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Abstract. This paper demonstrates that the Bertrand paradox does not hold if cost

functions are strictly convex. Instead, multiple equilibria exist which can

be Pareto-ranked. The paper shows that the Pareto-dominant

equilibrium may imply profus higher than in Cournot competition or may

even sustain perfect cartelization. The potential scope for implicit

collusion is discussed for the case that the Pareto-dominant non-

cooperative equilibrium does not support perfect cartelization. Due to

multiple non-cooperative equilibria, the discussion involves finitely

repeated Bertrand games as well. The paper discusses several strategies

which may support implicit collusion. 1t develops the notion of

punishment-proofness, and it demonstrates that strongly renegotiation-

proof equilibria exist for sujficiently high discount factors. Finally,

extensions are discussed which cover Stackeiberg leadership, fixed and

sunk costs and endogenous market structures.

I am indebted to Gernot Klepper and Peter Michaelis for very useful discussion.

The usual disclaimer applies.



Profits in pure Bertrand oligopolies

Since its early beginnings, identifying the relevant strategy set of oligopolists has been

a main focus of oligopoly theory. Two positions were taken which are associated with

Cournot (1838) and Bertrand (1883): Cournot-based oligopoly modeis assume that

oligopolists determine quantities the sum of which determines prices. Bertrand-based

oligopoly modeis assume that oligopolists set prices which determine their individual

demand. The debate about the appropriate assumption would not have received such

much academic attention if the implications were not such different, especially for

homogeneous goods. But Bertrand's model demonstrated that prices drop down on

marginal costs if oligopolists compete by prices instead of quantities. This result

entered economic theory as the famous Bertrand paradox which asserts that two are

enough for perfect competition.

The Bertrand paradox troubled many economists because they could hardly imagine

that increasing the number of firms from a monopolistic market structure to an

oligopolistic market structure leaves no scope for prices above marginal costs. Several

escape routes were taken in order to reconcile economic intuition about market power

and price competition. A first escape route taken very early by Edgeworth (1897)

demonstrated that the Bertrand paradox does not hold if firms face a binding capacity

constraint. Based on Edgeworth, a lot of papers dealt with so-called Bertrand-

Edgeworth modeis in which firms compete by prices and ration demand if capacity

constraints are reached. If a certain firm has to ration demand, the residual demand can

be served by other firms. In another approach, Kreps and Scheinkman (1983) made the

choice of the capacity constraint endogenous such that firms choose their capacity

constraints in a first stage, and set prices in a second stage. They demonstrated that

this two-stage game of capacities and prices gives the same outcome as the

corresponding one-stage game of quantity determination a la Cournot. Other

contributions have introduced the notion of supply function equilibria (Grossman,



1981, Hart, 1985). This concept combines price and quantity competition such that the

firms strategy set refers to the determination of functions which specify different

prices for different individual supply levels.

A second escape route relaxed the assumption of homogeneous goods. Price

competition in pure Bertrand oligopolies assumes perfect substitutability of one firm's

product through another firm's product. Consequently, a marginal price reduction

compared to competitors, gives one firm the whole demand. Hotelling (1929)

introduced a modification of perfect substitutability by the assumption of positive

transport costs and different locations of firms. Other papers generalized this approach

and assumed that consumers like or dislike several attributes of goods such that all

goods are not perfectly substitutable. Although equilibria for these differentiated

goods' markets do not necessarily exist, dropping down the assumption of perfect

substitutability guarantees that price reduction does not capture the whole industry's

demand. Thereby, marginal price changes imply marginal revenue effects and render

price competition in differentiated goods' markets similar to Cournot competition in

that point.

A third escape route pronounces the long-run aspects of price competition. The Folk

theorem demonstrated that any outcome between the purely non-cooperative one and

the cooperative one is sustainable as a subgame-perfect equilibrium in a supergame if

the discount factor lies in a sufficiently close neighborhood of unity (Fudenberg,

Maskin, 1986). Compared to quantity competition, price competition is supposed to

imply weaker constraints with respect to the discount factor in order to sustain implicit

collusion (Deneckere, 1983). For the case of constant unit costs for duopolists, it can

be shown easily that every discount factor which does not fall short from 0.5 Supports

any alternative outcome which improves on zero profits including the monopolistic

one if defection is punished by the trigger strategy.

So far, an uncountable number of papers have modified the original Bertrand game in

order to reinforce the relevance of market power. However, it is sometimes advisable
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to go "back to the roots" and try to reconsider the arguments from the distance. The

first part of this paper will go backwards in this sense and reconsider Bertrand

competition in its simplest variant. The simplest variant is to suppose that the strategy

of firms is to set prices for a homogeneous good which determine their individual

demand. However, a slight modification with respect to the cost functions will be

assumed: instead of constant unit costs, strict convexity of the cost function will be

assumed. It will be shown in section 2 that the Bertrand paradox relies crucially on

constant unit costs whereas strictly convex cost functions produce multiple equilibria

which all guarantee positive profus and which can be Pareto-ranked. This section will

also demonstrate that the Pareto-dominant equilibrium may imply profits which

surmount those of the corresponding Cournot equilibrium. Even more, Bertrand

competition will be shown to be able to sustain the perfectly collusive outcome in a

purely non-cooperative environment of a one-shot game.

This result is grounded on the original model of Bertrand competition in combination

with strict convexity of the cost function. The model assumes m oligopolists each of

which sets an individual price and faces a resulting demand. This assumption is the

appropriate one to compare price-based with quantity-based competition. In Cournot

modeis, oligopolists set quantities and face a resulting demand as well. When

comparing both modeis, an enriched Bertrand model should not be compared with the

simplest Cournot model. From this point of view, capacity constraints are a very

restrictive assumption because they assume that a firm is technologically not able to

increase its production beyond a certain level. Capacity constraints imply individual

cost functions which do not cover the whole ränge of possible individual demands

because they restrict the domain of the cost function. If infinite marginal costs are

ruled out, convex cost functions allow every firm to meet its individual demand for

some finite costs. Compared to the case of constant unit cost, convex cost functions

are a more appropriate assumption for assessing costs on the firm level. As cost

functions are the dual of production functions, the existence of a relevant production

factor the provision of which is not determined by the firm but fixed (e.g. public



infrastructure) is likely to induce increasing marginal costs for a Single firm. Constant

unit costs draw heayily on both the assumption of constant economies of scale and the

assumption of possible Variation of all relevant production factors on the firm level.

In this sense, rationing is an extremely stränge assumption, too, because it implicitly

enlarges the policy options of oligopolists who are not obliged to serve their individual

demands. They may evade by using another allocation scheme than that of pure price

setting. Therefore, rationing in Bertrand-Edgeworth modeis should be contrasted with

Cournot modeis which allow some revision of the determined quantities as well.

Additionally, rationing is obviously no appropriate assumption for a lot of markets on

which producers have to announce prices which are laid down in contracts with

whplesalers or retailers such that any demand should be served by these prices. It is

this case which defines the original Bertrand game.

Based on the results of section II, the paper continues by considering long-term effects

of pure Bertrand competition. It assumes that the Pareto-dominant one-shot

equilibrium obtains profits which fall short from those of perfect collusion in order to

face a relevant intertemporal coordination problem for oligopolists. As the paper is not

restricted on duopolies but Covers the case of more than two oligopolists as well,

special attention is given to the potential role subcoalitions of the grand coalition can

play. Section III demonstrates that the relevant defection is the defection of a Single

firm, and that the critical discount factor increases with the degree of implicit

collusion. Section IV adopts the concept of weak renegotiation-proofness (van

Damme, 1989, Farrell, Maskin, 1989) which allows to return to cooperation after a

party has deviated from implicit collusion. It is shown that the corresponding

constraints dominate the problem and that a weakly renegotiation-proof equilibrium

which improves on the non-cooperative outcome may not exist. Section V discusses

both the credibility for a defecting firm to be punished and the credibility of non-

defecting firm to punish. The first aspect will be referred to as punishment-proofness,

and, the last aspect has been referred to as strong renegotiation-proofness in the



literature (Farrell, Maskin, 1989). The section shows that a weakly renegotiation-proof

equilibrium may exist which is punishment-proof as well. But punishment-proofness

may demand modification of the non-defecting parties' strategies which weak

renegotiation-proofness assumed by reverting to non-cooperative pricing. It is also

shown that this equilibrium is strongly renegotiation-proof for sufficiently high

discount factors. Section VI overviews possible extensions of the model, and section

VII concludes the paper.

I. The model

The model assumes a demand function which specifies total demand as a function of

the lowest price. Total demand decreases with the lowest price, and the demand

function is concave:

(1) D = X[p], Xp<0, Xpp<0 p = min{Pl,...,pJ.

{p, ,...,pm } is the set of prices which the m firms specify. The individual demand of a

firm depends on the relation of its individual price to the lowest price:

ZP,
(2) V p j e { p 1 , . . . , p m } A P j = p : k

X / . p . = p

/ _ J

0 P ; > P

(2) assumes that all k, firms which announce the lowest price share the corresponding

demand equally, whereas every firm announcing a higher price faces no demand. An

equal split may be not guaranteed as a certain event but may be expected by every

lowest-price-charging firm. In this case, individual demand is stochastic and does not

depend on demand realized in previous periods, and firms are supposed to be risk-

neutral.



As the demand curve is differentiable for every price, even extremely small price

reductions are able to capture the whole demand. The model will assume that small

price reductions which make a set consisting of k oligopolists (which can be a

singleton) capture the whole demand can be approximated by the original price:

f p / p i p 8
(3) x . = ^ / k if ' * f o r e < 0 , e « 0 .

[ 0 P i = P

(3) shows that reduction by a small £ assumes to capture the whole demand at the

original price p .

The profits of every firm are the difference between sales and costs. Costs are assumed

to be strictly convex, and marginal costs for zero production do not exceed the

reservation price:

(4) n^p.Xi-cfo), cx>o, c^ >o,

Cx(0)<X"1[X = 0], CX[X(O)]<°°, C(0) = 0.

X"1 denotes the inverse demand function derived from (1). All firms use the same

technology so that there is no difference in costs which is a quite reasonable

assumption for homogeneous goods. (4) guarantees that demand is strictly positive and

that capacity constraints play no role because marginal costs are finite for one firm

which serves the maximum market demand. (4) assumes no fixed or sunk costs and

ensures that all m firms do not incur losses in the market. Section VI will relax this

assumption and will discuss endogenous market structures as well. In section II, the

model will also employ specific demand and profit functions to pronounce the

relevance of profits in Bertrand oligopolies:

(5) D(p) = £ - £ , C(xi) = axi+&xf, a>a
ob /

(5) defines a linear inverse demand function of the form p = a - bX and a quadratic

cost function.



The model assumes further that firms always prefer to produce if their profus are non-

negative, and that they choose the cooperative Solution if defection gives them the

same profits. Additionally, the paper assumes almost perfect knowledge such that all

functions are common knowledge for price policies but all firms have to announce

prices simultaneously. The analysis is restricted on pure price policy strategies of all

firms.

Another conceptual remark concerns the use of differentials in this paper. The paper

will discuss the implications of changes in m, i.e. the number of oligopolists, and will

specify the number of punishment periods, n^, for renegotiation-proof equilibria.

Obviously, both the parameter m and the variable n^ are restricted on the set of natural

numbers. Changes of these terms, however, can be evaluated by derivatives of

corresponding functions which employ the set of rational numbers:

(6) μe{m,nlc}:

Q : = Q [ - ^ ] I - » S : = H [ - , K ] , μelN,KelR

Vμ,

(6) demonstrates that an unambiguous sign of the derivative does also signal the same

sign for the change of the original function. (6) will often be made use of, and for the

sake of simplicity, the derivatives will use the same functional assignment.

II. The Bertrand paradox reconsidered

The assumption that all firms prefer production if non-negative profits are guaranteed

implies that all firms Charge the same price which must not fall short from the

corresponding marginal costs implied by the resulting individual demand. If cost



functions are (strictly) convex, prices which do not fall short from marginal costs

imply (strictly) positive profits. Identical pricing and marginal costs define the first

condition a öne-shot Bertrand equilibrium has to meet:

X(pB)
0) Vp,e{p,,...,pJ:pi =

m

pB denotes the equilibrium price of Bertrand competition. (7), however, is not

sufficient for an equilibrium. The second condition wants every firm not to improve on

its profits by setting a lower price. This condition can be set up by the use of the profit

change function (8) which is defined for non-positive e only:

(8) e < 0 :

AT H , J B*(PB) JX(P
B)

Ai[p,e,k] = (-e) ^ - p B — : — + C — • — [pB+e]x(pB
+e)-C[x(pB+e)]

Aj is a function of the price p which is the lowest price charged by k oligopolists

(k < m) if e = 0, the price reduction e of a Single firm, and the number of firms

charging the Bertrand price. If e is zero, the individual firm does not reduce its price

and profits are not changed. If e is negative, however, this unilateral price reduction

implies a profit change which is given in the brackets (note that 8 is negative): the firm

loses the individual demand shared with the other firms (first term), avoids the

corresporiding costs (second term), gains the whole demand due to price reduction

(third term), and has to carry the corresponding costs (fourth term). The first two terms

do not depend on 8. Multiplying the bracket term which indicates the profit change by

(-e) is a monotone transformation of the profit change. If Ai is a monotone

transformation of the profit change implied by a price reduction, the extremals are not

varied by this transformation.



The second condition for a Bertrand price equilibrium wants every firm not to reduce

its individual price unilaterally in order to improve on its profits, Hence, the first

derivative of A4 for a zero e and the equilibrium Bertrand price must not be positive:

(9)
3A: X(pB)

m
+ c[x(pB)]<o

(9) takes into account that all firms Charge the same price. Thus, (9) must hold for

every firm in the market. Condition (9) has a straightforward Interpretation: A price

equilibrium must make every firm refrain from announcing a marginally lower price.

(9) indicates that this condition is fulfilled if the increase in profits due to serving the

whole demand does not exceed the decrease of profits when sharing the demand

equally with all other oligopolists.

A third condition not to be overlooked sets a lower limit to prices. If all firms

colluded, they maximized the total profits subject to the sum of production costs. The

resulting price of perfect monopolization is given by

M -(10) p M = C
X(pM)

m

X(p M )

X p ( p M ) '

Perfect monopolization will be denoted by the superscript M. Note that perfect

monopolization does not mean that only one firm is in the market but that all firms

realize a price which maximizes the sum of profits. Therefore, (10) gives the Solution

for a monopolists who employs m plants. Obviously, the Bertrand price equilibrium

will never specify a price which exceeds the price of perfect collusion according to

(10).

This argument as well as (6) and (9) are collected in (11):

(11) V p i e { p 1 , . . . , p B } : p i = p B £ p M ,
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PB<.

pB s

X(pB)

m c [ x ( p B ) ]

m

(11) demonstrates that the equilibrium price must not exceed a term which itself

exceeds average costs. This result may be not surprising at first glance because convex

cost functions imply marginal costs above average costs and thereby induce profits by

the mere curvature of the cost function. Thereby, the existence of at least one

equilibrium is proved because equalizing prices and marginal costs fulfils (11).

However, the set of equilibria described by (11) is not a singleton, and equilibria exist

which are based on prices strictly above marginal costs. This assertion is stated in

Proposition 1:

Proposition 1: If cost functions are strictly convex, multiple equilibria exist which

can be Pareto-ranked.

Proof:

The proof for the first part of Proposition 1 can be easily given by contradiction.

Suppose that (11) entails a unique equilibrium the price of which falls short from the

price of perfect collusion and define

P':=- m
m

p' gives the limit price indicated by the second line of (11), p" gives the marginal cost

price. If p' < pM? the set of equilibria were a singleton if both prices feil together:
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(12) p' = p"=> C[X(p')] = X(p')

m

m - l p [X(p')
m L m• _

X(p')

(11), however, contradicts strict convexity by definition of convex functions. Thus, p'

and p" fall apart and multiple equilibria exist which lie between both prices.

Additionally, it is obvious that p ^ and p" fall apart. Q.e.d. (12) held only for linear

cost functions which equalize marginal and average costs.

The second part of Proposition 1 can be proved by differentiating the profits of every

firm with respect to prices:

x(p)-
Ü3>

9p m -1
Cx[X(p)]-C,

m
> 0 duetoC

(13) shows that profits increase with prices and all equilibria can be Pareto-ranked.

The Pareto-dominant equilibrium is specified by setring p equal to min{p',pM}. Q.e.d.

This result contrasts the Bertrand paradox substantially which assumed that prices

always drop down on marginal costs. Proposition 1 demonstrates that this assertion

depends crucially on constant unit costs. For example, a firm out of three firms

announcing a certain price below the price of its competitors has to take into account

that tripling the demand implies more than tripling individual costs to serve the

demand. Thus, price equilibria above marginal cost exist which make a firm refrain

from capturing the whole demand because the increase in costs overcompensates the

increase in demand. For the Bertrand equilibrium, marginal costs define only the lower

limit of prices but the upper limit according to (11) is determined by comparing the

increase in total costs with the increase in demand. Therefore, marginal costs do not

play any role for the upper limit, and the Bertrand paradox relies crucially on constant

unit costs which by definition equalize marginal and average costs. As (12) holds for

constant unit costs which equalize average costs and the (unique) equilibrium price,

the proof of Proposition 2 is straightforward.
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Proposition 2: Without fixed costs, strictly convex cost functions imply profus and

strictly linear cost functions imply zero profits in a one-shot Bertrand

game.

Proof:

See (12) and Proposition 1.

In the cäse of convex cost functions, there are several equilibria which cover the price

ränge [min{p',pM},p"}. Multiple equilibria involve an equilibrium selection problem.

It isby no means clear which price will result from the Bertrand game unless more

structure in form of an equilibrium selection mechanism is intruded into the model. If

one firm sets its individual price equal to marginal costs, other firms can do no better

than charging the same price although this equilibrium is Pareto-dominated by all

other attainable equilibria. There is a long tradition in economic theory to assume that

agents choose the Pareto-dominant equilibria when all equilibria can be Pareto-ranked.

As it is not the aim of this paper to add to the debate on equilibrium selection, it will

not break with this tradition and assume that min{p',pM} is selected in the one-shot

game. This assumption will be made throughout the rest of this section (and all terms

referring to this equilibrium will be denoted either by a prime or the superscript M).

Note that this assumption is indeed an optimistic one for this section. However, it were

a more restrictive one for the following chapters because it may make defection from

implicit collusion obviously more attractive.

As it is a novel conclusion that profits by setting prices above marginal costs are

possible in Bertrand oHgopolies, it is interesting to explore the behavior of Pareto-

dominant profits with the number of oligopolists. Increasing the number of firms has a

twofold impact: on the one hand, demand must be divided among more firms, on the

other hand, all firms operate at a lower average cost level. Proposition 3 shows that the

influence of the number of firms in the market is qualitatively the same as in Cournot

competition:
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Proposition 3: Individuell profus decrease with the number ofoligopolists.

Proof:

The first part of the proof deals with the case that p' < p ^ holds. The Pareto-dominant

profits are given by (14):

(14). nf:=n1[p',m] = p'X(p')
- c

m

X(p')

m

C[X(p')]-mC
m

m-1

the partial derivative of which with respect to prices is positive, i.e.

3p'

because (13) holds for all Bertrand equilibrium prices including the best one. Partial

differentiation with respect to the number of firms yields

X(p')"

dm m2
m

-P'

(15) shows that increasing the number of firms for a constant price decreases profits.

(16) defines the condition for determining the Pareto-dominant price as an implicit

funetion:

(16) <D[p',m]:= \l - ~ V X(p') - C[X(p')] + C
m

= 0.

Partial differentiation with respect to p' and m indicates the sign of the price change

due to an increased number of firms:
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<"> i3= ! - -

ao x(p)
3m m2 p'-c,

P'Xp(p')] - Xp(p')

X(p')

cx[x(p')] m

m

m

dm

L = L .)

3
s dp'

)
dm 3m 3p' dm

dp'/dm is unambiguously negative and thereby proves the negative sign of the total

derivative of profits with respect to m. For the second part of the proof, it is well-

known that

3p' 3m

must holds for petfect coUusion. The derivative with respect to price must be negative

because any unilateral increase (decrease) away from the price of perfect coUusion

must decrease (increase) individual profits. The derivative with respect to m must be

negative because (15) holds in general. Defining the perfect collusion's price

determination as an implicit function completes the proof:

"X( P
M )

(19) ¥[pM,m]:=pMXp(pM)-Xp(pM)C,
m

3p •=*>") P *~x

XP(PM)XP(P
M)

m

Xp

3m m
'XX

m

- x ( P
M ) = o,

X(PM)

m m

dm
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dnM anf , an M dpM

dm dm dpM dm

Q.e.d.

Proposition 4 detnonstrates that the effect on the total industry's profits is ambiguous

except for the case of pM.

Proposition 4: The profits ofthe industry increase with number offirms ifthe price of

perfect collusion is an equilibrium. For all other Pareto-dominant

prices, the impact is ambiguous.

Proof:

The total profits of an industry are denoted by n. Differentiation yields:

X(p)"
(20) I l :=pX(p)-mC

m

| I = X(p)-Xp(p)
dp p-cx

X(p)

m

= 0 for p = p}

>0 for p< p*

dm m

because

X(p)

m

_X(p)
m

m

X(p)
m

< C
X(p)

m

dn a n a n dp . r M . . r M
= + S- = 0 for p = p , undetermined for p < p .

dm dm ap dm

Q.e.d.

The section has always taken into account the restricting relevance of p M compared to

p'. Comparing the determination of p' and p M , it cannot be ruled out that pM is lower

than p' because p' was determined not as profit-maximizing but as equalizing the
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profits in the grand coalition and the profits of marginally reducing its individual price

below p'. As one expects Cournot competition to imply prices above marginal costs as

well, the relationship between Cournot competition and Bertrand competition is also

not quite clear on purely theoretical grounds. The general assumptions of the model

ensure a unique Cournot equilibrium which results in a price according to

(21)
x(P

c)
m

• y - l x(P
c)

m

X(pc)

m

Xx ' denotes the derivative of the inverse demand function with respect to Output. In

order to shed some more light on the relationship to both perfect collusion and

Cournot competition, the following two propositions adopt the specific functions

introduced by (3). The individual production levels for the Pareto-dominant, not by

pM restricted Output level, the Cournot Output level and output level of perfect

collusion are given by (22), (23) and (24), respectively:

(22) xf= a " a

(23) xf =

(24)

| ( m -

a
b(m

a -

- a
4-l) + ß

a

2bm + ß'

Proposition 5: The Pareto-dominant equilibrium may imply profits which surmount

profits ofthe corresponding Cournot equilibrium.

Proof:

Pareto-dominant profits exceed the Cournot profits if the individual output level

according to (22) falls strictly short from the one according (23). Such a ß exists:

2b(25) ßÄ=ß(m) , f-
m - 1 dm (m-1)2 <0
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Q.e.d.

ß measures the degree of convexity of the specific cost function. If ß exceeds ß(m),

the Pareto-dominant Bertrand equilibrium entails higher profits than the Cournot

equilibrium. The reason has to be found in convexity and in the individual demand

discontinuity: if cost functions are sufficiently convex, Bertrand prices can surmount

marginal costs sübstäntially because even a unilateral reduction from a high price

implied costs which overcomperisated the additional demand. In Cournot competition,

a marginal Variation of Output does only imply a marginal change of profits, but in

Bertrand competition the discontinuity in individual demand to be served and the

overproportional increase in costs makes firms refrain from charging lower prices. (25)

shows that the critical ß decfeases with the number of firms because the demand

increase is the higher the more firms are in the market. More firms in the market let

the individual market share for identical pricing shrink, and they let the jump from

individual demand to total demand to be served when charging a lower price increase.

Proposition 6 demonstrates that min{p',pM} = pM m a v hold.

Proposition 6: The Pareto-dominant equilibrium may imply the maximum profits of

collusive profit maximization.

Proof:

Firms in Bertrand oligopoly will never increase prices beyond the price of perfect

cartelization. Thus, p' is dominated by p ^ if the individual demand according to (22)

falls short of the monopolized demand according to (22). Such a ß exists:

(26) ß s ^ : 4 ( m ) ,iL
m - 1 dm ( m - 1 )

Q.e.d.
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If ß does not fall short from ß(m), the Bertrand equilibrium entails perfect collusion

because any marginal price reduction increased costs more than sales. (26) shows that

the critical ß decreases with the number of firms because of the same reasons given for

the comparison with Cournot competition.

This section has demonstrated that Pareto-dominant Bertrand equilibria may entail

higher profits than in Cournot competition and even guarantee the collusive outcome.

Strict convexity of cost functions serves as a threat not to undermine prices because

the jump in sales may fall extremely short of the increase in costs. Compared to

Cöurnot competition, market power alone does not result in profits in Bertrand

competition. Instead, it is the combination with strictly increasing marginal costs

which feinforces the relevance of market power in Bertrand oligopolies.

III. Potential collusion in Bertrand oligopolies

The last section has demonstrated that multiple equilibria exist for the one-shot

Bertrand game if cost functions are strictly convex. Dynamic price competition is

well-known to be able to enlarge the set of equilibria. This section will deal with such

supergames which may allow to sustain profits above the purely non-cooperative one.

Apparently, repetition of the price game is only necessary to improve on the one-shot

outcome if min{p',pM} = p' < pM holds. This assumption will be made throughout the

next sections although pß = pM is not guaranteed if min{p',pM} = pM holds. But if

pM could be sustained in a one-shot game, it may be found to improve on profits by

intratemporal coordination rather than taking recourse to intertemporal strategy

specification.

This section will consider two subgame-perfect strategies which may sustain collusion

in finitely or infinitely repeated Bertrand games. As other non-cooperative equilibria

exist, it is well-known from Benoit and Krishna (1985) that other than one-shot

equilibria may be sustained in games with a finite number of repetitions. This section
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will start with finite repetition and turn to infinite repetition afterwards. The following

strategy may support other than non-cooperative equilibria in finitely repeated

Bertrand games.

Tngger strategy I: Charge the price p* in the first period. Charge the price p* also

in all following periods except the last one if all other firms have

charged the price p* as well. If one firm has defected by

charging a lower price, Charge the price p" in all future periods

including the last one. If no firm has defected, Charge the price p,

in the last period.

For obvious reasons, the case of defection of all firms will be neglected throughout

this paper. All variables and functions which refer to outcomes sustained by repetition

will be denoted by a star. This strategy is called a trigger strategy as it does not allow

to return to cooperation after one firm has defected. This strategy sustains p* if (Cl)

holds:

(Cl) V k < m , Vte{0 , . . . ,T} :

1 _ Äf-t) 1 _ X(T-t)

i—2__n;+5(T-^n;>nf(k) + 5 ^ - — n?
l - o 1 — o

T denotes the last period, and the superscript d denotes defection from collusion of a

subset of oligopolists which consists of k firms. The defection profits depend on the

number of "breaching" oligopolist. (Cl) demands that the discounted profits from

implicit collusion, i.e. setting price p* in all except the last periods, and setting p' in

the last period, must not fall short from defection in one period and the discounted

profits of reverting to p" for the rest of the time horizon.

(Cl) must hold for all x. Proposition 7 identifies the relevant period the constraint of

which according to (Cl) dominates all other periods.
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Proposition 7: If defection restricts the scope of implicit collusion in a finitely

• repeated Bertrand game, the binding constraint is determined by the

next-to-last period.

Proof:

Define

V T < T :

0(T):= (I - s(T-x) )n; + (l - s)8(T-x)n; - (l - 5)nf (k) - (5 - 5(T-+I) )nr

which gives (Cl) as a function of x for all periods except the last one in which 11* and

nf play no role. If 0 is positive, trigger strategy I supports the respective price p*.

Differentiation with respect to x yields

^ = 5(T-T) inS[n; - n; - s(n; ' - n;)l
öl

the sign of which depends on II* - F I ' - 8 ( n [ ' - n [ ) , but is unambiguously either

negative or positive. Suppose that II* - Il[ — 8 ( n [ ' - FI[) is non-positive, i.e.

(27) n;<n; + 5(n;'-n;)

which implied that the constraint becomes less biting the higher x is. Thus, the relevant

constraint were given by x = 0. A fortiori, the next-to-last period should be sustained,

i.e.

T -1) = (l - s)n; + (l - s)sn; - (1 - g)nf (k) - 8(1 - 8)n;'> 0

(28) <̂> n ; > n? (k) + s(n; ' - n;)

should be satisfied. (28), however, contradicts (27) such that a non-negative derivative

is not possible. Consequently, the derivative must be negative and proves that 0

becomes more biting with x because 0 is decreased in the course of time. If 0 holds
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for T-l, it holds for all other previous periods. For the last period, p' > p" ensures

superiority of pursuing trigger strategy I. Q.e.d.

Proposition 7 proves that (Cl) is fulfilled for all x if

(ciy Vk<m: n; + srr; >nl
d(k)+5n;/

is satisfied. In terms of the discount factor, trigger strategy I sustains the price p* if

holds. ö(p*) denotes the critical discount factor.

If the Bertrand game is infinitely repeated, trigger strategy II may sustain collusion.

Trigger strategy II: Charge the price p* in the first period. Charge the price p* also

in all following periods if all other firms have charged the price

p* as well. If one firm has defected by charging a lower price,

Charge the price p^ in all future periods.

Trigger strategy II does not specify p^ which may be any price belonging to the non-

cooperative equilibrium set, but it is obvious that the strengest support for collusion is

provided by setting p" after defection. Trigger strategy II sustains the price p* if (C2)

holds.

(C2) vk<m: J _ n ; > n f \ f
l

n;>nf(k)+\nf.
l - o l - o

(C2) demands that the discounted profits of collusion in all periods must not fall short

from those of defection in one period and non-cooperation in all following periods.

Due to the infinite time horizon, no specification of the "binding" period is necessary.

In terms of the discount factor, trigger strategy II sustains the price p* if

- = 8 ( p )nf(p-)-nf
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hold&.,8(p*) denotes the critical discount factor.

However, it is still unknown for finitely as well as for infinitely repeated Bertrand

games which size k of the breaching coalition of firms is relevant. Proposition 8

clarifies this point.

Proposition 8: / / defection restricts the scope of implicit collusion, the binding

constraint is deierminedby defection of a single firm.

Proof:

First, note that any coalition which defects is not able to continue by startirig some

kind of collusion among its members only because there is no scope for Joint pricing

other than to adopt the price which the other firms specify. Thus, no coalition of

defecting firms is able to agree upon continuing collusion among themselves. (Note

that this implication does not hold in general for quantity-based collusion because a

subcoalition might improve on the non-cooperative outcome by partial collusion.)

Second, suppose that an identical, small reduction from p* is taken by k firms. The

defection profits are

Differentiation with respect to k gives

dnf
dk

X(p)
k2

+

P
p "x(p-

km
< 0

and shows that the defection profits are the higher the lower the number of defecting

oligopolists is:

(31) max{n? (k)|k < m} = FI? (1):= n? (p*)

Q.e.d.
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(31) redefines the defection profits as a function of the price p* for the defection of a

Single firm. (31) specifies the critical discount factors of (29) and (30) such that a

discount factor which makes defection of a Single firm unprofitable makes defection of

all other coalitions unprofitable as well. A salient result of the infinitely repeated

Bertrand game with constant unit cost is the assertion that any other equilibrium other

than the unique one-shot equilibrium may be sustained if the discount factor does not

fall short from l/m. The reason is that constant costs mean defection profits which are

m times the collusive profits, and.reverting to non-cooperation implies zero profits.

This result does not necessarily hold for convex cost functions because the relationship

of ,

X(p')"

m

P'X(P')-C
X(p')

m
-p"X(p") + C

m

and

X(p')

m
p*x(p*)-c[x(p*)]-n?

to l/m is unclear. Additionally, the critical discount factor is changed unambiguously

with changes of p* for both (29) and (30).

Proposition 9: The critical discount factors 8 and 6 increase with profits to be

sustained by implicit collusion.

Proof:

A necessary prerequisite for proving Proposition 9 is the relative behavior of the

collusive profits and the defection profits with the price p*:

(32) Vp*e[p',pM]:
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dp* m

dnf
dp*

dn dn;
=>—->—-<=>

dp dp

X(p*)

m

(O»-Xp(p*)
m

-Cx[x(P;)] m - l
m

[x(p*) + p*Xp(p*)](>0).

(32) demonstrates that the marginal defection profit is always greater than the marginal

collusion profit. (32) proves the first part of Proposition 9 directly because

differentiating (29) under the use of (31) gives

i- dn*C33) c i o _
dp* n; >o

which is unambiguously positive. Differentiation of (30) under the use of (31) gives

d5 1
(34)

dp* nf(P*)-n;
|dnf
o dp* dp*

(34) is also positive because

holds, because due to the vanishing marginal collusive profit for pM, (34) is positive

for pM. A negative ränge of (34) implied therefore a minimum which demanded as a

necessary condition

BP'",P: p"<p<p'"<pM,
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which contradicts (32). Q.e.d. ,

This section has demonstrated that collusion is possible in both finitely and infinitely

repeated Bertrand games. It has also determined the relevant defection and the

behavior of the discount factor. The analysis was implicitly based on subgame-

perfection. The following section will deal with punishment strategies which substitute

for trigger strategies such that return to cooperation is possible which was mied out in

this section.

IV. Weakly renegotiation-proof Bertrand equilibria

The last section employed trigger strategies which do neither firm allow to return to

cooperation after deviance from p* has occurred once. These strategies ground their

credibility purely on subgame-perfection: as no firm can improve on charging another

price than p ^ or p" if all other firms do as well, the punishment strategy defines an

equilibrium. This assertion may be found a too strong assumption, especially when

renegotiation is possible. Obviously, all firms regret that defection quits every future

cooperation. However, if defection did not change the continuation payoffs of

defecting firms, no cooperation were possible.

The concept of weak renegotiation-proofness reconciles the demands of punishing a

deviating firm and the Option to return to cooperation. An equilibrium is called weakly

renegotiation-proof if its continuation payoffs implied by the respective strategies are

not Pareto-dominated by other strategies. Typically, these strategies specify reverting

to non-cooperation for a certain period of those firms which have not defected. This

period is infinitely long if the firms which have defected do not play cooperatively

during punishment, i.e. are punished by "legal" defection of the other firms. If they do,

punishment will be finished after a certain punishment length, and the firms which had

punished return to cooperation. For infinitely repeated Bertrand games, return to

cooperation and punishment for defection is given by pursuing punishment strategy I.



26

Punishment strategy I: Charge the price p* in the first period. If no firm has defected

(state 1); Charge the price p* also in the next period. Ifkfirms

,- -...., have defected by charging a lower price (state 2),Jcharge the

price pB in the next n^ periods. If a firm of those which have

defected does not Charge a price which exceeds p ^ during the

•-••:•. n^ periods (state 3), restart charging p ^ for the next n^

periods (state 2). If all firms which have defected have

charged a higher price than p ^ during the njj periods (state 4),

charge price p* in period (n^+1) and return to State 1.

Such a punishment strategy is able to sustain an equilibrium which improves on the

non-cooperative Bertrand equilibrium if

• every firm is made refrain from defection in one period and no cooperation in all

future periods (profitability),

• every firm is made refrain from defection in one period and punishment during n^

periods compared to collusion in (n^+1) periods (ex ante compliance),

• every firm wants to return to cooperation after it has defected, i.e. wants to carry

the punishment costs for n^ periods and thereby wants to restart cooperation

compared to infinite punishment (ex post compliance), and

• every firm which has not defected improves on its profits by punishment compared

to non-cooperation.

The last condition will be discussed at the end of this section, but it should be clear

that - due to (15) - profits are higher than in the non-cooperative equilibrium if a

smaller number than m oligopolists charges the price p^ . The first condition repeats

the condition for the trigger strategy, i.e. cooperation must be profitable compared to

defection and infinite non-cooperation, the second and the third condition will be

referred to as ex ante and ex post compliance, respectively.
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For general n^, ex ante and ex post compliance are materialized in (C3) and (C4),

respectively: : : ;/ —

n;>nf(k)n ;nf (k) + 5 n > ^ n r
1 - o 1—o l - o

The superscript p denotes the profits enjoyed by a firm during punishment. As these

firms are expected to set prices above those of firms which have not defected, their

punishment profits are zero. Note that n^ must belong tö the set of natural numbers

and is not given ex ante but determined by the punishment strategies. (C3) and (C4)

are fulfilled for every nk elN if p* is set equal to p^ because this trivial non-

improving equilibrium equalizes collusive and defection profits. Compared to the

trigger strategy I, weak renegotiation-proofness adds another two conditions which

dominate (C2).

Proposition 10: The conditions of ex ante and ex post compliance dominate the

profitability constraint,

Suppose than an n^ exists which fulfils (C3) and (C4) and which improves on the non-

cooperative Bertrand equilibrium. (C2) implies

n;>(i-5)nf(k)+8nl
B,

and (C3) and (C4) imply

nf <6nkn;,

+5nf <(i-5nk+1)n; +snk+1n; =n;,

respectively, which inserted into the reformulation of (C2) demonstrate that (C2) is

always fulfilled. Q.e.d.
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Comparing (C3) and (C4) demonstrates that n^ has different impacts on ex ante and ex

post compliance. If the punishment length is increased (decreased), ex ante compliance

is strengthened (weakened) because the periods of zero profits are given more (less)

weight. On the contrary, ex post compliance is weakened (strengthened) because the

costs of reinvesting into cooperation after defection are increased (decreased). (C3)

and (C4) must be met for any relevant ü f (k) . As Proposition 8 still applies, one may

concentrate on the defection profits of a Single firm which enter only (C3) and not

(C4) because these profits are sunk after defection. (C4) implies a critical proiit

FIi (n k ) from which FI* must not fall short in order to ensure ex post compliance:

(35) n,(nk ):=!£, nt(nk=0) = nJ

dfii , a n f A d% n s l 2 n f _
— L = - lnö—->0, —^- = [ln8] ^ > 0 .
dnk 5 n k dn* L J 8"k

O i (n k ) is defined as a function of n^ and has an increasing, convex shape. According

to (C3), the defection profits must not exceed f l ^ n ^ ; in order to ensure ex ante

compliance, ft^r^) is also defined as a function of n^ and has an increasing, convex

shape as well.

(36) n f t o J s i ^ ^ n ^ n ^ n J , n,(nk=o) = n?
1 o

nB>on > o n > o
dnk 5 n k ( l - 8 ) j dn^ 5"k (1 - 5) '

Comparing (35) and (36) reveals that both functions coincide for n^ = 0 and that due

to 1/(1-5) > 1

dnk dnk

holds, i.e. the rij-curve is always steeper than the n r curve .
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The defection profits as a function of the critical profit leyel fl; exhibit also an

increasing, convex shape because Flf does not depend directly on n^ but only

indirectly via Yli such that

dft, dnl

holds.

Because all functions are increasing and convex and all Start at Flf for n^ = 0, there is

maximally only one intersection of two functions possible. Two intersections implied

concavity of at least one function. Furthermore, it is known from (32) that

d l l f /d l l* > 1 such that the shape of the F^-function must lie strictly leftwards from

the shape of the 1%-function. Intersection of the Flf-function is therefore only possible

with the FI;-function. The attainable punishment specifications of n^ are determined

by the subset of natural numbers in the ränge for which the n^-function does not lie

above the TIj -function. Three cases can be distinguished which are given in the

following figures.

Figurel: Tl* = nf

rf
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Figufe 1 depicts the case in which improvement on the non-cooperative equilibrium is

not possible. The ränge for which Ilf falls Short from flj is too small such that no

nk SIN exists which could guarantee both ex ante and ex post compliance. Such an n^

exists for the case depicted in Figure 2.

Figure 2;

In Figure 2, n^ e {1,2,3} is able to sustain a profit level beyond the non-cooperative

one. The best available profit can be read from the intersection of n^ = 3 with the

critical profit level fir Figure 2 depicts the case of a profit-improving equilibrium

which falls short from perfect collusion. Perfect collusion is sustained in the case

depicted by Figure 3.
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Figure.3: n ;=nf .

n

k

In Figure 3, n f does not intersect tli in the relevant ränge such that perfect collusion

can be sustained by specifying nk eIN .

Collecting the arguments, it is obvious that the best available outcome is reäched when

njf is maximized subject to the constraints imposed by (C3) and (C4). Thus, the chosen

number of punishment periods which maximizes collusive profits is determined by

(37) 3nk£lN: n* = max{nk eIN In? (f̂  ^ f i ^ n , )A fli(nk)< nf ,}.

(37) and the shapes of all curves imply Proposition 11.

Proposition 11: If a weakly renegotiation-proof equilibrium exists which improves on

the Pareto-dominant one-shot equilibrium, such a weakly

renegotiation-proof equilibrium does also existfor a unity punishment

length.

Proof: Omitted.
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The specification of n^ makes a difference for finitely repeated Bertrand games.

Punishment strategy II is a stationary strategy which may improve on the non-

cooperative equilibrium.

Punishment strategy II: Charge the price p* in the first period. If no firm has defected

(state 1), charge the price p* also in the next period if the next

period is not the last period. If k firms have defected by

charging a lower price (state 2), charge the price p" in the next

period. If a firm of those which have defected does not charge

a price which exceeds p" during the punishment period (state

3), restart charging p" for the next period (state 2). If all firms

which have defected have charged a higher price than p"

during the punishment period (state 4), charge price p* in the

following period and return to State one if this period is not

the last one, and charge p' if the following period is the last

one.

This strategy has specified a of punishment period of one. Without further

justification, this specification were an arbitrary assumption which may restrict the

scope for collusion more than necessary. However, this specification will be shown to

be implied by finitely repeated Bertrand games if strategies are stationary. Stationary

means that n^ is not made dependent on the period of defection.

Table 1 demonstrates the impact of different n^ on the profus of a firm after defection.
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Profits after defection for different punishment periods in finitely

repeated Bertrand games

t

% = 5

«k = 4

nk = 3

0

0

0

0

1

0

0

0

2

0

0

0

3

0

0

i

4 = T

0

n;

• n ; • •

Table 1 shows that a firm which has defected would realize no profits if nk = 5 and if

it accepts punishment. Obviously, nk = 5 cannot guarantee ex post compliance

whereas n k = 4 and nk = 3 allow to realize profits. But when t = 1 or t = 2 are reached,

respectively, nk = 4 and nk = 3 can also not guarantee ex post compliance. This

evaluation is the intuition for Proposition 12.

Proposition 12: A stationary punishment scheme for finitely repeated Bertrand games

implies a punishment period of unity length. If T\[ <[(1 + 5 ) / 5 ] n " ,

no weakly renegotiation-proof equilibrium exists which improves on

the non-cooperative equilibrium.

Proof:

The proof will be developed by discussing ex post compliance in finitely repeated

Bertrand games. Ex post compliance is guaranteed if (C5) is met:

(C5) V T < T - 1 :

if nk < T - X,

1 — 5 n if n k = T - T ,
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(c) o>^ " n - if n k > T - T .
l - o

If the punishment period falls short from the remaining periods, i.e. nk < T — X, the

discounted sum of collusive profits plus FI[ must exceed the discounted sum of

realizing FI,". If punishment Covers the whole ränge of collusive profits, i.e.

nkj = T —T, the discounted value of realizing FI[ in the last period must exceed the

discounted sum of realizing IT," in all remaining periods. If nk > T — T, punishment

gave the defector no profits.

Obviously, (C5c) must be ruled out a priori. This condition must be met for all T and

proves Proposition 12.

(C5)' V x < T - l : n k < T - x = * n k = l

Q.e.d.

(C5)' develops a restriction which must hold as a necessary condition for any weakly

renegotiation-proof equilibrium which improves on the non-cooperative profits. As

(C5a) is dominated by (C5b), the Pareto-dominant profits must not fall short from

(l+§)/8 times the profits of marginal cost pricing. Since (l+5)/5 exceeds 2 for ö < 1,

any profit-improving weakly renegotiation-proof equilibria in finitely repeated

Bertrand games is not possible if FI[ falls short from double Fl". This result holds for

all strategies because it addresses only defection in the next-to-last period. Note that

(C5)' depends on neither the collusive nor the defection profit level.

(C6) gives the condition for ex ante compliance for all periods which do not Cover the

last one.

(C6) (i
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Compliance in the last two periods is ex ante given if the profus of realizing II* and

O ' do not fall short from realizing Flf and FI". This condition coincides with (Cl)'.

Since neither (Cl)' nor (C6) dominate the other restriction on purely theoretic grounds,

p* is determined according to (38) for finitely repeated Bertrand games which employ

punishment strategy II:

08) p ' = p

with p** = arg max \ min
P: [

nf(p),nf(P)-8[n;-nr]
1 + 8

(38) determines the collusive price for stationary punishment strategies. However,

dynamic schemes may exist which Pareto-dominate stationary schemes.

Proposition 13: A dynamic punishment scheme Pareto-dominates the corresponding

stationary punishment scheme if a X, x< T-l, exists for which (C5b)

isfulfilled.

Proof: see appendix.

If another x exists which meets (C5b), a punishment scheme is able to specify longer

punishment periods for potential defection. For example, if (C5b) is also fulfilled by

x = T-2, ex post compliance is also guaranteed if defection from the collusive price in

T-3 is punished by a two-period punishment. The appendix proves that this two-period

punishment pronounces ex ante compliance and allows to realize collusive profus in

T-3 which surmount FI* implied by the stationary punishment scheme.

All firms which have not defected from p* are expected to punish by charging p B or

p", respectively. Punishment is credible because the respective profits which punishing

firms enjoy during punishment,
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X[p"(m)]
m — k

pB(m)X[pB(m)l
(39b) Vk > 1: rij = L F J - C

m - k

m-k

X[pB(m)]
m-k

>nf,

>nf,

according to the respective punishment strategies surmount the non-cooperative profus

since profits increase with a decreasing number of oligopolists for a given price (see

(15)). pB(m) and p"(m) denote the non-cooperative prices for m oligopolists. (39a) and

(39b) show that punishment is in that sense credible and will be carried through.

V. Punishment-proof and strongly renegotiation-proof Bertrand equilibria

Weak renegotiation-proofness bases its credibility on two assumptions: first, every

firm which has defected is not able to submit a proposal which substitutes for

punishment and restarting cooperation. In this sense, firms which punish are assumed

to eommit itself credibly to punish and to reject any weakly renegotiation-proof

alternative even if it Pareto-dominates punishment and restarting cooperation. That

equilibria improving on non-cooperative outcomes should be also immune against

alternative weakly renegotiation-proof proposals was introduced by the refinement of

strong renegotiation-proofness (Farrell, Maskin, 1989). An equilibrium is called

strongly renegotiation-proof if it is weakly renegotiation-proof, and no weakly

renegotiation-proof equilibrium exists which Pareto-dominates punishment and

restarting cooperation according to the strategy specification of the original

equilibrium.

Before turning to strong renegotiation-proofness, another demand will be introduced

which is called punishment-proofness. The motivation for punishment-proofness is

due to the possibility that a subcoalition of all oligopolists and not only Single firms

may defect from implicit collusion. Weak renegotiation-proofness assumed that all

firms act the same in that they all either accept or reject punishment. A Single firm,
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however, may have an incentive to defect unilaterally from being punished whereas it

hopes that other firms accept punishment. An equilibrium is called punishment-proof if

the condition for ex ante and ex post compliance hold and ifno defector is better offby

unilaterally deviating from being punished after defection.

In a duopolistic setting, punishment-proofness raised no problem because all firms act

the same since the maximum number of defecting firms is one. If several firms have

defected, however, they may enter a prisoners' dilemma Situation. According to the

punishment strategies, every defection from being punished of a Single firm is

responded to by a new Start of punishment. Thus, only if every firm accepts to be

punished, cooperation is restarted. But a Single firm may increase its profus by

charging the same price which is charged by the punishing fixrns. If it is the only firm

pursuing this strategy, the corresponding costs are the delay of a restart of cooperation.

Therefore, every single firm has an incentive to deviate from being punished if a

unilateral defection provides him with profits which exceed the costs of a delayed

restart of cooperation.

(40a) n i [ B ]

(40b) n i [ ] [ ]

(40a) and (40b) give the respective conditions for an incentive of a single firm to

defect from being punished in infinitely and finitely repeated Bertrand games,

respectively. Note that (40a) and (40b) cannot hold for k = 1 because defection from

being punished of single firm is ruled out by ex post compliance. If (40a) is valid, a

single firm is better off if it charges the price p ^ and delays return to cooperation by

n^ periods, given that all other firms accept punishment. Due to the prisoners' dilemma

among firms to be punished, (40a) does not give the realized profits but the incentive

to deviate from punishment if all other firms do not. (40b) gives the incentive for

finitely repeated Bertrand games employing a stationary punishment scheme. The

incentive to deviate from one-period punishment is given if defection profits surmount
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the delay of a restarting cooperation which is determined either by the coUusive profits

or the difference between realizing Pareto-dominant profits and marginal cost pricing

profits. If min{n*, [n[ — FI"]} = 11*, punishment-proofness is at least not given for

all periods except the last one, if min{n*, [n[ - Fl"]} = 11' - I T " , punishment-

proofness is at least not given for the last period T. If

Xm - k +1] > ömax{n* ,[FI' -F l" ]} holds, punishment-proofness is given

for neither period. Of course, anticipation of defection from punishment destroys ex

ante compliance as well.

However, weak renegotiation-proofness and punishment-proofness may be reconciled

by alternative pricing rules:

(41a)

(4ib)

Proposition 14: A weakly renegotiation-proof equilibrium exists which is punishment-

proofas well if the price determination according to (41a) and (41b),

respectively Julfüs p ' < p(k) < p " and p ' < p(k) < p " , respectively.

Proof:

If both prices belong to the ranges indicated by Proposition 14, both prices qualify for

prices of a non-cooperative equilibrium. Then, defection from being punished can be

avoided by this pricing rule which specifies the price charged by the firms which have

not defected as a function of the number of firms which have defected. The

punishment strategies are modified:

Punishmentstrategy///.Pursue punishment strategy I except for p^ which is

substituted for by p(k) as the price to be charged when k

firms have defected.
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Punishment strategy IV:Pursue punishment strategy I except for p" which is

substituted for by p(k) as the price to be charged when k

firms have defected.

(41a) and (41b) make every Single firm indifferent between defecting unilaterally from

punishment and accepting punishment. (4la) and (41b) restore weak renegotiation-

proofness because both ex ante and ex post compliance are not endangered when there

is no incentive to defect unilaterally from being punished, and (41a) and (41b) can be

interpreted as generalizing ex ante and post compliance. If p(k) and p(k),

respectively, belong to the set of non-cooperative equilibrium prices, weak

renegotiation-proofness is made immune against unilateral deviations. Q.e.d.

Strong renegotiation-proofness is guaranteed if no alternative can improve on

punishment and restarting cooperation. Because the set of Pareto-dominant, weakly

renegotiation-proof equilibria is a singleton such that only one best, attainable

equilibrium exists, firms whieh have defected will propose to restart the original

agreement at once instead of punishment and restarting cooperation later on. This

alternative quits punishment and does not change profits after punishment should have

ended because it specifies the same outcome from this point on. Obviously, firms

which have defected will always improve on their profits. If the other firms do as well

and they cannot credibly commit themselves to reject this proposal, they can be

expected to accept this proposal. Accepting the original agreement instead of

punishment, however, had the fatal implication that any punishment strategy were

incredible because all firms anticipate that they will never be punished, and any

collusion could not be sustained unless firms can credibly commit themselves to reject

any proposal which substitutes for punishment. If this commitment is ruled out, strong

renegotiation-proofness is given if the profits enjoyed by punishing are higher than

those of collusion.

Proposition 15: A strongly renegotiation-proof equilibrium exists for a sufficiently

high discountfactor:
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Proof:

Strong renegotiation-proofness is given if

(42a) njö(k),m-kl>n*
L J

(42b) ni[p(k),m-k]>n;

hold, respectively. (42a) and (42b) take into account that no firm will defect from

being punished if p(k) and p(k) , respectively, are charged by other firms during

punishment. Combining (41a) and (42a) produces the critical discount factor

(43a) 8nk > -

Because profits decrease with the number of oligopolists for a given price, the RHS

falls short from unity. Hence, a set of discount factors exists all of which surmount the

critical discount factor 8 and thereby guarantee strong renegotiation-proofness.

From (41b), it is known that n i [ p ( k ) , m - k + l ] > 8 n * must hold. In combination

with (42b), strong renegotiation-proofness is assured if

e n.fp(k),m-k
(43b) 8> lLV

holds. In (43b), the numerator falls short from the denominator, too. Thus, a set of

discount factors exists all of which surmount the critical discount factor 8 and thereby

guarantee strong renegotiation-proofness.

Q.e.d.
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VI. Extensions: Stackeiberg modeis and endogenous market structures

The last sections have adopted the Standard assumptions of Bertrand competition. This

section will discuss two lines of extensions, the impact of Stackeiberg leaders and

open markets, which both provide new results for Bertrand competition under

increasing marginal costs. It will concentrate on non-cooperative equilibria because

assuming a certain mover structure as well as endogenous market structures

complicate the discussion of implicit collusion such substantially that they deserved an

own paper (for a paper on collusion in open markets, see Friedman, Thisse, 1994).

Throughout this section, all prices will be dealt with as functions of the number of

oligopolists operating in the market. This assignment allows to deal explicitjy with the

impact of moves either for a given number of firm or for a number of potential rivals.

Obviously, Stackeiberg leaders cannot play such a dominant role in Bertrand

competition as in Cournot competition because prices they announce may either be

adopted or even cut by other competitors. For a given market structure, the first-mover

advantage cannot provide a Stackeiberg leader with higher profits compared to other

firms, but the Stackeiberg leader is able to fix the price such that the maximum

attainable profits in a non-cooperative setting are guaranteed.

Proposition 16: If a certain firm out of the m firms has a first-mover advantage such

that it can credibly commit on announcing a certain price without any

Option for revision, the equilibrium price is given by

min{pM(m),p'(m)}.

Proof.

The proof can be given in the traditional backward induction fashion. Suppose first

that all firms have a certain position such that the Stackeiberg leader announces his

price firstly, a second firm announces its price secondly, etc., until the last firm

announces its price. Proposition 16 holds if every firm following the other firm has no

incentive to Charge a lower price, thereby capturing the whole market demand. The
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last firm to announce a price has obviously no incentive to Charge a lower price if the

price announced by the next-to-last firm lies in the ränge between p'(m) and p"(m).

Thus, the price specified by the Stackeiberg leader would not be attacked by the last

firm if all other firms have taken this price as well. The next-to-last firm knows that

the last firm will not Charge a lower price if all m-1 firms have charged a price in this

ränge. If all m-2 firms have taken this price, the next-to-last firm will also not deviate

frpm this price: due to (17) and (19), both p, and pM are increased with a decreasing

number of oligopolists. As they know that all following firms will either take the same

price or cut the price, they know that they will be never alone with this price so that

any restriction implied by p" will be only temporary. Thus, the incentive to take the

price announced by preceding firms is strengthened the lower the number of preceding

firms is. Therefore, all firms will take the price which all preceding firms have

announced if it falls into the ränge between p' or pM, respectively, and p". This result

does also hold if some firms have to move simultaneously because increasing the

number of firms to move simultaneously in a stage has the same impact as decreasing

m in (17) and (19). As a result, the Stackeiberg leader may Charge all prices in this

ränge, and will choose the price which maximizes his (and consequently also all other

firms') profus. Q.e.d.

The introduction of fixed costs does not change the results for the closed market unless

fixed costs are assumed to overcompensate the profits based on marginal cost pricing.

If they do, however, fixed costs can be expected to make any firm refrain from

charging marginal costs. Fixed costs therefore imply an additional restriction

OD, vi: nj(P
B)>o

which should be added to (11). Therefore, the assumption of no fixed costs has biased

the investigation of section II in favor of the Bertrand paradox. If fixed costs are zero,

(1 1)' is redundant because marginal costs always exceed average costs in this case. If

fixed costs are non-zero and marginal costs are constant, there is no price which gives

strictly positive demand and fulfils (11) and (11)' if more than one firm is in the
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market. In any case, fixed costs do not change the essentials of seetion II but

strengthen the arguments given there.

Fixed costs are, however, a constructive assumption if market structures are

endogenous and determined by the non-profit condition. If

(4)' n . - p . X i - C f x , ) , C x >0, ^ > 0 ,

C x (0)<X- ' [X=0] , Cx[X(0)]<oo, C(0j = FC>0,

is substituted for (4), one may determine the market structure in an open market. If

entry decisions are a game under perfect knowledge, all firms can make their decision

dependent on other firms' entries into the market. In this case, constant unit costs and

fixed costs implied a monopoly because any industry structure involving more than

one firm induced losses for every firm. This conclusion does not hold for strictly

convex cost functions.

Proposition 17: If market entry is allowed and all firms observe their rivals' entry

decisions, multiple equilibria may exist.

Proof:

(44) uses the non-profit condition to determine the equilibnum number m* of firms

entering the Bertrand market:

(44) ni[pB(2)]<0: m*=0 if n,M<0,

m*=l if n^ >0,

nt[p
B(2)]>0: m+: n;[p

B(m*)]>0, n^p^m*+l)]<0.

If fixed costs are very high, the market will either not be served or monopolized. If the

market carries more than one firm, the equilibnum number of firms entering the

market depends on the price which is charged by all m* firms. As multiple equilibria

exist for a given firm structure, the equilibrium firm structure is not necessarily
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unique. Consider the following example which gives the profit Structure for monopoly,

for marginal cost pricing and for the Pareto-dominant price:

n?*=io, . n,[p'(2)]=5, • n;[

Obviously, no firm will either leave or enter the market in at least two cases: first, if

two firms are in the market which Charge the respective marginal cost price, second, if

three firms are in the market which charge the respective Pareto-dominant price. Q.e.d.

If a certain mover structure is given only for market entry, the results are not changed.

However, the firms arrive at a different result if a Stackelberg leader exists which does

not only move first with respect to entry, but with respect to price announcement as

well. (45) gives the unique equilibrium price.

(45) pBt:=

^ )|n, [p V * +1)] < 0, pim*) < pB (m*) < min{p V )»PM }}

Proposition 18: / / market entry is allowed, if all firms observe their rivals' entry

decisions, and if a certain firm out of the m firms has a first-mover

advantage such that it can credibly commit on entry or non-entry and

on announcing a certain price without any Option for revision, the

equilibrium price is given by pB*.

Proof: Omitted.

The arguments are quite similar to the case of a fixed market structure. The only

difference is the fact that no natural last mover exists. However, the Stackelberg leader

can specify a price such that the profits of all firms in the market are maximized but no

further firm wants to enter because further entry incurred losses for all firms.

Therefore, the Stackelberg leader specifies a price which lies a* the margin between

entry and non-entry of a further firm, such that a small price increase implied entry of
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a further firm. This strategy gives all firms which enter maxi mum profus which are

basically due to the integer constraint on the industry structure. :

If market entry is a game under almost perfect knowledge (as the price game), all

firms have to decide simultaneously whether to entry or not to entry without being

able to observe the decisions of their potential rivals. Proposition 19 extends the well-

known result for asymmetric equilibria.

Proposition 19: / / market entry is allowed and all potential firms have to enter

simultaneously without being able to observe their rivals' entry

decisions, multiple equilibria for asymmetric pure strategies in a one-

shot Bertrand game may exist such that the number of firms entering

the market is undetermined.

Proof: See Proofof Proposition 17.

Proposition 17 has demonstrated that the number of firms which are carried by the

market varies with the price charged by firms. Therefore, Proposition 19 is

straightforward.

It is also well-known that in addition to the asymmetric equilibria in pure strategies a

Symmetrie mixed strategy equilibrium exists. The idea is that firms do not decide on

entry or non-entry by certainty but enter the market by probability q. For evaluating

the equilibrium q, they have to assess the price which they expect if a certain number

of firms have entered. For every potential industry structure, the expected price is

assumed to be evaluated by means of a probability funetion with density funetion fm:

pS(m)

(46) Vm,l<m<rn: p(m):= Jfm(p)pdp

p"(m)

pS(m)

with jfm(p)dp = l, ps(m):=min{p'(m),pM(rn)},
p"(m)
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m denotes the number of potential rivals which are able to enter the market. Firms are

assumed to be risk-neutral such that they evaluate their entry decisions on the basis of

the expected prices p(m) according to (46). (47) ensures that the market does not

carry all potential rivals so that a certain entry, i.e. q = 1, is no equilibrium strategy:

(47) 3nr<m: ni[p(m"),SC]>0, n.[p(m** + l),SC]<0

(47) assumes some strictly positive sunk costs SC which are implied by market entry

and which pronounce the problem associated with the simultaneous move structure of

the entry game. m** is the critical number of firms for which profits become negative

by market entry of an additional firm. In Standard industrial organization modeis, the

determination of the equilibrium q is unique because the outcome for a every possible

industry structure is assumed to be unique. Due to the evaluation along (46), this

uniqueness is not guaranteed.

Proposition 20: / / market entry is allowed and all potential firms have to enter

simultaneously without being able to observe their rivals' entry

decisions, multiple equilibria for Symmetrie mixed strategies in a one-

shot Bertrand game may exist.

Proof:

All firms maximize their expected profits by choosing the corresponding entry

probability q. In a Symmetrie mixed strategy equilibrium, no firm is able to improve

on its expected profits by specifying a different probability, given the (identical)

probabilities of all other firms. This condition is met if the expected profits are zero,

because positive (negative) profits implied improvement for a firm by increasing

(decreasing) its entry probability. The equilibrium probability q* is determined in (48).

(48) q': q - l
j=0
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(48) mirrors the ;expected profus: the probability of one firm's own entry must be

multiplied with the expected profits of the industry struktures which are made possible

by different behavior of all other firms. The probability of non-entry can be neglected

because non-entry implies zero profits. As an example, suppose that three potential

rivals may enter the market, and the profit structure is

ni[p
M]-sc = 2.25, ni[p'(2)]-sc = 2, n^p'^J-sc^-a,

ni[p'(3)]-SC = 1.75, ni[p
//(3)]-SC = -4.

Assume further that every firm expects marginal cost pricing if two firms enter and

Pareto-dominant pricing if three firms enter. This probability specification gives the

quadratic equation

q 2 -q +2.25 = 0

which has two relevant Solutions:

q; =0.3419, q; =0.6581.

Q.e.d.

Thus, unless the probability functions are further specified, a unique equilibnum is not

guaranteed. Such a specification must go beyond assuming a specific functional form,

because the change of the spread between p" and p' or p^, respectively, is unknown on

purely theoretical grounds. Such a specification could adopt some focal point

assumptions such that firms will always Charge the Pareto-dominant price.

If the game is repeated, all firms will reconsider to enter the market after every stage if

they have not entered in the past. A firm which has entered will not exit because entry

costs were sunk. The probability q(t) to enter in period t in a multi-stage game is

influenced by the expected number of firms in future stages which have not yet been

realized:

(49) V t - 1 > T :
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j=0 V J
[l-q(t-l)] qJj + m(t-l):=m(t),

)

(49) specifies the expected number of firms, m(t), which depends on the equilibrium

strategy. For past and experienced periods, the realized number of firms is taken, of

course. Every firm solves an intertemporal maximization problem the dynamic

equilibrium of which is defined by (50):

( 5 0 ) - V T > 0 , V t>x :

q*(t) = O if

q*(t):

(0 I T
j=o V J

s.t. (49) VT: T < T < °°.

The probability of entry is set zero for all remaining periods if the critical number of

firms is at least reached. If this number is not reached, the equilibrium path of entry

probabilities equalizes the discounted profits with zero, taking into account the impact

on expected future industry structure. As this path is evaluated on stochastic grounds, a

revaluation is undertaken in every period on the basis of the realized market structure.

Because this dynamic version is obviously not able to remove the feature of multiple

equilibria, different paths may exist which constitute a dynamic equilibrium.

VII. Concluding remarks

This paper has demonstrated that the Bertrand paradox does not hold if cost functions

are strictly convex. Instead, multiple equilibria were shown to exist which can be

Pareto-ranked. The paper has also shown that the Pareto-dominant equilibrium may
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imply profus higher than in Cournot competition or may even sustain perfect

cartelization. Turning to repetition of the Bertrand game, the paper has demonstrated

that other than non-cooperative equilibria may be sustained by finite and by infinite

repetition.

The novelty of this paper's results concerns two main conclusions: first, other than

marginal cost pricing equilibria are possible in pure Bertrand oligopolies without

taking recourse to rationing, second, multiple equilibria exist in the one-shot game and

in several entry games except when a Stackeiberg leader is assumed. The first

conclusion narrows the gap between Cournot- and Bertrand-based oligopoly modeis

without additional assumptions. It is the impression of the author that Bertrand-based

oligopoly modeis have either too often relied on the assumption of constant unit costs

or have employed other mechanisms like capacity constraints and rationing without

assuming corresponding mechanisms in the respective Cournot game. The assumption

of constant unit costs has been shown not to be an innocent one but the one which

drives prices down on marginal costs.

The second conclusion strengthens the difference between Bertrand and Cournot

oligopoly modeis for which the existence and uniqueness of a non-cooperative

equilibrium is guaranteed by the assumptions of this paper. Unless constant unit costs

are assumed, the crucial difference between both modeis turns out as the equilibrium

selection problem encountered by Bertrand competition. The multiplicity of equilibria

in the one-shot game, however, does also allow to sustain collusion in a finitely

repeated Bertrand game.

This paper has not explored the impacts of relaxing the homogeneity assumption.

However, it should be obvious that the results for perfect substitutability are likely to

hold for nearly perfect substitutability as well. It is hence also not clear whether firms

are always better off when pronouncing the heterogeneity of their goods compared to

their competitors. Instead, it may be found attractive for firms not to stress

heterogeneity because a high degree of homogeneity gives shelter against price
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reductions of other firms as it caused significant demand increases and consequently

overproportional cost increases for price-reducing firms if marginal costs increase.
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Appendix

From Proposition 13, one can conclude that (C5b) is fulfüled for x = T-2 if it is

fulfüled in general for a T < T l . Consider the following amendment to punishment

strategy II:

Amendment to punishment strategy II: Punishment strategy II holds for all periods

except defection in period T-3. If a firm deviates in period T-3, it will be punished for

two periods. Firms which have not defected Charge price p". If all firms which have

defected Charge a higher price, all firms Charge p' in the last period, if a firm which has

defected does not Charge a higher price during punishment, punishment is restarted

such that p" is charged in all remaining periods.

This amendment does not claim to guarantee the best available outcome but will be

shown to be able to improve on the stationary punishment scheme. It implies the

dynamic scheme [nk( t) ,n**(t)]o such that
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(AI) V t * T - 2 : nk(t) = l, n k ( T - 2 ) = 2

holds. nk(t) denotes the number of punishment periods starting in period t after

defection in t-1 has occurred, and n**(t) denotes the collusive profits of the dynamic

plan. The proof is given if n**(t)>n* holds for all t. Additionally, assuming

FI* < Tlf ensures a potential for improvement. If (C5b) is fulfilled, i.e.

(A2) 52n;>(i+5)n;'

holds, ex ante compliance determines the critical profit reachable by two-period

punishment:

(A3) nr(T-3)+[5 + 52]n;+83n;>nf(T-3) + 53n;'.

(A3) gives the possible profits for period T-3 which should not fall short from the one

of the purely stationary punishment strategy to prove Pareto-dominance. n f denotes

defection from the collusive profit level of period T-3. Note that (Cl)' plays no role for

(A3) as it concerns the last two periods. Define

(A4) n^p*+*,):= nrcr-3) , nd(P* + ?,):=ndd(T-3),

which indicate the change of profits and prices in period T-3 compared to all other

periods which apply the stationary punishment scheme. X = 0 indicates the stationary

price and the stationary profit sustained by finite repetition. (C6) gives for the LHS of

(A3)

(A5) n;*(T-3)+[8 + 82]ni+s3n1'>nr(T-3).+5n*+82[nf +mf\.

A fortiori, (A3) is met if the RHS of (A5) surmounts the RHS of (A3):

n" (T - 3) > n?d ( T - 3 ) - sn; - 82n?
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There is scope for Pareto improvement if (A6) is fulfilled for a strictly positive X,.

Comparing (A6) and (C6) for X = 0, (A7) shows that there is indeed scope for a strictly

positive X because (A6) is overfulfiUed for a zero X:

nd

(A7) V6>o: n;>—i->(i () ( )

1 + 5

Q.e.d.


