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Abstract. An attractive nonparametric method to detect change-points sequentially is
to apply control charts based on kernel smoothers. Recently, the strong convergence of the
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Introduction

In many areas of human activities processes are monitored continuously in time in order

to detect a change in process behavior. The resulting data generating process is called time

series and statistical methods for analyzing the sequentially arriving data are necessary

for making a decision. Historically, the need to monitor the quality of industrial produc-

tion processes gave rise to the development of appropriate statistical procedures. The early

methods of statistical process control were designed without taking into account the se-

quential nature of data generating. For a recent introduction to the field see Antoch and

Jarušková (2002). Later they have been refined to provide appropriate tools for sequential

decision making in many areas. For example, capital markets produce huge streams of data

consisting of prices, returns, etc. Financial analysts can apply and benefit from sequential

methods to decide whether such time series are in accordance with an in-control model

describing normal market behavior or whether there is a change to an out-of-control model

which should trigger further actions. Sequential decision procedures for financial time series

take into account the fact that these time series are in most cases correlated.

An interesting new field for sequential methods is the analysis of time series data obtained

in the course of genome experiments, which are still quite expensive. For example, suppose

from each experiment (case) we may calculate some quantity summarizing the evidence of a

gene-related effect. There are approximately 30000 genes. Hence, there is a strong interest

in collecting large data sets of genetic data for large samples of individuals in order to

detect genes which are responsible for diseases as soon as possible. It is expected that new

therapies can be developed for many cost intensive diseases as cancer. From an economic

viewpoint it is therefore reasonable to apply sequential methods to such problems in order

to reduce the costs.

In this article a nonparametric method for deciding about the change-point is proposed.

The advantage of nonparametric methods is that they can be applied without stating

explicitly a parametric probability distribution for the quantity of interest. Thus, they

avoid the doubtful practice to determine a parametric model on the base of observed

(random) data. A nonparametric method consists of a control statistic, which reflects (a

functional of) the process mean in a nonparametric way, and a control limit (critical value).

The control statistic is compared with the control limit to judge whether the data speaks

in favor of the in-control or out-of-control model.

Recently, a couple of nonparametric results on the asymptotic normed delay of stopping

times based on Nadaraya-Watson type estimators have been obtained, extending classic
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results dating back to Brodsky and Darkhovsky (1993). Fortunately, the results hold true

for a rich class of dependent time series. It was shown that under certain regularity as-

sumptions the normed delay converges to a deterministic quantity, which depends on the

smoothing kernel used to weight the data, and a function defining the out-of-control model.

This result suggests to study the mathematical problem of optimal kernel selection in order

to minimize the asymptotic normed delay. Related sequential versions of kernel-weighted

averages have also been discussed by Brodksy and Darkhovsky (1993), Ferger (1994b,

1994c, 1995), among others. For U -statistic approaches see Ferger (1994) , Gombay (1995),

Huskova (2002), and the references given in these articles.

Nadaraya-Watson type smoothers employ a kernel function which is used to downweight

past data. Clearly, for that purpose weights from the unit interval [0, 1] are sufficient. There-

fore, in this article we aim to minimize the asymptotic normed delay when constraining

the class of admissible kernels to weighting functions with values in [0, 1] which satisfy cer-

tain (moment) constraints. It turns out that this problem is related to the classic problem

of optimal hypothesis testing dating back to Neyman and Pearson (1933). The resulting

NP-optimal kernel differs substantially from the unconstrained optimal kernel derived in

Steland (2003a) where essentially the class of bounded densities has been considered. In-

deed, for many out-of-control models of practical interest the optimal kernel is given by

an uniform kernel, and can also be calculated explicitly. However, in general its support

is not necessarily a connected set and is obtained by comparing the out-of-control model

defining function with a certain polynomial.

The organization of the paper is as follows. Section 1 introduces the data generating

process in detail. The monitoring procedure is explained in Section 2. A brief review of

the normed delay and its asymptotic behavior under the setting of this article is provided

in Section 3. In Section 4 we discuss the problem of NP-optimal kernel choice as outlined

above and, finally, Section 5 provides some examples where NP-optimal kernels can be

calculated explicitly using elementary calculus.

1. Model

We consider a model for the time series data which is parameterized by a real valued

parameter h. That parameter will be used as a scaling parameter in the out-of-control

model and as a sample size parameter in the control statistic. Here we follow the approach

to study a sequence of out-of-control models. The sequence of out-of-control models for

the process mean is derived from a defining function m0(t) corresponding to h = 1 and
3



has the property that the normed delay of the monitoring procedure converges, as h tends

to infinity. To reach this goal, detecting the out-of-control model is made harder as the

sample size increases. That approach, which is related to the concept of local alternatives

in classic hypothesis testing, will allow us to study the performance properties analytically.

The function m0(t) defining the of out-of-control model is assumed satisfy m0(t) = 0 if

t ≤ 0 and m0(t) > 0 if t > 0. For each h > 0 we consider the out-of-control model

mh(t) = m0

(
t− tq

h

) {
= 0, t ≤ tq,

> 0, t > tq,

for the process mean. Here tq is the change-point in continuous time. The stochastic model

for the process in continuous time is now given by

Yh(t) = mh(t) + ε(t)

where ε(t) denotes the random error term with expectation 0, i.e., E(ε(t)) = 0 for each t.

The process Y (t) is now sequentially observed at discrete and equidistant time points

tn = n, n = 1, 2, . . . , yielding the sequentially arriving observations Yn,h = Yh(n), n =

1, 2, . . . For many applications the assumption that the process is observed at equidistant

time points is not restrictive. Otherwise, one may use more general time designs as proposed

by Steland (2003a) or apply re-sampling schemes as considered by Giot (2000) for financial

data.

The model equation for the observations Yn,h takes the form

Yn,h = mn,h + εn, n ∈ N,

where

mn,h = mh(n) = m0([n− q]/h)

and q = btqc+1 is the change-point in discrete time. εn = ε(n) is a time series of error terms

with expectation 0 for each n. We assume that {εn} is strictly stationary and α-mixing.

Let us briefly recall the notion of α-mixing time series, which is a common approach to

deal nonparametrically with correlated time series. It allows to obtain results which are

not restricted to a certain time series model. Suppose we are given two events A and B

which are determined by the time series. Let k denote the lag between these events. If, for

example, A = {ε3 ≤ 0} and B = {maxi≥8 εi > 1}, k equals 5. If we approximate the true

probability P (A ∩ B) by P (A)P (B), which assumes that A and B are independent, we

make an error, namely |P (A ∩ B) − P (A)P (B)|. A time series is called α-mixing, if that

error is not larger than α(k) and if α(k) converges to 0, as k tends to ∞. This means, the
4



dependence between events becomes negligible if the the distance is very large. Formally,

α(k) is defined by

α(k) = sup
A∈Fn

0 ,B∈F∞n+k

|P (A ∩B)− P (A)P (B)|,

where F j
i = σ(Xi, . . . , Xj) denotes the σ-field (information set) of the random variables

Xi, . . . Xj. We assume that {εn} is α-mixing with mixing coefficients {α(k) : k ∈ N}
satisfying

(1)
∞∑

k=0

k2α(k) < ∞.

This assumption is not restrictive. In many cases the sequence of mixing coefficients satisfies

α(k) ≤ Cq−β for some q ∈ (0, 1) and some β > 0 which implies (1). Indeed, many time

series models, in particular Markovian processes, ARMA models and GARCH models,

satisfy assumption (1) under fairly weak conditions on the model parameters. Therefore,

working with mixing conditions as (1) has the advantage that the results are valid for a rich

class of time series covering many classic models as special cases. For a detailed discussion

of mixing coefficients and their properties we refer to Bosq (1996).

At first glance it seems to be restrictive to consider only a change-point model for mon-

itoring the process mean. However, many other monitoring problems can be transformed

appropriately and solved by applying our monitoring procedure for the mean. We briefly

sketch some important problems, which are worth to be investigated in greater detail.

Example 1.1. In financial econometrics it is important to detect changes in the disper-

sion of financial returns {Rt}, since the dispersion determines the risk associated with an

investment in the underlying asset. In order to detect risk increases one may monitor the

sequence of centered squared returns, Yt = R2
t − E0(R

2
t ), or the centered absolute value

of the returns, i.e., Yt = |Rt| − E0|Rt|. Here E0 means that the expectation is calculated

assuming the in-control model is true. When considering returns over very short time hori-

zons, e.g., minutes, also called high-frequent data, intraday seasonality can be a severe

problem. Intraday seasonality, i.e., a fixed temporal pattern of the dispersion due to events

as opening or closing of certain stock exchanges, can be taken into account by analyzing

Ri/φ(si), where φ(si) is the deterministic intraday seasonal component for time si, which

is defined as the expected volatility conditioned on time-of-day (Andersen and Bollerslev,

1997).

Example 1.2. Suppose we want to monitor a time series {Xn} with mean 0 and common

variance σ2 = Var (Xn) in order to detect a change in the lag-1 autocorrelation. In this
5



case one may monitor the sequence Yn = XnXn−1, n ≥ 1, since E(Yn) = γn(1) is the lag-1

autocovariance. An appropriate change-point model is to assume that γn(1) = γ0(1) for

all n < q and γn(1) = γ0(1) + ∆ for n ≥ q. If ∆ 6= 0, q is the change-point where the

autocovariance increases. This means, by monitoring XnXn−1 for a change in the mean we

may solve the problem.

Example 1.3. Assume we aim to detect changes in the mean or variance of a time series

{Xn} using an univariate control scheme. Let µ0 and σ2
0 denote the in-control mean and

variance, respectively. Suppose the out-of-control model states that mean and variance are

given by µ1 and σ2
1. In this case we can monitor the sequence Yn = (Yn − µ0)

2/σ2
0. The

in-control mean of Yn equals 1, whereas the expectation of Yn under the out-of-control model

is given by
σ2
1

σ2
0

+ (µ1−µ0)2

σ2
0

.

2. Monitoring Procedure

The monitoring procedure consists of a control statistic which is calculated at each time

point n using past and current observations. Given a smoothing kernel K(z) define

(2) m̂n,h =
n∑

i=1

Kh(i− n)Yih,

where Kh(z) = h−1K(z/h) denotes the rescaled kernel. K(z) ≥ 0 is used as a weighting

function to downweight observations which are far away from the current observation Yn.

To ensure the downweighting property K(z) is usually chosen as a unimodal function

satisfying K(z1) ≥ K(z2), if z1 ≤ z2. We may assume that K(z) is symmetric around 0.

Further, typically one uses densities with mean 0, variance 1. Then the rescaled version

Kh(z) has mean 0 and variance h2. In particular, if K(z) has support (−1, 1), i.e., K(z) = 0

if |z| ≥ 1, the most recent h observations are used to calculate the control statistic. Thus,

we will call h the effective sample size. In the more general case that K(z) has support

(−a, a), the number of observations actually employed by the control statistic is ha. In

both cases, h measures the effective sample size (up to a constant).

At each time point the control statistic is now compared with a control limit c, and a

signal is given at the first time point where the control limit is exceeded. The corresponding

stopping time is defined by

Nh = inf{n ∈ N : m̂n,h > c}.

The stopping time is used in practice to trigger further actions. For an example where

credit spreads are monitored using this approach see Steland (2002b).
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Finally, define the normed delay as

ρh =
max(Nh − q, 0)

h
.

Note that 100 · ρh expresses the delay of the procedure as a percentage of the effective

sample size.

3. A Review of the Asymptotic Normed Delay

Under regularity assumptions discussed to some extent below it is known that ρh con-

verges to a functional of K and m0, as the parameter h tends to ∞. For simple shift

functions this problem has been studied by Brodsky & Darkhovsky (1993). For general

sequences of out-of-control models almost sure convergence under the mixing condition (1)

has been shown by Steland (2003a) for kernel smoothers as (2). Results about its asymptotic

distribution have been established by Steland (2003b). Related results for jump-preserving

methods as proposed by Pawlak and Rafaj lowicz (2000, 2001) can be found in Steland

(2002a). Jump-preserving monitoring schemes use a control statistic which is designed to

react quickly to (large) shifts. Due to their averaging property, control procedures as the

CUSUM or EWMA scheme, or the nonparametric method studied here, have the unpleas-

ant property that large shifts are smoothed away to some degree, in particular if they last

only for a few time points. Jump-preserving control statistics use only those data points

to calculate a location statistic, whose values are similar to the current observation Yn. It

has been shown that under quite general conditions such detection rules are able to detect

shifts with no delay, whereas for procedures based on arithmetic means or weighted aver-

ages as the EWMA control chart or the kernel control chart studied here, there is always

a positive probability that a shift is not detected immediately, even for very large shifts.

Simulations indicate that jump-preserving charts can be preferable when one is interest

in detecting large shifts as soon as possible, in particular if they last only for a few time

points. For details we refer to Pawlak, Rafaj lowicz and Steland (2003) and the references

given there.

For the setting considered in this article, in Steland (2003a) it has been shown that

ρh
a.s.→ ρ0,

as h →∞, where ρ0 is defined by

(3) ρ0 = inf

{
ρ > 0 :

∫ ρ

0

K(s− ρ)m0(s) ds = c

}
,

7



provided the mixing condition (1) is satisfied, the kernel K is Lipschitz continuous, and

the pair (K, m0) satisfies the integrability condition

(4) I(x) =

∫ x

0

K(s− x)m0(s) ds < ∞, (∀x > 0),

Clearly, (4) holds true, if m0, K ∈ L1.

For jump-preserving monitoring procedures as discussed above an upper bound for ρh

has been established, which is obtained from ρ0 by modifying the control limit c. For

details see Steland (2002a, 2002c) and the references given there. Therefore, the results of

this article also apply to jump-preserving control charts in the sense that the upper bound

is minimized.

4. NP-Optimal Kernels

Let us now discuss the question how to choose the kernel K defining the weighting

scheme of the sequential stopping rule in order to minimize the asymptotic normed delay

(3) under the constraint 0 ≤ K(z) ≤ 1 and additional (moment) constraints. In this case

the search for optimal kernels can be reduced to an optimization problem similar as the

Neyman-Pearson Lemma of optimal hypothesis testing, thus giving rise to the notion of

NP-optimality.

To formulate the formal optimization problem and its solution we need some further

notation. Let Lip (R) denote the class of Lipschitz continuous functions on the real line.

Define the following classes of kernels.

K̃ = {K ∈ L1(R) : K ∈ Lip (R), K(s) = K(−s) ∀s ∈ R, ‖K‖∞ < ∞}

K = {K ∈ L1(R) : K ∈ Lip (R), K(s) = K(−s) ∀s ∈ R, 0 ≤ K ≤ 1}.

For kernels from the class K̃ the problem to optimize ρ0 = ρ0(K) w.r.t. K for a given

m0 has been studied in Steland (2003a). Note that optimization over K̃ is an essentially

unconstrained problem. Indeed, the symmetry condition can be dropped, since in principle

the kernel K used for m̂n,h can be chosen as a one-sided kernel. But the constraint 0 ≤
K ≤ 1, which sufficies to downweight observations far away from the current one, yields a

substantially different solution.

To define the notion of NP-optimality let us introduce some additional notation. Denote

by

R(ρ) = {I(K, ρ) : K ∈ K},
8



the reachable set at time ρ where

I(K, ρ) =

∫ ρ

0

K(s− ρ)m0(s) ds,

Note that if a control limit c is an element of the reachable set, i.e., c ∈ R(ρ), there is a

kernel K ∈ K so that ρ is the corresponding asymptotic normed delay.

Definition 1. Let c be a given control limit. A pair (K∗, ρ∗) ∈ K × [0,∞) is called NP-

optimal, if

ρ∗ = inf{ρ > 0 : c ∈ R(ρ)} and I(K∗, ρ∗) = c.

In this situation K∗ is called NP-optimal kernel and ρ∗ optimal asymptotic normed delay.

Crucial to the following investigation is the following criterion for NP-optimality.

Lemma 1. (Steland 2003a, 3.1). If (K∗, ρ∗) is NP-optimal, we have∫ ρ∗

0

K∗(s− ρ∗)m0(s) ds = sup
K∈K

∫ ρ∗

0

K(s− ρ∗)m0(s) ds

= sup
K∈K

∫ ρ∗

0

K(s)m0(ρ
∗ − s)ds

where the second formula follows by integration by parts and symmetry of K. 2

Thus, to find optimal pairs (K∗, ρ∗) over the class K under additional (moment) con-

straints we consider the following problem.

(P) For ρ∗ = inf{ρ > 0 : c ∈ R(ρ)} maximize the functional

τ(K) =

∫ ρ∗

0

K(s)m0(ρ
∗ − s) ds

over the class K under the additional (moment) constraints∫ ∞

−∞
K(s) ds = 1,(5) ∫ ∞

−∞
sK(s) ds = 0,(6) ∫ ∞

−∞
s2K(s) ds = 1,(7)

9



The problem (P) can be solved using the same techniques from linear functional analysis

which are also applied to prove the Neyman-Pearson Lemma on optimal hypothesis testing,

see Neyman and Pearson (1933), Lehmann (1986), and Rao (1973). A proof of the following

theorem is given in the appendix.

Theorem 1. NP-optimal kernels K∗ of the optimization problem (P) satisfy

K∗(s) =


0, m(ρ∗ − s) < k1 + k2s + k3s

2,

1, m(ρ∗ − s) > k1 + k2s + k3s
2,

a, m(ρ∗ − s) = k1 + k2s + k3s
2,

for s ∈ [0, ρ∗], where a ∈ (0, 1). The constants k1, k2, and k3 are choosen to ensure that the

contraints (5), (6), and (7) are satisfied. ρ∗ satisfies the equation∫ ρ∗

0

K∗(s)m(ρ∗ − s) ds = c.

The theorem asserts that a NP-optimal kernel is essentially an indicator function 1A of a

set A = A(m0) whose shape strongly depends on the generic alternative m0. A is obtained

by comparing a translated version of the generic alternative with a polynomial of degree

2. Therefore, optimal kernels are not necessarily indicator functions on a connected set.

Clearly, the result can be formulated for an arbitrary number of moment conditions. For

sake of illustration let us consider the case where the optimization is only constrained by

the (moment) condition ∫ ∞

−∞
K(s)ds = 1.

In this case NP-optimal kernels can be chosen as

(8) K∗(s) =

{
1, m0(ρ

∗ − s) > k1,

0, m0(ρ
∗ − s) ≤ k1.

for s ∈ [−ρ∗, ρ∗], where ρ∗ is a solution of the nonlinear integral equation

(9)

∫
[0,ρ∗]∩{s:m0(ρ∗−s)>k1}

m0(ρ
∗ − s) ds = c.

Whereas for a given defining function m0 (8) and known ρ∗ can be even solved graphically,

it can be hard to solve equation (9) for to obtain ρ∗ for a given control limit.
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5. Examples

The assertion of the theorem, which solves the functional optimization problem, is quite

involved, even for the slightly simplified problem given by equations (8) and (9). But for

many explicit choices of m0 the NP-optimal kernel and the optimal asymptotic normed

delay can be calculated explicitly using elementary calculus. For illustration we provide

three basic examples.

We start with a unit jump which decays exponentially fast.

Example 5.1. Let

m0(t) = e−t, t > 0.

Clearly,

m0(ρ
∗ − t) > k1 ⇔ t > ρ∗ + log(k1).

Anticipating that k1 ∈ (0, 1), we obtain

K∗(t) =

{
1, if ρ∗ + log(k1) ≤ |t| ≤ ρ∗,

0, otherwise.

Since
∫∞
−∞ K∗(s) ds = −2 log(k1) does not depend on ρ∗, the choice

k1 = e−
1
2

ensure that K∗ is a probability density. Furthermore,∫ ρ∗

0

K(ρ∗ − s)m0(s) ds =

∫ ρ∗

ρ∗+log(k1)

es ds = c

is satisfied if

ρ∗ = log
c

1− k1

≈ log(c) + 0.932752

Next let us look at a simple ∩-shaped model for m0(t) located at t = 1.

Example 5.2. Define m0(t) = 1− (t− 1)2 if t ∈ [0, 2], and = 0 otherwise. For k1 ∈ (0, 1)

we have

m0(ρ
∗ − t) > k1 ⇔ ρ∗ − 1−

√
1− k1 < t < ρ∗ − 1 +

√
1− k1.

Thus,

K∗(t) =

{
1, |t| ∈ [ρ∗ − 1−

√
1− k1, ρ

∗ − 1 +
√

1− k1],

0, else,
11



For k1 = 7/9 corresponding to

K∗(t) =

{
1, |t| ∈ [ρ∗ − 1− 1/

√
8, ρ∗ − 1 + 1/

√
8],

0, else.

we obtain
∫∞
−∞ K∗(s) ds = 1. Further,

I(ρ∗) =

∫ ρ∗

0

K(ρ∗ − s)m0(s) ds =

∫ ρ∗

0

1[1−1/
√

8,1+
√

8](s)(1− s2) ds

is increasing for ρ∗ ∈ (1 − 1/
√

8, 1], and decreasing for ρ∗ ∈ (1, 1 + 1/
√

8] with maximal

value Imax = 12−
√

2
96

. In particular, for 1− 1/
√

8 ≤ ρ∗ ≤ 1 + 1/
√

8 we have

I(ρ∗) = −13

24
− 1

48
√

2
+ r − r3

3
.

Thus, for c ∈ (0, Imax] we may solve I(ρ∗) = c for ρ∗ as shown in Figure 1. An analytic

formula can also be obtained.

Finally, let us consider a Gaussian model for m0 with two parameters ∆ ∈ R and τ > 0.

In this case the calculations are more involved but still elementary. It turns out that the

asymptotic optimal normed delay does not depend on the parameter τ .

Example 5.3. Define

m0(t) =
1√

2πτ 2
e−

(t−∆)2

2τ2 , t ≥ 0,

where ∆ ∈ R+ and τ > 0. For k1 < 1/
√

2πτ 2 the inequality

m0(ρ
∗ − t) > k1

is equivalent to

t ∈ I(ρ∗, ∆, k1, τ) = [ρ∗ −∆− i(∆, k1), ρ
∗ −∆ + i(∆, k1)]

where

i(k1, τ) =
√

2

√
τ 2 ln(

√
2πτ 2k1)

Thus,

K∗(t) =

{
1, |t| ∈ I(ρ∗, ∆, k1, τ),

0, |t| 6∈ I(ρ∗, ∆, k1, τ).

Note that i(k1, τ) is injective in τ for τ > 0 and k1 < 1/
√

2πτ 2. Hence, since |I(∆, k1, τ)| =

2i(k1, τ), for given τ we can solve∫ ∞

−∞
K∗(s) ds = 4i(k1, τ)

12
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Figure 1. Optimal asymptotic normed delay ρ∗ as a function of the thresh-

old c.

for k1 = k1(τ) yielding

k1(τ) =
e−32τ2

√
2πτ 2

.

This implies

i(k1(τ), τ) =
√

2
√

τ 2 log exp(−32τ 2) =
1

4
.

Finally, ∫ ρ∗

0

K∗(ρ∗ − s)m0(s)ds =

∫ ρ∗

0

1[ρ∗−∆−i(k1(τ,τ),ρ∗−∆+i(k1(τ,τ)](s)m0(s) ds

=

∫ ρ∗

0

1[∆−1/4,∆+1/4](s)m0(s) ds

= Φ(min(ρ∗, ∆ + 1/4))− Φ(max(0, ∆− 1/4)))
13
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Figure 2. Optimal asymptotic normed delay ρ∗ as a function of c and ∆.

where Φ denotes the cumulative distribution function of the standard normal distribution.

Consequently, if ρ∗ ≤ ∆ + 1/4 we have to solve

Φ(ρ∗)− Φ(max(0, ∆− 1/4)) = c

which yields

ρ∗ = Φ−1(Φ(max(0, ∆− 1/4)) + c).

provided 0 ≤ Φ(max(0, ∆ − 1/4)) + c ≤ 1. In particular, the optimal asymptotic normed

delay does not depend on the scale parameter τ of the alternative. The solution is shown

in Figure 2. Note that for small values of ∆ and small control limits ρ∗ can be reasonably

approximated by a linear function of these variabels, but for larger values the shape is

strongly nonlinear.
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Appendix: Proof of Theorem 1

First note that for any K ∈ K with (5), (6), and (7) by linearity we have

(10)

∫ ∞

−∞
(

2∑
i=1

kis
i)K(s) ds =

2∑
i=0

∫ ∞

−∞
siK(s) ds.

Clearly, a kernel K∗ ∈ K is NP-optimal if∫ ρ∗

0

m0(ρ
∗ − s)K∗(s) ds ≥

∫ ρ∗

0

m0(ρ
∗ − s)K(s) ds

for all K ∈ K satisfying (5), (6), and (7). Equivalently, NP-optimality holds true if∫ ρ∗

0

m0(ρ
∗ − s)[K∗(s)−K(s)] ds ≥ 0

for all K ∈ K with (5), (6), and (7). Observe that for s ∈ [0, ρ∗] with K∗(s) = 1 we have

m(ρ∗ − s) >
2∑

i=0

kis
i, and K∗(s) ≥ K(s),

which implies

(11) [m(ρ∗ − s)−
2∑

i=0

kis
i][K∗(s)−K(s)] ≥ 0.

Similarly, for s ∈ [0, ρ∗] with K∗(s) = 0 we have

m(ρ∗ − s) <

2∑
i=0

kis
i, and K∗(s) ≤ K(s),

15



again yielding (11). If m(ρ∗ − s) =
∑2

i=0 kis
i, (11) holds true for any a ∈ (0, 1). Conse-

quently, using (10) we can conclude∫ ρ∗

0

m(ρ∗ − s)[K∗(s)−K(s)] ds

=

∫ ρ∗

0

[m(ρ∗ − s)−
2∑

i=0

kis
i][K∗(s)−K(s)] ds

≥ 0

for all K ∈ K satisfying (5), (6), and (7). Hence, (K∗, ρ∗) is NP-optimal. 2
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