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Summary 
In this paper, we have presented the second level nesting of Bonney’s disposition model 

(Bonney, 1998) and examined the implications of higher level nesting of the disposition 

model in relation to the dimension of the parameter space. We have also compared the 

performance of the disposition model with Cox’s regression model (Cox, 1972). It has been 

observed that the disposition model has a very large number of unknown parameters, and is 

therefore limited by the method of estimation used. In the case of the maximum likelihood 

method, reasonable estimates are obtained if the number of parameters in the model is at most 

nine. This corresponds to about four to seven covariates. Since each covariate in Cox’s model 

provides a parameter, it is possible to include more covariates in the regression analysis. On 

the other hand, as opposed to Cox’s model, the disposition model is fitted with parameters to 

capture aggregation in families, if there should be any. The choice of a particular model 

should therefore depend on the available data set and the purpose of the statistical analysis.  

Key words: Second level nesting; Proportional hazards model; Quadratic exponential form;   

          Partial likelihood; Familial aggregation; Second-order methods; Marginal 

          models; Conditional models.  

1 Introduction 

The outcomes of family members are correlated because they share common risks. Thus 

standard methods of epidemiology, which assume independence of outcomes, are unsuitable 
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for the analysis of family data. Many models have been proposed to incorporate dependence 

within families. Cox (1972) reviewed several methods that had been proposed for the analysis 

of multivariate binary data and outlined some new proposals. He suggested the use of logistic 

representations, in which the joint response probability is a quadratic exponential form, as the 

simplest, most flexible, and in many ways the most important models. In the paper ‘Partial 

likelihood’, Cox (1975) gave a definition of partial likelihood which generalises the ideas of 

conditional and marginal likelihood. Here, he transformed the random variable Y into a 

sequence { , }X Sj j ,    j = 1,...,m, and decomposed the full likelihood of the sequence into two 

products, the second product being the partial likelihood based on S in the sequence { , }X Sj j .

He pointed out that the partial likelihood is especially useful when it is appreciably simpler 

than the full likelihood. This is the situation when constructive procedures for finding useful 

partial likelihoods are provided, so that the partial likelihood involves only the parameters of 

interest and not nuisance parameters. To support this point, he made mention of the failure of 

the method of maximum likelihood as a general technique, especially in the sampling theory 

and pure likelihood approaches, due to excessive nuisance parameters, and hence the need to 

reduce dimensions. Care should however be taken to ensure that all or nearly all the relevant 

information is contained in the partial likelihood.

Connolly and Liang (1988) introduced the conditional logistic regression models for 

correlated binary data which are most useful when the dependence among observations is of 

main interest (such as in family data). Although the estimating functions are easily computed 

and have high efficiency compared to the computationally intensive maximum likelihood  

approach, more work is needed to determine the form of the weights used for the estimating 

functions U( , )β θ . Zhao and Prentice (1990) reparameterised probability  distribution of the 

model advocated by Cox (1972) in terms of marginal parameters of ready interpretation. 

Since this approach yields models with very complicated marginal response probabilities and 

pairwise correlations, they suggested the transformations of the canonical parameters 

( , )θ λk k , k = 1,...,K, to response means ( μ μ βk k= ( ) ) and covariances ( σ σ β αk k= ( , ) ),

where β  and α  are parameter vectors. Scoring estimating functions can then be used to 

evaluate mean and correlation parameters under the quadratic exponential family. Liang, 

Zeger and Qaqish (1992) presented a model for correlated binary data, in which the marginal 

expectation of each binary variable as well as the association between pairs of outcomes are 

modelled separately in terms of explanatory variables. With examples, they described some 
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drawbacks of conditional models, especially in situations where observations are missing or 

cluster sizes differ. On the other hand, the marginal model is reproducible, since the marginal 

distribution of any proper subset ( ,..., )Y Yn1  is of the same form. Hence the situation where a 

subset of the cluster ( ,..., )Y Yn1  is missing causes no problem. Carey, Zeger and Diggle 

(1993) proposed the use of odds ratios to measure association among responses. The 

approach, which alternates between two steps, estimates the association parameters by 

modelling the conditional distributions of one response given another. The alternating logistic 

regression avoids the computational burdens encountered in many problems, and its estimates 

are reasonably efficient relative to solutions of second-order methods. Odai et al. (2002) 

discussed the use of the correlated Weibull regression model for the analysis of multivariate 

binary data. The results have shown that the model provides feasible means of analysing 

family data. 

In this paper, the implications of higher level nesting in relation to the dimension of the 

parameter space are examined. Since in real life, levels of nesting higher than two serve no 

practical purpose, we will limit our work to second level nesting. Section 2 briefly reviews 

Cox’s regression model (Cox, 1972) for the analysis of failure data when explanatory 

variables are available. Section 3 contains a detailed treatment of the second level nesting of 

the disposition model. The estimation procedure will be described in Section 4. The method is 

illustrated with breast cancer data in Section 5, and is followed by discussion. 

2  Cox’s  regression model 

The Cox model (also known as the proportional hazards model) is a model that can be used 

for the analysis of failure data when explanatory variables are available.  
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2.1 The model 

Let )x;t(h  be the hazard rate at time t for an individual with risk vector )x,...,x(x p1
T = .

Cox (1972) specified his model as follows:  

)xexp()t(h)x;t(h T
0 β= ,  (2.1.1)  

where )t(h 0  is an arbitrary baseline hazard rate and ),...,( p1
T ββ=β  is a vector of unknown 

parameters.  

The above model is often called a proportional hazards model because, the ratio of the hazard 

rates of two individuals with covariate values x and 'x  can be expressed as  

−β=
=

p

1k

'
kkk )xx(exp

)'x;t(h
)x;t(h , (2.1.2) 

which is a constant (see, for example, Klein and Moeschberger, 1997). This indicates that the 

hazard rates are proportional. The quantity (2.1.2), called the relative risk (hazard ratio), gives 

the factor by which the risk of an individual with covariate x is increased in comparison to an 

individual with risk factor 'x .

2.2  Parameter estimation  

In order to estimate the parameters in Cox’s model with the maximum likelihood method, the 

baseline hazard, )t(h 0 , must be specified. To deal with this situation, Cox exploited the 
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definition of partial likelihood. Specifically, he considered the baseline hazard, )t(h 0 , as a 

nuisance parameter function and concentrated mainly on the regression parameters.  

Let )n()2()1( t...tt <<<  denote the ordered event times and define the risk set at time )i(t ,

)t(R )i( , n,...,1i = , as the set of all individuals who are still under study at a time just prior to 

)i(t . Further, let jx  denote the value of x for the jth individual, and )i(x  the value for the 

individual failing at time )i(t , n,...,1i = . Then, Cox (1972) gave the partial likelihood based 

on the hazard function specified by (2.1.1) as  

∏
=

∈

β
β

=β
n

1i
)t(Rj

j
T

)i(
T

)i(

)xexp(
)xexp(

)(L . (2.2.1) 

It should be noted that the numerator of the likelihood in (2.2.1) depends only on information 

from the individual who experiences the event, whereas the denominator utilises information 

about all individuals who have not yet experienced the event (Klein and Moeschberger, 

1997).

Direct calculation from the log-likelihood gives the score equation 

= =
∈

∈

β

β
−=β

n

1i

n

1i
)t(Rj

j
T

)t(Rj
j

T
j

)i(

)i(

)i(

)xexp(

)xexp(x
x)(U , (2.2.2) 

from which we obtain the Hessian matrix 
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=
∈

∈

β

β
−ββ=β

n

1i
)t(Rj

j
T

)t(Rj
j

TT
jj

T
)i()i(

)i(

)i(

)xexp(

)xexp(xx
)(A)(A)(H , (2.2.3) 

where

∈

∈

β

β
=

)t(Rj
j

T

)t(Rj
j

T
j

)i(

)i(

)i(

)xexp(

)xexp(x
A , n,...,1i = .

The Fisher information matrix is given by 

β

β

β

β
−

β

β
=β

∈

∈

=
∈

∈

=
∈

∈

)t(Rj
j

T

)t(Rj
j

TT
jn

1i
)t(Rj

j
T

)t(Rj
j

T
jn

1i
)t(Rj

j
T

)t(Rj
j

TT
jj

)i(

)i(

)i(

)i(

)i(

)i(

)xexp(

)xexp(x

)xexp(

)xexp(x

)xexp(

)xexp(xx
)(I , (2.2.4) 

(Klein and Moeschberger, 1997). Cox (1975) has shown that the usual maximum likelihood 

properties hold for estimates and tests based on partial likelihoods.  

3  Second level nesting 

Consider a binary outcome Y = 1 or 0, with q 0  primary-group-specific covariates (i.e., 

cluster-specific covariates), )Z,...,Z(Z
0q001

T
0 = , iq  secondary-group-specific covariates (i.e., 

subgroup-specific covariates), )Z,...,Z(Z
iiq1i

T
i = , m,...,1i = , ijq  tertiary-group-specific 

covariates, )Z,...,Z(Z
ijijq1ij

T
ij = , m,...,1i = , in,...,1j = , and p unit-specific covariates, 



7

)X,...,X(X ijhp1ijh
T
ijh = , m,...,1i = , in,...,1j = , ijn,...,1h = , measured on several units. Four 

types of dispositions are considered here: the group (cluster) disposition, δ0 , which is 

determined by the group-specific covariates, Z0 , the subgroup disposition, δ i , m,...,1i = ,

which is determined by the group-specific covariates, Z0 ,  and the subgroup-specific 

covariates, Zi , m,...,1i = , the tertiary-group disposition, ijδ , which is determined by the 

primary-group-specific covariates, Z0 ,  the secondary-group-specific covariates, Zi , and the 

tertiary-group-specific covariates, ijZ , and the unit disposition, ijhδ , m,...,1i = , in,...,1j = ,

ijn,...,1h = , which is determined by the primary-group-specific covariates, Z0 , the 

secondary-group-specific covariates, Zi , the tertiary-group-specific covariates, ijZ , and the 

unit-specific covariates, ijhX , m,...,1i = , in,...,1j = , ijn,...,1h = .

We define δ 0 , δ i  and δ ij  as follows:

δ
μ
α0

0

0

= ,  (3.1) 

δ
μ
αi

i

i

= , (3.2) 

m,...,1i = , and 

δ
μ
αij

ij

ij

= , (3.3) 

m,...,1i = , in,...,1j = , where μ 0  is the primary group baseline disposition under no 

aggregation, μ i  is the secondary group baseline disposition under no aggregation, 

μ ij  is the tertiary group baseline disposition under no aggregation, α 0  is the relative 

disposition with respect to the primary group, α i  is the relative disposition with respect to the 

secondary group and α ij  is the relative disposition with respect to the tertiary group.  
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The logit of the unit disposition is decomposed as  

ijh

ijh

1
log

δ−
δ

 = M Z0 0( )  + D Z0 0( )  + M Zi i( )  + D Zi i( )  + )Z(M ijij  + )Z(D ijij  + )X(W ijhijh

=: ijhθ ,  (3.4)   

m,...,1i = , in,...,1j = , ijn,...,1h = , where

M Z0 0
0

01
( ) log=

−
μ

μ
 (3.5) 

is the cluster logit mean risk,  

                   

D Z0 0
0

0

0

01 1
( ) log log=

−
−

−
δ

δ
μ

μ
 (3.6) 

is the excess cluster logit disposition due to dependence among members of the group,   

M Zi i
i

i

( ) log log=
−

−
−

μ
μ

δ
δ1 1
0

0

, (3.7)  

m,...,1i = , is the excess on the logit scale of the mean risk in secondary group i above that 

due to the cluster disposition,   
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D Zi i
i

i

i

i

( ) log log=
−

−
−

δ
δ

μ
μ1 1

, (3.8) 

m,...,1i = , is the excess on the logit scale of the secondary group i disposition that cannot be 

explained by the overall primary group disposition and the differences in μ i ,   

i

i

ij

ij
ijij 1

log
1

log)Z(M
δ−

δ−
μ−

μ
= , (3.9)  

m,...,1i = , in,...,1j = , is the excess on the logit scale of the mean risk in the tertiary group j 

above that due to the secondary group disposition,  

ij

ij

ij

ij
ijij 1

log
1

log)Z(D
μ−

μ
−

δ−
δ

= , (3.10) 

m,...,1i = , in,...,1j = , is the excess on the logit scale of the tertiary group disposition that 

cannot be explained by the overall cluster disposition, the subgroup disposition and the 

differences in ijμ , and   

)X(W ijhijh , (3.11) 

m,...,1i = , in,...,1j = , ijn,...,1h = , is a function of the unit-specific covariates. 
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From (3.5)-(3.10), we have 

μ 0
0 0

1
1

=
+ −exp{ [ ( )]}M Z

, δ 0
0 0 0 0

1
1

=
+ − +exp{ [ ( ) ( )]}M Z D Z

,

μ i
i iM Z D Z M Z

=
+ − + +

1
1 0 0 0 0exp{ [ ( ) ( ) ( )]}

, m,...,1i = ,

δ i
i i i iM Z D Z M Z D Z

=
+ − + + +

1
1 0 0 0 0exp{ [ ( ) ( ) ( ) ( )]}

, m,...,1i = ,

)]}Z(M)Z(D)Z(M)Z(D)Z(M[exp{1
1

ijijiiii0000
ij ++++−+

=μ ,

m,...,1i = , in,...,1j = , and 

)]}Z(D)Z(M)Z(D)Z(M)Z(D)Z(M[exp{1
1

ijijijijiiii0000
ij +++++−+

=δ ,

m,...,1i = , in,...,1j = . (3.12) 

Hence,

α
μ
δ0

0

0

0 0 0 0

0 0

1
1

= =
+ − +

+ −
exp{ [ ( ) ( )]}

exp{ [ ( )]}
M Z D Z

M Z
, (3.13) 

α
μ
δi

i

i

i i i i

i i

M Z D Z M Z D Z
M Z D Z M Z

= =
+ − + + +

+ − + +
1

1
0 0 0 0

0 0 0 0

exp{ [ ( ) ( ) ( ) ( )]}
exp{ [ ( ) ( ) ( )]}

, (3.14) 

m,...,1i = ,

)]}Z(M)Z(D)Z(M)Z(D)Z(M[exp{1
)]}Z(D)Z(M)Z(D)Z(M)Z(D)Z(M[exp{1

ijijiiii0000

ijijijijiiii0000

ij

ij
ij ++++−+

+++++−+
=

δ
μ

=α ,
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m,...,1i = , in,...,1j = , (3.15) 

and

}exp{1
1

ijh
ijh θ−+

=δ

       = 
)]}X(W)Z(D)Z(M)Z(D)Z(M)Z(D)Z(M[exp{1

1

ijhijhijijijijiiii0000 ++++++−+
,

m,...,1i = , in,...,1j = , ijn,...,1h = . (3.16) 

The joint probability for a cluster is 

∏∏∏
= = =

−α−===
m

1i

n

1j

n

1h
ijh0nmnnmn111111

i ij

ijhiijhi
)y1()1()yY,...,yY(P

   + ∏ ∏∏ ∏∏
= == = =

−α−α+−α−α
i iji ij n

1j

n

1h
ijhiji

m

1i

n

1j

n

1h
ijhi0 )y1()1()y1()1(

                                   + δ−δα ∏
=

−
ij

ijhijh

n

1h

y1
ijh

y
ijhij )1( . (3.17) 

The following parameterisations are considered:  

M Z Z Zq q0 0 00 01 01 0 00 0
( ) ...= + + +ξ ξ ξ , (3.18) 

D Z Z Zq q0 0 00 01 01 0 00 0
( ) ...= + + +γ γ γ , (3.19) 

iiqq1i1ii Z...Z)Z(M ξ++ξ= , (3.20) 

m,...,1i = ,
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iiqq1i1ii Z...Z)Z(D γ++γ= , (3.21) 

m,...,1i = ,

ijijqq11ij11ijij Z...Z)Z(M ξ++ξ= , (3.22) 

m,...,1i = , in,...,1j = , and 

ijijqq11ij11ijij Z...Z)Z(D γ++γ= , (3.23) 

m,...,1i = , in,...,1j = .

                 

The set of parameters to be determined in the model is therefore 

),...,,,...,,,...,,,...,,,...,,,...,,,...,(),,( p1q111q1q000q111q1q000 iji0iji0
ββγγγγγγξξξξξξ=βγξ=λ .

4 Parameter estimation for the second level nesting 

Denote the likelihood function in (3.17) by )y|(Lk λ , K,...,1k = :

L yk ( | )λ  = ∏∏∏
= = =

−α−
m

1i

n

1j

n

1h
ijh0

i ij

)y1()1(  + i0L πα

                           = ∏∏∏
= = =

−
m

1i

n

1j

n

1h
ijh

i ij

)y1(  + −−α ∏∏∏
= = =

π

m

1i

n

1j

n

1h
ijhi0

i ij

)y1(L , (4.1) 

where iLπ  = ∏
=

m

1i
iL , ∏∏

=
π

=

α+−α−=
i ijn

1j
ji

n

1h
ijhii L)y1()1(L , ∏

=
π =

in

1j
jj LL ,

hij

n

1h
ijhijj L)y1()1(L

ij

π
=

α+−α−= ∏ , ∏
=

π =
ijn

1h
hh LL , ijhijh y1

ijh
y
ijhh )1(L −δ−δ=  and 

)]}X(W)Z(D)Z(M)Z(D)Z(M)Z(D)Z(M[exp{1
1

ijhijhijijijijiiii0000
ijh ++++++−+

=δ  , 
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))X...Xexp(1()X(W ijhpp1ijh1ijhijh β++β−= , m,...,1i = , in,...,1j = , ijn,...,1h = .

The corresponding score function is 

)y|(Uk λ  = λ+αλ
=

m

1i
ik

*
0k U)(B)(A , (4.2) 

K,...,1k = , where ( ) )Z(M1)Z(D)1( 0000000
*
0 δλ

δα−δ+
δλ
δδ−−=α ,

k

m

i

n

j

n

h
ijhi0

k L

)y1(L
)(A

i ij

−−α
=λ

∏∏∏π

, K,...,1k = ,
k

i0
k L

L
)(B πα

=λ , K,...,1k = ,

λ+αλ=λ
=

in

1j
ji

*
iii U)(B)(A)y|(U , m,...,1i = ,

)Z(D)1( iii
*
i δλ

δδ−−=α  + ( )ii 1 α−δ )]Z(M)Z(D)Z(M[ ii0000 ++
δλ
δ , m,...,1i = ,

i

n

1j

n

1h
ijhji

i L

)y1(L
)(A

i ij

−−α
=λ

∏∏
= =

π

, m,...,1i = ,
i

ji
i L

L
)(B πα

=λ , m,...,1i = ,

λ+αλ=λ
=

ijn

1h
hj

*
ijjj U)(B)(A)y|(U , in,...,1j = ,

*
ijα  =  - )Z(D)1( ijijij δλ

δδ−

   + )]}Z(M)Z(D)Z(M)Z(D)Z(M{[)1( ijijiiii0000ijij ++++
δλ
δα−δ ,

j

n

1h
ijhhij

j L

)y1(L
)(A

ij

−−α
=λ

∏
=

π

, in,...,1j = ,
j

hij
j L

L
)(B πα

=λ , in,...,1j = ,
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)1(
ijhijhijhh )y()y|(U θδ−=λ

        = )]X(W)Z(D)Z(M)Z(D)Z(M)Z(D)Z(M[)y( ijhijhijijijijiiii0000ijhijh ++++++
δλ
δδ−

        = 

δβ
δ

δγ
δ

δξ
δ
δγ
δ

δξ
δ

δγ
δ

δξ
δ

δ−

)X(W

)Z(D

)Z(M

)Z(D

)Z(M

)Z(D

)Z(M

)y(

ijij

ijij
ij

ijij
ij

ii
i

ii
i

00
0

00
0

ijhijh  = 

β−

δ−

)Xexp(X
Z
Z
Z
Z
Z
Z

)y(

ijh
T

ijh

'
ij

'
ij

'
i

'
i

'
0

'
0

ijhijh ,

)Z,...,Z,Z,1(Z
0q00201

T'
0 = , )Z,...,Z(Z

iiq1i
T
i = , )Z,...,Z(Z

ijijq1ij
T
ij = , ),...,( p1

T ββ=β  and 

)X,...,X(X ijhp1ijh
T
ijh = , m,...,1i = , in,...,1j = , ijn,...,1h = .

The Hessian matrix is given by 

Tm

1i
i

m

1i
i0k

k

m

1i

n

1j

n

1h
ijh

T*
0

*
0k

k

m

1i

n

1j

n

1h
ijhm

1i
ikk UU)1(B

L

)y1(
A

L

)y1(
)(HB)(H

i iji ij

α−
−

+αα
−

+λ=λ
∏∏∏∏∏∏

==

= = == = =

=

               + *
0Tk

Tm

1i
i

*
0

T*
0

m

1i
ik

k

m

1i

n

1j

n

1h
ijh

AUUB
L

)y1(
i ij

α
δλ

δ+α+α
−∏∏∏

==

= = = , (4.3) 

k = 1,…,K, where 
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T*
i

*
ii

i

n

1j

n

1h
ijh

i A
L

)y1(
H

i ij

αα
−

=
∏∏

= = + α+α
−∏∏

==

= = T*
i

n

1j
j

Tn

1j
j

*
ii

i

n

1j

n

1h
ijh

ii

i ij

UUB
L

)y1(

             + 
Tn

1j
j

n

1j
ji

i

n

1j

n

1h
ijhi

ii

i ij

UUB
L

)y1()1( −α− ∏∏
==

= =  +
=

in

1j
ji HB  + *

iTiA α
δλ

δ ,

T*
ij

*
ijj

j

n

1h
ijh

j A
L

)y1(
H

ij
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If we should use the correlated logistic regression model, we would have the following 

corresponding expressions for ijhδ , )y|(Uh λ  and )(Hh λ :
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The Fisher information matrix for the second level nesting is 
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5 Illustration 

Data are available on 240 families with breast cancer in the national database and at the 

Howard University, Washington, D. C., U.S.A.. The data set comprises family data and 

epidemiology data. The variables to be assessed are annual household income (hinc), age at 

time of examination (ageat), obesity, and tumour of the breast other than breast cancer 

(tumour). Family-specific data consist of hinc in thousands (<5, 5-15, 15-25, 25-35, 35-50, 

50+), whereas subject-specific data consist of ageat in years and obesity (0 - not obese;  

1 - obese), and unit or breast-specific data consist of tumour (0 – absence; 1 - presence). The 

response variable indicates whether or not a breast is affected with breast cancer. This is 

coded as 0 for unaffected and 1 for affected. Two levels of nesting exist in these data: two 

breasts are nested within each subject and subjects are nested within families (compare with 

the second example of Qaqish and Liang, 1992). The objective of the analysis is to assess the 

presence of familial aggregation of breast cancer.   

Model for the second level nesting:  

The variables in the model are hinc ( )Z01 , ageat ( )Zij1 , obesity ( )Zij2 and tumour )X( 1ijh .

That is, we have one group-specific covariate, two subject-specific covariates and one unit-

specific covariate. There are no subgroup-specific covariates. The linear models in Equations 

(3.18) – (3.23) can therefore be specified as follows:  

M Z Z0 0 00 01 01( ) = +ξ ξ , D Z Z0 0 00 01 01( ) = +γ γ , 0)Z(M ii = , 0)Z(D ii = ,

2ij121ij11ijij ZZ)Z(M ξ+ξ= , and 2ij121ij11ijij ZZ)Z(D γ+γ= .

For the function that describes the effects of the unit-specific covariate, we have 

W X Xijh ijh ijh( ) exp( )= −1 1β  for the correlated Weibull regression model and 

W X Xijh ijh ijh( ) = β 1  for the correlated logistic regression model. The set of parameters to be 

determined in the model is  

),,,,,,,,(),,( 1211010012110100 βγγγγξξξξ=βγξ=λ .
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Parameter estimates and standard deviations of the estimates, along with Wald statistics are 

given in Table 5.1 for the correlated Weibull and the correlated logistic regression models. 

The function of the individual-specific covariates, )X(W ijhijh , is equal to zero, since no breast 

has a primary tumour other than breast cancer. Hence, the estimates for both regression 

models are the same. The parameter β  is fixed for computational reasons. The covariates of 

positive (negative) coefficients increase (decrease) the probability for breast cancer.  

For the 1-parameter Wald’s tests, the null hypothesis that γ j = 0  is rejected for 00γ , 01γ  and 

11γ . This is an indication of the existence of familial aggregation of breast cancer. On the 

other hand, the null hypothesis of γ j = 0  for 12γ  cannot be rejected at the level 05.0=α .

Hence, obesity does not affect the familial aggregation of breast cancer.     

Table 5.1: Parameter estimates, standard deviations of the estimates and Wald statistics 

  for the correlated Weibull and the correlated logistic regression models 

Variable Parameter Correlated Weibull and logistic regression models 

  Parameter estimate Standard deviation Wald statistic 

constant 00ξ -3.9134 0.2759 14.1841 

hinc 01ξ 0.2791 0.0189 14.7672 

ageat 11ξ 0.0250 0.0034 7.3529 

obesity 12ξ 0.1275 0.1118 1.1404 

constant 00γ -0.6350 0.1530 4.1503 

hinc 01γ -0.0477 0.0105 4.5429 

ageat 11γ -0.0290 0.0131 2.2137 

obesity 12γ 0.7268 0.9904 0.7338 

tumour β --- --- --- 

 Critical value for the rejection of the null hypothesis: 96.1u 975.0 = .

For the global tests, the hypotheses to be tested are H 0 0:γ =  and H1 0:γ ≠ , where 

),,,( 12110100
T γγγγ=γ .
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Let log L0  = the maximised log-likelihood from which γ  is omitted,  

log L1 = the full log-likelihood and 

4877.92
4 =χ , the critical value for rejection of the null hypothesis. 

Then, the likelihood ratio statistic for the correlated Weibull and the correlated logistic 

regression models is LR = -2[ 10 LlogLlog − ] = -2[-536.1829 – (-466.6963)] = 138.9732. 

Thus, significant familial aggregation is observed for both regression models (see, for 

example, Wilks, 1938). 

The maximum likelihood estimate of γ  is 
−
−

=γ

−

−

−

−

1

3

2

2

10x1942.8
10x5258.4
10x1115.2

10x2049.6

ˆ  and the estimated variance-

covariance matrix is 

−−
−−
−−

−−

=γ

−−−−

−−−−

−−−−

−−−−

2444

4647

4454

4741

10x08.310x77.110x50.210x86.6
10x77.110x95.310x86.610x72.4
10x50.210x86.610x13.310x11.1

10x86.610x72.410x11.110x31.4

)ˆr(âv .

The Wald statistic for H 0 0:γ =  has a value of 

2734.32ˆ)]ˆr(â[vˆ)0ˆ)(ˆ,ˆ(I)0ˆ(W 1TT =γγγ=−γγγ−γ= −
γγ  (see Garthwaite et al., 1995; Bickel 

and Doksum, 1977). Since the Wald statistic is large, the null hypothesis will be rejected. The 

conclusion is that there is aggregation of breast cancer in families. 

Table 5.2 presents estimates of the parameters obtained by fitting Cox’s model, with standard 

deviations and Wald statistics for testing effects. 
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Table 5.2: Parameter estimates, standard deviations of the estimates  

      and Wald statistics resulting from Cox’s model 

Variable Parameter Parameter

estimate 

Standard

deviation

Wald 

statistic 

hinc 1β -0.0159 0.0196 0.8112 

ageat 2β -0.0050 0.0020 2.5000 

obesity 3β 0.0441 0.0652 0.6764 

tumour 4β --- --- --- 

Critical value for the rejection of the null hypothesis: 96.1u 975.0 = .

The hypothesis to be tested is 0:H j0 =β  versus 0:H j1 ≠β . From Table 5.2, the covariate 

ageat is the only significant factor. The covariates hinc and obesity produce non-significant 

effects, since the values of their Wald statistics are less than the critical value, 96.1u 975.0 = .

For the global null hypothesis 0:H 3210 =β=β=β , we obtain 6.9773 for the likelihood ratio 

statistic and 6.9874 for the Wald statistic, both values indicating non-significance when 

compared to a chi-square distribution with three degrees of freedom (i.e., 8147.72
95.0,3 =χ ). 

6 Discussion 

In this paper, we have discussed the second level nesting of the disposition model and its 

estimating procedure for the analysis of correlated binary data. We have also investigated the 

problems associated with estimation as the level of nesting gets deeper, and compared the 

performance of the nested disposition model with Cox’s model (Cox, 1972). The main 

disadvantage of the disposition model is that, with the exception of the unit-specific 

covariates, each covariate in the model produces two parameters. This results in the following 

problems:

(1) The effect of a covariate can have different interpretations. For instance, in Table 5.1 the 

covariate hinc increases the cluster logit mean risk, 01010000 Z)Z(M ξ+ξ= , whereas the same 

covariate decreases the excess cluster logit disposition due to dependence among members of 



22

the group, 01010000 Z)Z(D γ+γ= . Thus, the same variable hinc gives two opposing effects 

with regard to the probability for breast cancer,  

)]}Z(D)Z(M)Z(D)Z(M[exp{1
1

ijijijij0000
ijh +++−+

=δ .

(2) The number of covariates that can be included in the model is seriously limited. We recall 

that in a previous work, we could estimate up to nine parameters from five covariates, using 

the maximum likelihood method (see Table 6.2.1, Odai et al., 2002). An attempt to estimate 

more than nine parameters from five covariates (the fifth covariate finally excluded from the 

analysis) in the present work resulted in over-identified parameters (i.e., parameters estimated 

in two or more linearly independent ways).  

The disposition model however has the advantage that aggregations in families, due to 

common shared risks, and response probabilities can jointly be modelled.  
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