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1 Introduction

When workers apply to one or more jobs, a network arises where each application estab-

lishes a link between a worker and a �rm. In such a decentralized environment there are

two coordination frictions, (i) workers do not know where other workers apply to and (ii)

�rms do not know which workers are considered by other �rms. We can think of the �rst

coordination friction as referring to random network formation, while the second coor-

dination friction a¤ects network clearing (the number of matches on a given network).

Treating the search process as a matching on a bipartite network gives new insights into

one of the key questions in the labor-search literature namely, under which conditions

is the decentralized market outcome constraint e¢ cient? With constraint e¢ ciency we

mean that the market outcome is identical to the outcome of a hypothetical social planner

who maximizes social welfare given the fundamental frictions. The main contribution of

our paper is that it shows how under directed search (workers observe the wage before

applying to a job), the wage mechanism a¤ects frictions through network formation and

clearing.1

We �nd that e¢ cient network formation requires that all vacancies should receive an

application with the same probability and that e¢ cient network clearing requires ex post

Bertrand competition between �rms that consider the same candidate. Random search,

where each vacancy has the same contact probability and directed search without ex-ante

wage dispersion, lead to e¢ cient random network formation. The e¢ ciency condition

in Kircher (2009), where workers send multiple applications and �rms can contact all

workers, dictates however that some vacancies should have a higher probability to receive

an application than others. The di¤erence between our e¢ ciency condition and Kircher�s

1Coles and Eeckhout (2003) and Eeckhout and Kircher (2010) show that the number of matches

in a model with identical workers is independent of the posted wage mechanism. We show that this

does not occurs if workers send multiple applications. In the random search models of Diamond (1982),

Mortensen (1982) and Pissarides (2000) the wage determination process and the matching process are

fully independent. In Moen�s (2000) competitive search model, workers can sort in sub markets which

are characterized by di¤erent wage and market tightness pairs. Within each sub market, given market

tightness, the number of matches does not depend on wages. When workers apply to only one job, only

the �rst coordination friction occurs, since all �rms that receive at least one application can be sure that

their selected candidate has no competing o¤er from another �rm, see Burdett, Shi and Wright (2001).

1



occurs because he places more restrictions on the planner�s network clearing mechanism.

Wage mechanisms that allow for ex post Bertrand competition are socially e¢ cient

in terms of network clearing, because they generate the maximum number of matches

possible. This happens because �rms can increase their wages in subgraphs with an

excess number of vacancies. Firms in subgraphs with an excess number of workers do not

have to increase their posted wages. Ex post Bertrand competition therefore solves the

second (between-�rm-coordination) friction.

To the best of our knowledge we are the �rst to analyze how decentralized wage

mechanisms a¤ect network clearing in a decentralized search model with complete recall

where workers only know where they send their own applications and �rms only know

which workers applied to them. Part of the network literature has analyzed di¤erent

pricing mechanisms and has studied whether these price mechanisms lead to an e¢ cient

matching of sellers and buyers. Kranton and Minehart (2001) show for example that a

public ascending price auction ensures e¢ cient network clearing. Corominas-Bosch (2004)

shows for identical sellers and buyers that an alternating o¤ers game where all sellers (or

buyers) of a subgraph simultaneously announce prices leads to a maximum matching.

This literature, however, assumes that once a network has been formed all agents know

the complete network (or the entire subgraph of the network they are in).2 This knowledge

allows sellers and buyers to determine their outside option trading partners and trading

prices. We show that ex post Bertrand competition achieves the maximummatching, even

if agents do not know the network structure. Another part of the network literature uses

the set-valued approach, i.e., it either starts with a set of competitive price vectors and

shows that the resulting matches are pairwise stable and maximize aggregate welfare (see

Kranton and Minehart, 2000), or it starts by assuming that pairwise stable matches must

arise and then analyses the entry decision of agents (see Elliott, 2011b). Those papers

do not layout the game that leads to a competitive price vector or a pairwise stable

matching like we do. Finally, there is a growing number of papers that combine insights

2Galeotti et al. (2010) analyse network games with limited information. However, they only consider

one type of agents, i.e., they do not consider vacancies and workers or sellers and buyers in a bipartite

network.
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from search and network theory.3 Those papers focus mainly on how social networks of

workers can pass information of the location of jobs on to each other which is di¤erent

from the bipartite network (between workers and �rms) framework in our paper.

Complete recall is essential to achieve e¢ cient network clearing. If �rms can select

at most one candidate to which they are linked, the resulting equilibrium is typically not

constraint e¢ cient, since no price mechanism can resolve the coordination friction between

�rms. In the search literature, Albrecht, Gautier and Vroman (2006) and Galeanos and

Kircher (2009) consider a framework with limited recall that leads to ine¢ cient network

clearing.4 In the network literature, Manea (2011) considers a network game that is

similar to a limited recall environment. He analyzes a framework, where agents that are

connected in a network are randomly selected to bargain. During the bargaining game

they are not able to contact other connected agents. We also show that complete recall

by itself like in Kircher (2009), where �rms commit to their posted wages, does not lead

to the maximum number of matches.

Although a search environment without wage dispersion and with ex post competition

leads to e¢ cient network formation and network clearing, it may still be ine¢ cient in

other dimensions that we ignore here (i.e. search intensity and vacancy creation). Kircher

(2009) shows for example that e¢ cient entry and search intensity requires wage dispersion

and commitment. Combining our and his results, suggests that there may not exist a

decentralized mechanism that is e¢ cient in all dimensions.

The paper is organized as follows. We start in section 2 with a 3-by-3 example that

illustrates our main point that wage dispersion leads to less e¢ cient networks and ex post

Bertrand competition generates a maximum matching on a given network while wage

commitment does not. Sections 3 and 4 consider a large labor market. In section 3 we

describe the timing of events and the network formation and clearing process. In section

4 we apply some basic insights from graph theory to derive two important general results.

First, in section 4.1 we show that ex-post Bertrand competition with complete recall

gives the maximum matching on a given network and wage mechanisms without ex-post

3Example include, Boorman (1975), Calvó-Armengol and Jackson (2004), Calvó-Armengol and Zenou

(2004), Fontaine (2004).
4Albrecht et al. (2006) also allow ex post Bertrand competition.
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competition do not. In section 4.3 we show that in terms of network formation, workers

should apply to each vacancy with equal probability. This only occurs, if all �rms post

the same wage or if search is random (workers do not observe the wage ex ante). Finally

section 5 concludes.

2 An example

This section illustrates our main points that (i) ex ante wage dispersion leads to less e¢ -

cient network formation and that (ii) ex post Bertrand competition generates a maximum

matching. We consider the following two dimensions corresponding to random network

formation and network clearing under incomplete information, (1) random search versus

directed search (note that random search implies that each vacancy receives an appli-

cation with the same probability), and (2) ex post Bertrand competition versus wage

commitment.

Consider a simple economy with 3 unemployed workers and 3 �rms, each with one

vacancy, (u = v = 3) and where workers send two applications (a = 2).5 First, we look at

network formation and assume that network clearing generates the maximum number of

matches. Then, we look at which wage mechanisms are most e¢ cient in terms of network

clearing. E¢ cient network clearing implies that the number of matches is equal to 3, if

each of the three vacancies receives at least one application, and equal to 2, if only two

vacancies receive applications. Note that these are the only two possible outcomes, since

no worker sends both applications to the same �rm. Let �i be the probability that a

worker sends one of her two applications to vacancy i. The maximum number of matches

is,

M =
3X
i=1

�
1� (1� �i)

3� , with 3X
i=1

�i = 2;

where (1� �i)
3 equals the probability that vacancy i does not get any application. Since

the function
�
1� (1� �i)

3� is concave in �i, Jensen�s inequality implies that the number of
matches is maximized, if all vacancies have the same probability to receive an application,

5If workers send 1 application or 3 applications, the number of matches generated is independent of

the wage mechanism used.
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i.e., if �i = 2=3. Thus, only wage mechanisms that generate no ex ante wage dispersion

(which is always the case under random search) can lead to the maximum number of

matches, M = 26=9 � 2:889. In a technical Appendix we consider four cases that depend
on the search environment (random or directed search) and on the �rm�s strategy space

(i.e., can �rms increase their initial o¤ers or not). In all cases we allow for complete recall

(�rms can go back and forth between their candidates) and fully characterize equilibrium

wages and the expected matching rates.6 It turns out that in this example, there is always

wage dispersion under directed search. So, interestingly, random search is most e¢ cient

in terms of network formation. In the case of directed search with ex-post competition,

the amount of wage dispersion is a lot smaller than in the case of commitment.7 In this

ex post competition case, only an equilibrium exists with one high wage and two low

wage �rms. The high wage �rm has an application probability of �h � 0:722 and the

low wage �rms a probability of �l � 0:639 (the equilibrium is fully characterized in the

technical appendix C.3). The total number of matches is given by M � 2:884. Under

directed search and wage commitment, there is more wage dispersion; the high wage �rm

has an application probability of �h � 0:956 and the low wage �rms of �l � 0:522 (details
are in technical appendix C.4). As we will show below, in the case of directed search

and wage commitment, both network formation and network clearing is ine¢ cient. To

isolate the e¤ect of the wage mechanism on network formation we calculated the total

number of matches, imposing e¢ cient network clearing (which in general does not occur

in equilibrium). In that case, M � 2:781. Summing up, directed search with ex post

competition generates more e¢ cient networks than without ex post competition, because

the latter case has more wage dispersion.

Next, consider network clearing. E¢ cient network clearing requires that the number

6With the exception of Kircher (2009), who studies directed search with wage commitment, all those

cases have been studied with limited recall. For directed search with ex-post Bertrand competition, see

Albrecht et al. (2006), for random search with ex post competition see Gautier and Woltho¤ (2009),

for directed search with commitment and no ex post competition see Galeanos and Kircher (2009) and

for random search with commitment, see Gautier and Moraga Gonzalez (2004) (all those papers have no

complete recall except the last one, which considers complete recall in a 3by3 example).
7We conjecture that in a large market, the wage dipersion will completely disappear in the case with

ex post competition.
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Figure 1: Ine¢ ciency without ex post competition

of matches is equal to 3, if all three vacancies are collectively linked to all three workers,

and that the number of matches is equal to 2, if only two vacancies are collectively linked

to all three workers. The later is always ensured, since both vacancies with applications

received three applications and are linked to all three workers. To see why ex post Bertrand

competition leads to 3 matches, if three vacancies are collectively linked to three workers,

we show that one gets a contradiction if this does not hold. Suppose a worker and a

�rm remain unmatched in this case. This implies that the unmatched worker receives her

reservation value. The �rm that is linked to the unmatched worker must pay a wage equal

to the reservation value to its matched worker, since any higher wage would not be pro�t

maximizing. The unmatched �rm, however, is willing to pay a wage equal to the marginal

product. Thus, the worker who is linked to the unmatched �rm but hired by another �rm

must be paid a wage equal to his marginal product, since any lower wage would be outbid

by the unmatched �rm. Thus, one of the three �rms pays the reservation wage, one the

marginal product and one remains unmatched. The unmatched worker cannot be linked

directly to the unmatched �rm, since both parties would then form a match. Thus, the

unmatched worker can only be linked to both matched �rms. This, however, implies that

both matched �rms must pay a wage equal to the reservation value. This cannot be the

case as we argued above. Thus, ex post Bertrand competition leads to the maximum

number of matches possible.

Network clearing is in general not e¢ cient, if �rms commit to their posted wages. To
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see this, consider the graph in Figure 1, which pictures a particular realization of the case

where each worker sends one application to the high-wage �rm and one to one of the two

low-wage �rms (thick lines). The number of matches (dashed lines) now depends on which

worker is chosen by the high-wage �rm. If the high-wage �rm o¤ers the job to one of the

workers who are linked to the low-wage �rm with two applicants, i.e., to worker 2 or 3

in Figure 1, the number of matches is equal to the maximum number of matches (3). If

the high-wage �rm o¤ers the job to the worker linked to the low-wage �rm with only one

applicant, i.e. to worker 1 in Figure 1, there will be only two matches, since the low-wage

�rm with only one applicant will remain unmatched. The expected number of matches in

a model with directed search and wage commitment is therefore lower (in the technical

Appendix C.4 we derive the equilibrium wages and show thatM � 2; 538). So without ex
post competition, the number of matches can even be ine¢ cient if all �rms post the same

wage. In this case there also exists a positive probability that the worker that is linked

to the �rm with only one applicant is hired by the �rm with three applicants.

Network clearing is also not e¢ cient under random search with wage commitment.

Gautier and Moraga Gonzalez (2004) study such an environment and give a 3 by 3 exam-

ple, which we just summarize here. For the same reasons as in Burdett and Judd (1983)

and Burdett and Mortensen (1998) no symmetric-pure strategy equilibrium exists and

wages are o¤ered from a continuous distribution. The equilibrium wage distribution is

determined by the equal pro�t condition and the fact that the lowest wage o¤er equals

the reservation value. The total number of matches is equal to M = 73=27 � 2; 703.
The following table summarizes the expected number of matches that are realized in

equilibrium for the di¤erent search environments and wage mechanisms.
random search directed search

ex post competition 2; 889 2; 884

wage commitment 2; 703 2; 538

Table 1: Expected number of matches under di¤erent search and wage mechanisms

This illustrates that the wage mechanism and the matching process are not inde-

pendent. Di¤erent search environments generate di¤erent distributions of networks and
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whether the wage mechanism allows for ex post competition or not a¤ects the number of

trades on a given network.

3 Framework

Before presenting our main results for a large labor market, we �rst lay out the precize

setting and the timing of events. Consider v identical �rms with one vacancy each and u

identical risk neutral unemployed workers, who can send a � v applications to di¤erent
�rms. Workers have a reservation wage of 0 and a matched �rm-worker pair produces 1.

As is standard in the directed search literature we impose both symmetry and anonymity.

Symmetry implies that identical workers play identical strategies while anonymity implies

that �rms must treat identical workers similarly and vice versa (see Burdett, Shi and

Wright, 2001). In our directed search framework we allow �rms to post a wage with the

possibility to Bertrand compete ex-post. Then, we compare our results to Kircher (2009)

where �rms post �xed wages and cannot Bertrand compete ex-post. Random search

models can be analyzed in this framework by assuming that all �rms post the reservation

wage (which is 0 here) in the �rst stage.

The timing is as follows:

1. Firms post a wage w. The actual wage w paid by the �rm can be higher than the

posted wage, if �rms can (Bertrand) compete for their candidates with other �rms

that are also connected to this worker in later stages of the game.

2. Workers send out a � 2 applications.

3. Each �rm selects a worker (if present) and o¤ers the worker its posted wage w = w

from stage 1. The o¤ers are veri�able.

4. If a worker gets one o¤er w, she informs all �rms where she applied, except the

one that made the o¤er, that she will only be willing to work for a wage w0 =

w + � or higher. If a worker has multiple o¤ers fw1; w2; :::; wjg, she informs all
�rms, where she applied, except the one that o¤ered the highest wage (wh =

8



argmax fw1; w2; :::; wjg), that she will only be willing to work for a wage w0 = wh+�
or higher.

5. If the worker that the �rm selected did not ask for a higher wage, the �rm o¤ers

the same wage w again. If the worker that the �rm selected asks for a higher wage

w0 > w, the �rm o¤ers one of the candidate(s) that did not ask for a wage higher

than w the job at the posted wage w. If there is no candidate with a request w0 � w,
the �rm picks the worker with the lowest request wl = argmin fw1; w2; :::; wjg and
o¤ers her the job at the wage wl, as long as the wage does not exceed the marginal

product, i.e., wl � 1.

6. If at least one worker received a higher o¤er than in the previous stage, the game

goes back to stage 4. If all workers received the same wage o¤er as in the previous

stage, matches are formed. A �rm fails to hire, if it has no applicants or if all its

candidates choose other �rms. A worker remains unemployed, if she received no

o¤ers.

Note that workers and �rms do not observe the network. Firms only know how many

workers applied to them and whether a worker is willing to work for the o¤ered wage. The

ability to go back and forth between workers constitutes a small but important di¤erence

to the Bertrand game proposed by Albrecht, Gautier and Vroman (2006), where �rms

can create a shortlist of two workers and cannot go back to a worker once they decided

to contact the next worker on the shortlist. The ability to go back and forth between

workers is, however, crucial to achieve e¢ cient network clearing.

In terms of network formation, our framework is similar to Albrecht et al. (2004).

This di¤ers from the standard random network formation process of Erdös-Renyi where

(in a labor market context) an application is sent to a particular �rm with probability p.8

In our setting, all workers send a applications.9

Firms �nd it optimal to follow the strategies laid down in the Bertrand game above,

since they only have to increase their wage o¤er, if none of their candidates is willing

8See Bollobas (2001) for a bipartite version.
9If there is no wage dispersion and the market is large, each application is sent with probability 1=v

to each �rm.
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to work for the wage o¤ered. Workers�behavior in the proposed Bertrand game is also

optimal. They prefer to communicate that they have one or more o¤ers to the �rms

that did not respond in order to engage them into Bertrand competition. Furthermore,

since workers do not ask the �rm that o¤ered the highest wage to increase its wage o¤er,

workers make sure that these �rms will not contact another worker and that they are at

least able to work for the highest wage o¤ered so far.

We take the number of applications that workers send out and market tightness as

given. The main reason for this is that the conditions for e¢ cient entry and the number

of applications are well known and have been studied before.10 This allows us to focus on

the e¢ ciency of random network formation and clearing. It is however important to keep

in mind that a wage mechanism that generates e¢ cient networks may not be e¢ cient in

terms of market tightness or the number of applications and vice versa.

4 General results on random network formation and

network clearing

The example of section 2 suggests that ex ante wage dispersion is ine¢ cient in terms of

random network creation and that we need Bertrand competition in order to get e¢ cient

network clearing. In this section we use some results from graph theory to show that those

results hold in more general settings. In section 4.1 we show that maximum matching

requires ex post competition and in section 4.3 we show that it is desirable from a social

point of view that the application arrival rate is the same for all vacancies.

4.1 Maximum matching requires ex-post competition

In this section we show that for a given network, ex-post Bertrand competition with

complete recall generates a maximum matching. The network clearing mechanism that

10Gautier and Moraga-Gonzalez (2005) and Albrecht et al. (2006) �nd without recall, that workers

send too many applications (due to rent seeking and congestion externalities) and that entry is excessive,

because �rms have too much market power. Kircher (2009) shows that with directed search, wage

commitment and full recall, entry and search intensity are socially e¢ cient. Elliot (2011b) �nds e¢ cient

entry but workers send too many applications.
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is necessary to achieve a maximum matching also implies that committing ex-ante to

a speci�c wage without allowing for ex-post Bertrand competition does typically not

generate the maximum matching. Below, we �rst brie�y describe some basic concepts of

graph theory that are relevant for our environment.

When workers apply to jobs, each of their applications is a link (or edge) in a bipartite

network. The wage mechanism and search environment determine both the distribution

of networks that can arise and the matching on a given network. In our environment, a

typical network realization consists of several disjoint graphs. Each worker and �rm is a

node (or vertex). The graphs in our environment are simple (workers do not send multiple

applications to the same �rm), undirected ( if worker i is linked to �rm j, then �rm j is

linked to worker i) and bipartite (G = hu [ v; Li consists of a set of nodes formed by two
di¤erent kind of agents, i.e., by workers fu1; :::ung and vacancies, fv1; :::vmg, and a set
of links L where each link connects a worker to a �rm so workers are not linked to other

workers and �rms are not linked to other �rms).

De�nition 1: A matching M in a graph G is a set of links such that every node of G

is in at most one link of M .

Central to our result that a maximum matching requires ex-post competition is the

following theorem by Berge,

Berge�s Theorem (1957):

A matching M in a graph G is a maximum matching if and only if G contains no M-

augmenting path.

In our bipartite graph environment an M -augmenting path is de�ned as a path where

1. worker-�rm links that are part of the matching M alternate with worker-�rm links

that are not part of the matching M (de�nition of an M -alternating path) and

2. neither the origin (�rm or worker) nor the terminus (worker or �rm) of the path is

part of the matching M .

Figure 2 depicts an M -alternating path and an M -augmenting path in a particular

network. The dots represent vacancies and the squares unemployed workers. The solid

11



Malternating path Maugmenting path

1 2 3 4 1 2 3 4

A B C A B C

Figure 2: M -alternating path and M -augmenting path

lines represent applications (a = 2) and the dashed lines represent matched worker-�rm

pairs. The M -alternating path (A� 1�B � 2�C � 4) starts with the matched vacancy
A and ends at the matched worker 4. The M -augmenting path (A� 1�B � 2� C � 4)
in the second panel of Figure 2 starts with an unmatched vacancy, A; and ends with an

unmatched worker, 4:

Berge�s Theorem, translated to our setting, implies that a maximum matching in a

graph is only guaranteed, if an unmatched �rm is not linked to an unmatched worker via

an M -augmenting path. The reason that a matching is not optimal, if an M -augmenting

path exists is that one could create one more match by switching the links. Then, the

unmatched �rm at the start of the M -augmenting path and the unmatched worker at

the end of the M -augmenting path will both be matched and all worker-�rm pairs that

were matched before are rematched with another partner. Comparing the two paths in

the second panel of Figure 2 illustrates this. The matching M = f1�B; 2� Cg in an
M -augmenting path can always be increased by switching the dashed and solid links

resulting in an extra link, i.e., M = fA� 1; B � 2; C � 4g.
What remains to be shown is that if a matching M has no M -augmenting paths it is

a maximum matching. This can be proven by contradiction. Suppose that in a particular

graph in our setting there is a matching N (A�1; B�2; C�4; i.e., dashed lines in Figure
3) with more links than M (1�B; 2� C; i.e., dotted lines in Figure 3) , i.e., jN j > jM j:
Then consider the symmetric di¤erence N�M de�ned as the set of links that is either in
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A B C

Figure 3: The maximum matching has no M -augmenting path

N orM but not in both (the sum of dashed and dotted lines in Figure 3). Each worker or

�rm can have at most 2 links in N�M because it is hired by at most one �rm in M and

at most one �rm in N . Since by assumption N is strictly bigger than M there must be

at least one path in N�M with an odd number of links that starts with a �rm (worker)

in N and ends with a worker (�rm) in N (i.e. A� 1� B � 2� C � 4). But then this is
an M -augmenting path because the �rm and worker at the start and end of the path are

(by the symmetric di¤erence operation) not in M .

Thus, in order to show that Bertrand competition leads to a maximum matching we

need to rule out that anM -augmenting path exists. In order to do so, we start with some

properties resulting from the ex-post Bertrand competition game in section 3.

Lemma 1 The highest posted wage is strictly smaller than 1.

Proof: Under directed search, any �rm that o¤ers the highest wage and sets it equal to

1 makes no pro�t and could increase its pro�ts by o¤ering a wage strictly less than one

since there is a positive probability that one of its candidates receives no better o¤ers

and accepts. If a = v, all �rms know that they will hire a worker for sure. Since �rms

make take-it-or-leave-it wage o¤ers, it is optimal for them to always o¤er the workers�

reservation wage. We can think of random search as the case where all posted wages are

zero. �
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Lemma 2 If a worker remains unmatched, each �rm along the M-alternating path that

starts with the unmatched worker pays no more than the highest posted minimum wage.

Proof. First, note that the unmatched worker cannot be linked to a �rm with no other

candidates, since that �rm would hire the worker. Next, suppose that the unmatched

worker applied to at least one �rm with more than one other candidate. Since the worker

remains unmatched, any �rm where the worker applied to must pay its matched worker

the wage it posted (under random search, it will pay the reservation wage). Otherwise,

it could o¤er the unmatched worker its posted wage and the worker would accept this

o¤er given that his reservation wage equals zero. Suppose now that contrary to Lemma

2, one of the �rms along an M -alternating path (�rm B), pays more than the highest

posted wage, i.e. w� > wh. We will show that this violates pro�t maximization. Since

any of the other �rms that is linked to the unmatched worker pays its posted wage to its

matched worker, there exists an M -alternating path that starts at the unmatched worker

and includes at least one �rm that pays its posted wage and �rm B that pays w� > wh.

But then there exists a �rm (possibly �rm B) along the M -alternating path that pays a

wage w� > wh, but has an applicant that earns wh or less. This �rm could make higher

pro�ts, if it would o¤er the other applicant the job at a wage wh+ " (note that each �rm

on an M -alternating path must have another candidate). �

Lemma 3 If a �rm remains unmatched, then all workers along the M-alternating path

that starts with the unmatched �rms must earn a wage equal to the marginal product, i.e.,

w = 1.

Proof. If a �rm with candidates (�rm A) remains unmatched, then its applicants must

earn a wage w = 1, since at any wage w < 1, the �rm could attract an applicant and

make positive pro�ts. Suppose there exists a �rm, call it �rm B, that pays a wage w� < 1

to its matched worker. Then, there exists at least one �rm along the M -alternating path

that starts at the unmatched �rm A and includes �rm B that pays a wage w = 1, while

the worker who is hired at B earns w� < 1. But then this �rm that pays a wage w = 1

could make higher pro�ts, if it would o¤er one of its other candidates (again, each �rm on

an M -alternating path must have another candidate) the job at the wage w� + ". Thus,

14



if one �rm along an M -alternating path pays a wage equal to the marginal product, all

�rms along the M -alternating path must do so as well. �

According to Berge�s Theorem a maximum matching exists if and only if there is no

M -alternating path that starts with an unmatched worker and ends with an unmatched

�rm, i.e., if and only if there is no M -augmented path. Given the wage pattern in an M -

alternating path that starts with an unmatched worker (Lemma 2) or with an unmatched

�rm (Lemma 3), we can write down our main Theorem.

Theorem 1: Ex-post Bertrand competition leads to a maximum matching in all graphs

of the network.

Proof: Suppose it would not lead to a maximum matching. In that case there would

exist an M -augmenting path with at least one unmatched worker and one unmatched

�rm. But then Lemma 1,2 and 3 imply that all �rms along theM -augmenting path (that

is also anM -alternating path) o¤er both a wage less than 1 and a wage equal to 1, which

is a contradiction. �

The �exibility to adjust wages ex-post is central to achieve e¢ ciency in network clear-

ing. If �rms commit to their posted wages and do not adjust their wages ex-post, we can

typically observe di¤erent wages along an M -alternating path. If both end nodes of the

M -alternating path are unmatched, i.e., if we have an M -augmenting path, there is no

mechanism inherent in the matching process associated with wage commitment that can

induce the matched �rm-worker pairs to rematch with the unmatched �rm and worker at

the end of the M -augmenting path. Thus, if �rms commit not to increase their posted

wages ex-post, network clearing is generally not e¢ cient. Note, that the 3 by 3 model of

section 2 also gives an example where network clearing is not e¢ cient due to the lack of

Bertrand competition. Thus, Berge�s Theorem also implies the following Corollary:

Corollary 1: If �rms commit not to increase their posted wages ex-post, network clearing

is typically ine¢ cient and the maximum matching is not realized.

Corollary 1 shows that directed search models with �xed posted wages are not able to

solve the second coordination friction (�rms do not know which workers are considered
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by other �rms). Thus, although directed search with �xed posted wages is constraint

e¢ cient in terms of �rm entry and number of applications that workers send, see Kircher

(2009), it generally does not generate the maximum matching that is possible given the

network that is formed between �rms and their applicants.

Theorem 1 also implies that a social planner would never want to give one subgroup

of �rms the right to match �rst regardless of the network. Such a property arises, if some

�rms o¤er higher wages than others and wages cannot be raised ex-post as in Kircher

(2009).

Corollary 2: It is socially ine¢ cient to have a subgroup of �rms that matches �rst.

Corollary 2 implies that it is socially ine¢ cient to have a subgroup of high wage �rms

that match �rst and a subgroup of low wage �rms that match only if their candidate(s)

receive no o¤ers at a high wage �rm.11

4.2 Wages

Lemmas 1 to 3 are also informative about the payo¤s that workers and �rms receive.

According to Lemma 3 all workers that are part of an M -alternating path that includes

an unmatched �rm earn a wage equal to the marginal product, i.e., w = 1, if �rms can ex

post Bertrand compete for their candidates. Lemmas 1 to 3 also imply that all workers

that are part of such an M -alternating path, must be matched and earn a wage equal to

their marginal product. Thus, these M -alternating paths are characterized by an excess

number of �rms. Similarly, there are M -alternating paths that are characterized by an

excess number of workers. According to Lemma 2 all workers that are part of such an

M -alternating path earn a wage no higher than the highest posted wage. Lemmas 1 to 3

also imply that all �rms that are part of such an M -alternating path must be matched.

Lemmas 1 to 3 also allow forM -alternating paths with equal number of workers and �rms

where all workers and �rms are matched. In order to determine the wages paid in such

even subgraphs we use the properties of the Decomposition Theorem by Corominas-Bosch

11Note, that Kircher�s (2009) equilibrium is constrained e¢ cient because the planner takes the existence

of a subset of �rms that match �rst as given, whereas here this is not part of the planner�s constraint.
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(2004), which �in terms of our terminology �decomposes a network into �rm-, worker-

and even subgraphs. A �rm subgraph contains more �rms than workers and workers are

paid their marginal product. A worker subgraph contains more workers than �rms and

workers are paid a wage no higher than the highest posted wage. In even subgraphs the

number of workers equals the number of �rms.

Decomposition Theorem (Corominas-Bosch, 2004):

(1) Every graph G can be decomposed into a number of �rm subgraphs (Gf1 ,..., G
f
nf
),

worker subgraphs (Gw1 ,..., G
w
nw) and even subgraphs (G

e
1,..., G

e
ne) in such a way that each

node (�rm or worker) belongs to one and only one subgraph and any �rm (worker) in

a �rm-(worker-)subgraph Gfi;(G
w
i; ) is only linked to workers (�rms) in a �rm-(worker-

)subgraph Gfj (G
w
j ).

(2) Moreover, a given node (�rm or worker) always belongs to the same type of subgraph

for any such decomposition. We will write G = Gf1[...[Gfnf [G
w
1 [...[Gwnw [Ge1[...[Gene,

with the union being disjoint.

Such a decomposition into �rm-, worker- and even subgraphs plus some extra links can

be obtained by following an algorithm introduced by Corominas-Bosch (2004), see step

2 in Appendix B for the exact algorithm. The algorithm �rst looks for �rm subgraphs

and separates all of them from the network. Then it identi�es worker subgraphs and

removes all of them from the network. The remaining subgraphs are even subgraphs.

The decomposition is not unique, since the exact splitting of nodes (�rms or workers) into

subgraphs can di¤er, because the algorithm uses the subindex of a node in order to start

�nding the subgraphs. The second statement of the Decomposition Theorem, however,

states that any �rm and any worker will always belong to the same type of subgraph,

a property important to guarantee that the di¤erent possible decompositions are payo¤

equivalent.
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Figure 4: Graph-Decomposition

Figure 4 illustrates the Decomposition Theorem. The algorithm starts with the �rst

�rm and identi�es a set of �rms as �rm subgraph if it has less neighbors (more precisely,

if it is jointly linked to less neighbors, i.e., jF j < jN (F )j). In order to ensure that the
maximum matching is found, the algorithm has to start with jF j = 1. The number

jF j increases by one once, all �rm combinations with jF j have been considered (Hall�s
Theorem, 1935). The �rst subgraph in Figure 4 is the unmatched �rm G. The �rm

subgraph Gf1 is removed before the algorithm continues. Since there are no �rm subgraphs

with jF j = 2, the next �rm subgraph has three �rms, i.e., jF j = 3, The three �rms A, B
and C in this subgraph are collectively linked to workers 1 and 2, i.e., N (fA;B;Cg) =
f1; 2g and jN (fA;B;Cg)j = 2. Once the �rm-subgraph Gf2 is removed, it is easy to

identify that the remaining sets of �rms are collectively linked to more neighbors, i.e.,

jF j � jN (F )j. Hence, there are no further �rm subgraphs. The algorithm continues

by looking for worker subgraphs in the same way as it looked for �rm subgraphs. At

jW j = 4, the algorithm identi�es a worker subgraph with N (f3; 4; 5; 6g) = fD;E; Fg
and jN (f3; 4; 5; 6g)j = 3. Once the worker subgraph Gw1 is removed, and no further
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worker subgraph are found the algorithm stops by identifying all remaining subgraphs as

even subgraphs, i.e., in Figure 4 the remaining subgraph Ge1 is an even subgraph with

N (f7; 8g) = fH; Ig and jN (f7; 8g)j = 2 = jfH; Igj.
The decomposition theorem of Corominas-Bosch (2004) is also useful for the analysis of

network formation that we discuss in the next section, because it allows us to determine

which kind of links formed by an additional application will result in an extra match.

Since all �rms in even subgraphs and worker subgraphs are matched, only applications

from workers in worker subgraphs (which includes unmatched workers) to �rms in �rm

subgraphs (which include �rms without any application) will result in additional matches.

An alternative way to interpret the decomposition is in terms of splitting �rms and

workers into �strong�, �weak�and �even��rms and workers depending on their capability

to extract the maximum surplus from their matched partners (see Corominas-Bosch, 2004,

p. 51). Workers in �rm subgraphs are �strong�nodes, since they earn a wage equal to

their marginal product. Similarly, �rms in worker subgraphs are �strong�nodes, since

they are able to extract the maximum surplus conditional on the posted wage. Contrary,

workers in worker subgraphs and �rms in �rm subgraphs are �weak�nodes and workers

and �rms in even subgraphs are even nodes. The �rst part of the Decomposition Theorem

states that a worker (�rm) in a worker-(�rm-)subgraph can only be connected to �rms

(worker) in other worker-(�rm-)subgraphs, which implies that �weak�nodes can only be

linked to �strong�nodes. This also implies that �even�nodes cannot be linked to �weak�

nodes, or in terms of our model, that �rms in even subgraphs cannot be linked to workers

in worker subgraphs or that workers in even subgraphs cannot be linked to �rms in �rm

subgraphs. Thus, the outside option of workers in even subgraphs is at most the highest

posted wage, since they can only be linked to �rms in even subgraphs or worker subgraphs.

This last property is important to determine the wages in even subgraphs.

Lemma 4 (i) Firms in �rm subgraphs pay a wage equal to the marginal product.

(ii) Firms in worker subgraphs pay a wage no higher than the highest posted wage.

(iii) Firms in even subgraphs pay a wage no higher than the highest posted wage.

Proof: (i) and (ii) follow immediately from Lemmas 1 to 3. To prove (iii) consider the

following properties of an even subgraph. In an even subgraph that results from the

19



decomposition algorithm introduced by Corominas-Bosch (2004), workers are either linked

to �rms in even or in worker subgraphs. Part (ii) of the Lemma implies that the wage

o¤ers made by �rms in worker subgraphs to workers in even subgraphs are no higher than

the highest posted wage. To establish part (iii) it remains to be shown that �rms in even

subgraphs never have an incentive to o¤er a wage above the highest posted wage given

the Bertrand game outlined in section 3. A �rm only increases its wage o¤er above the

highest posted wage, if all workers that are linked to it ask for a wage above the highest

posted wage. According to Step 4 of the Bertrand game a worker only asks for a wage

above the highest posted wage, if at least one of the �rms, where the worker applied to,

o¤ers him a wage above the highest posted wage. The �rst �rm that o¤ers a wage above

the highest posted wage cannot be part of the even subgraph. If it were part of the even

subgraph, then another �rm that is also part of the even subgraph must have o¤ered a

wage above the highest posted wage before. Thus, no �rm in an even subgraph can be

the �rst to o¤er a wage above the highest posted wage. �

Directed search with ex post competition generates ex post wage dispersion similar to

Albrecht, Gautier and Vroman (2006). The knowledge about wages paid in the di¤erent

subgraphs allows us also to gain some insight into the payo¤s that �rms get in di¤erent

subgraphs. This will be useful for analyzing e¢ ciency in network formation.

4.3 E¢ cient network formation

In our setting, network formation is random. The symmetry and anonymity assumptions

do not allow workers to identify certain �rms and to condition their application decision

on �rms�names. The limited information available to workers leads to random network

formation.12 Workers might, however, know certain characteristics of �rms, for example

the posted wage, and condition their application decision on those observed characteristics.

We consider an urn-ball model of network formation, (see Albrecht, Gautier and Vro-

man, 2004) where workers randomly send out a applications to di¤erent �rms.13 Each

12Network formation is deterministic, if workers decide on whether to establish a link based on the

existing network. Examples for deterministic network formation are Kranton and Minehart (2001) and

Elliott (2011a).
13See also Kircher (2009) and Galeanos and Kircher (2009) and Fontaine (2004).
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application can be thought of as creating a link in a bipartite graph. This process di¤ers

from the seminal Erdös and Rényi (1960) random network formation model where each

link is formed with a certain probability and the number of applications that a worker

sends is a random variable. In our framework the number of applications that each worker

sends is given and the randomness comes from the fact that workers do not know where

other workers apply. The number of applications that a �rm receives is therefore a ran-

dom variable. Under directed search, the expected number of applications a �rm receives

will of course depend on the wage (or more generally on the wage mechanism) it posts.

If we make the labor market large in the usual way, by letting u; v ! 1 with v=u = �,

the number of applications are distributed according to a Poisson distribution with mean

a=�.

Di¤erent wage mechanisms will generate di¤erent distributions of networks and di¤er-

ent matchings. In equilibria where �rms post mechanisms that imply the same expected

payo¤, it is optimal for risk neutral workers to randomize between �rms. If �rms, however,

post mechanisms that imply di¤erent expected payo¤s, equilibrium requires that low-wage

�rms (who make more pro�t per worker, if they hire a worker) receive less applications

(so that they are less likely to hire) than high-wage �rms. Albrecht, Gautier and Vroman

(2006) for example show in a directed search framework where �rms post an auction with

a minimum bid that all �rms post the same wage (equal to the reservation wage), while

Galeanos and Kircher (2009) and Kircher (2009) show that, if �rms post �xed wages and

commit not to Bertrand compete ex post, �rms post di¤erent wages. Below, we show

that wage dispersion is socially not e¢ cient in terms of network formation.

4.3.1 Social planner�s problem

An unconstrained social planner will trivially assign each unemployed workers to a vacancy

such that the number of matches equals the short side of the market. If workers send out

multiple applications, the same �rst best assignment can be achieved, if the social planner

partitions the labor market into submarkets where the number of �rms and workers in

each submarket is no higher than the number of applications. However, if the social

planner faces the same coordination frictions as the market, he must assign symmetric
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strategies to identical workers implying that he can only decide about the probability with

which a worker sends an application to a subgroup of �rms.

We constrain the social planner to choose the set of �rm-subgroups C (where each

subgroup c is de�ned by a certain color), the measure of vacancies vc within each subgroup

c and the probability pc;i that a worker sends its i-th application to subgroup c 2 C. The
expected number of applications sent to subgroup c is equal to

ac = u
Xa

i=1
pc;i:

The total number of workers uc that applies to subgroup c can be less than the total

number of links (or applications ac) between �rms of subgroup c and unemployed workers,

if workers send more than one application to one subgroup. The total number of workers

that applied to subgroup c is given by uc = (1�
Qa
i=1 (1� pc;i))u, where

Qa
i=1 (1� pc;i)

equals the probability that a given unemployed worker does not send any application to

subgroup c. While vacancies can by de�nition only be part of one subgroup, workers can

be linked to at most a di¤erent subgroups depending on where they send their applications

to. Workers are, however, only part of one subgraph (worker-, �rm- or even subgraph).

Subgraphs can, therefore, contain vacancies of di¤erent subgroups, if the workers that

belong to that subgraph are linked to vacancies in di¤erent subgroups.

The maximum matching that is achieved by ex-post competition implies that the

number of matches within each subgroup c equals the number of workers in �rm subgraphs

ufc , the number of �rms in worker subgraphs v
w
c and the number of �rms (or workers) in

even subgraphs vec or (u
e
c) i.e. Mc = u

f
c +v

w
c +v

e
c . Using the fact that the sum of vacancies

equals the sum of vacancies in �rm-, worker- and even subgraphs, i.e. vc = vfc +v
w
c +v

e
c , we

can rewrite the expected number of matches in a subgroup c as the number of vacancies

in subgroup c minus the number of vacancies in subgroup c in �rm subgraphs that are

not matched, i.e.,

Mc = vc �
�
vfc � ufc

�
: (1)

Coromina-Bosch�s Decomposition Theorem allows us also to derive the �rst derivatives

of the matching function with respect to an additional application.14 Since all �rms in
14Note, that a marginal increase in the expected number of applications results form a marginal increase

in the application probability pc;i.
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worker- and even subgraph are matched, only applications to �rms in �rm subgraphs can

result in additional matches. In addition, an application will only lead to an additional

match, if the worker who sends the application is not part of an even or �rm subgraph

(since all workers in even or �rm subgraphs are already matched). In other words the

worker must be part of a worker subgraph. The probability that a vacancy is part of a

�rm subgraph in subgroup c is vfc =vc and the probability that a worker is part of a worker

subgraphs is uw=u, where uw is the number of unemployed workers in worker subgraphs.

An additional application of a randomly selected worker therefore leads with the following

probability to an additional match,

4Mc

4ac
=
vfc
vc

uw

u
: (2)

Any additional match that is formed by a link of a vacancy in a �rm subgraph and a

worker in a worker subgraph decreases the excess number of �rms in �rm subgraphs, i.e.

decreases vfc �ufc . If the excess number of �rms in a particular subgrapth is equal to one,
then this additional match turns vacancies located in �rm subgraphs into vacancies in

even-subgraphs. Thus, an additional link decreases the expected number of �rms in �rm

subgraphs. Furthermore, any additional match that is formed by a link between a vacancy

in a �rm subgraph and a worker in a worker subgraph reduces the number of workers in

worker subgraphs uw. This implies that the number of matches in any subgroup c is a

concave function of the number of applications, i.e.,

42Mc

4a2c
=
1

vc

uw

u

4vfc
4ac

+
vfc
vc

1

u

4uw
4ac

< 0, since
4vfc
4ac

< 0 and
4uw
4ac

< 0. (3)

Although we do not know the exact form of the matching function, these properties of

the matching function are su¢ cient to characterize the necessary and su¢ cient conditions

for e¢ cient network formation.

The social planner chooses the set of �rm-subgroups C, the measure of �rms vc within

each subgroup c and the total number of applications ac that unemployed workers send

to vacancies in each subgroup c, i.e.,

max
C;vc;ac

X
c2C

Mc:
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Note, that choosing the total number of applications ac is (by the law of large numbers)

equivalent to choosing the probability pc;i that a worker sends its i-th application to

subgroup c, since symmetry requires that all workers use the same application strategy.

Theorem 2: (i) Network formation is e¢ cient, if and only if

vfc
vc
=
vf

v
for all c 2 C: (4)

which is equivalent to having the same application intensity in each subgroup, i.e.,

vc
ac
=
v

au
for all c 2 C: (5)

(ii) E¢ cient network formation is independent of the set C of subgroups and the number

of vacancies vc in each subgroup.

Proof: We prove part (i) by showing that the number of matches is only maximized,

if vfc =vc = vf=v for all c 2 C. Suppose that the probability of a �rm being in a �rm

subgraph is higher in the red subgroup r 2 C than in the blue subgroup b 2 C, i.e.

vfr =vr > v
f
b =vb.

15 This implies according to equation (2) the following relationship for the

marginal matches generated by an additional application, i.e.,

vfr
vr
>
vfb
vb
() 4Mr

4ar
>
4Mb

4ab
:

Given that the matching function is concave in the number of applications, see equation

(3), the total number of matches in subgroups r and b can be increased by redirecting

applications from subgroup b to subgroup r, until

4Mr

4ar
=
4Mb

4ab
() vfr

vr
=
vfb
vb
:

Since the same argument applies for all c 2 C, condition (4) must hold in order to

maximize the total number of matches for a given set of subgroups C.

Condition (4) holds, because the number of applications ac directed to each subgroup

is adjusted accordingly. This implies that the number of applications to each subgroup is

15Note, if no worker applied to subgroup c, then all �rms in subgroup c are in �rm-subgraphs, i.e.

vfc =vc = 1.
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proportional to the number of vacancies in each subgroup, i.e.,

ac
vc
=
au

v
for all c 2 C:

To prove part (ii) we show that conditional on vfc =vc = vf=v and ac=vc = au=v for

all c 2 C, the total number of matches is independent of the number of subgroups C
and the number of vacancies vc within each subgroup. If market tightness is the same in

all subgroups, i.e. condition (5) holds by symmetry, the number of unemployed workers

matched with vacancies in each subgroup must also be proportional to the number of

vacancies in each subgroup. This is also true for each subtype of matched workers, i.e.,

for workers in worker-, �rm- and even subgraphs. Thus, the number of matched workers ufc
that are part of �rm subgraphs in subgroup c are proportional to the number of vacancies

in subgroup c, i.e.,
ufc
vc
=
uf

v
for all c 2 C:

Using this last equality and condition (4) implies that the total number of matches is

independent of the set C of subgroups and the number of vacancies vc in each subgroup,

i.e., X
c2C

Mc =
X

c2C

�
vc �

�
vfc � ufc

��
=

X
c2C

vc

�
1�

�
vfc
vc
� u

f
c

vc

��
=

�
1�

�
vf

v
� u

f

v

��X
c2C

vc

= v �
�
vf � uf

�
:

where the third step applies equality (4).�

The e¢ ciency condition for network formation in Theorem 2 implies that all vacancies

should have the same probability to be contacted by a worker. This makes the network as

balanced as possible and therefore minimizes the fraction of �rms that are not matched.

Shimer (2005) derives a similar condition for a directed search environment where work-

ers can apply to only one �rm. In the setting by Galeanos and Kircher (2009), where

workers can send more than one application but �rms can contact only one worker, the
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total number of matches is also maximized, if all �rms have the same probability to be

contacted by a worker. In contrast, the e¢ ciency condition in Kircher (2009), where

workers send multiple applications and �rms can contact all workers, di¤ers from our

e¢ ciency condition, because he constraints the social planner to let a subgroup of �rms

always match �rst (i.e. be in a high location). Those �rms in a high location should be

more likely to be contacted by a worker, since this reduces the probability that a worker

is not available for hiring at a �rm in a low location (where �rms can only match, if

their candidates do not have an o¤er from a �rm in a high location). Allowing the social

planner to also choose the network clearing mechanism, Corollary 2 shows that it is not

optimal to let a subgroup of �rms match �rst. Thus, Kircher�s (2009) e¢ ciency result

di¤ers from our e¢ ciency result, because he restricts the social planner to use a network

clearing mechanism that does not allow for ex post Bertrand competition.

The second part of Theorem 2 also implies that the total number of matches does not

change, if there are no �rm subgroups. The simulated examples in the next section show

that this property only holds for a large number of workers and �rms. If the labor market

is small, the expected number of matches decreases, if �rms are partitioned into di¤erent

subgroups. Thus, random search, where no subgroups exist, generates a socially e¢ cient

distribution of networks for any market size.

Corollary 3: Random search leads to e¢ cient network formation.

Random search leads to evenly distributed links between workers and �rms and there-

fore minimizes the expected number of workers in worker subgraphs and the expected

number of �rms in �rm subgraphs. A large part of �rms in �rm subgraphs are �rms

without an application.16 The following Proposition shows when this event is least likely.

Proposition 1: If workers fully randomize, the fraction of vacancies without applicants

is minimized.

Proof. See Appendix A.

16As we will show in the next section, if a is small relatively to u and v, and � = 1, this is the main

reason for a �rm not to hire a worker.
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Although random search leads to e¢ cient network formation, Theorem 2 does not

directly imply that directed search with di¤erent posted wages and ex-post competition

leads to ine¢ cient network formation. Using Lemma 4, however, implies that the equal

pro�t condition for high- and low-wage �rms violates condition (4), which is necessary to

get e¢ cient network formation.

Proposition 2: If equally productive �rms post di¤erent wages, network formation is not

e¢ cient.

Proof:We prove this Proposition by showing that the equal pro�t condition, which must

hold if equally productive �rms post di¤erent wages, implies vfL=vL > v
f
H=vH , if wH > wL.

Lemma 4 implies that all �rms earn zero pro�t, if they are part of a �rm subgraph, since

they pay a wage equal to the worker�s marginal product. High wage �rms in even or

worker subgraphs earn 1 � wH . Low wage �rms earn more. If they are part of an even
(or worker-)subgraph, they pay with probability �e (or �w) their low posted wage wL and

with probability 1��e (or (1� �w)) the high posted wage wH . Note that the appropriate
probabilities satisfy � > 0, since there exists a positive probability that a low wage �rm

does not have to compete with a high wage �rm for a worker in an even or a worker

subgraph.

The equal pro�t condition of high and low wage �rms is, therefore, given by

vfH
vH
[1� 1] +

�
veH
vH
+
vwH
vH

�
[1� wH ]

=
vfL
vL
[1� 1] + v

e
L

vL
[1� �ewL � (1� �e)wH ] +

vwL
vL
[1� �wwL � (1� �w)wH ]

Rearranging and noting that v
f
c

vc
+ vec

vc
+ vwc

vc
= 1 implies"

vfL
vL
� v

f
H

vH

#
[1� wH ] =

�
vwL
vL
�w +

veL
vL
�e
�
[wH � wL] :

Since wH > wL, it follows immediately that v
f
L=vL > v

f
H=vH . �

4.3.2 Simulations

To illustrate that randomization is desirable when agents do not know the network we

numerically compare randomization with the case where a subset of the vacancies has a
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higher arrival rate of applications. The details of our algorithm are given in Appendix

B. The basic steps of the algorithm are as follows. First, we color a fraction q of the

vacancies blue and a fraction (1 � q) green and let each worker send one application
to a blue vacancy and the other (a � 1) applications to a green one. Each blue vacancy
receives an application from worker 1 with probability 1=qv and the same for workers 2,...,

u. For the a = 3 example, each green vacancy gets with probability, (a� 1) =(1 � q)v;
the second application of worker 1 and if it did not get the second one, it gets the third

one with probability (a� 2) = ((1� q)v � 1) etc. The same holds for the other workers.
For q = 1=a, the arrival rate at each �rm is the same and the only di¤erence to full

randomization is that the market is partitioned. Since we want to focus on network

formation here, we assume maximum matching on each realized network. If for example

blue vacancies would have a priority in matching (e.g. if they o¤er higher wages) as in

Kircher (2009), the number of matches could be lower than we report here.

a pn E(M) var(M) I=v J=u

joint

2 1:343 10:416 0:812 0:012 0:061

3 0:377 11:554 0:382 0:045 0:343

6 0:003 11:997 0:003 0:000 0:003

partitioned (q = 1
3
)

2 1:748 10:064 0:875 0:187 0:684

3 0:405 11:533 0:387 0:046 0:347

6 0:124 11:876 0:111 0:010 0:122

partitioned (q = 1
6
)

2 2:851 9:137 0:945 0:242 0:675

3 0:719 11:206 0:540 0:075 0:510

6 0:005 11:995 0:005 0:000 0:005

Table 2: Simulation results for v = u = 12

Let the fraction of �rms in �rm subgraphs be I=v and the fraction of workers in worker

subgraphs be J=u. Let pn be the probability that a �rm receives no workers, and �nally

let var(M) be the variance of applicants that a particular �rm receives. Below we present
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simulation results for v = u = 12. We generate a sample of 1000 networks for each case.

In Table 2 below, we present the probability that a �rm receives no workers pn; the mean

and variance of the number of matchesM , the average number of �rms in �rm subgraphs

and the average number of workers in worker subgraphs for di¤erent values of a, q:

We see that partitioning the market reduces the expected number of matches but that

for q = 1
a
(those rows are in bold), the arrival rate at each �rm is the same and the

di¤erence with the fully random case is relatively small. We also see that if a is large

relatively to v, that partitioning hardly matters. Firms are swamped with applications

and almost all �rms and workers are connected, implying that the number of matches is

close to 12.17

5 Final remarks

This paper contributes to one of the fundamental question in economics namely under

which conditions do decentralized markets generate constraint e¢ cient outcomes. Our

focus is on the labor market where it is common that unemployed workers simultaneously

send multiple applications which creates a bipartite network between workers and �rms.

In such an environment there are two coordination frictions, (i) workers do not know where

other workers apply to and (ii) �rms do not know which workers are considered by other

�rms. We show that the second coordination friction between �rms can be eliminated, if

wages in the decentralized market are determined by ex-post Bertrand competition and if

�rms can go back and forth between their applicants. The number of matches on a given

network that is formed, if workers send multiple applications to �rms, equals the maximum

matching possible. The �rst coordination friction is minimized if the decentralized market

ensures that workers apply to each vacancy with equal probability. This implies that an

equilibrium with wage dispersion is ine¢ cient in terms of network formation.

17In the working paper version of this paper, we plot the distribution of matches for the case where all

�rms are part of one group (i.e., workers fully randomize) and for the case where 1/3 of the vacancies are

blue and each worker sends one of their applications to a blue vacancy. We �nd that the cdf in the full

randomization case �rst order stochastically dominates the one in the partitioning case. Under random-

ization, the probability that less than 11 matches are formed is about 70% while under randomization

this is only about 50%.
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Although a wage mechanism that has ex-post Bertrand competition and no wage

dispersion is e¢ cient in terms of network formation and clearing, it will most likely not

be e¢ cient in other dimensions like vacancy creation and search intensity (number of

applications). Kircher (2009) shows for example that wage commitment without ex post

competition implies wage dispersion and that the resulting equilibrium is e¢ cient in terms

of search intensity and �rm entry. Combining those results suggests that there may not

exist a wage mechanism that by itself generates the constrained e¢ cient outcome.

An important and interesting extension for future research is to allow for heterogeneity

in �rm and or worker types, see Shimer (2005). We conjecture that this makes ex post

Bertrand competition equally desirable as in a homogenous �rm world, because high

productive �rms should be able to outbid low productive �rms. Furthermore, this will

make directed search more desirable than in our setting because high productive �rms

should be able to signal their types in order to get matched with a higher probability.
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6 Appendix

A Proof of Proposition 1 (minimizing the fraction of

�rms with no workers)

Let � be the probability that a vacancy receives no applicants, if workers fully randomize,

� =
�
1� a

v

�u
:

In a large labor market with v; u ! 1; v
u
! � (which we will assume from now on) this

simpli�es to

� = exp
�
�a
�

�
:

Next, suppose that some workers do not fully randomize over all vacancies. Suppose that

qv vacancies are blue and that workers always send one of their applications to a blue
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vacancy and the other ones to one of the (1 � q)v remaining vacancies. First, consider
a = 2. The total fraction of vacancies without applicants is then,

�1q + �2 (1� q) =
�
q exp

�
1

q

�
+ (1� q) exp

�
1

(1� q)

��
exp

�
�1
�

�
:

Applying Jensen�s inequality to the exponential function implies,�
q exp

�
1

q

�
+ (1� q) exp

�
1

(1� q)

��
> exp (2) ;

so that the number of �rms without any application is minimized at q = 1
a
= 1

2
. So for

a = 2; the number of �rms without candidates is smallest if workers apply to each �rm

with equal probability (i.e. when search is random and or there is no wage dispersion).

The same statement is true for any number of applications a > 2, since Jensen�s inequality

implies,  
aX
i=1

qi exp

�
1

qi

�!
> exp (a) ;

where
Xa

i=1
qi = 1:

B Simulation algorithm and decomposing a graph

into subgraphs

In our simulations, we apply the following algorithm where step 2 follows Corominas-Bosch

(2004) which is based on Hall�s marriage theorem.

Step 1: Take a; u; v as given and let a < v. Generate a distribution of networks for 3

cases, (i) complete randomization; workers send their �rst application with probability 1
v

to a particular �rm and their next one with probability 1
v�1 to the remaining v� 1 �rms,

... and their last one with probability 1
v�a to the remaining v � a �rms, (ii) partition the

market in two groups of vacancies, A and B. Place a fraction q of the vacancies in group

A and a fraction (1� q) in group B and let each worker send one application to a vacancy
in group A and the other (a� 1) applications to group B. Each �rm in group A receives

an application from worker 1 with probability 1=qv and the same for workers 2,...u. For

the a = 3 example, each �rm in group B gets with probability (a� 1) =(1�q)v the second
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application of worker 1 and if it did not get the second one, it gets the third one with

probability (a� 2) = ((1� q)v � 1) etc. The same holds for the other workers. For q = 1
a
,

the arrival rate at each �rm is the same and the only di¤erence with (i) is that the market

is partitioned.

Step 2: Determine the maximum number of matches on each network. As we showed

before, ex post Bertrand competition is su¢ cient to realize this. The maximum matching

can be found using the algorithm of Corominas-Bosch (2004) which we summarize below

Step 2a: Eliminate all vacancies that did not receive any applicants.

Step 2b: For k = 2; :::v, identify the groups of k vacancies that are jointly linked

to less than k workers. Remove and collect them. We refer to those subgraphs as �rm

graphs.

Step 2c: Repeat step 2 but now reverse the role of workers and �rms.

Step 2d: When all those subgraphs are removed, the remaining ones are balanced

connected graphs (with an equal number of workers and �rms)

Step 3: Index the �rm graphs by f and the worker graphs by w and denote the total

number of �rm graphs by F; the total number of worker graphs by W and the number

of even graphs by E, uf is number of workers in �rm graph f , vw is number of �rms in

worker graph w: f(i) is the number of �rms in �rm graph f , w(j) is number of workers

in worker graph w. The number of matches, M , is then given by,

M =

FX
f=1

uf +

WX
w=1

vw +

EX
e=1

ue;

the fraction of �rms in �rm graphs is

I=v =
FX
f=1

f(i)

and the fraction of workers in worker graphs is

J=u =
WX
w=1

w(j):
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