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Abstract 
 
In recent years there has been increasing concern about the identification of parameters in 
dynamic stochastic general equilibrium (DSGE) models. Given the structure of DSGE models 
it may be difficult to determine whether a parameter is identified. For the researcher using 
Bayesian methods, a lack of identification may not be evident since the posterior of a 
parameter of interest may differ from its prior even if the parameter is unidentified. We show 
that this can be the case even if the priors assumed on the structural parameters are 
independent. We suggest two Bayesian identification indicators that do not suffer from this 
difficulty and are relatively easy to compute. The first applies to DSGE models where the 
parameters can be partitioned into those that are known to be identified and the rest where it is 
not known whether they are identified. In such cases the marginal posterior of an unidentified 
parameter will equal the posterior expectation of the prior for that parameter conditional on 
the identified parameters. The second indicator is more generally applicable and considers the 
rate at which the posterior precision gets updated as the sample size (T) is increased. For 
identified parameters the posterior precision rises with T, whilst for an unidentified parameter 
its posterior precision may be updated but its rate of update will be slower than T. This result 
assumes that the identified parameters are √T-consistent, but similar differential rates of 
updates for identified and unidentified parameters can be established in the case of super 
consistent estimators. These results are illustrated by means of simple DSGE models. 
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1 Introduction

Soon after rational expectations (RE) models were widely adopted in economics
there was concern about the issue of observational equivalence (Sargent, 1976,
McCallum, 1979) and the identi�cation of the parameters of the RE models
(Wallis, 1980, Pesaran, 1981, 1987, Pudney, 1982). Observational equivalence
concerns whether one can distinguish di¤erent models, such as RE and non-
RE models; the closely related issue of identi�cation concerns the conditions
under which it is possible to estimate the parameters of a particular model from
available data. During the 1990s interest in identi�cation waned, partly because
of the shift in focus to calibration, where it is assumed that the parameters
are known a priori, perhaps from microeconometric evidence.1 Kydland and
Prescott (1996) argue that the task of computational experiments of the sort
they conduct is to derive the quantitative implications of the theory rather than
to measure economic parameters, one of the primary objects of econometric
analysis.
Over the past ten years it has become more common to estimate, rather than

calibrate, dynamic stochastic general equilibrium (DSGE) models, often using
Bayesian techniques (see, among many others, DeJong, Ingram and Whiteman,
2000, Smets and Wouters, 2003, 2007 and An and Schorfheide, 2007). In this
context the issue of identi�cation has attracted renewed attention. Questions
have been raised about the identi�cation of particular equations of the standard
new Keynesian DSGE model, such as the Phillips curve (Mavroeidis, 2005,
Nason and Smith, 2008, Kleibergen and Mavroeidis, 2009, Dees et al., 2009, and
others), or the Taylor rule, Cochrane (2007). There have also been questions
about the identi�cation of DSGE systems as a whole. Canova and Sala (2009)
conclude: �it appears that a large class of popular DSGE structures are only
very weakly identi�ed�. Iskrev (2010b) concludes "the results indicate that the
parameters of the Smets and Wouters (2007) model are quite poorly identi�ed in
most of the parameter space". Other recent papers which consider determining
the identi�cation of DSGE systems are Andrle (2010), Iskrev (2010a), Komunjer
and Ng (2010), who provide rank and order conditions for local identi�cation
based on the spectral density matrix, and Muller (2010), who suggests measures
of prior sensitivity and prior informativeness based on the derivative of the
posterior mean with respect to a particular parameterization of the prior mean.
The 1980s literature on the identi�cation of RE models tended to assume

that the system included observed exogenous variables, whereas most current
DSGE systems do not contain such variables. While most of the DSGE literature
has focussed on the regular or determinate case where there is a unique solution
to the linear RE system, there has been some interest in the indeterminate case,
where there are multiple solutions (e.g. Clarida, Gali, and Gertler, 2000, Beyer
and Farmer, 2004 and Lubik and Schorfheide, 2004). The indeterminate case
also raises interesting identi�cation issues.

1The calibrators� practice of basing the estimates of the structural parameters of macro
models on macroeconomic evidence has been criticized by microeconometricians, such as
Hansen and Heckman (1996).
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Unlike the simpler simultaneous equations model (SEM) the non-linear na-
ture of the cross equation restrictions in DSGE models makes it often very
di¢ cult to analytically check identi�cation. The RE structure means that they
require more identifying restrictions than comparable SEMs. Although the ap-
proximate solution of DSGE models is taken to be linear, the structural para-
meters are complicated non-linear functions of the parameters of the linearized
(reduced form) model and as a result the likelihood function for the structural
parameters may be very badly behaved. This has led many to look at other fea-
tures than the likelihood, such as impulse response functions or impact e¤ects.
The form of the likelihood may also cause problems for understanding certain
features of the posterior, e.g. Herbst (2010). When the model involves unob-
served variables the solution is of a VARMA form rather that a VAR. Thus
some of the associated reduced form parameters may not be identi�ed. The
requirement for a determinate solution also puts restrictions on the joint para-
meter space, which may create dependence between identi�ed and unidenti�ed
parameters.
Faced with these di¢ culties, it is common practice in Bayesian DSGE mod-

elling to compare posteriors to priors as informal indicators of identi�cation.
We discuss how this can be misleading, since, as we show, priors can di¤er
from posteriors even for unidenti�ed parameters. We then propose two di¤erent
Bayesian indicators of identi�cation that do not su¤er from this drawback. The
�rst draws on results from Poirier (1998) and concerns the case where the pa-
rameters can be partitioned into those known to be identi�ed and those where
it is uncertain whether they are identi�ed. Then the marginal posterior of an
unidenti�ed parameter will equal the posterior expectation of the prior for that
parameter conditional on the identi�ed parameters. The marginal posterior and
posterior expectation of the prior can be computed as a by-product of estimat-
ing a DSGE model (e.g. using MCMC methods) and compared. However, this
indicator relies on the assumption that parameters can be separated into those
which the researcher knows are identi�ed and those for which identi�cation is
uncertain. Unfortunately, as we show in this paper, for the researcher working
with the structural parameters of DSGE models, this assumption may not hold.
Hence, we propose a second Bayesian indicator of local identi�cation. This uses
the fact that whilst for identi�ed parameters the posterior precision rises with T ,
for an unidenti�ed parameter its posterior precision may be updated but its rate
of update will be slower than T . This suggests a strategy where the researcher
simulates larger and larger data sets and observes the behavior of the posterior
as sample size increases. Empirical illustrations show the usefulness of both
these approaches for checking for the presence and strength of identi�cation.
The paper is organized as follows. Section 2 discusses the theory of ratio-

nal expectations DSGE models and provides some simple theoretical examples.
Section 3 discusses the econometrics. It is broken into sub-sections on i) general
identi�cation issues; ii) existing Bayesian approaches to identi�cation in DSGE
models; iii) how (and when) these existing approaches can be used to check
for presence and/or strength of identi�cation; and iv) asymptotic results which
show the behavior of the posterior for non-identi�ed parameters in large sam-
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ples and how these can be used to check for identi�cation. Section 4 provides
several empirical illustrations of the methods developed or discussed in Section
3. Section 5 concludes.

2 The Theory of Rational Expectations DSGE
Models

2.1 A General Framework

Most macroeconomic DSGE models are constructed by linearizing an underlying
non-linear model around its steady state, where � is a vector of deeper para-
meters of this underlying model.2 Consider a linearized rational expectations
model for an n � 1 vector of stationary variables of interest, yt; t = 1; 2; :::; T:
These would usually be measured as deviations from their steady states. Denote
expectations as Et(yt+1) = E(yt+1 j It) where It is the information set avail-
able at time t.3 There is also a k� 1 vector of observed exogenous variables4 xt
and an n � 1 vector of unobserved variables ut. We assume that both the ex-
ogenous and unobserved variables follow VAR(1) processes without feedbacks.
Then the system can be written

A0(�)yt = A1(�)Et(yt+1) +A2(�)yt�1 +A3(�)xt + ut; (1)

xt = �xxt�1 + vt; ut = �uut�1 + "t;

where � are the structural parameters. We treat the VAR(1) parameters for
xt or ut; �i; i = x; u; as not being speci�ed by macroeconomic theory. This
structure assumes that there is no feedback from yt to xt or ut: "t is a vector of
mean zero, serially uncorrelated, structural shocks, with E("t"0t) = 
(�): It is
common in the literature to assume that 
(�) = In: For Bayesian or maximum
likelihood estimation, "t is typically assumed to be normally distributed. Notice
that if �u = 0; the structural shocks enter the equations directly.
If A0(�) is nonsingular, then (1) can be written

yt = A0(�)
�1A1(�)Et(yt+1) +A0(�)

�1A2(�)yt�1 (2)

+A0(�)
�1A3(�)xt +A0(�)

�1ut:

The solution of such systems is discussed in Binder and Pesaran (1995, 1997)
and Sims (2002). The solution method proposed by Binder and Pesaran involves
�nding an n � n matrix C(�) such that in terms of the quasi-di¤erence trans-
formation Yt = yt � C(�)yt�1, the model only involves future expectations,

2We focus on the linearized case where the estimated parameters are non-linear functions
of the structural parameters. Our analysis should continue to be applicable were an exact
solution to be available, since again there would be a non-linear relation between the estimated
and structural parameters.

3 In some papers in the literature, expectations are taken using information at time t� 1.
4Many DSGE models are closed, without exogenous variables, but we include them for

completeness.
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where C(�) is a solution of the following quadratic matrix equation

A1(�)C(�)
2 �A0(�)C(�) +A2(�) = 0: (3)

Then assuming
�
In �A0(�)

�1A1(�)C(�)
�
is non-singular, we obtain

Yt = F(�)Et(Yt+1) +Wt;

where

F(�) = [A0(�)�A1(�)C(�)]
�1
A1(�);

Wt = [A0(�)�A1(�)C(�)]
�1 [A3(�)xt + ut] :

There will be a unique solution if there exists a real matrix solution to (3)
such that all the eigenvalues of C(�) lie inside or on the unit circle, and all the
eigenvalues of F(�) lie strictly inside the unit circle. In such cases the unique
solution is given by

yt = C(�)yt�1 +
1X
h=0

F(�)hEt(Wt+h):

When, as assumed above, xt and ut follow a VAR(1) process, and the roots of
the �i; i = x; u lie on or inside the unit circle, then

Et(xt+h) = �hxxt

Et(ut+h) = �huut

and since xt and ut are independent

Et(Wt+h) = [A0(�)�A1(�)C(�)]
�1 �A3(�)�

h
xxt +�

h
uut
�

therefore the solution has the form

yt = C(�)yt�1 + (4)
1X
h=0

Fh(�)[A0(�)�A1(�)C(�)]
�1 �A3(�)�

h
xxt +�

h
uut
�
;

which we can write

yt = C(�)yt�1 +G1(�;�x)xt +G2(�;�u)ut: (5)

where �i = vec(�i); i = x; u: The matrices Gi(�;�i) i = x; u; can be obtained
using the method of undetermined coe¢ cients (see Blinder and Pesaran, 1997,
for details). Notice that the coe¢ cient matrix for the lagged dependent variable
vector is just a function of �; and not �x or �u:
Likelihood-based estimation of this model is straightforward. If �u = 0;

this is just a VAR with exogenous variables and the likelihood function is easily
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obtained. In general where the unobserved components of the model are seri-
ally correlated, the rational expectations solution will involve moving average
components and it is more convenient to write the model as a state space model
where Kalman �ltering techniques can be used to evaluate the likelihood func-
tion. In such cases a simple analytical relationship between the structural and
reduced form parameters might not be available, which further complicates the
analysis of identi�cation of the structural parameters. In the next sub-sections,
we use some simple special cases of DSGE models where the RE solution is avail-
able analytically to clearly show how identi�cation issues arise. For notational
simplicity, we do not make the dependence on � explicit.

2.2 DSGE models without lags

Abstracting from lagged values and exogenous regressors (1) simpli�es to

A0yt = A1Et(yt+1) + "t; (6)

E("t) = 0; E("t"
0
t) = 
;

where "t are serially uncorrelated. If A0 is non-singular using (6) we have

yt = A
�1
0 A1Et(yt+1) +A

�1
0 "t = QEt(yt+1) +A

�1
0 "t: (7)

The regular case, where there is a unique stationary solution, arises if the non-
zero eigenvalues of Q lie within the unit circle. In this case, the unique solution
of the model is given by

yt =

1X
j=0

QjA�1
0 Et("t+j): (8)

Hence, Et(yt+1) = 0 and the unique RE solution is given by

A0yt = "t: (9)

and

yt = A�1
0 "t = ut

E(utu
0
t) = � = A�1

0 
A�10
0 : (10)

Notice that (10) provides us with a likelihood function which does not depend
on A1 and, therefore, the parameters that are unique to A1 (i.e. the coe¢ cients
on the forward variables) are not identi�ed. Furthermore, the RE model is
observationally equivalent to a model without forward variables which takes the
form of (9). Since what can be estimated from the data, �; is not a function of
A1, all possible values ofA1 are observationally equivalent in the sense that they
lead to the same observed data covariance matrix. Although the coe¢ cients in
the forward solution (8) are functions of A1; this does not identify them because
Et("t+j) = 0: Elements of A1 could be identi�ed by certain sorts of a priori
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restrictions, but these are likely to be rather special, rather limited in number
and cannot be tested.
If the parameters of the DSGE model were thought to be known a priori from

calibration, there would be no identi�cation problem and the structural errors
"it could be recovered and used, for instance, in calculating impulse response
functions, IRFs. However, suppose someone else believed that the true model
was just a set of random errors yt = ut; with di¤erent IRFs. There is no
information in the data that a proponent of the DSGE could use to persuade
the other person that the DSGE model was correct relative to the random error
model. This is exactly the same point that Sargent (1976) made with respect
to "natural and unnatural rate theories".
Given data, one can estimate the n(n+ 1)=2 independent elements of �; in

(10) and the solution to this model is exactly the same as the reduced form in
the classical simultaneous equations model (SEM). The familiar order condition
for the SEM is that identi�cation of A0 and 
 requires that there are n2 a
priori restrictions on the parameters.5 In contrast, the order condition for the
RE model (6) requires 2n2 a priori restrictions on the parameters. As in the
SEM case, it may well be that although the order condition is satis�ed, the
rank condition fails. In this case, this is likely since, given the structure of the
model, E(yt+1) = 0; any deviation must be random. Thus, there is no variation
in expected future values, which could identify their e¤ects. Notice that this
would also be true, if there were no simultaneity and A0 was an identity matrix.
In this case, any stable model with rational expectations has a corresponding
solution without expectations.
The above result generalizes to higher order RE models. Consider for exam-

ple the model

A0yt =

pX
i=1

AiEt(yt+i) + "t:

Once again the unique stable solution of this model is also given by A0yt = "t.

2.2.1 Example 1. A New Keynesian (NK) system without lags

As an illustration consider a standard three equation NK-DSGE model used in
Benati (2010) that involves only current and future variables:

Rt =  �t + "1t; (11)

xt = Et(xt+1)� �(Rt � Et(�t+1)) + "2t; (12)

�t = �Et(�t+1) + xt + "3t: (13)

where Et(xt+1) = E(xt+1 j It). The model contains a monetary policy rule
determining the interest rate, Rt; an IS curve determining the output gap, xt;

5A su¢ cient set is that after suitable ordering A0 is lower triangular, which provides
n(n� 1)=2 restrictions, 
 is diagonal, which provides a further n(n� 1)=2 restrictions, which
together with n normalisation conditions, allows one to estimate the n(n� 1)=2 free elements
of A0 and the n diagonal elements of 
: The plausibility of the assumptions required for such
a recursive system has been widely questioned.
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and a Phillips Curve determining in�ation, �t; all measured as deviations from
their steady states. The errors, which are assumed to be white noise, are a
monetary policy shock, "1t; a demand shock, "2t; and a supply or cost shock,
"3t: These are assumed to be orthogonal. The discount factor is � and � is the
inter-temporal elasticity of substitution. This is a highly restricted system with
many parameters set to zero a priori. For instance, output does not appear in
the monetary policy rule and the coe¢ cient of future output is exactly equal to
unity in the IS equation. In terms of (6), yt = (Rt; xt; �t)0 and

A0 =

0@ 1 0 � 
� 1 0
0 � 1

1A ; A1 =

0@ 0 0 0
0 1 �
0 0 �

1A :

Hence

A�1
0 =

1

� + 1

0@ 1   
�� 1 �� 
��  1

1A
Q = A�1

0 A1

=
1

� + 1

0@ 0   (� + �)
0 1 �(1� � )
0  � + �

1A
and the two non-zero eigenvalues of Q are

�1 =
1

2 (� + 1)
(1 + � + � +	) , (14)

�2 =
1

2 (� + 1)
(1 + � + � �	) ;

	 =

q
�2 � 2� + 2�2 + 2� + 2�� � 4�� + 1:

Assuming that j�ij < 1 for i = 1; 2 then the solution is given by (9), which in
this case is:

Rt =  �t + "1t; (15)

xt = ��Rt + "2t;
�t = xt + "3t:

This illustrates many of the features of DSGE models. First, the RE model
parameter matrices, A0 and A1, are written in terms of deeper parameters
� = (; �;  ; �)0. Second, the parameters which appear only in A1 do not enter
the RE solution and, thus, do not enter the likelihood function. In this example,
� does not appear in the likelihood function.6 Third, the restrictions necessary

6Notice, though, that � which appears in A1 does appear in the likelihood function because
it also appears in A0:
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to ensure regularity (i.e. j�ij < 1 for i = 1; 2), imply bounds involving the
structural parameters, including the unidenti�ed �. Thus, the parameter space
is not variation free. Fourth, if � is �xed at some pre-selected value for the
discount rate (as would be done by a calibrator), then the model is identi�ed.
Canova and Sala (2009) make similar points with a similar model.

2.3 DSGE models with lags

In order to reproduce the dynamics that are typically observed with macroeco-
nomic data, most empirical DSGE models include lagged values of endogenous
or exogenous (observed or unobserved) variables. For instance Clarida, Gali
and Gertler (1999) assume that the errors in the IS and Phillips curve equations
follow AR(1) processes and derive an optimal feedback policy for the interest
rate based on the forecasts from these autoregressions. In this case, there is a
predictable component in expected in�ation because of the serial correlation in
the equation errors.
Consider the special case of (1), where A3 = �u = 0 so that the model only

contains lagged endogenous variables

A0yt = A1Et(yt+1) +A2yt�1 + "t: (16)

In this case the unique solution is given by

yt = Cyt�1 +A
�1
0 "t; (17)

where C solves the quadratic matrix equation A1C
2 � A0C + A2 = 0. The

solution is unique and stationary if all the eigenvalues of C and (I�A1C)
�1A1

lie strictly inside the unit circle. Therefore, the RE solution is observationally
equivalent to the non-RE structural model :

A0yt = A2yt�1 + "t;

where, in the case of the SEM, C = A�1
0 A2:

Again whereas the order condition for identi�cation of the SEM requires
n2 restrictions, the RE model requires 2n2 restrictions. Not only is the RE
model observationally equivalent to a purely backward looking SEM, it is ob-
servationally equivalent (in the sense of having the same reduced form), to any
other model of expectations where in (16) Et(yt+1) is replaced by Dyt�1. More
speci�cally, knowing the form of the solution, (17), does not, on its own, provide
information on the cross equation parametric restrictions. In either case, the
identifying cross-equation restrictions are lost.
Thus, in models with lags, the same problem of observational equivalence be-

tween RE and other models recurs. One may be able to distinguish the reduced
forms of particular RE models from other observationally equivalent models,
because the RE models impose particular types of cross-equation restriction
on the reduced form, which arise from the nature of the rational expectations.
But such restrictions are subject to the objection made by Sims (1980), who
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criticized identi�cation by �incredible�dynamic restrictions on the coe¢ cients
and lag lengths. RE models, which depend on restrictions on the form of the
dynamics, such as AR(1) errors, are equally vulnerable to such objections.

2.3.1 Example 2: A Hybrid New Keynesian Phillips Curve (NKPC)

A speci�c example where it is well known how identi�cation depends on as-
sumptions about the dynamics is the hybrid NKPC with an exogenous driving
process:

�t = �b�t�1 + �fEt�1�t+1 + xt + "t; (18)

where it is assumed that there is no feedback from �t to xt and that xt can be
written as a �nite order autoregression.
The parameters of (18) are nonlinear functions of underlying structural pa-

rameters. For instance, following Gali, Gertler and Lopez-Salido (2005) suppose
that there is staggered price setting, with a proportion of �rms, (1��); resetting
prices in any period, and a proportion, �, keeping prices unchanged. Of those
�rms able to adjust prices only a fraction (1 � !) set prices optimally on the
basis of expected marginal costs. A fraction ! use a rule of thumb based on
lagged in�ation. Then for a subjective discount factor, �; we have

�f = ����1; �b = !��1,  = (1� !)(1� �)(1� ��)��1;

where � = �+![1��(1��)]: If ! = 0; all those who adjust prices do so optimally,
then �f = �; and �b = 0: If the discount factor, � = 1; then �f+�b = 1 in either
case. We will consider the identi�cation of the three structural parameters,7

�f ; �b; and ; but one could also consider identi�cation of the four deeper
parameters, �; �; !; and �. If the intermediate parameters are not identi�ed,
then the deeper parameters will not be.
If we assume "t is a martingale di¤erence process; xt follows a stationary

time series process; there are no feedbacks from in�ation to the output gap,
�b; �f � 0, �f�b � 1=4 and �b + �f � 1, then the NKPC (18) has the unique
solution,

�t = �b�t�1 +


1� �b�f

1X
j=0

��jf Et�1 (xt+j) (19)

+ [xt � Et�1 (xt)] + "t;

where �b and �f are roots of �f�
2 � � + �b = 0. The RE solution is unique

if j�bj � 1 and j�f j > 1, which are satis�ed if �b + �f < 1. In the case where
�b+�f = 1, then �b = 1 and �f = ��1f (1��f ) > 1 if �f < 1=2. In�ation will be
I(1) in this case. Finally, if �b + �f > 1; the RE solution will be indeterminate
and there exists a multiplicity of solutions. Analysis of identi�cation in this
latter case is beyond the scope of the present paper and will not be considered.

7These are sometimes called �semi-structural�, but this seems misleading since a parameter
is either structural (i.e. invariant to policy) or not.
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As noted originally in Pesaran (1981, 1987, Ch. 7) and emphasized re-
cently by Mavroeidis (2005), Beyer et al (2007) and Nason and Smith (2008)
among others, identi�cation of the structural parameters critically depends on
the process generating xt. For example, suppose that xt follows the AR(1)
process

xt = �xt�1 + vt: (20)

Then the RE solution is given by

�t = �1(�)�t�1 + �2(�)xt�1 + ut; (21)

where � =(�b; �f ; ; �)
0, ut = ("t + vt), and

�1 = �1(�b; �f ) = �b =
1�

p
1� 4�f�b
2�f

;

�2 = �2(�b; �f ; ; �) =
1

1� �b�f

 
�

1� ���1f

!
=

�

1� �f (�b + �)
;

The reduced form for (�t; xt) is a restricted V AR(1) that allows consistent
estimation of the three parameters, �1; �2, and �, whilst we have four unknown
coe¢ cients, �f ; �b; , and �. In this case the structural parameters �f ; �b and
 are not identi�ed.
For identi�cation we need the order of the AR(p) process for the output gap

to be at least equal to two. In general if the output gap, xt; is AR(p); the form
for the RE solution is ARDL(1; p) in �t: In the case where xt follows the AR(2)
process

xt = �1xt�1 + �2xt�2 + vt;

then the extra instrument xt�2 exactly identi�es the model. But the identi�ca-
tion can be weak if �2 is not su¢ ciently large. Weak instruments make GMM
and the usual tests for over-identi�cation unreliable, e.g., Stock, Wright and
Yogo (2002). We return to this example below

3 Identi�cation Issues in Rational Expectations
DSGE Models: The Econometrics

3.1 Identi�cation: General Issues

We begin with a brief overview of identi�cation in a general context, before
focussing on DSGE models. For the classical econometrician, a parameter is
said to be identi�ed if there is a well de�ned extremum of the objective function
(such as likelihood function or GMM minimand) and not identi�ed or under-
identi�ed if the objective function is �at. In the case where the objective function
has little curvature, for instance because of weak instruments, there is said to
be weak identi�cation. There may be set identi�cation, where the objective
function is �at over a range, but one can put bounds on the parameter.
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A model is globally identi�ed if the well de�ned extremum of the objective
function is a unique one in the entire parameter space. Local identi�cation oc-
curs if the extremum is unique locally. If the objective function is the likelihood
function, then the information matrix is a measure of curvature. Let � denote
the parameters in a model. Rothenberg (1971) shows that local identi�cation
occurs at �0 if the information matrix is non-singular at �0. In relation to
weak identi�cation, the information matrix can be used to measure the degree
of curvature of the likelihood function (e.g. Iskrev, 2010b). The Jacobian of
the mapping from reduced form to structural parameters can also be used to
investigate local identi�cation (e.g. Iskrev, 2010a).
In many cases one may have some parameters, � (e.g. reduced form para-

meters), which are functions of some deeper parameters, �. Then it may be
that � is identi�ed, but elements of � are not, e.g. if � = �1�2: Typically,
economists are interested in structural parameters, ones that are invariant to
a class of policy interventions. As Marschak (1953) noted, for many economic
purposes it may be easier, and equally useful for policy purposes, to identify
policy invariant combinations of structural parameters, such as �; rather than
the individual parameters themselves, a point Heckman (2010) also makes.
For the Bayesian econometrician, the objective function used to de�ne iden-

ti�cation is the likelihood function. Poirier (1998), building on earlier contri-
butions (e.g. Kadane, 1974) sets out a framework for discussing identi�cation
in Bayesian models and we describe here a few of his key results which we will
use later in our discussion of identi�cation in DSGE models. We use notation
where � = (�1; �2)

0 is a vector of K parameters which lie in a region �, p (�)
is the prior, p (�jy) is the posterior and L (�; y) is the likelihood function. � is
identi�ed if L

�
�(1); y

�
= L

�
�(2); y

�
implies that �(1) = �(2).

Consider the case where the parameters in �2 are identi�ed but the scalar,
�1, is not.8 In DSGE models, the parameter space is often not variation free,
so care must be taken with the bounds of the parameter space. Hence, we
introduce notation where �1 (�2) and �2 (�1) de�nes the permissible range of
values of �1 for given �2; and �2 for given �1, respectively. If the parameter
space is variation free then we de�ne �1 � �1 (�2) and �2 � �2 (�1).
Result 1: If �1 is not identi�ed, then L (�; y) is �at over �1 2 �1 (�2) and

the likelihood function can be written as depending only on �2.
It is straightforward to use Result 1 and Bayes�theorem to show:
Result 2: If there is prior independence between �1 and �2 such that

p (�1; �2) = p (�1) p (�2) and the parameter space is a product space (i.e. � =
�1 � �2) then p (�1jy) = p (�1).
This is the commonly cited result that "posterior equals prior for unidenti�ed

parameters". Note, however, that this result only holds under prior indepen-
dence and a variation free parameter space. If either of these conditions is not
satis�ed then p (�1jy) 6= p (�1). Informally speaking, data based learning about
�2 can �spill over�onto the unidenti�ed �1 (see Koop and Poirier, 1997, for an
example).

8Extensions to the case where �1 is a vector are straightforward.
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As we shall discuss below, a better metric for investigating identi�cation can
be constructed based on Proposition 2 of Poirier (1998) which we state here.
Result 3: Let p (�1; �2) = p (�1j�2) p (�2) be the prior (which may exhibit

correlation between �1 and �2), then

p (�1jy) =
R
�(�2)

p (�1j�2; y) p (�2jy) d�2
=
R
�(�2)

p (�1j�2) p (�2jy) d�2
= E�2jy [p (�1j�2)] :

: (22)

In words, the marginal posterior for the non-identi�ed �1 will always be the
posterior expectation of the conditional prior, p (�1j�2).
The concepts discussed so far can be used with any econometric model, but

we will use them below with DSGE models.

3.2 Bayesian Identi�cation in DSGE Models

From the material in Section 2, it can be seen that some types of DSGE models
are either simultaneous equations models, or closely related to them. For such
models, of course, identi�cation issues are well-understood. In the Bayesian lit-
erature on identi�cation in the simultaneous equations model in�uential papers
include Drèze (1976), Drèze and Richard (1983) and Kleibergen and van Dijk
(1998). And Bayesian instrumental variable methods are well established (see,
among many others, Kleibergen and Zivot, 2003, Hoogerheide, Kleibergen and
van Dijk, 2007). Insofar as the DSGE model can be written as a conventional
SEM, conventional methods can be used for Bayesian estimation and checking
for identi�cation. The NK-DSGE and NKPC models above fall in this cate-
gory. There is also a literature relating to speci�c models such as the NKPC
(e.g. Mavroeidis, 2005 and Kleibergen and Mavroeidis, 2009, 2010). For DSGEs
which can be written in structural VAR form Rubio-Ramirez, Waggoner and Zha
(2010) provides an exhaustive treatment. But, in general, with DSGE models
direct veri�cation of identi�cation using such analytical methods is di¢ cult.
In this paper, we will focus on empirical methods for determining identi�ca-

tion (or weak identi�cation). In the Bayesian context this means methods based
on comparisons of priors and posteriors. For the classical econometrician, this
often means methods based on the likelihood function.9 Iskrev (2010a) begins
with the observation that normal likelihoods depend on the �rst two moments
of the data. The Jacobian of the transformation from these �rst two moments
to the structural parameters, �, is crucial for identi�cation.10 In particular, this
Jacobian must be of full rank at �0 for the model to be locally identi�ed at this
point. Various choices for �0 can be made to investigate local identi�cation at

9Canova and Sala (2009) consider matching impulse response functions, so the diagnostics
for detecting the existence and source of identi�cation problems are not expressed in likelihood
terms. But the basic ideas and concepts they use transfer to likelihood function terms discussed
below.
10The diagnostic recommended by Canova and Sala (2009) involves a quadratic form in the

derivative of the VAR coe¢ cients of the RE solution with respect to the structural parameters
which is similar to this Jacobian.
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di¤erent points in the parameter space (Iskrev takes a million draws from a prior
to investigate identi�cation over a wide region). Iskrev (2010a) recommends us-
ing analytical derivatives (since numerical di¤erentiation can be inaccurate in
these nonlinear transformations). This need for analytical derivatives adds an
extra step in the coding process, but Iskrev (2010a) describes a relatively simple
way of obtaining these derivatives. By checking whether the Jacobian matrix is
of full rank, the researcher can see whether the model is identi�ed. If the Jaco-
bian is not of full rank an examination of where the rank de�ciency occurs can
shed light on the source of the identi�cation failure. Iskrev (2010b) is similar in
spirit to Iskrev (2010a), but focusses on strength of identi�cation and uses the
information matrix (which will re�ect the curvature of the likelihood function)
for this purpose. This approach also requires the calculation of analytical deriv-
atives. More informally, directly looking at the likelihood function and whether
it is �at (or nearly so) can reveal a lack of identi�cation or weak identi�cation
and this is sometimes done. For instance, An and Schorfheide (2007, Figures 14
and 15) also present plots of the log-likelihood function.
It is worth noting that the methods in Canova and Sala (2009) and Iskrev

(2010a,b) are not hypothesis testing procedures, but are better thought of as
diagnostic procedures or indicators. Canova and Sala (2009) use the term di-
agnostics in reference to their methods. However, since diagnostic tests for
misspeci�cation are common in econometrics, we use the term indicator, to re-
inforce the point that these are not tests. Furthermore, these existing procedures
can only check for local identi�cation.
Bayesians typically use posterior simulation algorithms to estimate DSGE

models. Our �rst proposed indicator can be calculated as part of such a pos-
terior simulation algorithm without the need for additional steps such as the
coding of analytical derivatives. Our second indicator involves using arti�cial
data but it, as well, will involve standard posterior simulation algorithms. The
Bayesian who uses proper priors will (under weak conditions) obtain a proper
posterior, allowing for valid statistical inference. Since the parameters in DSGE
models have a structural interpretation, sensible proper priors are usually avail-
able. These priors may be purely subjective or could re�ect data from other
sources (e.g. the priors could re�ect estimates of structural parameters pro-
duced in microeconometric studies or could be based on a training sample of
macroeconomic data). Given such prior information, there is a sense in which
identi�cation is not a worry for the Bayesian DSGE modeler.11 However, if a
parameter is not identi�ed, then there is the possibility that there is no data-
based learning about it and its posterior can solely re�ect prior information.
In complicated models such as DSGEs, where it can be hard to analytically
disentangle identi�cation issues, this can lead to the case where the researcher
believes she is presenting posterior estimates but is really simply reproducing
her prior.
Even if parameters are identi�ed, weak identi�cation can lead to relatively

11 In one of the classic Bayesian texts, identi�cation is mentioned only in an oft-quoted
footnote: �In passing it might be noted that unidenti�ability causes no real di¢ culty in the
Bayesian approach� (Lindley, 1971, page 46 footnote 34).
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�at regions of the likelihood function where the prior is extremely in�uential.
Such concerns have lead to a recent interest in identi�cation issues in Bayesian
DSGE modelling. Consider, for instance, Canova (2007, page 190) which states
�while it is hard to �cheat�in a classical framework, it is not very di¢ cult to give
the impression that identi�cation problems are absent in a Bayesian framework
by choosing tight enough priors, presenting well-behaved posterior distributions
and entirely side-stepping the comparison between priors and posteriors�. In re-
sponse to this, an increasingly common practice is to compare priors and poste-
riors for structural parameters, a practice which Canova (2007, page 191) refers
to as �necessary [but] by no means su¢ cient�to reveal identi�cation problems
in DSGE models. We will draw on our earlier discussion of Bayesian identi�-
cation (see Section 3.1) to discuss why this is so and introduce an alternative
method for investigating identi�cation in Bayesian DSGE models.
Result 2 of Section 3.1 underlies some informal discussion of identi�cation

in the Bayesian DSGE literature. For instance, An and Schorfheide (2007, page
127) say that: �A direct comparison of priors and posteriors can often provide
valuable insights about the extent to which data provide information about pa-
rameters of interest.� This is true, but can be an imperfect way of formally
investigating identi�cation issues, since the posterior for an unidenti�ed para-
meter can di¤er substantially from its prior if the non-identi�ed parameter is, a
priori, correlated with identi�ed ones or if the parameter space is not a product
space. Both of these are likely to hold with DSGE models. In fact, papers
such as Del Negro and Schorfheide (2008) make a strong case that priors for
structural parameters in DSGE models should not exhibit prior independence.
Thus, informally comparing priors to posteriors could be useful to see if learn-
ing about parameters occurs, but may not be able tell the researcher why it is
occurring. That is, the researcher may be unable to distinguish between learn-
ing via the likelihood function and learning solely due to the fact that the prior
does not exhibit independence or the parameter space is not variation free.
Nevertheless, it is common in the Bayesian DSGE literature to use such infor-

mal comparisons of priors and posteriors, as the quote from An and Schorheide
above indicates. Among many others, Smets and Wouters (2007, page 594) com-
pare prior and posteriors and note that the mean of the posterior distribution
is typically quite close to the mean of the prior assumptions and later note that
"It appears that the data are quite informative on the behavioral parameters,
as indicated by the lower variance of the posterior distribution relative to the
prior distribution." As a recent example, Guerron-Quintana (2010, page 782)
says �Initial estimation attempts showed that the posteriors of [certain struc-
tural parameters] sat on top of their priors. Hence those parameters are �xed
to the values [taken from another paper]�. Statements similar to this implicitly
suggest a comparison of prior to posterior is useful for checking identi�cation in
complicated DSGE models where it is not easy to analytically check identi�ca-
tion.
Result 3 of Section 3.1 o¤ers a promising way of formally investigating iden-

ti�cation issues. In cases where a subset of structural parameters, say �2, is
known to be identi�ed, but there is doubt regarding the identi�cation of an-
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other sub-set, �1, then p (�1jy) should be equal to E�2jy [p (�1j�2)] where we use
the notation of Section 3.1. For DSGE modelers interested in indicators that
may shed light on identi�cation issues, we would recommend comparing the
properties of p (�1jy) and E�2jy [p (�1j�2)] in addition to (or instead of) compar-
ing p (�1jy) to p (�1).
In terms of computation, note that our proposed indicator is typically easy

to calculate. That is, the Bayesian DSGE modeler will typically be using an
MCMC algorithm and, thus, posterior draws of �2 will be available. Calculation
of E�2jy [p (�1j�2)] simply evolves evaluating p (�1j�2) at each draw of �2 at a grid
of values for �1 and averaging across the posterior draws of �2. In many cases an
analytical form for p (�1j�2) will be available. For instance, if p (�1; �2) is normal
then p (�1j�2) is also normal with textbook formula for its mean and variance.
For priors which do not admit of analytical results, adding a prior simulation
step at each posterior draw would only slightly add to the computational burden.
Formally, if a parameter is unidenti�ed then p (�1jy) and E�2jy [p (�1j�2)]

should be identical, apart from MCMC approximation error. Hence, the two
densities cannot be used as a test for identi�cation. That is, any di¤erence
between p (�1jy) and E�2jy [p (�1j�2)] beyond MCMC approximation error means
identi�cation is present. However, we can use the magnitude of the di¤erence
between these densities as an indicator revealing the strength of identi�cation.
We will illustrate the usefulness of this indicator below. However, for DSGE

models, it has one substantive drawback. For the theory underlying Result 3
to hold, the parameters in �2 must all be identi�ed and �1 must not enter the
likelihood function (this point is stressed on page 489 of Poirier, 1998). When
working with a DSGE model, we would like to simply set � to be the structural
parameters. But typically we will not be able to do so (in the sense that the
indicator de�ned in this way will not necessarily be zero for non-identi�ed pa-
rameters). This is because the parameters in �2 de�ned in this way may not all
be identi�ed.
To see how this can happen in practice, we return to our example involving

the NKPC (see Example 2 in Section 2) with an AR(1) process for the out-
put gap. The two reduced form parameters in the in�ation equations, a1 and
a2, depend on three structural parameters �f ; �b and  and, thus, there is an
identi�cation problem involving these three structural parameters.12 In con-
trast to Example 1, the identi�cation problem does not manifest itself simply
in terms of a single structural parameter which does not enter the likelihood
function. Using the notation of Result 3, we might be tempted to set �1 = �f
and �2 = (�b; ; �) in order to investigate the identi�cation of �f . However, it
can be easily seen that the derivations in (22) used to prove Result 3 are no
longer valid. In such cases, we will not have p (�1jy) = E�2jy [p (�1j�2)], even
though �1 is only partially identi�ed.
The advice given by Poirier (1998) in such cases is to re-parameterize the

model so that �2 contains only identi�ed parameters. In some DSGE cases, a

12a2 also depends on � but, since this parameter identi�ed through the AR(1) process for
the output gap, this dependence is irrelevant for the argument we are making here.
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simple way of choosing �2 suggests itself: let �2 be some or all of the reduced
form parameters and �1 be one of the structural parameters. We know the
reduced form parameters are identi�ed and, thus, the conditions under which
Result 3 holds are satis�ed. In such cases, we can recommend a comparison of
p (�1jy) and E�2jy [p (�1j�2)] as shedding light on the identi�cation of �1. The
drawback of this strategy is that you have to know about the identi�cation
of the model in advance. Thus it will be most useful as an indicator of the
strength of identi�cation of each parameter rather than an indicator of whether
identi�cation occurs or not. We will return to these points in our empirical
illustrations.

3.3 A Bayesian Identi�cation Indicator Based on Large
Sample Results

The advantage of the identi�cation indicator of the preceding sub-section is that
it can be calculated as a by-product of estimating a DSGE model (on the ac-
tual data) using MCMC methods. The disadvantage is that we typically cannot
simply work with the structural parameters of a model. A second Bayesian
identi�cation indicator can be obtained based on the asymptotic theory of non-
identi�ed models written in terms of the structural parameters. Thus, we can
focus on identi�cation of a single structural parameter without worrying about
whether the other structural parameters are identi�ed or not. Empirically, this
indicator involves simulating arti�cial data sets of increasing size and then esti-
mating the DSGE model using these data sets. Since the generation of simulated
data is fairly standard in the DSGE literature, this strategy �ts in with existing
empirical methodologies.
To explain the theory underlying this second indicator of identi�cation, note

that standard Bayesian results for stationary models (see, e.g., Berger, 1985,
page 224), imply that, under certain regularity conditions, the Bayesian asymp-
totic theory relating to the posterior is numerically identical to the asymptotic
distribution theory for the maximum likelihood estimator. Thus, for instance,
the posterior for � will asymptotically converge to to its true value and the role
of the prior will vanish. One of the regularity conditions is that � is identi�ed.
In this sub-section, we relax this assumption and show that this asymptotic con-
vergence will not occur. This result holds even for cases of partial identi�cation
such as the NKPC of our Example 2.
To derive this result, let � = (�1; �2; :::; �p)0 be a p � 1 vector of structural

parameters of interest in a DSGE model of the type set out in Section 2. Suppose
that the likelihood function for a sample of T observations can be written as
LT (�(�); y) where �(:) is a k� 1 vector-valued function of �, with at least �rst
and second order derivatives, @�(�)

@�i
; and @2�(�)

@�i@�j
: Denote the k � p matrix of

derivatives@�(�)@�0 by R(�). Let `T (�) = ln [LT (�(�); y)], and assume that

QT (�) =
�1
T

@2`T (�)

@�@�0
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is a positive de�nite matrix for all values of � 2 A, and plimT!1QT (�) = Q >
0. Denote the maximum likelihood estimator of � by �̂T and assume that

p
T (�̂T � a0)!d N(0;Q

�1);

where �0 is the true value of � 2 A.
The object of the exercise is to derive the posterior distribution of �1 assum-

ing that the prior density of � is given by

p(�) = (2�)�p=2 jH
¯
j1=2 exp�1

2
(� � �)

0
H
¯
(� � �); (23)

where � and H
¯
are prior mean vector and prior precision matrix of �. The

posterior density of � is given by

p(� jy ) = p(�)LT (�(�); y)

p(y)
;

or
p(� jy ) = expfln [p(�)] + `T (�(�))� ln(p(y))g: (24)

When T is �nite, assuming a proper prior, the posterior of � is well de�ned even if
� is not identi�ed. In the classical sense � is globally identi�ed if Rank(R(�)) =
k � p for all � 2 �, and � is identi�ed locally in the neighborhood of � if
Rank(R(� )) = k � p. A necessary condition for identi�cation is given by p � k.
Suppose that p = k + 1; and �1 is non-identi�ed. But for simplicity assume

that the remaining (p�1)�1 structural parameters, �� = (�2; :::; �p)0, are iden-
ti�ed. The generalization to the case where two or more structural parameters
are unidenti�ed is discussed below.
Note that, if �1 does not enter the likelihood function and �1 is, a priori,

uncorrelated with ��, then Result 2 of Section 3.1 says that p (�1) = p (�1jy)
for all T . In this case, the posterior precision of �1 does not get updated at all
as sample size increases (i.e. it remains equal to prior precision). Formally, if
we de�ne average posterior precision as posterior precision divided by T , then
average posterior precision will tend to zero with T in this case. The derivations
below show that the statement �average posterior precision will tend to zero with
T�will hold whenever �1 is unidenti�ed (even if the nature of the identi�cation
problem is more complicated than that assumed in Result 2). However, when �1
is identi�ed, then the average posterior precision will tend to a strictly positive
constant which is independent of the prior precision.
To see why the result arises, note that although � is not identi�ed, there

exists �̂T such that �̂T = �(�̂T ). The choice of �̂T is not unique but as we
shall see this is of no consequence for the derivation of posterior precision of �1.
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Consider now the following Taylor series expansion of `T (�(�)) around �̂T .

`T (�(�)) = `T (�(�̂T )) +

pX
i=1

kX
s=1

@`T (�̂T )

@�s

@�s(�̂T )

@�i
(�i � �̂iT ) +

1

2

pX
i=1

pX
j=1

kX
s=1

kX
r=1

@2`T (�̂T )

@�r@�s

@�r(�̂T )

@�i

@�s(�̂T )

@�j
(�i � �̂iT )(�j � �̂jT )

+
1

2

pX
i=1

pX
j=1

kX
s=1

@`T (�̂T )

@�s

@2�s(�̂T )

@�i@�j
(�i � �̂iT )(�j � �̂jT ) + higher order terms.

Assuming that the higher order terms are negligible and noting that @`T (�̂T )@�s
= 0,

for all s, we have

`T (�(�)) t `T (�(�̂T ))�
T

2
(� � �̂T )0ŜT (� � �̂T )

where ŜT = R̂0QT R̂ and R̂ = R(�̂T ). Using this result and (23) in (24) we have

p(� jy ) _ expf�1
2
(� � �)

0
H
¯
(� � �)� T

2
(� � �̂T )0ŜT (� � �̂T )g:

Using textbook results for combining a normal prior with normal likelihood,
the posterior distribution of � is approximately normal with mean ��T and the
precision matrix �HT ; where

��T =
�
T ŜT +H¯

��1
(T ŜT �̂T +H¯

�); and �HT = T ŜT +H¯
:

It is clear that ��T is de�ned even if R̂; or equivalently ŜT , fails the rank condi-
tion. Since the marginals of multivariate normal are also normally distributed,
the posterior of �1 is (approximately) normally distributed with mean ��1T ; where
��1T is the �rst element of ��T , and the posterior precision of �1 is (approximately)
given by (suppressing the T subscript to simplify the exposition)

�h11 = �H11 � �H12
�H�1
22
�H21;

where

�H =

�
�H11

�H12
�H21

�H22

�
= T

�
Ŝ11 Ŝ12
Ŝ21 Ŝ22

�
+

�
H
¯ 11

H
¯ 12H

¯ 21
H
¯ 22

�
:

Hence

�h11 = (T Ŝ11 +H¯ 11
)�

�
T Ŝ12 +H¯ 12

��
T Ŝ22 +H¯ 22

��1 �
T Ŝ21 +H¯ 21

�
:

It is clear that when T is �nite �h11 is well de�ned irrespective of whether R̂ is
a full rank matrix or not. Note that, even if H

¯ 21
= 0, the posterior of �1 may
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not be independent of the posterior of ��. This is because in general Ŝ12 6= 0.
In the case where p = k posterior independence follows if R12 = Q12 = 0:
Consider now the case where T !1, and note that since

T�1�h11 = (Ŝ11+T
�1H
¯ 11
)�
�
Ŝ12 + T

�1H
¯ 12
��

Ŝ22 + T
�1H
¯ 22
��1 �

Ŝ21 + T
�1H
¯ 21
�
;

then as T !1 we have

lim
T!1

�
T�1�h11

�
= S11 � S12S�122 S21;

where

S = p lim
�
R̂0QT R̂

�
= R0QR =

�
S11 S12
S21 S22

�
:

In the case where R is full rank, S is a positive de�nite matrix. Hence, S11 �
S12S

�1
22 S21 > 0, and limT!1

�
T�1�h11

�
is strictly positive and does not depend

on the prior precision.
But when the rank condition is not satis�ed the above result does not follow.

For example, suppose that p = k + 1 and consider the following partition of R

R =
�
r R�

�
;

where r is a k � 1 vector and R� is k � k . Recall that p = 1 + k, and by
assumption R� is a non-singular matrix. Then

S = R0QR =

�
r0

R0�

�
Q
�
r R�

�
=

�
r0Qr r0QR�
R0�Qr R0�QR�

�
:

Hence
S11 � S12S�122 S21 = r0Qr � r0QR� (R0�QR�)

�1
R0�Qr:

But since R� and Q are both non-singular then it readily follows that S11 �
S12S

�1
22 S21 = 0, and

lim
T!1

�
T�1�h11

�
= 0:

Namely the posterior precision of �1 must change at a rate slower than T when
�1 is non-identi�ed. In terms of the posterior variance this result con�rms that
the posterior variance of a non-identi�ed parameter need not tend to zero, and
in cases that it does its rate of decline must be slower than T .
The above result readily generalizes when two or more of the structural

parameters are unidenti�ed. Consider the case where � = (�01;�
0
2)
0 with �1 the

s � 1 vector of unidenti�ed parameters and �2 the (p � s) � 1 vector of the
identi�ed parameters where p� s = k. Partition R as R = (R1; R2), where R1
and R2 are k � s and k � k matrices, where R2 is non-singular and write S as

S = R0QR =

�
R01QR1 R01QR2
R02QR1 R02QR2

�
:

Then noting that by assumption Q and R2 are non-singular matrices, it readily
follows that S11 � S12S�122 S21 = 0, as required.
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We propose to use these results as a second Bayesian indicator of identi�ca-
tion which can be used when our �rst Bayesian indicator of identi�cation is not
applicable. That is, we recommend the following strategy: Suppose that it is of
interest to investigate if one or more elements of � are identi�ed, for example in
the locality of the prior mean vector, �. First, the researcher should generate
an arti�cial data set of size T from the DSGE model at � = �. T should be
chosen to be a large value where asymptotic results are expected to be very good
approximations (e.g. the empirical illustrations below set T = 10; 000). Second,
the researcher should estimate the DSGE model using sample sizes � = cT for a
grid of values for c (e.g. c = 0:0001; 0:001; 0:01; 0:1; 1:0) and calculate a measure
which relates to the posterior precision (e.g. the posterior variance) for every
parameter. By comparing the behavior of the measure over di¤erent sample
sizes, the researcher can see which parameters are identi�ed and which are not.
For instance, the posterior variance should be going to zero with sample size for
identi�ed parameters, but will not be doing so for unidenti�ed parameters.
Note that this strategy will be an indicator of local identi�cation (i.e. it

will check identi�cation at the parameter values used to generate the arti�cial
data). Hence, the researcher may wish to carry out the procedure for various
arti�cial data sets generated with di¤erent parameter values. This strategy is
comparable to the one used by Iskrev (2010a), who draws parameter values from
the prior and checks identi�cation at each of the draws.

3.3.1 Example: Regressions with exactly collinear regressors

As an example of the preceding derivations, consider the following simple re-
gression model

yt = �1x1t + �2x2t + ut;

where �1 and �2 are the parameters of interest. Suppose that x2t = �x1t where
� is a known non-zero constant . Then

yt = �(�)x1t + ut;

where � = �(�) = �1 + ��2. Assuming a normal prior for the parameters of
interest, as in (23), causes � and �1 to be dependent on one another (unless �1
and �2 are a priori dependent and � = �v¯ 11=v¯ 12; where v¯ ij for i; j = 1; 2 denotethe prior variance-covariances of �1 and �2). Therefore, in cases where �1 and �2
are a priori independent (i.e. v

¯ 12
= 0) or when v

¯ 12
6= 0 but � 6= �v

¯ 11
=v
¯ 12
, then

� and �1 are a priori dependent and Result 2 of Section 3.1. does not apply.
Using our previous results, the posterior precision of �1 for a �nite T is given

by

T�1�h11 = (ŝ11 + T
�1h
¯ 11
)�

�
ŝ12 + T

�1h
¯ 12
� �
ŝ22 + T

�1h
¯ 22
��1 �

ŝ21 + T
�1h
¯ 21
�
;

where

Ŝ = R0QTR, R =
�
1 �

�
, QT = T�1

TX
t=1

x21t = s2T1 = s21 > 0;
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and hence
ŝ11 = s21; ŝ12 = ŝ21 = �s21 and ŝ22 = �2s21:

Therefore

T�1�h11 = s21

(
1 + T�1(h

¯ 11
=s21)�

�
�+ T�1h

¯ 21
=s21
�2

�2 + T�1(h
¯ 22

=s21)

)

= T�1s21

(
(h
¯ 22

=s21) + (h¯ 11
=s21)�

2 + (h
¯ 11

=s21)T
�1(h
¯ 22

=s21)� 2�h¯ 21=s
2
1 � T�1

�
h
¯ 21

=s21
�2

�2 + T�1(h
¯ 22

=s21)

)
:

When the priors of �1 and �2 are independent the above expression simpli�es to

�h11 =
h
¯ 22

+ �2h
¯ 11

+ T�1h
¯ 11
h
¯ 22

=s21
�2 + T�1(h

¯ 22
=s21)

:

Hence, posterior precision (�h11) of the unidenti�ed parameter, �1, di¤ers from
its prior precision (h

¯ 11
) for all T , and as T ! 1, even though �1 and �2 are

assumed to be a priori independent. For T su¢ ciently large we have

lim
T!1

�h11 = h¯ 11
+ ��2h

¯ 22
:

Hence, the posterior precision is bounded in T , in contrast to the posterior
precision of an identi�ed parameter.
The extent to which the posterior precision deviates from the prior precision

is determined by h
¯ 22

=�2. It is also worth noting, however, that as T increases
the posterior precision declines. This could be viewed as an indication that �1 is
not identi�ed. In the case where a parameter is identi�ed we would expect the
posterior precision to rise with T and eventually dominate the prior precision.

3.3.2 Example: The NKPC with no Backward Looking Behavior

Consider the NKPC (see Example 2 in Section 2.3.1) and, for simplicity, assume
that there is no backward looking behavior (�b = 0) and simplify notation by
de�ning � � �f . The solution of this model can be written as:

yt = �(; �)xt + ut;

where
� � �(; �) =

�

1� �� ;

and assume that � is known (it is identi�ed, so asymptotically its estimator will
converge to the true value). For this example we have

R =
�

�
1���

�2

(1���)2

�
:

It is clear that the rank condition is not satis�ed and neither of the structural
parameters is identi�ed.
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This example is complicated by the fact that R depends on the unknown
parameters. With this in mind we note that R can also be written as

R =
�

1� ��
�
1 �

�
:

Furthermore

R̂ =
�

1� ��̂
�
1 �̂

�
, QT = T�1

TX
t=1

x2t = s2x > 0;

Ŝ = R̂0QT R̂ =
�2s2x�
1� ��̂

�2 � 1 �̂

�̂ �̂2

�
:

�̂ could be selected to be the OLS estimator of � in the regression of yt on xt.
But the choice of �̂ is arbitrary so long as it lies in the range of [0; 1) - but as
we shall see below in the limit �̂ gets eliminated from the posterior precisions.
It can now be seen that the following approximate results hold:

T�1�h t

0B@ �2s2x�
1� ��̂

�2 + T�1h¯ 
1CA�

�
�2s2x�̂

(1���̂)
2 + T�1h¯ �

�2
�2s2x�̂

2

(1���̂)
2 + T�1h¯��

;

and similarly

T�1�h�� t
�2�̂2s2x�
1� ��̂

�2 + T�1h¯�� �
�

�2s2x�̂

(1���̂)
2 + T�1h¯ �

�2
�2s2x

(1���̂)
2 + T�1h¯ 

:

In the case where priors of  and � are independent of one another, h
¯ �

= 0;we
obtain

�h t h¯ 
+

�2s2x

(1���̂)
2 h¯��

�2s2x�̂
2

(1���̂)
2 + T�1h¯��

and as T !1
lim
T!1

(�h) = h¯ 
+
h
¯��
�2

;

which does not depend on the nuisance parameter �. Similarly

�h�� t h¯��
+

�2�̂2s2x

(1���̂)
2 h¯ 

�2s2x

(1���̂)
2 + T�1h¯ 

;

and
lim
T!1

(�h��) = h¯��
+ �2h

¯ 
:
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In the case of both structural parameters the posterior precisions are dominated
by the prior precisions even if T is su¢ ciently large. In neither case do the
prior and the posterior precisions coincide despite the prior independence of the
structural parameters.
This example illustrates the drawback of our �rst Bayesian indicator of iden-

ti�cation discussed above. That is, Results 2 and 3 of Section 3.1 (or the propo-
sitions of Poirier, 1998, Section 2), obtain when the vector of parameters is
written in terms of those which are identi�ed and those which are not. In cases
of partial identi�cation such as this one, the vector of structural parameters
cannot be written in this way (i.e. � and  are both unidenti�ed and thus,
neither can be included in what we called �2 in Results 2 and 3). However, it
also shows how our large sample derivations can be used as a second Bayesian
indicator of identi�cation which is valid even in cases such as this.

4 Applications

In this section, we illustrate both of our Bayesian identi�cation indicators in the
context of the two examples of DSGE models introduced in Section 2. These
are the NK-DSGE (see Section 2.2.1) and the NKPC (see Section 2.3.1). For
the NKPC, we use the simpli�ed version of the model with no backward looking
behavior (used in Section 3.3.2).

4.1 Example 1: Bayesian identi�cation of the simple NK-
DSGE model

Previously, we introduced a simple NK-DSGE in (11), (12) and (13). We will
illustrate some issues relating to Bayesian inference and identi�cation in this
simple and easily understood model where the identi�cation of the model can
be immediately seen. This example involves four structural parameters, �, ,
 and �. The rational expectations solution given in (15) does not involve � so
this parameter is unidenti�ed. However, the bounds given in (14) which ensure
regularity such that there is a unique stationary solution do involve �.
We generated one arti�cial data set of T = 10; 000 observations from (15)

with � = 0:4,  = 0:75 and  = 2:0. These values were chosen so as to be not
too far from the boundaries given in (14), but also not too near.13 The errors,
"jt for j = 1; 2; 3 are all standard normal and independent of one another.
We estimate the model using di¤erent sample sizes and two di¤erent priors.

Both priors are normal with prior means: E (�) = 0:4, E () = 0:75, E ( ) =
2:0 and E (�) = 0:9. The two priors di¤er in their prior variances. Let � =
(�; ;  ; �)

0. The �rst prior (which we call the Independent Prior) has var (�) =
I. The second prior (the Dependent Prior) has the same prior covariance matrix
except for a single element: this is the covariance between � and � which is set to
0:9. These priors are combined with the likelihood function based on the three

13The posterior simulation algorithm rejected 3.1% of the draws for violating the bounds.
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equation system in (15). We use a random walk Metropolis-Hastings algorithm
to do posterior simulation in this model.14

We begin by illustrating the properties of our �rst Bayesian identi�cation
indicator with T = 100 (i.e. we use only the �rst 100 of the arti�cially generated
observations). Figures 1 and 2 graph various priors and posteriors for � and
�, respectively, for the Independent Prior. Figures 3 and 4 do the same for
the Dependent Prior. For the sake of brevity, we only present graphs for one
identi�ed and one non-identi�ed parameter and, thus, do not present results for
 and  .
Consider �rst the priors and posteriors for �. Since � is unidenti�ed, a

naive researcher may expect its posterior to equal its prior. For the reasons
discussed in Section 3, this may not be the case. The top panels of Figures 1
and 3 illustrate this empirically. Even with the Independent Prior (where � is,
a priori, uncorrelated with the other parameters in the model), the fact that
� enters the bounds for the regularity region given in (14) has an appreciable
impact on the posterior in Figure 1. In Figure 3 (which uses a prior where the
unidenti�ed � is strongly correlated with the identi�ed �), this e¤ect is even
more noticeable. The posterior for � has a much smaller variance than its prior,
indicating how information about � is spilling over onto �.
The priors and posterior for � show (as expected) that learning is occurring

about this identi�ed parameter. The posteriors in the top panels of Figures 2
and 4 are concentrated near the true value used to generate the data.
This example illustrates an important point we have made previously: An

informal comparison of priors and posteriors of structural parameters in DSGE
models can be a useful way of investigating if learning is occurring about a
parameter. However, such a comparison will not tell the researcher why the
learning is occurring. Our �gures show posteriors can di¤er from priors, even
for parameters which do not enter the likelihood function, either when the pa-
rameter space is not variation free or through prior correlations with identi�ed
parameters. Since DSGE models will often exhibit such features, this illustra-
tion shows how caution should be taken when interpreting comparisons of priors
with posteriors.
In Section 3.2, we recommended using an alternative indicator based on

(22). If interest centers on identi�cation issues relating to �1 then this indicator
involved comparing p (�1jy) to E�2jy [p (�1j�2)]. The bottom panels of Figures
1 through 4 present such a comparison for � and � for our two priors. Clearly
our indicator is working well. For the non-identi�ed parameter, p (�jy) and
E�;; jy [p (�j�; ;  )] are the same density. For the identi�ed parameter, p (�jy)
and E�;; jy [p (�j�; ;  )] are massively di¤erent, indicating the parameter is
strongly identi�ed.

14 In this small model, with only four parameters, this algorithm works well. In larger
models, depending on the form of the prior, more e¢ cient posterior simulation algorithms
could be used.
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To illustrate our second Bayesian identi�cation indicator, based on large
sample derivations, Table 1 presents the posterior variances of the parameters
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in the model using larger and larger data sets. Remember that the theoretical
derivations underlying our second Bayesian identi�cation indicator imply that
the posterior variance of the identi�ed parameters, �,  and  , should be tend-
ing to zero at the rate of 1=T . But the posterior variance of the unidenti�ed
parameter, �, will go to zero (if at all) at a slower rate. These properties can
be clearly seen in Table 1. In contrast to the identi�ed parameters, the pos-
terior variance of � is still substantial even for a sample of size 10; 000. This
result holds irrespective of whether the prior distribution of � depends on the
other parameters or not. For example, in the case of independent priors, when
T = 10; 000 the posterior variance of � is 0.411 as compared to 3�10�5, 1�10�4,
and 1� 10�4 for �,  and  , respectively.

Table 1: Posterior Variances of Structural Parameters
Number of observations �   �

Independent Prior
T=10 0.101 0.479 0.156 0.516
T=20 0.042 0.215 0.080 0.467
T=50 0.009 0.027 0.035 0.457
T=100 0.005 0.013 0.017 0.432
T=1,000 4�10�4 0.001 0.002 0.426
T=10,000 3�10�5 1�10�4 1�10�4 0.411

Dependent Prior
T=10 0.071 0.321 0.162 0.298
T=20 0.043 0.222 0.080 0.190
T=50 0.010 0.027 0.036 0.153
T=100 0.005 0.014 0.017 0.139
T=1,000 3�10�4 0.001 0.002 0.132
T=10,000 4�10�5 1�10�4 2�10�4 0.128

4.2 Example 2: The NKPC model

For the reasons discussed in Section 3.2 and in the theoretical derivations of
Section 3.3.2, our �rst Bayesian indicator of identi�cation will not work reliably
when we work with the NKPC and parameterize the model in terms of its
structural parameters. However, our second Bayesian identi�cation indicator of
Section 3.3, based on large sample theory, should still work. Accordingly, we
use the NKPC (as in Section 3.3.2, we assume there is no backward looking
behavior) to investigate the performance of this second identi�cation indicator.
We consider both an unidenti�ed and identi�ed version of the NKPC. The
unidenti�ed version assumes an AR(1) process for the output gap. The identi�ed
version assumes an AR(2) process for the output gap. Including the identi�ed
version allows us to investigate issues relating to the strength of identi�cation.
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4.2.1 The NKPC with AR(1) Process for the Output Gap

When no backward looking behavior exists (�b = 0), then the hybrid NKPC,
with AR(1) process (20), is parameterized in terms of three structural parame-
ters �;  and � (where � is the forward-looking coe¢ cient in the NKPC). The
RE solution given in (21) simpli�es and depends on two reduced form parame-
ters, � and �. The lack of identi�cation reveals itself through the mapping from
structural to reduced form parameters: � = �=(1� ��).
We generated one arti�cial data set of 10; 000 observations from the NKPC

with � = 0:6,  = 0:9; � = 0:3. In addition, ut is i.i.d. N(0; 0:25) and vt
is i.i.d. N(0; 1). For  and �, the prior is normal: N (0:5; 0:1I2). This prior
is chosen so that the prior means are a bit di¤erent (but not too di¤erent)
from the true values and prior variance is fairly informative. For �, we use a
Uniform prior over (0; 1) which is the region which ensures a unique RE solution.
This prior is combined with the likelihood function based on the two equations
for �t and xt. We use a random walk Metropolis-Hastings algorithm to do
posterior simulation using the �rst T of the arti�cially generated observations
for T = 10; 20; 50; 100; 1; 000 and 10; 000.
Table 2 presents posterior variances for various sample sizes. The results in

Table 2 not only con�rm the large sample theory derived in this paper, but also
show that it is empirically useful. That is, in this RE model, it can clearly be
seen that the posterior variance of � is going to zero much faster than for the
unidenti�ed parameters. As T increases the posterior variance of both � and 
declines, but slowly, much more slowly for � than . We have � = �= (1� ��);
we impose 0 < � < 1 and since we also know �; and that 0 < � < 1; then the
sign of  is the same as the sign of �; providing some information. In addition,
even though  is not identi�ed we can test  = 0 by testing � = 0: Thus in
some sense there is more information about  in the estimate of � than about
� and this is re�ected in the posterior variances:

Table 2: Posterior Variances of Structural Parameters
Number of observations �  �
T=10 0.027 0.059 0.079
T=20 0.014 0.054 0.079
T=50 0.007 0.050 0.079
T=100 0.004 0.043 0.079
T=1,000 0.001 0.019 0.076
T=10,000 9�10�5 0.009 0.075

The posterior variance is not the only possible feature that the researcher
could use as an indicator of identi�cation. An alternative is simply to plot the
posteriors for di¤erent choices of T . This is done in Figures 5, 6 and 7. In
Figure 5, the posterior for �, clearly is converging in the manner implied by
the asymptotic theory for identi�ed models. However, in Figures 6 and 7, the
posteriors for  and � are converging much more slowly. The posterior for 
changes with T more rapidly that the posterior for �. However, there is clearly
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some updating of beliefs about � occurring (remember that the prior for this
parameter is uniform).
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4.2.2 The NKPC with AR(2) Process for Output Gap

We now turn to the identi�ed version of the NKPC, where we have an AR(2)
process for the output gap. The structural parameters of this model (with no
backward looking behavior) are (�; ; �1; �2) and the reduced form parameters
are (�1; �2; �1; �2). There is a one-to-one mapping between reduced form and
structural form:

�1 =

�
�1 + �f�2

�
1� �f

�
�1 + �f�2

�
and

�2 =
�2

1� �f
�
�1 + �f�2

� :
Thus, all of the structural parameters are identi�ed. However, if �2 is near zero
then identi�cation will be weak. Accordingly, we use this example to investigate
issues relating to the strength of identi�cation.
The data generating process (DGP) is the same as in our previous example,

except for its treatment of �2. We generate four di¤erent data sets with �2 =
0; 0:01; 0:1; 0:6, respectively.15 The prior for (�; ; �1) is the same as that used
in the AR(1) example. To this we add an independent N (0:5; 0:1) prior for
�2. Just as with the AR(1) example, this prior is combined with the likelihood
function based on the two equations for �t and xt. We use a random walk
Metropolis-Hastings algorithm to do posterior simulation using the �rst T of
the arti�cially generated observations for T = 10; 20; 50; 100; 1; 000 and 10; 000.
Table 3 reports results for the case where �2 = 0. This arti�cial data set is

the same as that used to produce Table 2. However, the model being estimated
di¤ers in this case. Since we are estimating an additional parameter, �2, it is
not surprising that the posterior variances (especially for small sample sizes) are
slightly larger in Table 3 than Table 3. However, the general pattern revealed by
Table 3 is the same as Table 2. Table 4 (where �2 = 0:01) also exhibits a similar
pattern. These �ndings suggest that the Bayesian identi�cation indicator based
on large sample results will present useful information even if our estimating
model is identi�ed. Thus, it can be a useful indicator of weak identi�cation.
In this model, the weakness of identi�cation seems to impact mostly on �.

That is, its posterior variance is decreasing very little over time in the cases
where �2 = 0 or 0:01. With �2 = 0:1 (see Table 5), we can begin to see clear
signs that the posterior variance of � is decreasing with T . However, even in
this case, the decrease of the posterior variance is quite slow. However, when
�2 = 0:6 (see Table 6), the posterior of all the parameters can be seen to be
converging at roughly the same rate. This is reassuring since, in this case, all
the parameters are strongly identi�ed.

15 In order to make these data sets as comparable as possible, we use the same seed for the
random number generator for all DGPs.
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Table 3: Posterior Variances (DGP has �2 = 0)
Number of observations �1 �2  �
T=10 0.034 0.028 0.070 0.079
T=20 0.018 0.015 0.061 0.079
T=50 0.008 0.006 0.055 0.078
T=100 0.004 0.003 0.047 0.078
T=1,000 0.001 2�10�4 0.020 0.078
T=10,000 8�10�5 2�10�5 0.011 0.076
Table 4: Posterior Variances (DGP has �2 = 0:01)
Number of observations �1 �2  �
T=10 0.034 0.027 0.066 0.078
T=20 0.018 0.015 0.063 0.078
T=50 0.007 0.007 0.056 0.078
T=100 0.004 0.003 0.046 0.078
T=1,000 0.001 2�10�4 0.020 0.072
T=10,000 9�10�5 2�10�5 0.011 0.070
Table 5: Posterior Variances (DGP has �2 = 0:10)
Number of observations �1 �2  �
T=10 0.032 0.024 0.064 0.072
T=20 0.019 0.014 0.065 0.068
T=50 0.009 0.006 0.060 0.062
T=100 0.005 0.004 0.053 0.059
T=1,000 0.001 3�10�4 0.030 0.048
T=10,000 8�10�5 4�10�5 0.013 0.036
Table 6: Posterior Variances (DGP has �2 = 0:60)
Number of observations �1 �2  �
T=10 0.037 0.028 0.070 0.047
T=20 0.015 0.012 0.057 0.022
T=50 0.006 0.006 0.043 0.014
T=100 0.004 0.004 0.033 0.010
T=1,000 0.001 0.001 0.012 0.003
T=10,000 6�10�5 6�10�5 0.001 4�10�4

5 Concluding Remarks

This paper has examined the identi�cation of the parameters of DSGE models,
in the light of the widespread concern in the literature that the parameters may
be either not identi�ed or only weakly identi�ed. In purely forward looking
models, with no lags, the coe¢ cients of the expectational variables are generi-
cally not identi�ed since they do not enter the likelihood function. In forward
looking models with lags, identi�cation is dependent on the assumed structure
of the dynamics, making it vulnerable to the Sims (1980) critique of �incredible�
identifying restrictions. In more complicated models with unobserved variables
and no analytical solution, it is di¢ cult to determine whether the models are
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identi�ed. When the DSGE models are estimated by Bayesian methods, this
lack of identi�cation may not be evident since the posterior may di¤er from the
prior even if the parameter is not identi�ed and the posterior for unidenti�ed
parameters may also be updated as the sample size increases. These properties
have been demonstrated both analytically and numerically, using familiar ex-
amples of unidenti�ed or weakly identi�ed rational expectations DSGE models.
We propose two Bayesian identi�cation indicators. The �rst involves com-

paring the marginal posterior of a parameter with the posterior expectation of
the prior for that parameter conditional on the other parameters. This can be
computed as part of the MCMC estimation of a DSGE model using whatever
real data set the researcher is working with. However, this indicator can be
applied only in situations where parameters can be partitioned into a set that
are known to be identi�ed and another set for which identi�cation is uncertain.
This may not be possible when the researcher is working with the structural
parameters of a DSGE model. Our second Bayesian indicator is more generally
applicable and considers the rate at which the posterior precision gets updated
as the sample size (T ) is increased. For identi�ed parameters the posterior pre-
cision rises with T , whilst for an unidenti�ed parameter its posterior precision
may be updated but its rate of update will be slower than T . This result as-
sumes that the identi�ed parameters are

p
T -consistent, but similar di¤erential

rates of updates for identi�ed and unidenti�ed parameters can be established
in the case of super consistent estimators. This suggests a strategy where the
researcher simulates larger and larger data sets and observes the behavior of the
posterior as sample size increases.
We present an empirical illustration which shows the e¤ectiveness of the

�rst Bayesian identi�cation indicator, in cases where it is applicable. Further
empirical illustrations show the usefulness of our second Bayesian identi�cation
indicator, both for checking for the presence and the strength of identi�cation.
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