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Abstract

A common approach in the design of experiment for the problem of comparing two
means from a normal distribution is to assume knowledge of the ratio of the population
variances. The optimal sampling ratio is proportional to the square root of this quantity.
In this paper it is demonstrated that a misspecification of this ratio can cause a substantial
loss in power of the corresponding tests. As a robust alternative a maximin approach
is used to construct designs, which are efficient, whenever the experimenter is able to
specify a specific region for the ratio of the population variances. The advantages of the
robust designs for inference in the Behrens-Fisher problem are illustrated by means of a
simulation study and an application to the design of experiment for bioassay is presented.

Keywords and Phrases: Behrens-Fisher problem, bioassay, design of experiment, local optimal

design, robust designs.

1 Introduction

The problem of comparing the means of two populations is of fundamental importance in

applied statistics. Let μi, σ
2
i denote the population mean and variance of the ith population

(for i = 1, 2) then the parameter of interest is typically the difference of the means μ = μ1 −μ2

or the ratio ρ = μ2/μ1. If the ratio κ =
σ2
2

σ2
1

of the population variances is unknown and the

assumption of a normal distribution is made, the scenario is called Behrens-Fisher problem

[see Scheffé (1970)]. There is a large number of papers in which various tests are suggested
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concerning hypothesis regarding the difference of the means μ. In the case of testing simple

hypotheses, Welch’s approximate t-solution [see Welch (1936, 1938)] appears to be a good

compromise between a test which is unbiased on one hand and which is practical on the other;

see for example Wang (1971) and Best and Rayner (1987). This approach was further extended

in Dannenberg, Dette and Munk (1994) for testing interval hypotheses.

In contrast to the goal of constructing useful tests for the Behrens-Fisher problem, the problem

of allocating observations to both populations if the total sample size has been fixed has not

found much attention in the literature. It is well known [see e.g. Staudte and Sheater (1990)]

that if n1 and n2 denote the sample sizes of both populations, the power of Welch’s test is max-

imized if n1/n2 ≈ κ−1/2 = σ1/σ2. A similar observation was made by Dannenberg, Dette and

Munk (1994) in the context of testing interval hypotheses of the form H0 : μ �∈ [−Δ, Δ], H1 :

μ ∈ [−Δ, Δ]. However, these results are “local” in the sense of Chernoff (1953) as they require

knowledge of the population variances in order to determine n1 and n2. Consequently, a mis-

specification of κ can yield a substantial loss in power if the sample sizes are chosen according

to the rule n1/n2 ≈ κ−1/2.

We demonstrate in Section 2 by means of a simulation study that the loss of power caused by

such a misspecification can be substantial. As an alternative, we propose the maximization

of the minimum of an appropriately standardized power function (taken over a certain range

for the parameter κ) with respect to the proportion of total observations in the first sample.

We also give an explicit formula for the relative proportions for both samples with respect to

the new criterion, and we demonstrate the ease with which this technique can be applied in

practical settings. It is demonstrated by means of a simulation study that the new designs are

robust and efficient whenever a range for the unknown ratio of the population variances can be

specified.

Our new methodology is applied to the classical problem of testing the difference of two normal

means and to the important problem of inference about the ratio of these means useful in direct

bioassays.

2 Local optimal allocation of sample sizes

Let X1, . . . , Xn1 and Y1, . . . , Yn2 denote two independent samples of i.i.d. observations such

that Xi ∼ N (μ1, σ
2
1) (i = 1, . . . , n1); Yj ∼ N (μ2, σ

2
2) (j = 1, . . . , n2) and consider the one-sided

problem of testing the hypotheses

H0 : μ := μ1 − μ2 ≤ 0 versus H1 : μ > 0.(2.1)

In a famous paper, Welch (1938) suggested the rejection of the null hypothesis if

X̄n1 − Ȳn2√
1
n1

Ŝ2
1 + 1

n2
Ŝ2

2

> t1−α,f̂ ,(2.2)



where X̄n1 , Ȳn2 denote sample means, Ŝ2
1 , Ŝ

2
2 are the common estimators of the variance and

t1−α,f̂ is the quantile of the t-distribution with

f̂ =

(
Ŝ2

1

n1
+

Ŝ2
2

n2

)2

(
Ŝ2

1

n2

)2

/(n1 − 1) +
(

Ŝ2
2

n2

)2

/(n2 − 1)
(2.3)

(estimated) degrees of freedom. It was pointed out by Scheffé (1970) and Wang (1971) that this

test provides a good compromise between tests which should on the one hand be unbiased and

on the other hand be easily implemented. Further, it is well known [see Staudte and Sheater

(1990), p. 180] that for local alternatives of the form

μ =
σ1√

n1 + n2
(2.4)

the asymptotic power function of this test is given by

π(κ) = Φ
({ 1

w
+

κ

1 − ω

}−1/2

− u1−α

)
(2.5)

where κ = σ2
2/σ

2
1 is the ratio of the population variances, u1−α = Φ−1(1 − α) is the quantile of

the standard normal distribution and

w = lim
n1→∞
n2→∞

n1

n1 + n2
∈ (0, 1)(2.6)

is the relative proportion of total observations in the first sample. It was pointed out by Dette

and Munk (1997) that π(κ) also coincides with the asymptotic power function of the extension

of Welch’s test to the problem of testing the equivalence hypotheses

H0 : μ �∈ [−Δ, Δ]; H1 : μ ∈ [−Δ, Δ](2.7)

under contiguous alternatives μ = Δ + σ1(n1 + n2)
−1/2. A simple calculation shows that the

power π(κ) is maximal if

n1

n1 + n2
≈ w∗

κ :=
1

1 +
√

κ
=

1

1 + σ2/σ1
,(2.8)

and we will call ω∗
κ the local optimal design [for testing the hypotheses (2.1) or (2.7)]. The

phrase “local” is due to Chernoff (1953) and used because the optimal allocation to both

samples depends on the unknown parameter κ = σ2
2/σ

2
1. If some information regarding the ratio

of population variances is available, the power of Welch’s test can be increased substantially by

using the rule (2.8). However, the following example shows that in general the local optimal

design is indeed sensitive with respect to misspecification of the parameter κ.

Example 2.1. We have conducted a small simulation study, where μ = 1, σ2
1 + σ2

2 = 5 and

the “true” ratio κ
1/2
t = σ2/σ1 varies between 1 and 1/5. We have calculated the rejection

probabilities of Welch’s test (2.2) with nominal level 5% for the hypotheses (2.1) for various



designs, which are calculated under the respective assumptions that the ratio is given by κ
1/2
a =

1, 1/3, 1/5. In other words, if κt �= κa the design was calculated under a misspecification for the

ratio of the population variances. The local optimal designs are obtained by a simple rounding

procedure from the values w∗
κ(n1 +n2) = (n1 +n2)(1+

√
κ)−1/2, which gives the sample size for

the first sample. The rejection probabilities of the test (2.2) are calculated by 10,000 simulation

runs, while the total sample sizes is n1 + n2 = 25 or n1 + n2 = 50.

n1 + n2 = 25 n1 + n2 = 50

κ
1/2
a 1 1/3 1/5 robust 1 1/3 1/5 robust

n1 = 13 n1 = 19 n1 = 21 n1 = 17 n1 = 25 n1 = 37 n1 = 41 n1 = 33

κ
1/2
t n2 = 12 n2 = 6 n2 = 4 n2 = 8 n2 = 25 n2 = 13 n2 = 9 n2 = 17

1 0.444 0.350 0.269 0.406 0.715 0.581 0.448 0.669
1/3 0.448 0.519 0.483 0.521 0.694 0.785 0.770 0.784
1/5 0.451 0.573 0.577 0.537 0.697 0.830 0.838 0.798

Table 2.1: Rejection probabilities of Welch’s test (2.2) for the hypotheses (2.1) for various

designs and ratios κt = σ2
2/σ

2
1 of population variances.

The differences between the rejection probabilities are remarkable. For example, if the “true”

ratio of the population variances is given by κ
1/2
t = 1, but the local optimal design is found

under the assumption that κ
1/2
a = 1/3. then we observe for the sample size n1+n2 = 50 a loss of

power of approximately 19%. The results indicate that the optimal allocation rule (2.8) is rather

sensitive with respect to a misspecification of the unknown ratio of the population variances.

In the fourth columns (labeled “robust”), the table also contains a design which is both quite

robust and efficient for all situations under consideration. For example, if n1 + n2 = 25 the

loss of efficiency of the allocation rule n1 = 17, n2 = 8 compared to the best design is only

approximately 9% (κ
1/2
t = 1), 0.4% (κ

1/2
t = 1/3) and 7% (κ

1/2
r = 1/5). By comparison, the

allocation rule n1 = 19, n2 = 6 (corresponding to the assumption κ
1/2
a = 1/3) yields a loss of

efficiency of 21% (κ
1/2
t = 1) and 1% (κ

1/2
t = 1/5) while it is the best for κt = 1/3. Similarly,

the loss of efficiency of the allocation rule n1 = 21 n2 = 4 (corresponding to the assumption

κ
1/2
a = 1/5) is approximately 39% (κ

1/2
t = 1) and 7% (κ

1/2
t = 1/3).

The robust designs were calculated by a maximin approach which will be developed in the

following section, and which uses only the information that the ratio of the population standard

deviations lies in the interval [1/5, 1]. We feel this is the more realistic setting since practitioners

will rarely be able to give an accurate point estimate for the ratio of the variances, whereas an

accurate interval estimate can usually be given. The results of Table 2.1 along with additional

simulations (not shown for the sake of brevity) indicate that robust and efficient designs are

available if an interval for the unknown ratio of the population variances can be specified by

the experimenter.



3 Robust designs for the Behrens-Fisher problem

Note that the power function of the test (2.2) increases with the expression

f(w, κ) =
{ 1

w
+

κ

1 − w

}−1

(3.1)

and that thus the locally optimal design w∗
κ = 1/(1+κ1/2) is found by maximizing f(w, κ) with

respect to w for given κ. In Example 2.1, we indicated that these designs are not necessarily

robust with respect to a misspecification of the unknown ratio of population variances. For the

construction of a more robust design, we assume that an interval, say [κL, κU ], for the unknown

population variance can be specified by the experimenter, and consider the efficiency

eff(w, κ) =
f(w, κ)

maxv f(v, κ)
=

(1 +
√

κ)2

1
w

+ κ
1−w

.(3.2)

Note that the efficiency, which varies between 0 and 1, measures the performance of the design

w with respect to the best design provided κ is the “true” ratio of the population variances. A

design w∗ is called standardized maximin optimal if it maximizes the minimum efficiency

g(w) = min
κ∈[κL,κU ]

eff(w, κ)(3.3)

over the interval [κL, κU ]. This design criterion is similar to the standardized optimality criteria

used in Dette (1997) and Imhof (2001). Further, it is established in the Appendix that for fixed

w the function κ → eff(w, κ) is unimodal with at most one maximum in the interval [κL, κU ]

(see Lemma A.1). It therefore follows that

g(w) = min{eff(w, κL), eff(w, κU)}.(3.4)

Moreover, in Lemma A.2 in the Appendix, we show that for the standardized maximin optimal

design

w∗ = arg maxw∈[0,1]g(w)

it follows that eff(w∗, κL) = eff(w∗, κU). This equality determines the optimal design as

w∗ =
2 + κL

1/2 + κU
1/2

2(1 + κL
1/2)(1 + κU

1/2)
(3.5)

for which the minimal efficiency is

g(w∗) =
(2 + κL

1/2 + κU
1/2){κL

1/2(1 + κU
1/2) + κU

1/2(1 + κL
1/2)}

2(1 + κL
1/2)(1 + κU

1/2)(κL
1/2 + κU

1/2)
.(3.6)

Example 3.1. For the situation considered in Example 2.1, we have κL
1/2 = 1/5 and κU

1/2 = 1,

which yields the standardized maximin optimal design weight w∗ = 2/3 and for which the



minimal efficiency is g(w∗) = 8/9. This high value of the minimal value of the design efficiency

underscores the remarkable robustness of our robust design. Incidentally, the corresponding

(potentially non-rational) weight is translated into a practical design allocation for the first

sample by rounding (n1 + n2) · w∗ = (n1 + n2)2/3 to the nearest integer (as in Table 2.1).

Remark 3.2. We also note that the design problem is symmetric in the following sense.

If w∗
κL,κU

denotes the (standardized maximin) optimal proportion for the first sample if the

parameter κ is assumed to be in the interval [κL, κU ], then the corresponding quantity for the

interval [1/κU , 1/κL] satisfies

w∗
1/κU ,1/κL

= 1 − w∗
κL,κU

.

In other words, the standardized maximin optimal design for the interval [1/κU , 1/κL] can be

obtained from the corresponding design for the interval [κL, κU ] by interchanging the role of the

sample sizes n1 and n2. For this reason the robust designs can easily be tabulated. Some designs

for selected values of κL and κU are presented in Table 3.1 for the sake of completeness. Finally,

we note that this symmetry implies that the equal allocation rule w∗ = 1/2 is (standardized

maximin) optimal for any interval of the form [1/κ0, κ0] where κ0 > 1.

Example 3.3. The results derived so far have been derived under the assumption that one-

sided hypotheses are tested with Welch’s approximate t-solution. It follows from Dette and

Munk (1997) that these results are directly applicable to the problem of testing the equivalence

hypotheses H0 : μ �∈ [−Δ, Δ]; H1 : μ ∈ [−Δ, Δ], because the asymptotic power function

coincides with that of the one-sided problem.

In principle, a similar analysis could be performed for cases where simple hypotheses H0 :

μ = 0; H1 : μ �= 0 or interval hypotheses H0 : μ ∈ [−Δ, Δ]; H1 : μ �∈ [−Δ, Δ] are of interest.

However, our numerical results show that the designs derived for the one-sided problem are

also very efficient for testing other hypotheses. By way of illustration, consider the situation of

Example 2.1 where σ2
1+σ2

2 = 5 and a test with level 5% for the hypotheses H0 : μ = 0; H1 : μ �= 0

has to be performed. In order to demonstrate the application of Remark 3.2, we consider the

cases where κ
1/2
t = 1, 3, 5 for the true value of the ratio of the variances, while we assumed

κL
1/2 = 1 and κU

1/2 = 5 for the construction of the robust design. The optimal proportion for

the first sample is now given by w∗ = 1/3 and the simulated rejection probabilities are given in

Table 3.2 for sample sizes n1 + n2 = 25 or 50. We observe a similar picture as for the one-sided

case. The local optimal designs are sensitive with respect to misspecification of the unknown

ratio of population variances, while the standard maximin optimal designs yield a reasonable

power in all cases under consideration.



κL

∖
κU 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.760 0.725 0.703 0.686 0.673 0.662 0.652 0.644 0.636 0.630
0.2 0.691 0.668 0.652 0.638 0.627 0.618 0.609 0.602 0.595

0.3 0.646 0.629 0.616 0.605 0.595 0.587 0.580 0.573
0.4 0.613 0.599 0.588 0.579 0.570 0.563 0.556

0.5 0.586 0.575 0.565 0.557 0.549 0.543
0.6 0.563 0.554 0.546 0.538 0.532

0.7 0.544 0.536 0.529 0.522
0.8 0.528 0.521 0.514

0.9 0.513 0.507
1.0 0.5

Table 3.1. Standardized maximin optimal designs for various intervals [κL, κU ] for the un-

known ratio κ = σ2
2/σ

2
1 of the population variances. The value w∗ in the table gives the relative

proportion of total observations in the first sample.

n1 + n2 = 25 n1 + n2 = 50

κ
1/2
a 1 3 5 robust 1 3 5 robust

n1 = 12 n1 = 6 n1 = 4 n1 = 8 n1 = 25 n1 = 12 n1 = 8 n1 = 17

κ
1/2
t n2 = 13 n2 = 19 n2 = 21 n2 = 17 n2 = 25 n2 = 38 n2 = 42 n2 = 33

1 0.322 0.256 0.206 0.283 0.593 0.460 0.355 0.538
3 0.301 0.398 0.385 0.377 0.587 0.689 0.665 0.674
5 0.299 0.418 0.433 0.399 0.575 0.730 0.753 0.695

Table 3.2. Rejection probabilities of Welch’s test of a simple hypothesis for various designs

and ratios κt = σ2
2/σ

2
1 of population variances.

4 Application to Bioassay

One concern of bioassay, or biological assays, is the estimation of the potency of one drug (B)

relative to another (A), typically involving comparing a new drug with a standard. Further,

in contrast with indirect assays, direct assays hold that the necessary concentrations that

produce the same therapeutic effect can be directly measured. In this setting, the relative

potency (ρ) of drug B to A is the ratio of the respective means, where the underlying respective

distributions are assumed to be Gaussian A ∼ N (μ1, σ
2
1), B ∼ N (μ2, σ

2
2); thus, ρ = μ2/μ1.

Further background of direct assays is given in Finney (1978, Ch. 2) and Govindarajulu (2000,

Ch. 2).

Often practitioners are interested in a confidence interval for the relative potency, and experi-

mental designs which produce shorter confidence intervals are therefore desired. In the case of



independent populations, a standard calculation shows that the first order approximation for

the length of any reasonable confidence interval is proportional to the root of the function

g(w, κ, ρ) =
1

w
+

κ/ρ2

1 − w
,

and all results of the previous sections are therefore applicable to this case but with κ replaced

by κ/ρ2. For example, the local optimal design uses

w∗
κ/ρ =

1

1 +
√

κ/ρ
(4.1)

as the weight for the first sample. Similarly, if the experimenter is able to specify a region, say

[κL, κU ] for the quantity κ/ρ2 the optimal design is given by (3.5).

Consider for example the situation where the population variances are the same, i.e. κ = 1,

and a confidence interval is constructed using Fieller’s theorem [Finney (1978)]. This interval

is of the form

ρL,U =
[
ρ̂ ± tŝ

X̄n1

{ 1

n2
+ ρ̂2 1

n1
− g

n2

}1/2]
/(1 − g)

where g = t2s2/(n1X̄
2
n1

), t is the (1− α) quantile of the t-distribution with n1 + n2 − 2 degrees

of freedom, ρ̂ = Ȳn2/X̄n1 and S̄2 is the pooled variance estimate. To highlight the benefits of

our robust design strategy, we have performed a small simulation study to calculate the average

length

L̂ = ρU − ρL

of this interval for different designs. For this simulation, the true relative potency ρt varies

between 1, 2.25, 4 and 6.25, and for the construction of the locally optimal designs by formula

(4.1) we again assume σ2
1 = σ2

2 = 0.25, (whence κ = 1). The results are given in Table 4.1

and show that the length depends strongly on the specification of the relative potency. Thus,

a misspecification of this quantity can produce a substantially larger confidence interval. For

example, if the true relative potency is ρt = 1 but we use a design based on the assumption

ρa = 4, the length of the resulting confidence interval is increased by 23 %. On the other hand,

the robust design given in the table is constructed under the assumption that the true ρt lies in

the interval [1, 6.25], and yields the optimal weight w∗ = 0.607 (using formula (3.5)). For the

total sample size n1 + n2 = 50, this weight translates into the allocation n1 = 30 and n2 = 20,

for a total sample size of n1 +n2 = 50. From equation (3.6), this robust design has an efficiency

of at least 95.41% . This fundamental result is illustrated in our simulation study, which shows

that the robust design is indeed both robust to the choice of ρ and very efficient with a loss of

efficiency of at most 5% (see Table 4.1).



n1 + n2 = 50

ρa 1.0 2.25 4.0 6.25 robust

n1 = 25 n1 = 35 n1 = 40 n1 = 43 n1 = 30
ρt n2 = 25 n2 = 15 n2 = 10 n2 = 7 n2 = 20

1.0 0.493 0.529 0.605 0.694 0.498
2.25 0.632 0.624 0.676 0.750 0.614
4.0 0.791 0.736 0.770 0.829 0.748
6.25 0.954 0.856 0.869 0.921 0.887

Table 4.1. Simulated length of the confidence interval for the relative potency based on Fieller’s

theorem for various designs and different values of ρt = μ2/μ1.

5 Concluding remarks

In this paper we have determined efficient and robust designs for Welch’s approximate t-test for

testing one-sided hypotheses. Our method is based on a maximin approach and we have shown

their usefulness and superiority in the setting of both the classical difference of two means

and for the relative potency of similar compounds. An explicit formula for the proportions

of total observations for both samples is given and the designs can easily be implemented if

the experimenter is able to specify a region [κL, κU ] for the unknown ratio κ = σ2
2/σ

2
1 of the

population variances. It is demonstrated by means of a simulation study that the derived

designs yield to an efficient inference for all κ ∈ [κL, κU ], whenever 0.2 ≤ κL
1/2 ≤ κU

1/2 ≤ 1

(equivalently 1 ≤ κL
1/2 ≤ κU

1/2 ≤ 5). This should encompass most cases of practical interest.

An experiment with a larger (smaller) ratio of standard deviations should never be performed

because the power of the Welch test becomes very small.

We have concentrated on one-sided hypotheses of the form (2.1) for the sake of brevity. However,

for the problem of testing the equivalence hypotheses H0 : μ �∈ [−Δ, Δ]; H1 : μ ∈ [−Δ, Δ] it

is shown in Dette and Munk (1997) that the asymptotic power function of an extension of

Welch’s test coincides with the power function of the test for one-sided hypotheses. As a

consequence the results obtained in this paper are applicable for testing interval hypotheses by

Welch’s approximate t-solution introduced by Dannenberg, Dette and Munk (1994). Moreover,

it is demonstrated that the designs derived in Section 3 also provide a robust and efficient

allocation for the problem of testing simple hypotheses. For these reasons we recommend to

use these designs for the Behrens-Fisher problem of testing the difference of two means whenever

an interval for the ratio of the population variances can be specified.

The results are also applicable for the classical problem of bioassay where the goal of the exper-

iment is the estimation of the potency of one drug relative to another. For this problem, robust

and efficient designs can be obtained from the results of this paper whenever the experimenter

is able to specify an interval for the ratio κ/ρ2 where ρ is the unknown relative potency and κ

the ratio of the population variances.



6 Appendix

Lemma A.1. For fixed w the function κ → eff(w, κ) defined in (3.2) is unimodal with at most

one maximum in the interval [κL, κU ].

Proof. Recall the definition of the efficiency in (3.2). A straightforward calculation shows that

∂

∂κ̃

(
log(eff(w, κ̃2)

)
= 2

(κ̃ + 1)w − 1

(1 + κ̃)(w − 1 − wκ̃)
,

which vanishes only at the point κ̃ = (1−w)/w. A similar calculation of the second derivative

yields
∂2

∂2κ̃
log(eff(w, κ̃2)

∣∣∣∣κ̃= (1−w)
w

=
2w3

(w − 1)(w + (1 − w))2
< 0.

Consequently it follows that the function eff(w, κ̃) has at most one extremum in the interval

[κL, κU ], which is a maximum. �

Lemma A.2. If w∗
κL,κU

denotes the standardized maximin optimal design, then

eff(w∗
κL,κU

, κL) = eff(w∗
κl,κU

κU).

Proof. We can split the maximization of the right hand side of (3.4) in the maximization over

the sets

M< =
{

w ∈ [0, 1] | eff(w, κL) < eff(w, κU)
}
,

M> =
{

w ∈ [0, 1] | eff(w, κL) > eff(w, κU)
}
,

M= =
{

w ∈ [0, 1] | eff(w, κL) = eff(w, κU)
}
.

Now assume that w∗
κL,κU

∈ M<. In this case we obtain w∗
κL,κU

= 1/(1 +
√

κL) and by the

definition of M< the inequality

eff(
1

1 +
√

κL
, κL, ) < eff(

1

1 +
√

κL
, κU).

But this inequality is equivalent to

(
√

κL −√
κU)2 < 0,

which yields a contradiction. A similar argument for the set M> shows that the maximum is

attained in M=, which completes the proof. �
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