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Abstract

We present a method for estimating Markov dynamic models with unobserved state
variables which can be serially correlated over time. We focus on the case where all
the model variables have discrete support. Our estimator is simple to compute because
it is noniterative, and involves only elementary matrix manipulations. Our estimation
method is nonparametric, in that no parametric assumptions on the distributions of the
unobserved state variables or the laws of motions of the state variables are required.
Monte Carlo simulations show that the estimator performs well in practice, and we
illustrate its use with a dataset of doctors’ prescription of pharmaceutical drugs.

1 Introduction

In this paper, we consider nonparametric identification in Markovian dynamic models where
the agent may have a serially-correlated unobserved state variable. These models have been
the basis for much of the recent empirical applications of dynamic models. Throughout, by
“unobservable”, we mean variables which are observed by agents, and affect their decisions,
but are unobserved by the researcher.

Consider a dynamic optimization model described by the sequence of variables

{(
Wt+1, X

∗
t+1

)
, (Wt, X

∗
t ) , ..., (W1, X

∗
1 )
}

whereWt denotes the observed variables for the optimizing agent in period t, andX∗t denotes
the unobserved variables, which we allow to vary over time and be serially-correlated.
∗The authors can be reached at yhu@jhu.edu, mshum@caltech.edu, and wtan@notes.cc.sunysb.edu. We

thank Wei Zhao for extraordinary research assistance.
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In empirical dynamic models, the observed variables Wt typically consists of two types
of variables:

Wt ≡ (Yt,Mt),

where Yt denotes the choice, or control variable in period t, and Mt denotes the state
variables which are observed by both the optimizing agent and the researcher. We assume
that the serially-correlated variable X∗t is observed by the agent prior to making his choice
of Yt in period t, but the researcher never observes X∗t . For simplicity, we assume that the
variables Yt,Mt, X

∗
t are each scalar-valued.

Main Results: This paper focuses on the identification and estimation of the density

f
(
Wt, X

∗
t |Wt−1, X

∗
t−1

)
, (1)

which corresponds to the law of motion of the choice and state variables along the optimal
path of the dynamic optimization problem. In Markovian dynamic settings, the law of
motion can be factored into two components of interest:

f
(
Wt, X

∗
t |Wt−1, X

∗
t−1

)
= f

(
Yt,Mt, X

∗
t |Yt−1,Mt−1, X

∗
t−1

)
= f (Yt|Mt, X

∗
t )︸ ︷︷ ︸

CCP

· f
(
Mt, X

∗
t |Yt−1,Mt−1, X

∗
t−1

)︸ ︷︷ ︸
law of motion for

state variables

.
(2)

The first term denotes the conditional choice probabilities (CCP) for the agents’ actions in
period t, conditional on the current state (Mt, X

∗
t ). In the Markov setting, agents’ optimal

strategies typically depends just on the current state variables (Mt, X
∗
t ), but not past values.

The second term is the Markovian law of motion for the state variables (Mt, X
∗
t ), along the

dynamically optimal path. As shown in Hotz and Miller (1993) and Magnac and Thesmar
(2002), once these two structural components are known, it is possible to recover the “deep”
structural elements of the model, including the period utility functions.

In Section 2, we show that, under reasonable assumptions, three observations of {Wt,Wt−1,Wt−2}i
across many agents i suffices to identify the law of motion f(Wt, X

∗
t |Wt−1, X

∗
t−1). Moreover,

when the model variables (Yt,Mt, X
∗
t ) are all discrete, the identification arguments are con-

structive, and lead naturally to a simple estimation procedure involving only elementary
matrix manipulations.
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Section 3 contains results from simulation exercise, which highlights the good perfor-
mance of our estimator even in moderately-sized samples. In section 4, we present an
empirical illustration to advertising and doctors’ prescription behavior in a pharmaceutical
drug market.

Related literature Recently, there has been a growing literature related to identification
and estimation of dynamic optimization models. Papers include Hotz and Miller (1993),
Rust (1994), Aguirregabiria and Mira (2002), Magnac and Thesmar (2002), Hong and Shum
(2009), Kasahara and Shimotsu (2009).1 Our main contribution relative to this literature
is to provide nonparametric identification results for the case where there are agent-specific
unobserved state variables, which are serially correlated over time.2

Furthermore, our identification procedure is novel because it is based on recent develop-
ments in measurement error econometrics. Specifically, we show that Hu’s (2008) identifica-
tion results for misclassification models can be applied to Markovian dynamic optimization
models, and we use those results to establish nonparametric identification.

A few recent papers have considered estimation methodologies for dynamic models with
serially-correlated unobservables. Imai, Jain, and Ching (2009) and Norets (2009) consider
Bayesian estimation of these models, and Arcidiacono and Miller (2006) develop an EM-
algorithm for estimating dynamic games where the unobservables are assumed to follow a
discrete Markov process. Siebert and Zulehner (2008) estimate a dynamic product choice
game for the computer memory industry where each firm experiences a serially-correlated
productivity shock, and Gallant, Hong, and Khwaja (2009) and Blevins (2008) develops
simulation estimators for dynamic games with serially-correlated unobservables, utilizing
state-of-the-art recursive importance sampling (“particle filtering”) techniques. However,
all these papers focus on estimation of parametric models in which the parameters are
assumed to be identified, whereas this paper concerns estimation based on nonparametric
identification results.

Finally, the models we consider in this paper fall under the rubric of “Hidden state”
Markov (HSM) models, which have been considered in the computer science and machine
learning literature (see Ghahramani (2001) for a survey). The identification results con-
tained in this paper are new relative to this literature; moreover, the estimator we propose

1A parallel literature has also developed in dynamic games; see Aguirregabiria and Mira (2007), Pe-
sendorfer and Schmidt-Dengler (2008), Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and Berry
(2007), and Bajari, Chernozhukov, Hong, and Nekipelov (2007).

2The class of models considered in this paper also resemble models analyzed in the dynamic treatment
effects literature in labor economics (eg. Cunha, Heckman, and Schennach (2006), Abbring and Heckman
(2007), Heckman and Navarro (2007)).
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here has the virtue of being non-iterative, which makes it attractive relative to the EM-
algorithm, an iterative procedure which is typically used to estimate HSM models.

2 Nonparametric identification in discrete dynamic models

Here we present our main identification result. For each agent i, {W1, . . . ,WT }i is observed,
for T ≥ 3. Let Ω<t =

{
Wt−1, ...,W1, X

∗
t−1, ..., X

∗
1

}
denote the history of the process up to

period t− 1.

Assumption 1

First-order Markov: f
(
Wt, X

∗
t |Wt−1, X

∗
t−1,Ω<t−1

)
= f

(
Wt, X

∗
t |Wt−1, X

∗
t−1

)
; (3)

Assumption 2 Limited feedback

(i) f
(
Yt|Mt, X

∗
t , Yt−1,Mt−1, X

∗
t−1

)
= f (Yt|Mt, X

∗
t ) ,

(ii) f
(
X∗t |Mt, Yt−1,Mt−1, X

∗
t−1

)
= f

(
X∗t |Mt,Mt−1, X

∗
t−1

)
.

The first-order Markov assumption is standard in most empirical dynamic models, be-
ginning from the the genre-creating papers of Rust (1987), Pakes (1986), Miller (1984),
Keane and Wolpin (1994). Assumption (2) limits the feedback patterns in the Markov law
of motion f

(
Wt, X

∗
t |Wt−1, X

∗
t−1

)
. Assumption 2(i) is motivated completely by the state-

contingent aspect of the optimal policy function in Markov dynamic optimization models.
This assumption is actually stronger than necessary for identification, but it allows us to
achieve identification only using three periods of data.

Assumption 2(ii) implies that X∗t is independent of Yt−1 conditional on Mt, Mt−1 and
X∗t−1. Hence, it eliminates direct feedback from Yt−1 to X∗t , but it allows for indirect
feedback via Mt and Mt−1. In practice, this assumption should be verified on a model-by-
model basis.3

Next, we restrict attention to stationary Markovian dynamic models. In a stationary
setting, the law of motion f

(
Wt, X

∗
t |Wt−1, X

∗
t−1

)
is time-invariant. In what follows, we will

3The limited feedback assumption here is more restrictive than in Hu and Shum (2008), which used the
limited feedback assumption

f (W ∗
t |X∗t , Wt−1, X

∗
t−1) = f (W ∗

t |X∗t , Wt−1) .

However, there is a tradeoff in that the extra restrictions in this paper allow us to achieve identification given
only three time-contiguous observations per agent, whereas four observations are required for identification
in Hu and Shum (2008).
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remove time subscripts from time-invariant functions, and just use primes (′’s) to denote
next period values.

Assumption 3 Stationarity of Markov kernel:

f
(
Wt, X

∗
t |Wt−1, X

∗
t−1

)
= f

(
W ′, X∗′|W,X∗

)
, ∀ 0 ≤ t ≤ T.

Finally, this paper focuses on the case where all the model variables are discrete:

Assumption 4 For all periods t, Yt and X∗t are discrete-valued with J points of support.
Without loss of generality,4 we assume that their common support is {1, 2, 3, . . . , J}.

2.1 Identification argument: overview

The conditional independence assumptions 1-2 imply that the Markov law of motion (1)
can be factored into

f
(
W ′, X∗′|W,X∗

)
= f

(
Y ′,M ′, X∗′|Y,M,X∗

)
= f

(
Y ′|M ′, X∗′

)︸ ︷︷ ︸
CCP

· f
(
X∗′|M ′,M,X∗

)︸ ︷︷ ︸
Law of motion for X∗

· f
(
M ′|Y,M,X∗

)︸ ︷︷ ︸
Law of motion for M

. (4)

We will identify these three components of f
(
Wt, X

∗
t |Wt−1, X

∗
t−1

)
in turn.

Consider the joint distribution of {Yt,Mt, Yt−1,Mt−1, Yt−2}, which is observed in the
data. As shown in the Appendix, Assumptions 1-2 imply that

f (Yt,Mt, Yt−1|Mt−1, Yt−2)

=
∑
X∗t−1

f
(
Yt|Mt,Mt−1, X

∗
t−1

)
f
(
Mt, Yt−1|Mt−1, X

∗
t−1

)
f
(
X∗t−1|Mt−1, Yt−2

)
. (5)

The first two functions on the right-hand side of the equation can be written in terms of
the three components of f

(
W ′, X∗′|W,X∗

)
from equation (4):

f
(
Yt|Mt,Mt−1, X

∗
t−1

)
=
∑
x∗t

f (Yt|Mt, X
∗
t )︸ ︷︷ ︸

CCP

· f
(
X∗t |Mt,Mt−1, X

∗
t−1

)︸ ︷︷ ︸
Law of motion for X∗

f
(
Mt, Yt−1|Mt−1, X

∗
t−1

)
= f

(
Mt|Yt−1,Mt−1, X

∗
t−1

)︸ ︷︷ ︸
Law of motion for M

· f
(
Yt−1|Mt−1, X

∗
t−1

)︸ ︷︷ ︸
CCP

.
(6)

4This is without loss of generality because our identification is fully nonparametric, and does not rely
on particular functional forms. That is, for any arbitrary function f(Y1t), where Y1t has discrete support˘
y1, y2 . . . , yJ

¯
we could define another function f̃(ỹ) such that f̃(ỹ) = f(Y1t = yỹ) for all ỹ = 1, . . . , J .
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Our identification argument proceeds by first showing how to identify the functions on the
left-hand side of Equation (6) from the observed distribution of f (Yt,Mt, Yt−1|Mt−1, Yt−2).
Subsequently, we show that once these LHS elements are identified, then so are the equi-
librium CCP’s and laws of motions, and hence also Markov equilibrium law of motion
f
(
W ′, X∗′|W,X∗

)
.

2.2 Identification argument: Details

Our identification argument is related to the recent econometric literature on misclassifi-
cation models. Hu (2008) shows that, in a general nonlinear setting with misclassification
error, three “measurements” of a latent variable are enough to achieve identification. For
fixed values of (Mt,Mt−1), we see that (Yt, Yt−1, Yt−2) enter equation (5) separately in the
first, second, and third terms. Hence, we use (Yt, Yt−1, Yt−2) as three “measurements” of
the latent variable X∗t−1.

Given the discreteness assumption (4), all the functions in equation (5) are probability
mass functions (abbreviated pmf afterwards), which can be represented in the form of
matrices. In what follows, we use capital letters to denote random variables, while lowercase
letters denote a particular realization. For any given (mt, yt−1,mt−1) in the support of
(Mt, Yt−1,Mt−1) and i,j, k, l ∈ S ≡ {1, 2..., J}, we define the following J-dimensional square
matrices

A =
[
f (yt = i,mt, yt−1|mt−1, yt−2 = j)

]
i,j

; B =
[
f(yt = i|mt,mt−1, x

∗
t−1 = k)

]
i,k

;

C =
[
f(x∗t−1 = k|mt−1, yt−2 = j)

]
k,j

; D1 = diag

{[
f(yt−1|mt,mt−1, x

∗
t−1 = k)

]
k

}
;

D2 = diag

{[
f(mt|mt−1, x

∗
t−1 = k)

]
k

}
; E =

[
f (yt = i,mt|mt−1, yt−2 = j)

]
i,j

;

F =
[
f
(
x∗t = l|mt,mt−1, x

∗
t−1 = k

) ]
l,k

; G =
[
f (yt = i|mt, x

∗
t = l)

]
i,l

.

(7)

The D1 and D2 matrices are diagonal matrices. Among the above matrices, only A and E
are observed, but the rest are unobserved. Clearly, the identification of a matrix, e.g., B,
is equivalent to that of its corresponding pmf, e.g., f

(
Yt|mt,mt−1, X

∗
t−1

)
.

Given the matrix definitions above, equation (5) can be written as (for fixed (mt, yt−1,mt−1)):

A = B ·D1 ·D2 ·C. (8)
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Integrating out yt−1 in equation 5 yields

f (Yt,Mt|Mt−1, Yt−2) =
∑
X∗t−1

f
(
Yt|Mt,Mt−1, X

∗
t−1

)
f
(
Mt|Mt−1, X

∗
t−1

)
f
(
X∗t−1|Mt−1, Yt−2

)
(9)

which, in matrix notation, is (for any given (mt,mt−1)),

E = B ·D2 ·C. (10)

If the matrix E is invertible, then we could postmultiply equation (8) by the inverse of
equation (10) to get

A ·E−1 = B ·D1 ·B−1 (11)

The right-hand side of the above equation is an eigenvalue-eigenvector decomposition of
the observed matrix A ·E−1. In this decomposition, the columns of B (corresponding to
the pmf’s f

(
Yt|mt,mt−1, X

∗
t−1

)
) are the eigenvectors, and the diagonal elements in D1

(corresponding to the functions f
(
yt−1|mt,mt−1, X

∗
t−1

)
) are the eigenvalues.

The next two assumptions ensure the existence and uniqueness of this decomposition.
Both assumptions are directly testable from the observed data {Wt}.

Assumption 5 For any (mt, yt−1,mt−1), A is invertible.

Assumption 6 Diag(D1) contains J distinctive values. That is, for any (yt−1,mt,mt−1),
and x∗t−1 6= x̃∗t−1 ∈ S, f(yt−1|mt,mt−1, x

∗
t−1) 6= f(yt−1|mt,mt−1, x̃

∗
t−1).

From equation (8), the invertibility of A (assumption 5) immediately implies the invert-
ibility of B, C, D1, and D2. Hence, from equation (10), E is invertible, and its inverse is
given by C−1 ·D2

−1 ·B−1. Hence, the eigenvalue-eigenvector decomposition (11) is valid.
Assumption 6 ensures that all the J eigenvalues in the decomposition, corresponding to

the elements of Diag(D1) are distinct. This is testable from the data because it requires
the observed matrix

(
A ·E−1

)
to have J2 distinctive eigenvalues. This amounts to testing

whether the characteristic polynomial (the determinant of λI −A ·E−1) has J2 distinctive
roots. If all the J2 eigenvalues are distinct, their corresponding eigenvectors are linearly
independent, and the decomposition (11) is unique up to the ordering of the eigenvalues.
But like all such decompositions, it is unique only up to a normalization and an ordering of
the eigenvectors. Because each eigenvector in B is a pmf, we should appropriately normalize
each column so that it sums to one.
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Determining the right ordering of the eigenvectors in B is important for the identification,
because each column corresponds to particular values for the unobserved X∗t−1. In order
to pin down the right ordering, additional assumptions must be made. Typically, these
assumptions will depend on the type of model under consideration.

Here we make one which is quite general, and should be satisfied by many models. Since
f(Yt|mt,mt−1, X

∗
t−1), is identified from the B matrix, we assume that this marginal pmf is

stochastically increasing in X∗t :

Assumption 7 f
(
Yt|mt,mt−1, x

∗
t−1

)
is stochastically increasing (in the sense of first-order

stochastic dominance) in x∗t−1, for fixed (mt,mt−1).

Given this assumption, we can pin down the values of x∗t−1 corresponding to each column
of the eigenvector matrix B as follows. For each column j, with elements B·,j , we compute
the column mean:

µj ≡
J∑
i=1

i×Bi,j .

Assumption 7 implies that the columns of B should be ordered such that the column means
µj are increasing. Hence, without loss of generality, we can set x∗t−1(j), the value of x∗t−1

corresponding to column j, to the rank of its column mean, i.e.

∀ j : x∗t−1(j) = rankµ1,... ,µJ
µj .

From the eigenvalue-eigenvector decomposition in Eq. (11), we can identify the B and
D1 matrices. Since B and D1 are invertible, the product H ≡ D2 ·C is also identified as
D1
−1 · B−1 · A for any (mt, yt−1,mt−1). Because D2 is a diagonal matrix, the matrix H

corresponds to the product of two probability mass functions, for any (mt,mt−1):

H =
[
f
(
mt|mt−1, x

∗
t−1 = k

)
· f(x∗t−1 = k|mt−1, yt−2 = j)

]
k,j

. (12)

The following claim (proved in the appendix) shows that identification of H implies identi-
fication of D1 and C:

Claim (*) Identification of H implies identification of D2 and C.
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Consequently, we can identify f
(
Mt, Yt−1|Mt−1, X

∗
t−1

)
as

f
(
Mt, Yt−1|Mt−1, X

∗
t−1

)
= f

(
Yt−1|Mt,Mt−1, X

∗
t−1

)
f
(
Mt|Mt−1, X

∗
t−1

)
where the two functions on the right-hand side correspond to the matrices D1 and D2, re-
spectively. At this point, we have identified f

(
Mt, Yt−1|Mt−1, X

∗
t−1

)
and f

(
Yt|Mt,Mt−1, X

∗
t−1

)
,

which are the two functions on the left-hand side of equations (6), thus completing the first
part of our identification argument.

Next, using the second equation in (6), we can factor f
(
Mt, Yt−1|Mt−1, X

∗
t−1

)
to recover

the CCP f (Y ′|M ′, X∗′), and the law of motion for M , f (M ′|Y,M,X∗). These are two of
the three components which constitute the Markov equilibrium law of motion in Eq. (4).

For the third component f
(
X∗′|M ′,M,X∗

)
, the law of motion for the unobserved state

variables X∗, we use the first equation in (6). This equation can be written in matrix
notation as

B = G · F

for a given (mt,mt−1) because assumption 3 implies fY ′|M ′,X∗′ = fYt|Mt,X∗t
. Because B is

invertible (see the earlier discussion following Assumption 5), then so are F and G. Hence,
the law of motion for X∗, corresponding to the matrix F, can be recovered as:

F = G−1 ·B. (13)

Hence, our identification argument is complete:

Theorem 1 Under the assumptions 1, 2, 3, 4, 5, 6, and 7, the density f (Wt,Wt−1,Wt−2),
for any t ∈ {3, . . . T}, uniquely determines the Markov equilibrium law of motion f

(
W ′, X∗′|W,X∗

)
.

3 A Monte Carlo simulation example

Based on the nonparametric identification results in the previous section, we present some
simulation results which utilize the constructive identification proof for nonparametric es-
timation of a binary-choice dynamic optimization model.

3.1 Details of test model

We consider a stationary binary choice dynamic optimization model. This model consists
of three variables: Y ,M , X∗. Each variable is binary, and takes values in {0, 1}. Because

9



the model is stationary, we use primes ′ to denote next-period values
Following the restriction in Assumption 2(ii), we parametrized the law of motion for X∗

as:

Pr(X∗′ = 1|X∗,M,M ′) =
exp(φ(X∗,M,M ′))

1 + exp(φ(X∗,M,M ′))

where

φ(X∗,M,M ′) = α1 · I(X∗ = 1) + α2 · I(M = 1) + α3 · I(M ′ = 1) + α4 · I(M = 1) · I(X∗ = 1)

Similarly, the law of motion for the observed state variable M is parametrized as:

Pr(M ′ = 1|M,Y,X∗) =
exp(ψ(X∗,M, Y ))

1 + exp(ψ(X∗,M, Y ))
.

with

ψ(X∗,M, Y ) = γ1 · I(X∗ = 1) + γ2 · I(M = 1) + γ3 · I(Y = 1)

For what follows, it is useful to define S ≡ (M,X∗) with

S = 1 ⇔M = 0, X∗ = 0

S = 2 ⇔M = 0, X∗ = 1

S = 3 ⇔M = 1, X∗ = 0

S = 4 ⇔M = 1, X∗ = 1

Also, note that

Pr(S′|S, Y ) = Pr(X∗′|M,M ′, X∗) · Pr(M ′|M,Y,X∗)

The per-period utility functions are given by

u(Y,M,X∗, εY ) = λ1 · I(Y = 1) + λ2 · I(M = 1) + λ3 · (I(X∗ = 1)− 0.5) · I(Y = 1)︸ ︷︷ ︸
≡ū(Y,S)

+εY

where ε0, and ε1 are i.i.d. extreme value distributed with unit variance.
Using Eq. (15) from Aguirregabiria and Mira (2007), the optimal choice probabilities

10



are implicit defined by the following functional equation

Pr(Y |S) =
exp[ū(Y, S) + β

∑
S′ V (S′;P ) · Pr(S′|S, Y )]∑

Ỹ ∈(0,1) exp[ū(Ỹ , S) + β
∑

S′ V (S′;P ) · Pr(S′|S, Ỹ )]

≡ Ψ(Θ;P )

(14)

where P denotes the |Y | × |S| vector of choice probabilities Pr(Y |S).
In the above, V (S;P ) denotes the value function, given some set of choice probabilities

P . Using Eq. (14) in Aguirregabiria and Mira (2007), V (S;P ) is the corresponding element
of the |S|-dimensional vector defined as:

(I − βF )−1

 ∑
Ỹ ∈(0,1)

P (Ỹ ) ∗ [ū(Ỹ ) + ε(Ỹ )]

 (15)

where ’*’ denotes elementwise multiplication, and F is the |S|-dimensional square matrix
with (i, j)-element equal to

Pr(S′ = j|S = i) ≡
∑

Y=(0,1)

P (Y |S = i) · Pr(S′ = j|S = i, Y ). (16)

Moreover, P (Ỹ ) is the |S|-vector consisting of elements Pr(Ỹ |S), ū(Ỹ ) is the |S|-vector of
per-period utilities ū(Ỹ ;S), and ε(Ỹ ) is an |S|-vector where each element is E[εỸ |Ỹ , S]. For
the logit assumptions, the closed-form is

E[εỸ |Ỹ , S] = Euler’s constant(0.57721)− log(P (Ỹ |S)).

Given the derivations above, it is possible to simulate, for fixed values of the parameters
Θ ≡ {α1, α2, α3, γ1, γ2, γ3, λ1, λ2} as well as the discount rate β, sequences of the variables
{Yt, X∗t ,Mt}i for agents i = 1, . . . , N and t = 1, 2, 3. In the simulations reported here, we
consider the number of agents N ∈ {800, 1000, 5000}.

3.2 Results

After simulating a dataset in the manner above, we mimick our identification argument from
the previous section to recover the structural components from equation (2), using only the
variables (Y,M). That is, the matrices A and E (as defined previously), which contain
the pmf’s for f (yt,mt, yt−1|mt−1, yt−2) and f (yt = i,mt|mt−1, yt−2 = j), respectively, are
estimated directly from the data, and the matrix manipulations in Equations (8)-(13) are
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performed on these matrices to obtain estimates of the CCP’s f(Y |M,X∗) and the Markov
laws of motions for the state variables (M,X∗).

Table 1 contains the simulation results for the nonparametric estimates of the conditional
choice probabilities of the model. Tables 2 and 3 contain the estimates for the Markov laws
of motion for, respectively, the observed state variable M and the unobserved state variable
X∗.

Table 1: Simulation results for CCP’s Pr(Y = 0|M,X∗)

Nonparametric results from Monte Carlo simulation experiments.
Each experiment replicated 100 times.

N = 800a N = 3000 N = 5000
M X∗ True Avg.b Stdev.c Avg. Stdev. Avg. Stdev.
0 0 0.9102 0.8611 0.1363 0.8958 0.0817 0.9046 0.0707
0 1 0.0661 0.0798 0.0391 0.0694 0.0220 0.0676 0.0204
1 0 0.9064 0.8524 0.1108 0.8948 0.0618 0.9024 0.0466
1 1 0.0654 0.0692 0.0380 0.0641 0.0237 0.0656 0.0178

aN denotes number of agents in simulated dataset
bAveraged across all replications
cStandard deviation across all replications.

Overall, the results are quite encouraging. In Table 1, which contains the results for the
conditional choice probabilities, we see that even when N = 800, the average estimates are
close to the truth, with the exception of the (M = 0, X∗ = 1) case. For this case, however,
the results improve as the number of agents N in the simulated datasets increases.

The results are qualitatively similar for the results in Table 2, which are for Pr(M ′ =
0|M,Y,X∗), the law of motion for the observed state variable M along the dynamically
optimal path. For these results, the two cases with the less accurate results are (M =
1, Y = 0, X∗ = 0) and (M = 1, Y = 1, X∗ = 0).

The estimation results for Pr(X∗′ = 0|M,M ′, X∗), the law of motion for the unobserved
state variable X∗, reported in Table 3, are more erratic. This may not be surprising, as
these law of motions are affected the most by X∗, the unobserved state variable. But even
here, for about half of the eight cases, the estimation performs remarkably well, even with
the modest dataset size (N = 800). However, in the cases (M = 0,M ′ = 1, X∗ = 1),
(M = 1,M ′ = 0, X∗ = 0), (M = 1,M ′ = 0, X∗ = 1), and (M = 1,M ′ = 1, X∗ = 1), the
estimation performs less accurately. However, even in these cases, the magnitudes of the
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Table 2: Simulation results for Law of motion Pr(M ′ = 0|M,Y,X∗)

Nonparametric results from Monte Carlo simulation experiments.
Each experiment replicated 100 times.

N = 800a N = 3000 N = 5000
M Y X∗ True Avg.b Stdev.c Avg. Stdev. Avg. Stdev.
0 0 0 0.5000 0.5143 0.1089 0.4977 0.0510 0.4953 0.0338
0 0 1 0.7109 0.6904 0.2442 0.7310 0.1564 0.7305 0.1109
0 1 0 0.4134 0.4016 0.0869 0.4194 0.0427 0.4112 0.0368
0 1 1 0.6341 0.6090 0.3097 0.6525 0.1973 0.6479 0.1325
1 0 0 0.6457 0.5641 0.4302 0.5138 0.3582 0.5860 0.3487
1 0 1 0.8176 0.8206 0.0284 0.8195 0.0138 0.8174 0.0100
1 1 0 0.5622 0.6314 0.3636 0.5299 0.3330 0.5517 0.3066
1 1 1 0.7595 0.7457 0.1370 0.7603 0.0190 0.7573 0.0162

aN denotes number of agents in simulated dataset
bAveraged across all replications
cStandard deviation across all replications.

estimates are correct, but the actual estimates are not too close to the truth on average.

4 Empirical illustration: advertising and doctors’ prescrip-

tions of pharmaceutical drugs

Next, we consider a small scale empirical illustration, where we estimate a simple model
relating doctors’ prescriptions of the cholesterol-lowering drug Crestor to drug advertising or
detailing, which are the visits of the pharmaceutical representatives (“pharmreps” for short)
to the doctor. In this model, agents i are doctors, and t denotes weeks. The variables are:

• Yit: share of Crestor prescribed by doctor i in week t to his patients

• Mit (the observed state variable): a binary variable indicating whether doctor i was
visited by a Crestor pharmrep in the two weeks prior to week t.

• X∗it (unobserved state variable): doctor i’s unobserved preference shock related to
Crestor. This could be due to word of mouth, or the knowledge that doctor i has
from prescribing Crestor to his patients.
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Table 3: Simulation results for Law of motion Pr(X∗′ = 0|M,M ′, X∗)

Nonparametric results from Monte Carlo simulation experiments.
Each experiment replicated 100 times.

N = 800a N = 3000 N = 5000
M M ′ X∗ True Avg.b Stdev.c Avg. Stdev. Avg. Stdev.
0 0 0 0.5000 0.5898 0.1815 0.5159 0.0994 0.5073 0.0627
0 0 1 0.1192 0.1102 0.0500 0.1180 0.0318 0.1187 0.0242
0 1 0 0.7109 0.7732 0.1941 0.7198 0.1242 0.7174 0.1002
0 1 1 0.0431 0.0420 0.0524 0.0425 0.0348 0.0414 0.0313
1 0 0 0.4013 0.4674 0.1626 0.4215 0.0948 0.4184 0.0655
1 0 1 0.0832 0.1330 0.1387 0.0872 0.0504 0.0796 0.0310
1 1 0 0.6225 0.6668 0.1505 0.6324 0.1870 0.6429 0.0675
1 1 1 0.0293 0.1124 0.1444 0.0407 0.0471 0.0352 0.0310

aN denotes number of agents in simulated dataset
bAveraged across all replications
cStandard deviation across all replications.

Based on the framework in this paper, the structural components we want to recover are:
(i) choice probability f(Yt|Mt, X

∗
t ); (ii) law of motion for advertising f(Mt|Mt−1, X

∗
t−1, Yt−1);

and (iii) law of motion for unobserved state variable f(X∗t |Mt,Mt−1, X
∗
t−1).

Market background Crestor (active ingredient resuvastatin) is one of the so-called
“statin” cholesterol-lowering drugs which, as a group, constitutes the largest drug mar-
ket worldwide, in terms of both sales and prescriptions. Because Crestor was the most
powerful statin drug when it entered the market in the Fall of 2003, some extra precautions
were taken regarding it. In particular, the FDA label for Crestor, which appeared in its
first form on August 12, 2003, contained a warning regarding patients of Asian descent,
who appeared in studies to retain much higher levels of drug concentration in their blood,
relative to Caucasian users:5

Pharmacokinetic studies show an approximate 2-fold elevation in median ex-
posure in Japanese subjects residing in Japan and in Chinese subjects residing
in Singapore when compared with Caucasians residing in North America and
Europe. No studies directly examining Asian ethnic population residing in the

5See Food and Drug Administration (2003, 2005).
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U.S. are available, so the contribution of environmental and genetic factors to
the observed increase in rosuvastatin drug levels have not been determined.

In the March 2, 2005 version of the FDA, this precaution was strengthened, on the basis
of studies on US subjects:

Pharmacokinetic studies, including one conducted in the US, have demonstrated
an approximate 2-fold elevation in median exposure in Asian subjects when
compared with Caucasian control group.

Exploiting this contraindication, we focus here on estimating the differential effects of
advertising on doctors’ prescriptions of Crestor to Asians vs. non-Asian patients. This
provides a unique test for the informational content of advertising: if advertising is infor-
mative, it should have a more negative effect on prescription probabilities to Asian patients,
relative to non-Asian patients. Here, we will test whether this is true, within the modeling
framework of this paper, which allows advertising to be “endogenous”, in the sense that
it is influenced by lagged values of the doctor-specific shock X∗t−1 as well as the doctor’s
previous choice variable Yt−1.6

Data description The data used for the empirical analysis is from a category of prescrip-
tion drug used to treat high levels of blood cholesterol; such a drug is commonly referred
to as a Statin drug. The data includes a panel of representative physicians from the United
States. These data are obtained from a pharmaceutical consulting firm ImpactRX.7 The
dataset is unique in that, for each physician, we observe a sample of prescriptions between
January 1st 2004 and December 31st 2004. In addition, we also have a record of all the
detailing visits made by pharmaceutical sales representatives during the same period. We
construct our data by combining the prescription data and detailing data.

For the purpose of the empirical application here, we aggregated all data to the (doctor-
week) level, as described above. In addition, while the identification argument above was
“cross-sectional” in nature, being based upon observations of three observations of {Yt,Mt}
per individual, in the estimation we exploited the long time series data we have for each
subject, and pooled every “three time-contiguous observations” {Yi,τ ,Mi,τ}τ=t

τ=t−2 across all
doctors i, and all weeks τ = 3, . . . , T . Formally, this is justified under the assumption
that the process {Yt,Mt} is stationary and ergodic for each subject and each round. Un-
der these assumptions, the ergodic theorem ensures that the (across time and subjects)

6For more information on this market, and also additional empirical evidence, see Shum and Tan (2007).
7See Manchanda and Narayanan (2009) for another paper which utilizes a similar dataset.
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sample frequencies used to construct the matrices A and E converge towards population
counterparts.

Asians make up a small percentage of the patients in our sample. Only 260 doctors
have a three-week sequence where Asian patients were seen in each week. Hence, in order
to estimate the model, we considered different definitions of the binary advertising vari-
able Mt, so that the resulting matrix A would be invertible, for all eight combinations of
(Mt, Yt,Mt−1) (in order to satisfy Assumption 5). Moreover, because weeks in the dataset
are defined according to calendar weeks (ie. Monday to Sunday), but pharmreps can visit
on any weekday, not all of a doctor’s patients in a given (calendar) week may have been
affected by the detailing that occurred that week. Accordingly, after some trial and error,
we settled on the following definitions of the binary variables Yt and Mt:

• Yit ∈ {0, 1}: Yt = 1, if for doctor i in week t, there are observations of Crestor
prescribed. Otherwise, Yit = 0.

• Mit ∈ {0, 1}: Mt = 1, if more than 35% of the patients who visited doctor i in week
t visited within two weeks of the most recent Crestor pharmrep visit. Otherwise,
Mit = 0.

Table 4: Summary statistics from the data
M = Y = P (Y = 1|M) P (M ′ = 1|Y,M)

Asians non-Asians Asians non-Asians
0 0.1086 0.2452
0 0 0.1731 0.1816
0 1 0.5147 0.5780
1 0.2000 0.3489
1 0 0.3158 0.2396
1 1 0.5882 0.6505
# obsa 260 22928
P (Y = 1) 0.1308 0.2811
P (M = 1) 0.3000 0.3323

aEach observation is a (doctor-week).

Table 4 contains summary statistics from the raw data. We see that, moving from
M = 0 to M = 1, the probability of prescribing Crestor to non-Asian patients increases by
10% (from 24.5% to 34.9%, which represents roughly a 40% increase. For Asian patients,
this probability increases by 9% from 10.9% to 20%, which is almost a doubling of the
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prescription probability for these patients. Hence, in the raw data, advertising does not
appear informative. The right-hand side of this table presents the transition probabilities
for advertising.

Table 5: Estimates for CCP P (Y = 1|X∗,M)

X∗ = M = Asians non-Asians
0 0 0.0913 0.1114

(0.1104) (0.0058)
0 1 0.1420 0.1474

(0.0983) (0.0109)
1 0 0.6806 0.6318

(0.2302) (0.0174)
1 1 0.9208 0.6568

(0.2496) (0.0171)

Estimation results Table 5 contains the estimates of the Crestor prescription proba-
bilities, conditional on both M and X∗. These were estimated by pooling together all
doctors, and all three-week sequences in which at least one patient of a specified ethnicity
was seen each week. The estimates show that, for both X∗ = 0 and X∗ = 1, advertising
raises the probability of prescribing Crestor for both Asians and non-Asians. However, the
magnitudes of these changes are quite different than in the raw data, and show that the
“causal effects” of advertising (once X∗ is controlled for) are quite distinct than the raw
values presented in Table 4. For instance, when X∗ = 0 (which we interpret to be the case
when doctors are pessimistic about Crestor ’s effectiveness), we see that advertising raises
the prescription probability by only 3% for non-Asians, but by 5% for Asians. Thus, these
results echo the trend in the raw data, that advertising raises the prescription probabilities
disproportionately more for Asians than for non-Asians.

Tables 6 and 7 present, respectively, the estimates for the law of motion for advertising,
M , and for the unobserved state variable X∗. The estimates for the law of motion for M
show that X∗ has an effect on next period’s advertising. This indicates that advertising is
endogenous in the sense that it is related to serially correlated shocks X∗ which also affect
doctors’ prescription behavior. At the same time, the estimates for the law of motion of X∗

show that current and past values of M also feedback to the realization of the shock X∗.8

8In both tables 6 and 7, we set some transition probabilities to 0 (resp, 1) when the estimated probabilities
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Table 6: Estimates for law of motion P (M ′ = 1|M,Y,X∗)

X∗ = M = Y = Asians non-Asians
0 0 0 0.1727 0.1754

(0.0884) (0.0052)
0 0 1 0.2481 0.2022

(0.2272) (0.0220)
0 1 0 0.5062 0.5669

(0.1388) (0.0107)
0 1 1 0.1629 0.6527

(0.2586) (0.0324)
1 0 0 0.9168 0.2538

(0.3143) (0.0204)
1 0 1 0.5037 0.2676

(0.3135) (0.0119)
1 1 0 0.4198 0.6319

(0.2935) (0.0276)
1 1 1 0.0000 0.6532

(0.3935) (0.0141)

Therefore, the results from this small empirical application show that advertising ap-
pears to cause larger increases in the Crestor prescription probability to Asian patients
relative to non-Asian patients. Because Asian patients were contraindicated for this drug,
our findings appear to refute the hypothesis that advertising is informative. While this
finding is striking, we reiterate the caveat that there are not many Asian patients in the
dataset and, as we remarked above, we chose the particular definition of M in order for the
estimation to proceed. For other definitions of M , the A matrices were not invertible for
all combinations of (yt,mt.,mt−1), and we were not able to obtain results. Hence, we view
this exercise as more an illustration of our identification results rather than a full-blown
empirical application.

5 Conclusion

In this paper, we present a methodology for the estimation of dynamic models, in the case
when all the variables of the model are discrete. Monte Carlo simulations showed that the

became < 0 (resp, > 1).

18



Table 7: Estimates for law of motion P (X∗′ = 1|M ′,M,X∗)

M ′ = M = X∗ = Asians non-Asians
0 0 0 0.0322 0.0010

(0.1868) (0.0072)
0 0 1 0.9933 0.9546

(0.4641) (0.0357)
0 1 0 0.0115 0.0140

(0.1954) (0.0215)
0 1 1 0.9933 0.9580

(0.2047) (0.0498)
1 0 0 0.0804 0.0095

(0.2360) (0.0213)
1 0 1 0.7223 1.0000

(0.2610) (0.0124)
1 1 0 0.0067 0.0097

(0.2236) (0.0200)
1 1 1 0.3849 1.0000

(0.3191) (0.0090)

estimator performs quite well in practice, and a short empirical application was provided
for estimating the effect of advertising on pharmaceutical prescription probabilities, while
allowing advertising to be affected by serially correlated preference shocks which also affect
doctors’ prescription behavior.

In ongoing work, we are also considering the extension of the methods presented here to
the case of multi-agent dynamic games, in which there are agent-specific unobserved state
variables which are serially correlated.
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1 Derivation of auxiliary results

1.1 Derivation of Equation (5)

Consider the observed density f (Wt,Wt−1,Wt−2) . Assumptions 1 and 2(i) imply

f (Wt, Wt−1, Wt−2)

=
X

X∗
t ,X∗

t−1

f (Wt, X
∗
t |Wt−1, Wt−2, X

∗
t−1) f (Wt−1, Wt−2, X

∗
t−1)

=
X

X∗
t ,X∗

t−1

f (Yt|Mt, X
∗
t ) f (X∗t |Mt, Yt−1, Mt−1, X

∗
t−1) f (Mt|Yt−1, Mt−1, X

∗
t−1) f (Yt−1|Mt−1, X

∗
t−1) f (X∗t−1, Mt−1, Yt−2, Mt−2)

=
X

X∗
t ,X∗

t−1

f (Yt|Mt, X
∗
t ) f (X∗t |Mt, Yt−1, Mt−1, X

∗
t−1) f (Mt, Yt−1|Mt−1, X

∗
t−1) f (X∗t−1, Mt−1, Yt−2, Mt−2) .
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After integrating out Mt−2, assumption 2(ii) then implies

f (Yt,Mt, Yt−1,Mt−1, Yt−2)

=
∑
X∗

t−1

∑
X∗

t

f (Yt|Mt, X
∗
t ) f

(
X∗t |Mt,Mt−1, X

∗
t−1

) f
(
Mt, Yt−1|Mt−1, X

∗
t−1

)
f
(
X∗t−1,Mt−1, Yt−2

)
The expression in the parenthesis can be simplified as f

(
Yt|Mt,Mt−1, X

∗
t−1

)
. We then have

fYt,Mt,Yt−1|Mt−1,Yt−2 (17)

=
∑
X∗

t−1

f
(
Yt|Mt,Mt−1, X

∗
t−1

)
f
(
Mt, Yt−1|Mt−1, X

∗
t−1

)
f
(
X∗t−1,Mt−1, Yt−2

)
as claimed in Equation (5). �

1.2 Proof of Claim (*)

Define

h (j, k;mt,mt−1) ≡ f
(
mt|mt−1, x

∗
t−1 = k

)
· f(x∗t−1 = k|mt−1, yt−2 = j)

Identification of H is equivalent to identification of the h(· · · ) function.
By integrating h (k, j;mt,mt−1) over mt, we can identify the f(x∗t−1 = k|mt−1, yt−2 = j) func-

tion:∫
h (k, j;mt,mt−1) dmt =

∫
f(mt|mt−1, x

∗
t−1 = k) · f(x∗t−1 = k|mt−1, yt−2 = j)dmt

= f(x∗t−1 = k|mt−1, yt−2 = j)
[∫

f(mt|mt−1, x
∗
t−1 = k)dmt

]
= f(x∗t−1 = k|mt−1, yt−2 = j)

because f(mt|mt−1, x
∗
t−1) is a probability density function. Consequently, f(mt|mt−1, x

∗
t−1) is also

identified as

f(mt|mt−1, x
∗
t−1) =

h
(
x∗t−1, yt−2;mt,mt−1

)
f(x∗t−1|mt−1, yt−2)

.

Hence, from knowledge of H, we are able to identify the function corresponding to the matrices D2

and C also. �
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