussion pa-
per, University of Cologne, Department of Economic and &ldtatistics, Ger-
many.

20



P.A. Frost and J.E. Savarino (1986), ‘An empirical Bayesraagh to efficient
portfolio selection’ Journal of Financial and Quantitative Analys24, pp. 293—
305.

D. Gamerman and H.F. Lopes (2008jarkov Chain Monte Carlo: Stochastic
Simulation for Bayesian Inferenc€hapman & Hall, 2nd edition.

L. Garlappi, R. Uppal, and T. Wang (2007), ‘Portfolio seleatwith parameter and
model uncertainty: A multi-prior approachReview of Financial Studie0, pp.
41-81.

J. Geweke (1989), ‘Bayesian inference in econometric nsoalghg Monte Carlo
integration’,Econometriceb?, pp. 1317-1339.

J. Geweke (1995), ‘Bayesian comparison of econometric lepdorking paper
532, Federal Reserve Bank of Minneapolis, Minnesota.

W.K. Hastings (1970), ‘Monte Carlo sampling methods usingrikdv chains and
their applications’ Biometrika57, pp. 97-109.

F. Hayashi (2000)EconometricsPrinceton University Press.

U. Herold and R. Maurer (2006), ‘Portfolio choice and estiorarisk: A compar-
ison of Bayesian to heuristic approache&sSTIN Bulletin36, pp. 135-160.

E. Jacquier, N.G. Polson, and P.E. Rossi (1994), ‘Bayesialysis of stochastic
volatility models’,Journal of Business and Economic Statisfi@spp. 371-389.

E. Jacquier, N.G. Polson, and P.E. Rossi (2004), ‘Bayesialysis of stochastic
volatility models with fat-tails and correlated errorggurnal of Econometrics
122 pp. 185-212.

P. Jorion (1986), ‘Bayes-Stein estimation for portfoli@bsis’, Journal of Finan-
cial and Quantitative Analysi2l, pp. 279-292.

B.A. Kalymon (1971), ‘Estimation risk in the portfolio set@oon model’,Journal
of Financial and Quantitative Analys& pp. 559-582.

A. Kempf and C. Memmel (2006), ‘Estimating the global minimwariance port-
folio’, Schmalenbach Business Revigypp. 332—-348.

R.W. Klein and V.S. Bawa (1976), ‘The effect of estimatioskron optimal port-
folio choice’, Journal of Financial Economic8, pp. 215-231.

H. Markowitz (1952), ‘Portfolio SelectionJournal of Finance’, no. 1, pp. 77-91.

A.J. McNeil, R. Frey, and P. Embrechts (2008)yantitative Risk Management
Princeton University Press.

21



R.C. Merton (1980), ‘On estimating the expected return anrttarket: An ex-
ploratory investigation’,Journal of Financial Economic8, pp. 323-361.

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, et al.§3% ‘Equation of state
calculations by fast computing machineBhe Journal of Chemical Physieq,
pp. 1087-1092.

A. Meucci (2005),Risk and Asset Allocatioispringer.

R.O. Michaud (1989), ‘The Markowitz optimization enigma dptimized opti-
mal?’, Financial Analysts Journad5, pp. 31-42.

V. Plerou, P. Gopikrishnan, B. Rosenow, et al. (1999), ‘@réal and nonuniversal
properties of cross correlations in financial time seriesysical Review Letters
83, pp. 1471-1474.

N.G. Polson and B.V. Tew (2000), ‘Bayesian portfolio satett An empirical
analysis of the S&P 500 index 1970-1998qurnal of Business and Economic
Statistics18, pp. 164-173.

B. Scherer and R.D. Martin (2007htroduction to Modern Portfolio Optimization
with NuOPT, S-PLUS and S+Baye3pringer, 2nd edition.

22



