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The Core of an Extended Tree Game:

A New Characterisation

Abstract

Cost allocation problems on networks can be interpreted as cooperative games on a 
graph structure. In the classical standard tree game, the cost of a service delivered, by 
a source has to be allocated between homogeneous users at the vertices. But, modern 
networks have also the capacity to supply diff erent (levels of) services. For example, a 
cable network that provides diff erent television standards. Users that choose diff erent 
levels of service can not be treated equally. The extended tree game accounts for such 
diff erences between users. Here, players are characterised by their level of demand, 
consequently the implications on the cost structure of the problem can be considered. 
We show how an ET-game can be formulated as the sum of unanimity games. This 
observation enables us to directly calculate theweighted Shapley values and to identify  
the core of an ET-game.
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1 Introduction.

Networks with heterogeneous users are networks that must be able to satisfy

the heterogeneous demand of their users. The heterogeneity results from

the fact that users might e.g. demand different levels of quality of the good

delivered by the network. The higher then the quality demanded by a user,

the higher the costs of connecting this user to the source that provides the

service. The costs of establishing or maintaining such a network for different

groups of users can be modelled by means of cooperative game theory as an

extended tree game (Granot et al., 2002). A solution of an extended tree

game then allocates the costs of the network to its users under consideration

of their responsibility for the emerged costs (and other equity aspects). These

games can be used to model and analyse numerous real networks, whereby

the users may differ in their capacity or reliability demand, or might ask

for different services. For example, if the network is a pipeline that delivers

different quantities of a good in time, then users might ask for different

capacities. In the case of a telecommunication network different demands

for reliability or even the demand of different services are imaginable. In the

theoretical model discussed in this paper the umbrella term quality demand

shall stand for all possible differences between players.

In extended tree games (ET-games) a tree structure of the network is

assumed. The service is delivered by the source and the users are situated

at the vertices of the tree. The edges of the tree represent sections of the

connection of users to the source. An edge must comply with the quality

standard of the user of this edge who has the highest quality demand. This

means that the quality demand imposes a quality and a cost structure on the

tree network when higher quality of a connection is associated with higher

costs. The cost structure is mapped by the cost function, which attributes

its costs to each possible union (coalition) of players. The cost allocation

problem is concerned with allocating the costs of the complete network be-

tween its users. This paper is concerned with the definition of the core of

ET-games. Here a different approach to Granot et al. (2002) is chosen, where

an algorithm is presented that checks the core membership of an arbitrary
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allocation. By defining the core as the set of weighted Shapley values, our

approach makes it possible to directly name all elements of the core. As such,

the given paper is an extension of the work of Granot et al. (2002).

A large selection of literature on cost allocation problems on graph struc-

tures is available, some of which are reviewed in Curiel (1997), Sharkey (1995)

and Borm et al. (2001). Here, the works concerning standard tree games

should be mentioned. Standard tree games (ST-games) consider networks

with an established tree structure, where one level of service is disposable

from the source. The characteristics and solutions of these games have been

discussed e.g. in Bird (1976), Claus and Kleitman (1973), Megiddo (1978)

and in Bjørndal et al. (2004). ST-games are relevant for the analysis of

ET-games, because ET-games can be additively decomposed in ST-games

(Granot et al., 2002). Characteristics of ET-games can be derived from this

decomposition, as shown by Granot et al. (2002), who deduce that these

games are concave and consequently have a non empty core. In this paper,

the additive decomposition will be used in the characterisation of the core of

ET-games. As there exists a possibility of formulating the cost function of a

ST-game as a weighted sum of the costs of vertices (Koster, 1999), our first

challenge will be to develop a similar formula for ET-games. This is the first

result of this paper. This formula will lead us to the second result and en-

able us to directly calculate the weighted Shapley value of the ET-game. As

ET-games are concave, every weight system chosen will identify an element

of the core of the considered game. Further, the core can be identified by all

weighted Shapley values of a game (Monderer et al., 1992). The third and

main result of this paper is a new characterisation of the core of ET-games

by the set of all weighted Shapley values.

This paper is organised as follows: After the definition of the notation

(section 2), we will introduce the ET-games (section 3). There we will not

only describe this game and its properties but also describe how the cost

function can be formulated here by using unanimity games. This result

enables us to directly calculate the Shapley value of an ET-game in section

4. There we also show how the core of an ET-game can be formulated with

with weighted Shapley values. Section 5 provides a conclusion.

5



2 Preliminaries.

A cost allocation problem arises if costs of a common project have to be

divided amongst its users. Such a problem can be interpreted as a cost game

(N, c). Where N is the set of users, also called player set N = {1, 2, .., n}
and c : 2N → R represents the cost function. A cost function c assigns

to each player i ∈ N (and each coalition of players S ⊆ N) the costs of

the project satisfying the needs of the considered player c({i}) (coalition of
players c(S)). There are several possible characteristics of cost allocation

games. Monotonicity and concavity are relevant for our context. First, a

game is monotone if for all T ⊆ S ⊆ N :

c(T ) ≤ c(S).

In a monotone game the inclusion of new players to a coalition T ⊆ N will

never lead to a decrease of the costs of the new coalition S with T ⊆ S ⊆ N .

Second, a game is concave if for all i ∈ N and all T ⊆ S ⊆ N \ {i}:

c(S ∪ {i})− c(S) ≤ c(T ∪ {i})− c(S).

In a concave game the marginal costs of a player i decrease for growing

coalitions. It can be shown that ST-games as well as ET-games are monotone

and concave.

A solution x = (x1, x2, ..., xn) of a cost game is the allocation of the

costs of the coalition of all players, the grand coalition, c(N) to all players

in N . Consequently, the cost shares of all players should sum up to c(N):∑
i∈N xi = c(N). x is then called the cost allocation or pre-imputation, and

the set of all pre-imputations is denoted by I∗(N, c). An allocation is indi-

vidually rational if c({i}) = ci ≥ xi is satisfied for all i ∈ N , then a player

never contributes more in the solution x than his so called stand alone costs

ci. An individually rational allocation is called imputation, and the set of all

imputations is denoted by I(N, c). Group rationality requires that all coali-

tions have to pay less in the solution then the costs of providing the service

to its members only, i.e. if for all S ⊆ N holds
∑

i∈S xi ≤ c(S). The core

C(N, c) is defined as the set of all pre-imputations that are individually and

6



group rational:

C(N, c) = {x ∈ I∗(N, c)|
∑
i∈S

xi ≤ c(S) for all S ⊂ N}.

Allocations that are elements of the core ensure the stability of the co-

operation, as no individual player or coalition of players has an incentive

to leave the grand coalition. In the general case, the core of an allocation

game can be empty, but the convexity of a cost allocation game assures its

non-emptiness.1

The core, a set value solution, does not choose a unique solution in the

normal case. If a single value solution is desired, it must be chosen out of

many alternatives depending of the case under consideration. Such single

value solutions are of a special interest if they choose an element of the core,

like the Shapley value, a core member in concave games (Shapley, 1971). The

Shapley value φ = (φ1, φ2, ..., φn) of a cost allocation game can be calculated

by the following formula (Shapley, 1953a):

φi(c,N) :=
∑
S⊂N

(|S| − 1)!(n− |S|)!
n!

(c(S)− c(S\{i})).

Alternatively, the fact that dual unanimity games can serve as a basis

for all cooperative cost games can be used to calculate the Shapley value

(Koster, 1999).2 With S, T ⊆ N A dual unanimity game (N, uT ) ∈ G is

defined by:

Definition 1 (dual unanimity game):

u∗T (S) =
{
1, if S ∩ T 
= ∅
0, else.

(1)

Dual unanimity games serve as a basis for the class of all cooperative cost

games (N, c), we can write:

c =
∑

T⊆N\{∅}
ΔT ∗u

∗
T . (2)

1 For a proof see e.g. Forgó et al. (1999, p. 323).
2 For the introduction of unanimity games see also Peleg and Sudhölter (2003, p. 203).
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Hereby ΔT ∗ represents the Harsanyi dividend (Harsanyi, 1963). A Harsanyi

dividend ΔT ∗ of a coalition T can be interpreted as the share of c(N) that

can be attributed to the coalition T and has not already been realised by its

members by cooperating in smaller coalitions. If a solution distributes each

dividend ΔT ∗ between the players in T according to a given sharing system,

it is called a Harsanyi-solution (van den Brink et al., 2007). How this share is

distributed to the members of this coalition depends on the solution chosen.

The Shapley value of an unanimity game distributes the Harsanyi dividend

ΔT ∗ equally among its |T | members (Shapley, 1953b):

φi(N, u∗T ) =

{
1
|T | , if i ∈ T

0, else.

The Shapley value of a game (N, v) is derived from the additivity property

and from formula 2:

φi(N, v) =
∑

∅�=S⊆N
ΔS∗φi(N, uS).

A variation of the Shapley value, the weighted Shapley value (or weighted

value), distributes the Harsanyi dividends asymmetrically. This solution con-

cept has been designed in order to capture differences between players that

are not reflected by the cost function.3 They are represented by the weight

system.

Definition 2 (weight system (Kalai and Samet, 1987)): A Shapley weight sys-
tem for the game (N, c) is an ordered pair μ = (P,w). P is an ordered
partition of the player set P = (S1, ..., Sq) and w assigns a weight wi to
player i according to the following definition:

wSl
∈ intΔ(Sl), ∀ l = 1, ..., q.

M(N) is the set of all weight systems for the game (N, c).

The players in Sq are interpreted as players with positive weights wSq .

Relative to them the players in N \Sq are players with zero weights. Between

3 The positively weighted value developed by Shapley (1953b) only allows positive
weights. The weighted value introduced by Kalai and Samet (1987) can also consider
zero weights.
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the players in N \ Sq, those in Sq−1 with the weights wSq−1 are considered as

the heaviest players. They dominate the players in N\{Sq ∪ Sq−1} whenever
no player from Sq is present. Generally, the players in Si (i = 1, 2, ..., q) are

the heaviest players in ∪i
j=1Sj. In order to calculate the relative weights of

the players in a coalition S, the heaviest players in this coalition have to be

determined. m(S) = max{h|Sh ∩ S 
= ∅} identifies the index of the heaviest
player in S. All heaviest players in S are then in S ∩Sm =: S. The weighted

value of a dual unanimity game u∗S divides the value of one between the

heaviest players in S under consideration of their relative weights:

Definition 3 (dual weighted Shapley value4): For a weight system μ = (P,w)
the weighted Shapley value φμ : Γ→ R

n of an unanimity game is defined by:

φμ
i (N, u∗S) =

{ ωi

ω(S)
, if i ∈ S

0, else.

Derived from the additivity of the Shapley value, the value of a game (N, c)
is:

φμ
i (N, c) =

∑
∅�=S⊆N

ΔSφ
μ
i (N, u∗S).

3 Extended Tree Games.

3.1 Description and Properties.

In the following section 3 we will briefly describe ET-games and their prop-

erties as presented by Granot et al. (2002). Then, in section 3.2. we will

develop a new representation of ET-games in which unanimity games will be

used. Let G = (E, V ) be a tree graph. The set of vertices V = {N ∪ {r}}
consists of the player set N and the root r. E = {e1, e2, .., en} represents the
set of edges, where ei is the unique edge emanating from i and on the unique

path from i to r in G. Each player is of a type p ≤ n. The type of a player

i is denoted by γi. The type of a player i defines his requirement on the

quality of his connection to the root. A player i of type γi = l requires that

all edges on his unique path to the root are of type l (or higher). Further, the

costs of a connection depend on the quality for which it is designed for. The

construction of an edge ei for the type l costs a
l
i. The costs a

γ
i are assumed
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to be monotone in types, i.e. for all i ∈ N 0 ≤ a1i ≤ a2i ≤ ... ≤ api . If a player

is further of type γi = 0, connecting him to the root is assumed to be free

a0i := 0.

For each i ∈ N , F (i) denotes the set of players on the subtree Gi of G

that is routed in i. We call the elements of F (i) followers of player i. These

are players situated on the vertices that follow i on the unique way to the

root.5 For each coalition S ⊆ N the maximal quality requirement in S is

given by γ(S) := max{γi|i ∈ S}. Consequently, the quality of the connec-
tion ei in an optimal tree for S ⊆ N is defined by γ(S ∩ F (i)) in order to

satisfy the quality requirements of the members of coalition S. In an optimal

graph, the quality of an edge must be exactly as high as the highest quality

requirement of all players using that edge. If all players are of type 1, the

ET-game reduces to a ST-game (Megiddo, 1978).

Granot et al. (2002) show that an ET game can be formulated as a sum

of simple ET-games with players of type 1 and 0. For each γ = l let Nγ be

the set of all players of type γ. For γ = 1, .., p (N, cγ) denotes an ET game

by designating N0∪N1∪ ...∪Nγ−1 as 0-players and Nγ∪ ...∪Np as 1-players

with the costs of the edge ei given by the marginal costs of the quality ame-

lioration from γ − 1 to γ: gγi = aγi − aγ−1i (marginal costs of quality). In an

ET-game (N, cl) the players of type 1 are denoted by N∗l =
⋃p

γ=l N
γ. For

the ET-game (N, c), c =
∑p

γ=1 c
γ.

It can also be shown that such simple ET-games correspond to ST-games

(Granot et al., 2002). Let (N, c) be an ET-game with 0-players in the set

N0 and 1-players in the set N1. If a reduced game (N1, ĉ) is defined in

which only the 1-player are considered then it can be seen that ĉ(S) = c(S)

for all S ⊆ N1, because 0-players are dummies and never generate costs.

5 In the next chapter the assumption that each vertex is occupied by exactly one player
will be relaxed. It will be allowed that a vertex is occupied by one or no player. Nv

describes then the set of players situated on the vertex v, and the NV1 describes the set of
players situated at the vertices in the set V1. F (v) denotes analogically the set of vertices
following v.
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γ1 = 2

γ2 = 3 γ3 = 1

γ4 = 2

Fig. 1: Extended Tree with 4 players.

The restricted game (N1, ĉ) is a ST-game. Since ST-games are monotone

and concave, it follows that a reduced game with the two types of players is

also monotone and concave. Further, since the sum of monotone and con-

cave games is also monotone and concave, it follows that every ET-game

is monotone and concave. From Shapley (1971) it follows that the core of

an ET-game is not empty and that the Shapley value is contained in the core.

Example 1: For demonstration of the decomposition of an ET-game in ST-
games consider the example in Figure 1. In a tree graph with a root r, 4
players are situated at the vertices. Their quality requirements are γ1 = 2,
γ2 = 3, γ3 = 1 and γ4 = 2.

With 3 quality levels, the game in Figure 1 can be decomposed into three
subgames. Each subgame corresponds to one quality level. We call the 1-
players or relevant players in the subgame corresponding to γ N∗γ: for γ = 3
we have N∗3 = {2}, for γ = 2 N∗2 = {1, 2, 4} and N∗1 = {1, 2, 3, 4} for γ = 1.
The player set N in each subgame in Figure 2 is identical, the costs on the
edges differ according to the definition of marginal costs of quality. We refer
to these games as (N, c1),(N, c2) and (N, c3). The game (N, c1) is a ST-game
as there are only 1-players. In the game (N, c2) there is one 0-player, the
player 3. If he is excluded from the player set, we can write the new cost func-
tion ĉ2(S) = c2(S) for all S ⊆ N∗2. The game (N∗2, ĉ2) is then a ST-game.
The ET-game (N, c3) can be reduced in a similar way. The ST-game (N∗3, ĉ3)
has only one player and ĉ3(S) = c3(S) for all S ⊆ N∗3, i.e. c3({2}) = ĉ3({2}).

In the next section our first result will be developed. We will show how the
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(N, c3)

a31 − a21 = g31
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(N, c2)

a21 − a11 = g21

a22 − a12 = g22 a23 − a13 = g23

a24 − a14 = g24
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�r

�1

�2 �3

�4

(N, c1)

a11 = g11

a12 = g12 a13 = g13

a14 = g14

Fig. 2: Decomposition of the ET in Figure 1: player of type 1 boldface;
player of type 0 normal type.

cost functions of ET-games can be denoted with the help of unanimity games

due to the additive decomposition.

3.2 Sum of Unanimity Games.

In this section we will show how an ET-game can be formulated as a weighted

sum of dual unanimity games with the marginal costs of arcs as weights. In

order to demonstrate this we have to relax the assumption that each vertex

is populated by exactly one player. We assume that at any one vertex there

can be situated one or no player, as described in chapter 3.1.

First, we have to consider ST-games. These games have an intuitive

formulation using unanimity games as shown by Koster (1999). The cost

function of a ST-game is described by:

c(S) =
∑
v∈TS

c(ev), ∀ ∅ 
= S ⊆ N,

where TS = {v ∈ V |∃v′ ∈ V,Nv′ ∩ S 
= ∅ und v � v′} denotes the so called
trunk of the coalition S. This definition can be transformed to:

c(S) =
∑

v∈{V |S∩NF (v) �=∅}
c(ei), ∀ ∅ 
= S ⊆ N, (3)

as NF (v) is the set of players situated at the vertices following v. From

definition 2.1 we know that u∗NF (v)
(S) is equal to 1 only if S ∩ NF (v) 
= 0.
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Hence the ST-game (N, cG) can be represented as

c =
∑

v∈V \{r}
c(ev)u

∗
NF (v)

. (4)

This representation allows for the description of ST-games with non popu-

lated vertices as the costs of edges are only attributed to players that use

them.6

With these definitions, we can face the challenge of formulating ET-games

as a sum of unanimity games. In order to achieve this, we have to focus on

the subgames for each quality level γ = 1, .., d. N∗l describes the set of 1-

players in the subgame γ = l. They are also called relevant players. In each

subgame the set of relevant followers of a vertex v is denoted by:

F ∗l(v) = F (v) ∩N∗l.

Choosing the relevant followers as the basis of the unanimity game in the

representation of a subgame allows the consideration of all vertices, which is

useful in representing the complete ET-game. We can write for a subgame

for γ = l:

cl =
∑

v∈V \{r}
glv(ev)u

∗
N

F∗l(v)
. (5)

This representation allows us to define the cost function of an ET-game
by summing all subgames:

Definition 4: The cost function of an ET-game with the players set N and
the quality demands γ = 1, ..., d of the players is given by:

cET =
d∑

γ=1

cγ =
d∑

γ=1

∑
v∈V \{r}

gγv (ev)u
∗
NF∗γ (v)

. (6)

The following example illustrates this definition.

Example 2: In the tree graph in Figure 3 the players have the following quality
demands: player 1: γ1 = 1, player 2: γ2 = 3, player 3: γ3 = 2.

6 For an example see Koster (1999, p. 172).
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a34 = 7

a11 = 1 a32 = 10

a23 = 2.5

Fig. 3: Extended Tree in example 2.

The costs of each edge, given all quality levels, are summarized in Table
1, where the marginal costs of quality glv are also denoted. The vertices
numbered from 1 to 4. Their labels correspond to the labels of the players
situated at these vertices, the non populated vertex is referred to as 4.

Kante: γ = 1 γ = 2 γ = 3 g3v g2v g1v

v=1 1 2 5 3 1 1

v=2 3 5 10 5 2 3

v=3 2 2,5 4 1,5 0,5 2

v=4 1,5 3 7 4 1,5 1,5

Tab. 1: Example 2: costs of the edges aγv

The quality demand defines the optimal network for the grand coalition

as summarised in Figure 3. The decomposition in subgames is demonstrated

in the Figure 4. So, three subgames result: c3, c2 and c1. Each subgame is

defined on the player set N , 0-players are treated as dummies or non relevant

players. N∗l denotes the set of relevant players for each γ. For γ = 3 there is

one relevant playerN∗3 = {2}, for γ = 2 two players are relevantN∗2 = {2, 3}
and for the third subgame for γ = 1 all players in N∗1 = N = {1, 2, 3} are
relevant.

The cost function of the subgames can be formulated as:
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Fig. 4: Decomposition of the ET in example 2: player of type 1 boldface;
player of type 0 normal type.

subgame γ = 3

c3 =
∑

v∈V \{r}
g3vu

∗
NF∗3(v)

(7)

= 3u∗∅ + 1, 5u∗∅ + 5u∗{2} + 4u∗{2},

subgame γ = 2

c2 =
∑

v∈V \{r}
g2vu

∗
NF∗2(v)

(8)

= 1u∗∅ + 0, 5u∗{3} + 2u∗{2,3} + 1, 5u∗{2,3},

subgame γ = 1

c1 =
∑

v∈V \{r}
g1vu

∗
NF∗1(v)

=
∑

v∈V \{r}
a1vu

∗
NF (v)

(9)

= 1u∗{1} + 2u∗{3} + 3u∗{2,3} + 1.5u∗{1,2,3}.

For demonstration, we show how the value of coalition {1, 3} is calculated
in each subgame. In the subgame γ = 3 both players are non relevant. The

cost function c3 should not attribute any costs to them. As u∗∅ = 0 we know

from formula 7:

c3({1, 3}) = 3 · 0 + 1, 5 · 0 + 5 · 0 + 4 · 0 = 0.

15



In the subgame γ = 2 player 1 is non relevant, and player 3 is relevant. The

costs of the coalition {1, 3} in this subgame are:

c2({1, 3}) = 1 · 0 + 0, 5 · 1 + 2 · 1 + 1, 5 · 1 = 4.

In this case, c2({1, 3}) = c2({3}). In the subgame γ = 1 both players are

relevant:

c1({1, 3}) = 1 · 1 + 2 · 1 + 3 · 1 + 1, 5 · 1 = 7, 5.

In order to calculate the costs of this coalition in the complete ET-game

the values for the subgame can be summed up:

cET ({1, 3}) =
3∑

γ=1

∑
v∈V \{r}

gγv (ev)u
∗
NF∗γ = 0 + 4 + 7, 5 = 11, 5.

Using unanimity games to formulate ET-games is our first result. This

allows us to identify the core of these games in the next section.

4 The Core of an Extended Tree Game.

Monderer and Samet (2002) show that in convex games the set of all weighted

Shapley-values defines the core. Bjørndal et al. (2004, p. 264) give a con-

structive proof of this result for special concave cost games, the ST-games.

We will use this result and our result of the previous section to identify the

core of ET-games. First, we will develop a definition of the weighted Shapley

value of ET-games, which is the second result of this paper. Therefore, the

set of heaviest players has to be defined for all subgames under consideration

of only the relevant players.

Definition 5: In an ET-game on the graph G with the player set N , the set
of vertices V and quality demands of the players γ = 1, ..., p the relevant
heaviest players in a coalition S ⊆ N are given by:

S∗γ(v) := NF ∗γ(v) ∩ Smax{j|NF∗γ (v)∩Sj �=∅}.

16



The weighted value of a subgame γ is defined by the values of the una-

nimity games for each edge and its followers:

φω
i (N, u∗NF∗γ (v)

) =

{ ωi

ω(S∗γ(v)) , for i ∈ S∗γ(v)

0, else.

For player i in a subgame γ the weighted Shapley value is given by :

φω
i (N, cγ) =

∑
v∈V \{r}

gγv (ev)φ
ω
i (N, u∗NF∗γ (v)

), (10)

because of additivity and formula 5.

In an ET-game with γ = 1, ..., p quality levels the additive decomposition

of ET-games and formula 6 lead us to the following definition of the Shapley

value of player i:

Definition 6: The weighted Shapley value of player i in an ET game is the
sum of the weighted Shapley values in the subgames γ = 1, ..., p:

φω
i (N, cET ) =

p∑
γ=1

∑
v∈V \{r}

gγv (ev)φ
ω
i (N, u∗NF∗γ (v)

). (11)

In order to calculate the weighted value of an ET-game, the subgames

have to be considered first. While the set of followers of each edge does not

change for different subgames, the other characteristics usually do. So, the

set of relevant players N∗l and for each edge, the set of relevant senior players

S∗l(v) as well as the marginal costs of quality glv, are specific for the subgame

γ = l. In the following example 3 the graph in Figure 4 will be considered in

order to demonstrate the calculation of a weighted Shapley value.

Example 3: We consider the tree graph in Figure 4 and calculate the weighted
Shapley vector for the weight system μ1 = (({1, 3}, {2}), (0, 75; 1; 0, 25)). The
relevant elements of the description of the resulting subgames as well as the
necessary steps of calculation are specified in Table 2. The upper three
Tables describe the three subgames: the subgame for γ = 3 in the first,
for γ = 2 in the second and the γ = 3 in the third Table. These three
Tables are constructed analogically. For each vertex (column 1) the set of
followers (column 2), the set of heaviest relevant players (column 3) and the
marginal costs of the considered quality (column 4) are given. In column

17



5-7 the weighted Shapley values are calculated for the unanimity games with
the basis F ∗γ(v) corresponding to each vertex v. Further, in the lowest row
the Shapley values of the subgame are computed by weighting and summing
up the values of the respective unanimity games. The lowest Table sums up
the values for the subgames to the weighted Shapley values of the considered
ET-game.

In the given weight system player 2 dominates the remaining players.
The chosen partition does not affect the calculation in the subagme γ = 3
because player 2 is the only relevant player. The costs of 9 are consequently
entirely attributed to him. In subgame γ = 2 there are two relevant players
2 and 3. Player 2 as the senior player according to the weight system, bears
the costs of each connection on his path to the source. Only the costs of
e3, an edge, that is only used by player 3, are not attributed to him. In the
last subgame γ = 1 all players are relevant. Here the senior player 2 bears
the costs of his connection to the source as well. The costs of the remaining
edges used either only by player 1 or by player 3 are respectively assigned to
them. The Shapley vector of the ET-game results as the sum of the vectors
of the subgames φω

i (N, cET ) = (1; 17; 2, 5). Here the senior player is charged
with his stand alone costs while the other players only have to pay for the
connections constructed exclusively for them.

It has been shown in example 3 how the weighted Shapley value can be

calculated in ET-games according to formula 2. Also as, already pointed

out, a weighted Shapley value will always be an element of the core. But

our approach does not only allow the identification of single core elements

by choosing alternative weight systems. Instead, all elements of the core can

be described with this approach. As we discussed already in concave games

the set of weighted Shapley values equals the core.

Proposition 1: The core C of an ET-game (N, cG) is equal to the set of the
weighted Shapley values: {φμ(cET

G )|μ ∈M(N)} = C(cG).

5 Conclusions.

In the present paper we have discussed ET-games (Granot et al., 2002). We

have shown, how additive decomposition can be used in the formal descrip-

tion of these games. This formal description allows a direct calculation of

the weighted Shapley values. And since the set of all Shapley values defines

the core of an ET-game, it also provides the definition of the core.

18



v NF (v) S∗3 g3v φμ
1(N, u∗NF∗γ (v)

) φμ
2(N, u∗NF∗γ (v)

) φμ
3(N, u∗NF∗γ (v)

)

1 {1} ∅ 3 0 0 0

2 {2, 3} {2} 5 0 1 0

3 {3} ∅ 1,5 0 0 0

4 {1, 2, 3} {2} 4 0 1 0

φμ(N, c3G) 0 9 0

subgame γ = 3; N∗3 = {2}.

v NF (v) S∗2 g2v φμ
1(N, u∗NF∗γ (v)

) φμ
2(N, u∗NF∗γ (v)

) φμ
3(N, u∗NF∗γ (v)

)

1 {1} ∅ 1 0 0 0

2 {2, 3} {2} 2 0 1 0

3 {3} {3} 0,5 0 0 1

4 {1, 2, 3} {2} 1,5 0 1 0

φμ(N, c2G) 0 3,5 0,5

subgame γ = 2; N∗2 = {2, 3}.

v NF (v) S∗1 g1v φμ
1(N, u∗NF∗γ (v)

) φμ
2(N, u∗NF∗γ (v)

) φμ
3(N, u∗NF∗γ (v)

)

1 {1} {1} 1 1 0 0

2 {2, 3} {2} 3 0 1 0

3 {3} {3} 2 0 0 1

4 {1, 2, 3} {2} 1,5 0 1 0

φμ(N, c1G) 1 4,5 2

subgame γ = 1; N∗1 = N.

Spieler φμ
i (N, c3G) φμ

i (N, c2G) φμ
i (N, c1G) φμ

i (N, cET )

1 0 0 1 1

2 9 3,5 4,5 17

3 0 0,5 2 2,5

Tab. 2: Calculation of the weighted Shapley value for the graph in Figure 4
with μ1 = (({1, 3}, {2}), (0, 75; 1; 0, 25)).
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Hence, our approach adds new aspects to the analysis of ET-games de-

veloped by Granot et al. (2002). These authors have shown how the core

membership of an arbitrary allocation can be checked. Our approach allows

us to calculate arbitrary elements of the core by choosing different weight

systems as well as a new mapping of the core of ET-games. Here, the core is

not described by a system of equations (Granot et al., 2002) but by the set

of all its elements.

Direct calculation of weighted Shapley values of (the concave) ET-games

allows the identification of a single value solution that is an element of the

core. Even though the choice of the weight system makes it possible to

consider arbitrary asymmetries between the players, incentive compatibility

will always be guaranteed by a weighted Shapley value in ET-games.

The ET-games offer a theoretically interesting set of tools for the analysis

of networks with heterogenous users. Areas for further research are the em-

pirical applications of the developed theory. These are closely connected to

the question of how such networks with very numerous users can be modeled,

and how real networks can be approached by a tree structure. An interesting

application would be to the calculation of energy transmission costs on the

international (e.g. European) level. Here, physical energy flows can be very

heterogeneous, and it is reasonable to consider this in the cost allocation

system. The fact that weighted Shapley values are elements of a core in the

discussed games could facilitate the finding of a political compromise on the

multinational level.
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