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An Investigation of Humus Disintegration by
Spatial-Temporal Regression Analysis

Roland H. Fried

Department of Statistics, University of Dortmund, Germany

fried@statistik.uni-dortmund.de

We examine the hypothesis of an increase of humus disintegration by ana-

lyzing chemical substances measured in the seepage water of a German forest.

Problems arise because of a large percentage of missing observations. We use

a regression model with spatial and temporal effects constructed in an ex-

ploratory data analysis. Spatial dependencies are modelled by random effects

and an autoregressive structure for observations in distinct soil depths result-

ing in a recursive linear mixed model structure. Temporal dependencies are

included by an autoregressive structure of the random effects. For parameter

estimation an EM algorithm is deduced assuming the errors to be Gaussian.

As a result of the data analysis we specify chemical substances which possi-

bly affect the process of humus disintegration. In particular, we find evidence

that the presence of aluminium ions is important, but because of the high

correlations among the regressors this might be due to confounding with iron.

Key Words: Autoregressive model; Maximum likelihood estimation; Missing

data; Mixed effects; Recursive linear model; Spatial-temporal correlations.

1 INTRODUCTION

The hypothesis of humus disintegration developed by Ulrich (1981) states that in the

recent decades the decomposition of humus is increasing in central European forests dis-

turbing the natural balance of decomposition and reconstruction. According to this theory

the presence of aluminium ions in the soil solution leads to an inhibition of the repoly-

merisation of the substances in the humus cycle, while the breakdown is not affected.

This process results in an increase of dissolved organic carbon (DOC) in the soil solution

and an excess of organic nitrogen. However, science is far from completely understanding

the mechanisms of humus dynamics. The chemical composition of the seepage water in

the forest soil is of basic interest (Eichhorn and Hüttermann 1999).

The case study ‘Zierenberg’ was developed as a part of the research program ‘Stability

conditions of forest ecosystems’, operated by the University of Göttingen and the Hessian

Agency of Forest Management Planning, Forest Research and Forest Ecology to inspect

new kinds of forest damage such as humus disintegration in field experiments (Eichhorn
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1995). In these experiments, the concentrations of DOC and of other chemical substances

have been measured in the seepage water at twenty sites in a forest in central Germany.

We use DOC as an indicator of the disintegration and regress it on possible influences.

Independence is not an appropriate assumption for the errors in a regression model

when repeated measurements are taken at nearby sites since naive standard errors and

tests based on least squares are incorrect then (Cressie 1993, Buonaccorsi and Elkinton

2002). In Fried (2001) a regression model is applied to the DOC-concentrations measured

between 1989 and 1994 taking correlations between the observations into account. Be-

cause of many missing observations a parsimonious model structure was searched for in

an exploratory data analysis. The spatial structure of the data is 3-dimensional as mea-

surements are taken in three depths at sites located in an irregular grid. We neglect the

lowest depth in the following since the previous analysis confirms existing knowledge that

biochemical processes predominantly happen in the upper layers. The data were modelled

as repeated measurements from a recursive linear mixed model (e.g. Wermuth 1980) with

random effects describing almost uniform spatial correlations. While the hypothesis of

humus disintegration relates DOC mainly to aluminium compounds, nitrate and the pH

measured by the H3O-concentration, the analysis in Fried (2001) points at further ions

which possibly influence the DOC-concentration:

Aluminium Al, calcium Ca, chlorid Cl, iron Fe, magnesium Mg, natrium Na,

oxonium H3O, potassium K, sulphate SO4.

In this paper, we predict new data measured between 1995 and 1997 using the model

developed in Fried (2001) in order to check its assumptions. After adding further sources

of correlations we fit the extended model to the whole data set and reexamine the effects of

the above ions on the DOC-concentrations using the BIC and the mean square prediction

error. In Section 2 the data set is described and the model is explained in detail. In Section

3 an EM algorithm for calculation of maximum likelihood estimates is presented. This

section can be skipped by a reader who is mainly interested in the results of the data

analysis. In Section 4 the extended model is fitted and the important regressors selected.

Section 5 discusses the results.

2 A SPATIAL-TEMPORAL REGRESSION MODEL

2.1 THE DATA

Since October 1989 the seepage water has been monitored in several soil depths at n = 20

sites in a forest near Zierenberg, a village in the region of Kassel, Germany. This location,

which is situated on a hill, was chosen since the criteria for humus disintegration to occur
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are fulfilled (Eichhorn and Hüttermann 1999). The letters in Figure 1 denote the vertical

lines of the gradient and the numbers count the sites along each line. Distances between

adjacent lines are 40 meters. Thus, in the horizontal direction the sites are equidistant,

whereas in the vertical direction the spacings vary between 5 and 11 meters. The slope in

direction of the vertical lines is about 40%. We concentrate on the observations measured

in the upper two soil layers in the following. The upper depth of 20 cm is located at the

border of the first layer, while the lower depth of 60 cm is right in the center of the second

layer. The vegetation in this region is homogeneous consisting mainly of 150-year-old

beech trees. Unfortunately, no temperature data were available for this region during the

period used for the analysis (October 1989 to December 1997).

Figure 1: Location Zierenberg. Measurements are taken at the 20 marked sites in two

soil depths.
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Measurements are taken by lysimeters, which collect the seepage water between the

observation times. The time lag between subsequent rain fall events varies between a

few days and some weeks. As soil humidity follows this pattern, the time delay between

subsequent measurements varies between two and six weeks. Hence, the observations are

irregular aggregations depending on the rainfall. In the analysis we use the shortest lag of

two weeks for the time scale, i.e. we have T = 196 observation times. Further problems

are caused by the variability of precipitation at Zierenberg. Since even rainy days did

not cause seepage water at all sites, there are many values missing individually for each
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site and depth. As most biochemical processes predominantly happen in the upper layer,

the lower depth was only measured when the upper one was observable. Thus, there are

more observations in the upper (1480) than in the lower layer (952). If there had been no

missing data, 4300 observations in lags of two weeks would have been available for each

depth, i.e. about 65.6% and 77.9% of the observations in the upper and the lower layer,

respectively, are missing. In the second period between 1995 and 1997 there are more

observations in the shortest time lag than in the first period.

2.2 THE MODEL

In Fried (2001) a regression model for DOC was developed including possibly important

covariates as well as systematic spatial and temporal effects as regressors. The logarithm

of the DOC-concentration was used for stabilizing the variance. We denote the logarithm

of DOC at time t ∈ {1, . . . , T}, depth u ∈ {1, 2}, and site s ∈ S = {B0, B1, . . . , F4}
by Yt,u,s. Similarly, let xt,u,s,j be the measurement of the j-th covariate, j = 1, . . . , 9,

and βu,j, j = 1, . . . , 9, its regression coefficient. The soil consistency, the environmental

variables and the effects of the regressors were assumed to be homogeneous within each

layer. Accordingly, the regression coefficients were considered to be identical for all sites in

the same layer but possibly different for distinct layers. For modelling an obvious seasonal

pattern, a general sinus function sin(2πt/26)βu,10 + cos(2πt/26)βu,11 with a period of one

year (26 observation times per annum) was included. Significant spatial differences were

found after regressing on the explanatory variables and removing seasonal effects. As no

simple pattern was found, dummy variables indicating the site were added to the model

resulting in a total of p = 30 regressors.

For contemporaneous observations almost uniform positive correlations between as

well as within the layers were found. Correlations between the depths were modelled

by adding an autoregressive term αYt,1,s to Yt,2,s. This term can be interpreted as an

unknown fraction of DOC which trickles down in the soil. The almost uniform posi-

tive spatial correlations found in the exploratory analysis were assumed to be caused by

weather conditions such as rainfall and temperature, which affect all contemporaneous

observations in the same layer similarly. Therefore, a random effect wt,u ∼ N(0, τ 2
u) was

added to all observations at time t in depth u. Adding a further AR(1)-structure to the

observations along the vertical direction of the gradient for modelling stronger correlations

between nearby sites did not improve the model fit substantially. Therefore, we neglect

this additional structure in the following. Temporal correlations were found to be close

to zero for the time lag δ = 2 corresponding to 4 weeks. Since in the first period there

were only a few observations for the time lag δ = 1 temporal correlations were assumed
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to be negligible. The resulting model is

Yt,u,s = µt,u,s + wt,u + εt,u,s (1)

with µt,1,s =

p
∑

j=1

xt,1,s,jβ1,j

µt,2,s =

p
∑

j=1

xt,2,s,jβ2,j + αYt,1,s

εt,u,s ∼ N(0, σ̃2
u)

wt,u ∼ N(0, τ 2
u)

with all εt,u,s and wt,u being independent. Estimates are marked by hats in the following.

Let Y t,u be the vector of all observations Yt,u,s at time point t in layer u. Because of

missing data, only a subvector Zt,u = Mt,uY t,u was observed, with Mt,u being an (nt,u×n)-

matrix having 0/1 entries and nt,u being the number of observations measured at time

point t in layer u. We assume that missing data are missing at random and are not

informative for the analysis. The values of the explanatory variables corresponding to

Zt,u are given by the (nt,u × p)-matrix Xt,u, which also contains the variables describing

systematic temporal and spatial effects. Adding as last column those observations of Zt,1,

for which the lower layer has also been measured, to Xt,2 we get the (nt,2 × p + 1)-matrix

X̃ t,2. For simplification of the following formula we set X̃ t,1 = Xt,1.

In Fried (1999) and Fried (2001), this basic model was checked using the data in

the first time period. The model diagnostics provided evidence that the model captures

the variation of the DOC-concentration rather well. No problems were noted for the

assumptions of normality, of the linearity of the covariates effects, of a constant variance,

as well as for the assumptions of spatial stationarity and isotropy. However, scatterplots

of residual pairs for fixed short time lags and calculation of empirical space-time autocor-

relations raised the question of possible short term autocorrelations. Moreover, positive

contemporaneous correlations were found between the residuals in distinct layers without

an obvious spatial structure. These findings point at another source of common variation

like a random effect wt,0 influencing all contemporaneous observations in both layers, and

possibly there are temporal correlations at small time lags. In view of the many miss-

ing data we model such autocorrelations by adding a simple time series structure to the

random effects for getting tractable estimates.

We choose an AR(1)-model for the random effects wt = (wt,0, wt,1, wt,2)
′ with a di-

agonal coefficient matrix G = diag(γ0, γ1, γ2), γu ∈ [0, 1), u = 0, 1, 2, and a diagonal
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covariance matrix ∆ = diag(τ̃ 2
0 , τ̃ 2

1 , τ̃ 2
2 ) for the innovations δt. Further, let

Ht,1 = Mt,1 ×







1 1 0
...

...
...

1 1 0






, Ht,2 = Mt,2 ×







1 0 1
...

...
...

1 0 1






,

εt,u be the vector of all errors εt,u,s, s ∈ S, βu = (βu,1, . . . , βu,p)
′, β̃2 = (β ′

2, α)′ and β̃1 = β1

for the ease of notation. With these settings, an extended model can be written as follows:

Zt,u = X̃ t,uβ̃u + Ht,uwt + Mt,uεt,u (2)

εt,u ∼ N
(

0, σ̃2
uΣ̃u

)

wt

δt

=

∼
Gwt−1 + δt

N(0, ∆)

w0 ∼ N(µ, Ω)

with w0, δ1, ε1,1, ε1,2, δ2, ε2,1, ε2,2 . . . being independent.

We set Σ̃u = I, the identity matrix. Otherwise, Σ̃u could capture further spatial correla-

tions. Initializing the process of the random effects by Ω = diag(τ 2
0 , τ 2

1 , τ 2
2 ), τ 2

u =
τ̃ 2
u

1 − γ2
u

,

and µ = 0, the process of the random effects is stationary with E(wt) = 0 and Cov(wt) =

Ω. Choosing an autoregressive model with order higher than one would be possible with-

out changing the following approach to maximum likelihood estimation for the expense

of higher matrix dimensions (Harrison and Stevens 1976, Jones 1980).

3 MAXIMUM LIKELIHOOD ESTIMATION

The likelihood function of the extended model formulated in the previous section is diffi-

cult to treat analytically because of the missing data. Let θ ∈ Θ ⊆ IRq be the vector of

all unknown model parameters. We set Zt(α) = (Z ′
t,1, Z

′
t,2 − αY ′

t,1M
′
t,2)

′ and

V t =

[

V t,1 τ 2
0 J

τ 2
0 J V t,2

]

,

where V t,u = Mt,u[(τ
2
u+τ 2

0 )J+σ̃2
uΣ̃u]M

′
t,u and J is an (n×n)-matrix with all entries equal to

1. For a given set of parameters, knowing Zt(α) is equivalent to knowing Zt = ( Z ′
t,1, Z

′
t,2)

′.

Further, let Xt = (X′
t,1, X

′
t,2)

′, β = (β′
1, β

′
2)

′, Nu be the total number of observations in

layer u and N = N1 + N2. We denote the determinant of a square matrix A by |A|
and its trace by tr(A) in the following. Then twice the negative log-likelihood L for the

observations Z = (Z1, . . . , ZT ) can be written in innovations form as

L = N ln(2π) +

T
∑

t=1

ln |V t|t−1| +
T
∑

t=1

(

Zt(α) − zt|t−1(α)
)′

V −1
t|t−1

(

Zt(α) − zt|t−1(α)
)
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with

zt|t−1(α) = E (Zt(α)|Z1 = z1, . . . , Zt−1 = zt−1)

V t|t−1 = Cov (Zt(α) | Z1 = z1, . . . , Zt−1 = zt−1) .

Unknown parameters in the covariance matrices have nonlinear effects on the conditional

moments and hence on the likelihood, and missing observations further complicate the cal-

culation of maximum likelihood estimates. For a given set of parameters, the conditional

moments can be calculated by Kalman filtering as described in the next subsection.

We follow a suggestion by Shumway and Stoffer (1982) to use an EM algorithm

for calculation of maximum likelihood estimates in view of the missing data. We treat

the random effects w = (w0, w1, . . . , wT ) as missing values in the following. Twice the

negative log-likelihood L̃ for the ‘complete’ data z̃ = (w0, w1, z1, . . . , wT , zT ) has a simple

form, see the Appendix. In the EM algorithm we condition L̃ on the observed data

calculating the parameter values which maximize Qi(θ) = E
θ(i−1)(L̃(θ)|Z = z) in the i-th

step. Here, the subscript θ(i−1) indicates that we compute the conditional expectation

assuming the parameter set obtained in step (i−1) to be true. Starting with an arbitrary

initial set of parameter values θ(0), Dempster, Laird and Rubin (1977) show that iterating

this procedure yields non-decreasing likelihoods, with the fixed points being stationary

points of the likelihood function (see also Wu 1983). In each iteration we need to perform

an expectation E-step and a maximization M-step to get a new set of estimates θ(i),

i = 1, 2, . . ., until this sequence converges.

In the E-step we evaluate Qi(θ) = E
θ(i−1)(L̃(θ)|Z = z) applying the Kalman filter to

calculate the necessary conditional moments. In the M-step then a new set of parameter

estimates θ(i) is calculated by maximization of Qi(θ).

3.1 KALMAN FILTERING

It is shown in the Appendix that in the E-step of the EM algorithm we just need to eval-

uate conditional expectations and covariance matrices conditioning on the observations z

and fixing the parameters to the estimates calculated in the previous iteration. We set

Ht = (H′
t,1, H

′
t,2)

′, St,u = Mt,uΣ̃uM
′
t,u, and σ̃2

1St = diag(σ̃2
1St,1, σ̃

2
2St,2). Let wt|t̃ be the

conditional expectation of wt , Ωt|t̃ and V t|t̃ be the conditional covariance of wt and zt(α),

respectively, and Ωt,t−1|t̃ be the conditional covariance of wt and wt−1 given all observed

data up to time point t̃, z1, . . . , z t̃. These conditional moments can be calculated using

Kalman filtering (Kalman 1960). For the reason of simplicity we drop the suffices of the

estimates and call them simply α, β and σ̃2
1 . The iterations read as follows.

Initialization: Set w0|0 = µ, Ω0|0 = Ω .

Forward recursions: For t = 1, . . . , T iterate the following steps.
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Kalman predictor:

wt|t−1 = Gwt−1|t−1

Ωt|t−1 = GΩt−1|t−1G
′ + ∆

zt|t−1(α) = Htwt|t−1 + Xtβ

V t|t−1 = HtΩt|t−1H
′
t + σ̃2

1St

Kalman filter:

Kt = Ωt|t−1H
′
tV

−1
t|t−1

wt|t = wt|t−1 + Kt(zt(α) − zt|t−1(α))

Ωt|t = Ωt|t−1 − K tHtΩt|t−1

Backward recursions: Iterate for t = T, T − 1, . . . , 1 the following steps.

Kalman Smoother:

Lt−1 = Ωt−1|t−1G
′Ω−1

t|t−1

wt−1|T = wt−1|t−1 + Lt−1(wt|T − Gwt−1|t−1)

Ωt−1|T = Ωt−1|t−1 + Lt−1(Ωt|T − Ωt|t−1)L
′
t−1

Ωt,t−1|T = (I − KT HT )GΩT−1|T−1 for t = T

Ωt,t−1|T = Ωt|tL
′
t−1 + Lt(Ωt+1,t|T − GΩt|t)L

′
t−1 for t < T

The Kalman predictor provides forecasts zt+1|t(α) for the next time point. We get

predictions zt+h|t(α) for a longer time span h = 2, 3, . . . iteratively from

wt+h|t = Gwt+h−1|t ,

zt+h|t(α) = Ht+hwt+h|t + Xt+hβ ,

see West and Harrison (1989, p. 600f).

3.2 THE MAXIMIZATION STEP

For the maximization of Qi(θ) = E
θ(i−1)(L̃(θ)|Z = z) in the i-th M-step of the EM

algorithm the following formula can be used (see the Appendix).

ˆ̃
β

u
=

T
∑

t=1

At,u(zt,u − Ht,uwt|T )

ˆ̃σ
2

u =
1

Nu

[

T
∑

t=1

(

zt,u − Ht,uwt|T

)′
S−1

t,u

(

zt,u − Ht,uwt|T − X̃ t,u
ˆ̃β

u

)

+ tr
(

S−1
t,uHt,uΩt|T H′

t,u

)

]

,
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ˆ̃τ
2

u =
1

T + 1
(au − 2buγu + cuγ

2
u ) ,

with

At,u =

(

T
∑

t̃=1

X̃
′

t̃,uS
−1
t̃,u

X̃ t̃,u

)−1

X̃
′

t,uS
−1
t,u

au =

T
∑

t=1

(Ωt|T + wt|T w′
t|T )(u,u),

bu =
T
∑

t=1

(Ωt,t−1|T + wt|T w′
t−1|T )(u,u),

cu =
T−1
∑

t=0

(Ωt|T + wt|T w′
t|T )(u,u),

where M(i,j) denotes the entry of a matrix M at position (i, j). It remains to minimize

− ln(1 − γ2
u) + (T + 1) ln(ˆ̃τ

2

u(γu)) separately w.r.t. γu, see the Appendix.

3.3 STOPPING THE ALGORITHM

For stopping the EM algorithm we used a stopping criterion based on the relative and the

absolute changes of γu, τ̃ 2
u , σ̃2

1, σ̃2
2 , α and L. We denote the values obtained in the i−th

step by the suffix (i). Following suggestions by Heinz and Spellucci (1994) we stopped

the recursions if one of the following conditions is fulfilled in ten subsequent iterations:

(i)
|ϑ(i+1) − ϑ(i)| ≤ h1 and

|ϑ(i+1) − ϑ(i)| ≤ h3(|ϑ(i)| + h2)

}

∀ϑ ∈ {γ1, γ2, γ3, τ̃
2
1 , τ̃ 2

2 , τ̃ 2
3 , σ2

1, σ
2
2, α}

(ii) |L(i+1) − L(i)| ≤ h0

Here, we chose h0 = h1 = h2 = 50
√

MP and h3 = 2000
√

MP , where MP denotes the

machine precision, which for the HP workstation used in the calculations is about 10−16.

If condition (i) is fulfilled the changes of the estimates are so small that in view of possible

rounding errors we do not expect noteworthy parameter changes any more. If condition

(ii) is fulfilled we no longer expect the model fit to improve substantially.

In order to overcome possible problems arising because of local optima we chose

six distinct sets of parameters for starting the algorithm. Stopping the algorithm took us

about 2000 iterations in each case. The final solutions could be considered to be identical,

i.e. we did not note problems with local optima.

4 APPLICATION TO THE DOC DATA

In the following we apply the extended model (2) to the data. First we check this model

using new data, and then we select the important covariates thereafter.
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4.1 MODEL VALIDATION

First we check the extended model using new data observed between 1995 and 1997,

which had not been used for model identification by Fried (2001). We estimate the model

parameters from the data observed up to 1994 applying the EM algorithm as described

in the previous section. The resulting estimates are used to predict the data observed in

the second period and to analyze the residuals of the predictions.

Figure 2 depicts histograms of these predicted residuals (PR). Keeping in mind that

predicted residuals are typically more variable than ordinary residuals as the correspond-

ing observations are not used for model fitting, a normal distribution suits the residuals in

the upper layer rather well. The fit in the lower layer is worse, but this can be explained

by the smaller number of observations and higher correlations, see Section 4.2. Moreover,

the estimation of α adds further uncertainty. We notice a few outliers in both layers.

Figure 2: Histograms of the predicted residuals for the upper (left) and the lower layer

(right)
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Figure 3 depicts plots of the predicted residuals against the predictions and against

the particularly interesting covariates Fe, Al, and NO3. The latter plots confirm the

findings in Fried (2001) that there does not seem to be a relationship between DOC and

NO3 which cannot be explained by other effects. There might be some deviations from

linearity as there are more negative than positive residuals for small values of Fe and

Al. We applied other transformations like different roots for overcoming these difficulties,

but we did not find them to give better results. Alternatively, non-parametric methods

like splines could be applied for obtaining a curvilinear fit, or a model with time-varying

parameters could be tried out. However, these methods are difficult to apply if there

are many regressors. Reducing the dimension of the regressor space first by selecting

important covariates by linear regression as is done here is helpful then. We keep in mind

that there are some slight deviations from linearity and hence should act with caution
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when interpreting the following results. Furthermore, we find a few outliers. As the

covariates have moderate values for most of these outliers, they do not provide evidence

against the model. The outliers are eliminated from the further analysis since we regard

them as artifacts caused by effects not considered here.

Boxplots of the residuals against the time points and the sites, respectively, not shown

here do not point at a serious lack of model fit w.r.t. the systematic temporal and spatial

effects and the assumption of a constant variance.

We report correlations for the vertical direction since dependencies are most likely to

be expected along this direction of the gradient. Table 1 displays empirical space-time-

autocorrelations

ρ̂(u,i),(v,j)(δ) =
1

N(u,i),(v,j)(δ)

∑

L∈{B,C,D,E,F}

T
∑

t=1

(zt,u,Li − µ̂t,u,Li) (zt+δ,v,Lj − µ̂t+δ,v,Lj)

in the vertical direction between pairs of residuals located at sites i, j ∈ {1, 2, 3, 4} in depth

u and v, respectively, along the same line L ∈ {B, C, D, E, F} in a lag of δ time points.

Here, correlations are averaged over the horizontal lines for reducing the variability, and

N(u,i),(v,j)(δ) is the number of pairs of observations from which the estimate is calculated.

We find the contemporaneous correlations to be mostly positive with spatial distances not

being important. In the second period there are a couple of observations lagged by one

time period (two weeks) confirming positive temporal correlations. Again, we do not find

a spatial structure of these correlations. Since the correlations in the horizontal direction

are close to those reported here, we consider the correlation structure used in the extended

model to be a viable approximation of the real world phenomena.

Summarizing these impressions we may state that the extra parameters in the ex-

tended model are helpful to overcome some deficiencies of the model used in Fried (2001).

4.2 MODEL FITTING

Next we fit the extended model (2) to the whole data set, see Table 2. The estimates

for the simpler model (1) and the corresponding t-statistics tu,i are also included for the

reason of comparison, as well as estimates of σ2
u = σ̃2

u + τ 2
u + τ 2

0 , which is the (conditional)

variance, and ρu = (τ 2
u + τ 2

0 )/σ2
u, which is the uniform correlation in layer u (conditional

on the upper layer for u = 2), obtained by inserting the estimates of the individual

parameters.

The estimated regression coefficients are similar in both models and show the same

tendencies as in Fried (2001). Only the estimate for Mg changes its sign and becomes

positive. The autoregressive parameter α looses its importance when introducing a com-

mon random effect influencing both layers, just like the random effect wt,1 for the upper
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Figure 3: Scatterplots of the predicted residuals against the predictions and against some

covariates.
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Table 1: Empirical space-time correlations ρ̂(1,i),(1,j)(δ) for the upper layer (top) and

ρ̂(1,i),(2,j)(δ) between the layers (bottom) in the vertical direction between the horizontal

lines i and j. N is the number of pairs of observations.

δ 0 1 2

i j 1 2 3 4 1 2 3 4 1 2 3 4

1 ρ̂ 1.00 .160 .236 .262 .083 .425 .161 -.020 .270 .158 .039 .088

N 162 92 99 73 76 101 82 53 93 69 77 52

2 ρ̂ 1.00 .596 .296 .850 .247 .522 .024 .195 .719 .513 .219

N 132 93 64 71 65 73 43 67 63 74 41

3 ρ̂ 1.00 .327 .561 .062 .670 .316 .000 .453 .647 .137

N 144 66 71 75 89 45 74 65 79 43

4 ρ̂ 1.00 -.020 .163 .146 .195 .099 -.035 .208 .034

N 99 47 51 52 44 51 45 51 45

1 ρ̂ -.079 .093 .154 .148 .005 -.086 .229 .334 .152 .191 .168 .040

N 55 37 39 31 30 42 36 26 29 21 25 15

2 ρ̂ -.043 .163 .216 .065 .330 .420 .261 -.044 .126 .128 .322 .254

N 40 58 41 32 33 34 38 25 26 25 29 17

3 ρ̂ -.087 .145 .331 .228 .296 .010 .462 .278 -.120 .240 .375 -.276

N 42 44 63 29 30 38 44 22 27 25 27 15

4 ρ̂ .307 .099 .093 -.341 .181 .030 -.002 .283 .038 -.282 -.023 -.465

N 31 34 27 41 20 19 26 21 19 17 17 14

layer, which is almost completely absorbed into the common effect wt,0. The estimated

variances of the measurement errors σ̃2
1 and σ̃2

2 in the upper and the lower layer, respec-

tively, are very close to each other in the extended model. The estimated total variance

σ2
2 in the lower layer increases considerably when adding the common random effect.

The primary aim here is to find those covariates which possibly influence the DOC-

concentration. The t-statistics in Table 2 are strongly significant in both layers except for

oxonium H and potassium K mirroring a well-known problem of statistical significance

testing in complex situations. A statistical model is only a rough summary description

of real world phenomena and all model assumptions are approximations only. Hodges

and Lehmann (1954) noted that for a large data set this often results in many significant

parameters (overfitting). In the following we apply other criteria for variable selection.

4.3 VARIABLE SELECTION

There are some alternatives to significance testing for variable selection in statistical

models. Often information criteria like AIC or BIC are applied. We prefer Schwarz’s

(1978) BIC since it results in more parsimonious models avoiding overfitting and since

it is asymptotically consistent. In case of subsequently sampled data the out-of-sample
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Table 2: Model parameters estimated from the whole data set. Nu is the number of

observations in layer u = 1, 2.

Model Basic Extended

u 1 (20 cm) 2 (60 cm) 1 (20 cm) 2 (60 cm)

Nu 1476 951 1476 951

α .0246 .0001

ρu .30030 .39372 .34432 .50153

σ2
u .02917 .03575 .02827 .04102

σ̃2
u .01951 .02181 .01929 .02045

γ0 τ̃ 2
0 0 0 .34702 .00789

γ1 γ2 0 0 7 × 10−7 .01535

τ̃ 2
1 τ̃ 2

2 .00966 .01394 .7 × 10−7 .01160

i Var β1,i t1,i β2,i t2,i β1,i β2,i

1 SO4 .0170 7.41 .0242 7.93 .0173 .0225

2 Cl -.0076 -4.05 -.0076 -3.05 -.0081 -.0067

3 H -1.3388 -0.25 -83.036 -1.88 -2.3321 -57.422

4 Mg .0215 5.53 -.0150 -3.79 .0218 -.0147

5 Ca -.0258 -9.17 -.0192 -7.70 -.0259 -.0187

6 K .0281 9.66 .0165 1.21 .0273 .0159

7 Na -.0631 -6.37 .0652 6.04 -.0612 .0644

8 Fe .8893 10.51 1.4558 3.95 .8758 1.4614

9 Al .4910 11.54 .4336 2.76 .5055 .4000

10 sin -.1861 -12.60 -.0924 -4.08 -.2067 -.1434

11 cos -.0630 -4.31 -.0153 -0.72 -.0763 -.0197
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mean square prediction error (MPE) is also frequently applied. We use the weighted

average of the MPE’s for the upper and the lower layer with weights according to the

numbers of observations.

The importance of the seasonal and the spatial effects has already been stressed.

These variables are not the main focus here. We only consider the nine regressors rep-

resenting chemical substances fixing the spatial and the temporal effects in the model.

This results in 29 = 512 possible subsets rendering a whole subset selection feasible. Both

criteria lead to similar results. Large models with six to nine covariates are preferred to

smaller ones, with the MPE resulting in slightly more parsimonious models than the BIC.

We find the best models for a fixed number of variables to be identical in most of the cases

with some realignments. Cl, H and Mg are the least necessary variables. When choosing

a moderately large model with three to five covariates, Na, SO4, and K are also often

excluded, while Ca and Al are almost always included. The best models with two covari-

ates are combinations of either Al or Fe with one of Ca and Mg, with the combination

Al, Ca being best. This interchangeability agrees with the results of a correlation analysis

reported in Fried, Eichhorn and Paar (2001). If only one variable is chosen, either Fe or

Al is selected with minor differences. The model with Fe has a smaller MPE because of

the better predictions in the lower layer. The model with all covariates being excluded is

much worse than the others. Although it includes 19 spatial and two temporal regressors,

its MPE is twice as large as the MPE of the models including either Fe or Al, and it is

three times the MPE of the best model.

The choice of the penalty for the number of parameters in criteria like the BIC is

arbitrary. The ranking of the models is objective only for models with the same number

of variables. Therefore, we select the best model for each dimension, see Table 3. Here,

Id is a model identification and NC is the number of covariates. The second and the

third row show the estimated regression coefficients for the covariates and for the fixed

seasonal effect (sin and cos) in both layers. Adding a further variable improves both the

BIC and the MPE substantially for up to three variables. The MPE for the best model

with five covariates is about 10 % and 15% smaller than that for the best model with

three covariates, and the gain is small thereafter. Models with Al, Fe, Ca and SO4 or

K fit the DOC-concentrations well and are still parsimonious. The regression coefficients

are rather stable across all these models. The largest differences occur when adding Al

to Fe or vice versa.

5 DISCUSSION

We have extended a regression model with spatial-temporal correlations for the DOC-

concentrations in the seepage water of a German forest and applied it to new data. We
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Table 3: Best variable selections according to the MPE, which is multiplied by 104, and

by the BIC for each number of covariates. The regression coefficients for the upper layer

are provided in the first, those for the lower layer in the second row.

Id NC BIC MPE SO4 Cl Ca K Na Fe Al sin cos

0 0 316.2 1261.5 0 0 0 0 0 0 0 -.284 -.167

818.1 0 0 0 0 0 0 0 -.231 -.020

128 1 1024.3 671.1 0 0 0 0 0 1.875 0 -.239 -.116

445.2 0 0 0 0 0 2.398 0 -.208 -.013

256 1 1033.8 665.8 0 0 0 0 0 0 .998 -.216 -.104

498.5 0 0 0 0 0 0 .827 -.195 -.014

144 2 1282.4 508.0 0 0 -.0201 0 0 1.497 0 -.232 -.085

314.6 0 0 -.0168 0 0 1.961 0 -.195 -.002

272 2 1295.8 462.4 0 0 -.0198 0 0 0 .802 -.211 -.075

362.4 0 0 -.0176 0 0 0 .690 -.184 -.002

400 3 1401.6 436.7 0 0 -.0174 0 0 .859 .514 -.214 -.075

339.6 0 0 -.0167 0 0 1.652 .191 -.189 -.003

401 4 1475.8 423.9 .0144 0 -.0195 0 0 .882 .519 -.202 -.076

291.3 .0216 0 -.0192 0 0 1.708 .291 -.178 -.018

433 5 1511.3 392.7 .0129 0 -.0206 .0175 0 .867 .520 -.188 -.077

286.9 .0215 0 -.0193 .0166 0 1.757 .264 -.164 -.020

497 6 1547.5 385.4 .0158 0 -.0147 .0248 -.0509 .793 .521 -.201 -.083

281.1 .0200 0 -.0253 .0085 .0517 1.886 .307 -.144 -.018

499 7 1555.6 396.2 .0173 -.0067 -.0136 .0251 -.0468 .774 .510 -.195 -.073

252.4 .0214 -.0079 -.0239 .0177 .0540 1.769 .319 -.140 -.016
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prefer simple model structures because of the many missing observations in this study.

Spatial-temporal correlations have been modelled by random effects and an autoregressive

structure of these effects. Maximum likelihood estimates can be calculated in spite of the

many missing data using an EM algorithm. As a summary of a model validation, we

find that some deficiencies of the basic model applied in Fried (2001) can be overcome by

adding further sources of possible correlations.

Selection of the important covariates is difficult here since some of them are highly

correlated. We applied the BIC and the out-of-sample mean square prediction error in

this analysis. Both criteria confirm most of the findings reported in Fried (2001), where

t-statistics and stepwise search strategies were used. There is evidence in favor of the

hypothesis of humus disintegration, which predicts a strong association between DOC and

aluminium compounds since we find a strong relationship between DOC and aluminium

and / or iron ions. Excluding both variables from the model results in a poor model fit

and worsens the predictions a lot. The almost interchangeability of aluminium and iron

corresponds to the fact that both arise simultaneously from temporary soil acidifications.

Although the hypothesis of humus disintegration predicts a relationship between DOC

and nitrate, this could not be confirmed by our analysis. The influence of the pH (the

oxonium ions) is uncertain as the regression coefficient is very variable, but this is due to

its small variability in the data. Instead, we have identified other interesting compounds.

Calcium, sulfate and potassium ions should be further investigated since their inclusion

improves the model fit. This could not be expected based on a simple correlation analysis

reported in Fried et al. (2001). Sulfate is an oxidation product of sulphur dioxide,

emissions of which contribute to the acidification of forest soils. The inclusion of calcium

agrees with ecological knowledge since it is well known to construct chemical complexes,

which might be important in the humus cycle. The same is true for aluminium and

iron. Hence, this study confirms some theories about the mechanisms of humus dynamics

(Eichhorn and Hüttermann 1999).

The detected seasonality is probably caused by the dependence of biochemical mech-

anisms on environmental variables like the temperature, data for which we did not have

available. Instead, a deterministic seasonal component and random effects allowing for

positive correlations were included. The results indicate that the disintegration is in-

creased by higher temperatures occurring in summer. A time trend did not become

obvious in the analysis. This had been expected before since humus disintegration is sup-

posed to increase slowly. Therefore the detection of changes needs a longer observation

period than the few years analyzed here.

All these conclusions depend on the model identified in an exploratory data analy-

sis, which has been extended here. The uncertainty introduced by this selection is not

reflected in the results and can hardly be quantified. As more data becomes available,
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the predictive performance of the model can be assessed to detect model inadequacies.

The possible curvilinearity of some relationships could be further examined using non-

parametric regression. This might clarify the influences of a reduced set of covariates on

the DOC-concentration. Dynamic evolution of the model parameters over time as well as

spatial inhomogeneities of the parameters within each layer could also be considered. For

the latter extension, random coefficient models may be applied (Longford 1993), where

random variation of the regression coefficients about a fixed mean is assumed. In the

former approach, dynamic parameters could account for seasonal variations in the rela-

tionships. Applying more complex models could be worthwhile since some of the weaker

associations found here could be due to nonlinearities. Our analysis can be seen as a pre-

liminary step for more complex approaches since we have achieved a dimension reduction

identifying important covariates and finding a spatial-temporal correlation structure.

It is uncertain whether our results for the location Zierenberg also apply to other

areas. Humus disintegration may strongly depend on environmental conditions. However,

its causes are likely to be the same all over central Europe. Therefore our results may be

relevant for other sites, too.
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APPENDIX: DERIVATION OF THE EM ALGORITHM

Augmenting the model of Shumway and Stoffer (1982) by covariates we see that twice

the negative log-likelihood for z̃ = (w0, w1, z1, . . . , wT , zT ) is (dropping constants)

L̃
.
= ln |Ω| + (w0 − µ)′Ω−1(w0 − µ) + T ln |∆|

+
T
∑

t=1

(wt − Gwt−1)
′∆−1(wt − Gwt−1) + N ln(σ̃2

1) +
T
∑

t=1

ln |St|

+σ̃−2
1

T
∑

t=1

(

zt(α) − Xtβ − Htwt

)′
S−1

t

(

zt(α) − Xtβ − Htwt

)

.

The conditional expectation of L̃(θ) given the actually observed values and a set of

parameters θ̃ then is

Q
θ̃
(θ) = term1 + term2

term1 = ln |Ω| + tr
(

Ω−1
[

Ω0|T + (w0|T − µ)(w0|T − µ)′
])

+ T ln |∆|

+tr
(

∆−1
T
∑

t=1

[

Ωt|T + wt|T w′
t|T − (Ωt,t−1|T + wt|T w′

t−1|T )G′

−G(Ωt−1,t|T + wt−1|T w′
t|T ) + G(Ωt−1|T + wt−1|T w′

t−1|T )G
])

term2 = N ln(σ̃2
1) +

T
∑

t=1

ln |St| + σ̃−2
1

T
∑

t=1

tr
(

S−1
t HtΩt|T H′

t

)

+σ̃−2
1

T
∑

t=1

(zt(α) − Xtβ − Htwt|T )S−1
t (zt(α) − Xtβ − Htwt|T )′

The first term corresponds to the unobserved states wt, while the second corresponds to

a recursive linear mixed model for the observed data with covariance matrices σ̃2
1St and

an additional term σ̃−2
1

∑T

t=1 tr(S−1
t HtΩt|T H′

t), which only changes the calculation of the

unknown variances and covariances. Therefore we can derive formulae for the maximum

of Q
θ̃

w.r.t. β and α in dependence on the other parameters in the same way as in Fried

(2001) using some minor modifications. This leads to the formula for ˆ̃β
u

stated in Section

3.2. The case of identical regression coefficients β1 = β2 (Fried 2001), which is not further

considered here, can be treated similarly. If β1 6= β2, partitioning St into the blocks for

the layers and inserting
ˆ̃
β

1
and

ˆ̃
β

2
results into separate minimization of

Nu ln(σ̃2
u) +

T
∑

t=1

ln |St,u| + σ̃−2
u

T
∑

t=1

tr
(

S−1
t,uHt,uΩt|T H′

t,u

)

+σ̃−2
u

T
∑

t=1

(zt,u − X̃ t,u
ˆ̃
β

u
− Ht,uwt|T )S−1

t,u(zt,u − Xt,u
ˆ̃
β

u
− Ht,uwt|T )′ .
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This results in the formula for σ̃2
u. Therefore, in the M-step it remains to apply numerical

maximization to estimate the unknown parameters in Σ̃u, Ω, ∆, G and µ. For the special

structure of the model used here we can deduce some further simplifications since the

matrices G, Ω and ∆ are diagonal, Σ̃u = I and µ = 0. We get

σ̃−2
1

T
∑

t=1

tr(S−1
t,1Ht,1Ωt|T H′

t,1)

= σ̃−2
1

T
∑

t=1

tr

[

(

1nt,1
1nt,1

0nt,1

)

Ωt|T

(

1nt,1
1nt,1

0nt,1

)′
]

= σ̃−2
1

T
∑

t=1

tr













nt,1 nt,1 0

nt,1 nt,1 0

0 0 0






Ωt|T







= σ̃−2
1

T
∑

t=1

nt,1

[

(Ωt|T )(0,0) + (Ωt|T )(1,0) + (Ωt|T )(0,1) + (Ωt|T )(1,1)

]

where M(i,j) denotes the element of a matrix M at position (i, j). Analogously, we get

σ̃−2
2

T
∑

t=1

tr(S−1
t,2Ht,2Ωt|T H′

t,2)

= σ̃−2
2

T
∑

t=1

nt,2

[

(Ωt|T )(0,0) + (Ωt|T )(2,0) + (Ωt|T )(0,2) + (Ωt|T )(2,2)

]

,

and furthermore

term1 = −
2
∑

u=0

ln(1 − γ2
u) + (T + 1)

2
∑

u=0

ln(τ̃ 2
u) + tr

[

Ω−1(Ω0|T + w0|T w′
0|T )
]

+tr
(

∆−1
T
∑

t=1

[

Ωt|T + wt|T w′
t|T − (Ωt,t−1|T + wt|T w′

t−1|T )G′

−G(Ωt−1,t|T + wt−1|T w′
t|T ) + G(Ωt−1|T + wt−1|T w′

t−1|T )G
])

= −
2
∑

u=0

ln(1 − γ2
u) + (T + 1)

2
∑

u=0

ln(τ̃ 2
u) +

2
∑

u=0

1 − γ2
u

τ̃ 2
u

(Ω1|T + w0|T w′
0|T )(u,u)

+

2
∑

u=0

τ̃−2
u

T
∑

t=1

[

(Ωt|T + wt|T w′
t|T )u,u − (Ωt,t−1|T + wt|T w′

t−1|T )(u,u)γu

−γu(Ωt−1,t|T + wt−1|T w′
t|T )u,u + γu(Ωt−1|T + wt−1|T w′

t−1|T )(u,u)γu

]

= −
2
∑

u=0

ln(1 − γ2
u) +

2
∑

u=0

τ̃−2
u (au − 2buγu + cuγ

2
u)

with au =

T
∑

t=1

(Ωt|T + wt|T w′
t|T )(u,u),
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bu =

T
∑

t=1

(Ωt,t−1|T + wt|T w′
t−1|T )(u,u),

cu =

T−1
∑

t=0

(Ωt|T + wt|T w′
t|T )(u,u), u = 0, 1, 2 .

Inspection of the partial derivatives results into the formula for ˆ̃τ
2

u reported in Section

3.2. Insertion of ˆ̃τ
2

u leads to

term1 = −
2
∑

u=0

ln(1 − γ2
u) + (T + 1)

2
∑

u=0

ln
(

ˆ̃τ
2

u(γu)
)

+ 3(T + 1)

so that separate minimizations of − ln(1 − γ2
u) + (T + 1) ln(ˆ̃τ

2

u(γu)) w.r.t. γu remains to

be done. This can be done numerically or using the cardanic formulae since setting the

partial derivatives to zero results into cubic equations:

∂term1

∂γu

=
2γu

1 − γ2
u

+
2(T + 1)2(cuγu − bu)

au − 2buγu + cuγ
2
u

= 0

⇐⇒ 0 = γu(cuγ
2
u − 2buγu + au) + (T + 1)2(1 − γ2

u)(cuγu − bu)

= −γ3
ucu(T

2 + 2T ) + γ2
ubu(T

2 + 2T − 1) + γu(au + cu(T + 1)2) − bu(T + 1)2
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