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Abstract

The paper considers an elementary New-Keynesian three-equations model and contrasts

its Bayesian estimation with the results from the method of moments (MM), which seeks

to match the model-generated second moments of inflation, output and the interest rate

to their empirical counterparts. Special emphasis is placed on the degree of backward-

looking behaviour in the Phillips curve. While, in line with much of the literature, it

only plays a marginal role in the Bayesian estimations, MM yields values of the price

indexation parameter close to or even at its maximal value of one. These results are

worth noticing since the matching thus achieved is entirely satisfactory. The matching

of some special (and even better) versions of the model is econometrically evaluated by

a model comparison test.

JEL classification: C52; E32; E37.

Keywords: Inflation persistence; autocovariance profiles; goodness-of-fit; model compar-

ison.

1. Introduction

The New-Keynesian modelling of dynamic stochastic general equilibrium (DSGE) with

its nominal rigidities and incomplete markets is still the ruling paradigm in contempo-

rary macroeconomics. The fundamental three-equations versions represent the so-called

New Macroeconomic Consensus and are most valuable in shaping the theoretical dis-

cussion on monetary policy and other topics. Over the last decade these models have

also been extensively subjected to estimation. Here system estimations (as opposed to
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single-equations estimations) gained in importance. First maximum likelihood and more

recently the Bayesian estimation approach crystallized as the most popular methods, a

development that probably not the least was fostered by the dissemination of the pow-

erful DYNARE software package. By now Bayesian estimations have even become so

dominant that other techniques are at risk of eking out a marginal existence.

The exclusiveness of likelihood methods is nevertheless worth reconsidering. In some

form or another, it is well-known that “maximum likelihood does the ‘right’ efficient

thing if the model is true. It does not necessarily do the ‘reasonable’ thing for ‘approxi-

mate’ models” (Cochrane, 2001, p. 293). This remark, which certainly carries over to the

marginal likelihood in the Bayesian estimations, should not be neglected since after all,

any model in economics can only be an approximation to the hypothetical construct of

a true real-world data generation process. For this reason it is desirable, unless vital, to

work with alternative system estimation methods as well.

While likelihood methods concentrate on predictions of a model for the next period,

the method of moments (MM) estimation approach, as we understand this term here,

is concerned with the dynamic properties of a model in general. Their quantitative rep-

resentation refers to a number of summary statistics, or ‘moments’, and the estimation

seeks to identify numerical parameter values such that the model-generated moments

come as close as possible to their empirical counterparts.

The crucial point of MM is obviously the choice of these moments, which by critics is

branded as arbitrary. 2 Again, however, the approximate nature of structural modelling

must be taken into account, which at best allows a model to match some of the ‘stylized

facts’ of an actual economy. Limited-information methods like MM are therefore not

necessarily inferior to a full-information estimation approach. Moreover, MM requires the

researcher to make up his or her mind about the dimensions along which the model should

be most realistic, and it is just this explicitness and, in practice, easy interpretation of

the moment matching that are strong arguments in favour of MM. This begins informally

with diagrams comparing the profiles of the theoretical to the empirical moments and

their inspection with the naked eye, but also more formal methods are available to assess

a model’s goodness-of-fit. In fact, learning in these ways which of the empirical moments

are more, and which are less adequately matched can provide useful information about

the particular merits and demerits of a model.

The present paper takes a New-Keynesian three-equations model from the shelf and

contrasts its Bayesian estimations with the results from MM estimations. As far as we

know, such a direct comparison has not been undertaken before. Specifically, we start out

from the Bayesian estimations of a version that enabled Castelnuovo (2010) to demon-

2 The estimation approaches of indirect inference (II) or the efficient method of moments (EMM)
can be viewed as endogenizing this choice. On the other hand, this shifts the issue of arbitrariness,
or judgement, to the choice of the auxiliary model that these methods employ. Carrasco and
Florens (2002) provide a succinct overview of II, EMM and the method of (simulated) moments.
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strate the superiority of a positive and time-varying inflation target over a steady state

rate of inflation fixed at zero. Our interest is, however, more elementary, which is the

reason why we circumvent this issue by having the structural equations directly referring

to the deviations of inflation and the interest rate from an exogenous trend. We rather

concentrate on the sources of inflation persistence in the Phillips curve as they are caused

by exogenous or endogenous factors, i.e., by serial correlation in the shock process or by

price indexation of firms, where the latter yield a positive coefficient on lagged inflation

and a corresponding reduction of the coefficient on expected inflation.

In this respect, Castelnuovo in line with several other examples in the literature obtains

evidence for strong forward-looking behaviour (low indexation) and high correlation in

the random shocks. This feature is once again confirmed by the Bayesian estimations of

our slightly modified model. By contrast, to anticipate our most important finding, the

MM estimations show a strong tendency towards the opposite: high price indexation in

combination with white noise shocks. This new result has to be taken seriously, since it

will be pointed out that the implied matching of the moments is entirely satisfactory.

The paper is structured as follows. The next section introduces the MM estimation

procedure together with a sketch of the bootstrap re-estimations that we will utilize.

Section 3 describes the small New-Keynesian model to which this method is applied

and lists the second moments the model is supposed to match. The results that we

thus obtain are presented in Sections 4 and 5, where Section 4 deals with the period

of the so-called Great Inflation and Section 5 with the Great Moderation. The main

conceptual discussions are contained in Section 4, which is therefore subdivided into

several subsections.

After contrasting the Bayesian with the MM estimation in Section 4.1, the next sub-

section examines in greater detail the problem of disentangling the endogenous and ex-

ogenous sources of inflation persistence. Section 4.3 subsequently employs a new econo-

metric test by Hnatkovska et al. (2009) to decide whether our benchmark estimation

is significantly superior to other, more special versions of the model. In Section 4.4 we

temporarily step outside the model and ask if a still higher (composite) coefficient on

lagged inflation would outperform the previous matching. Back in the original frame-

work, Section 4.5 sets up the confidence intervals for the structural parameters, which

invokes the abovementioned bootstrap re-estimations of the model because some of the

parameters are estimated at their upper- or lower-bounds. In addition, this method al-

lows us to compute a moment-specific p-value to characterize the model’s validity. The

organization of Section 5 for the Great Moderation period is similar, except that after

the previous discussions the presentation of the results can now be much shorter. Section

6 concludes. Several more technical details are relegated to an appendix.
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2. The moment matching estimation approach

As mentioned above, the MM estimation procedure computes a number of summary

statistics, i.e. moments, for a model and searches for a set of parameter values that

minimize a distance between them and their empirical counterparts. The method has

also been applied to New-Keynesian DSGE models. The major part of this work is

concerned with the matching of impulse-response functions (IRFs), where almost all of

these contributions consider the responses to only one shock, namely, a monetary policy

shock. 3 An exception is Altig et al. (2011), who add two types of technology shocks to

the monetary impulse.

While this treatment avoids consigning itself to a choice about which other innovations

to include in the modelling framework, a good matching of one type of IRFs does not

necessarily imply a similar good match of another type. In this respect our situation

will be different in that we deal with a model that has been subjected to a Bayesian

estimation before. So the model has already as many shock processes prespecified as

there are endogenous variables. This allows us to consider a broader range of dynamic

properties, which are conveniently summarized by the second moments of the economic

key variables (which in the present case will be the output gap and the rates of interest

and inflation). That is, we will be concerned with their unconditional contemporaneous

and lagged auto-covariances and cross-covariances, which incidentally contain similar

information to the IRFs of the (three) shock variables of the model.

Such a choice of moments has been more usual for the M(S)M estimation of, in a

wider sense, real business cycle models (the ‘S’ refers to the cases where these moments

cannot be computed analytically but must be simulated). 4 Closest to our work is the

MM estimation of a New-Keynesian model by Matheron and Poilly (2009). Their model

is, however, richer than ours and instead of the output gap as a level variable they are

interested in the comovements of the output growth rate. Hence one would have to be

careful with a comparison of their results and ours. 5

It may be emphasized that we fix our moments in advance and their number will not

be too small, either. This commitment is different from an explicit moment selection

procedure as it was, for example, used by Karamé et al. (2008). They begin with a

large set of moments, estimate their model on them, and then step by step discard the

3 Besides the early contribution by Rotemberg and Woodford (1987), examples from the last few
years are Christiano et al. (2005), Boivin and Giannoni (2006), Henzel et al. (2009), Hülsewig et
al. (2009). In contrast, Avouyi-Dovi and Matheron (2007) study the responses to a technology
shock.
4 These applications seem rather scattered, though; see Jonsson and Klein(1996), Hairault et al.
(1997), Collard et al. (2002) and, more recently, Karamé et al. (2008), Gorodnichenko and Ng
(2010), Ambler et al. (2011), Kim and Ruge-Murcia (2011).
5 Another difference is that they do not match directly the empirical second moments, which
we do, but the moments deriving from the estimation of a canonical vector autoregression. This
might somewhat favour a better match.
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moments which the model reproduces most poorly until an over-identification test fails

to reject the model any longer.

Let us then turn to the moments that we adopt, which fortunately can be treated

in an analytical manner. To explain this, we should first describe the general structure

of our model. It is a hybrid variant of the New-Keynesian three-equations model, with

forward-looking as well as backward-looking elements in the Phillips curve and the IS

equation. Its canonical form reads,

AEt yt+1 + B yt + C yt−1 + vt = 0

vt = N vt−1 + εt , εt ∼ N(0,Σε)
(1)

The matrices A, B, C, N , Σε with the structural parameters are here all (n×n) square

matrices (specifically, n=3). The vector yt∈ IRn contains the endogenous variables (with

zero steady state values) and vt ∈ IRn collects the random shocks, which are supposed

to be governed by an autoregressive process (certainly, N is a stable matrix). The i.i.d.

innovations εt follow a normal distribution with a diagonal (n×n) covariance matrix Σε.

The equilibrium law of motion of (1) is described by the recursive equations

yt = Ω yt−1 + Φ vt

vt = N vt−1 + εt
(2)

where Ω and Φ are two (n×n) matrices and Ω is required to be stable. Using the method

of undetermined coefficients, Ω and Φ are successively obtained as the solutions to the

following two matrix equations, which under determinacy are uniquely determined (In

being the (n×n) identity matrix),

AΩ2 + B Ω + C = 0

(AΩ+B) Φ + AΦN + In = 0

As indicated, our aim in the moment matching estimation is that the stochastic process

(2) reproduces the autocovariances of the empirical counterparts of the variables in the

vector yt. It is convenient in this respect that (2) is essentially a first-order vector au-

toregression (VAR). The theoretical autocovariances can thus be easily obtained from

the closed-form expressions given, e.g., in Lütkepohl (2007). We only have to adjust the

notation by changing the dating of the shocks and rewrite (2) as

[
yt
vt+1

]
=

[
Ω Φ

0 N

] [
yt−1
vt

]
+

[
0

I

]
εt+1 (3)

With zt = (y′t, v
′
t+1)

′, D = (0 I)′, ut = D εt+1, and A1 the (2n×2n) matrix on the right-
hand side associated with the vector (y′t−1, v

′
t)
′ = zt−1, eq. (3) can be more compactly

written as

zt = A1 zt−1 + ut , ut ∼ N(0,Σu) , Σu = DΣεD
′ (4)
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The (asymptotic) contemporaneous and lagged autocovariances of this VAR(1) are given

by the matrices

Γ(h) := E(zt z
′
t−h) ∈ IRK×K , K = 2n, h = 0, 1, 2, . . . (5)

Following Lütkepohl (2007, pp. 26f), their computation proceeds in two steps. First, Γ(0)

is obtained from the equation Γ(0) = A1 Γ(0)A
′
1 +Σu, which yields

vec Γ(0) = (IK2 −A1 ⊗A1)
−1 vecΣu (6)

(the symbol ‘⊗’ denotes the Kronecker product and invertibility is guaranteed since A1

is clearly a stable matrix). Subsequently the Yule-Walker equations are employed, from

which the lagged autocovariances are recursively obtained as

Γ(h) = A1 Γ(h− 1) , h = 1, 2, 3, . . . (7)

The estimation seeks to match a subset of the coefficients in the matrices Γ(h) to their

observable empirical counterparts. In sum, let there be nm of these moments, which are

collected in a vector m. Furthermore, denote by θ the vector of the structural coefficients

in (1) that are to be estimated, its dimension being nθ. To make the dependence of the

theoretical moments on the particular values of θ explicit, we will write m=m(θ). On the

other hand, let m̂T designate the corresponding empirical moments from a sample of T

observations. Below, reference will also be made to Σ̂m as an estimate of the covariance

matrix of the moments (index T is here suppressed to ease notation).

The distance between the vectors of the model-generated and empirical moments is

measured by a quadratic function that is characterized by an (nm×nm) weighting matrix

W . Accordingly, the model is estimated by the set of parameters θ̂ that minimize this

distance over an admissible set Θ ⊂ IRnθ , that is, 6

θ̂ = arg min
θ∈Θ

J(θ; m̂T ,W ) := arg min
θ∈Θ

T [m(θ)− m̂T ]
′W [m(θ)− m̂T ] (8)

Regarding the weighting matrix in (8), an obvious since asymptotically optimal choice

would be the inverse of an estimated moment covariance matrix (Newey and McFad-

den, 1994, pp. 2164f). The optimality, however, does not necessarily carry over to small

samples and a bias may arise in the estimations. As a consequence, in the context of

estimating covariance structures even the identity matrix may be a superior weighting

matrix (Altonji and Segal, 1996). In addition and not surprisingly in view of (7), with the

choice of the above moments a matrix Σ̂m is so close to being singular that its inverse

could not be relied on. The usual option in such a situation is to employ a diagonal

6 The sample size T is included in the specification of the loss function to have the notation
consistent with the literature that will be referred to below. It may also be added that if, in the
course of the minimization search procedure for (8), some parameter leaves an admissible interval,
it is reset to the boundary value, the distance of the thus resulting moments is computed, and
then a sufficiently strong penalty is added that proportionately increases with the extent of the
original violation. In this way also corner solutions to (8) can be safely identified.
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weighting matrix the entries of which are given by the reciprocals of the variances of the

single moments. This gives us

Wii = 1 / Σ̂m,ii , i = 1, . . . nm (9)

(and of course Wij = 0 for i 6=j). Clearly, the less precisely a moment is estimated from

the data, that is, the higher is its variance, the lower is the weight attached to it in the

loss function. Since the width of the confidence intervals around the empirical moments

m̂T,i is proportional to (1/T ) times the square root of Σ̂m,ii, it may be stated that the

model-generated momentsmi(θ̂) obtained from the estimated parameters lie “as much as

possible inside these confidence intervals” (Christiano et al., 2005, p. 17). Nevertheless, a

formulation of this kind, which with almost the same words can also be found in several

other applications, should not be interpreted too narrowly. In particular, it will be seen

that a minimum of the loss function in (8) need not simultaneously minimize the number

of moments outside the confidence intervals.

It is well-known that under standard regularity conditions the parameter estimates

θ̂ are consistent and asymptotically follow a normal distribution around the (pseudo-)

true parameter vector θo. There is moreover an explicit formula in the literature (Newey

and McFadden, 1994, pp. 2153f) for estimates of the corresponding covariance matrix,

which allows one to compute the standard errors of θ̂ as the square roots of its diagonal

elements. In the present case, however, this approach faces two problems. First, it will

turn out that locally the objective function J reacts only very weakly to the changes

in some of the parameters. Hence these standard errors become extremely large and,

beyond this (locally relevant) fact, are not very informative. The second point is that

one of the regularity conditions will be violated if the minimizing parameter vector is a

corner solution of (8); trivially, for some components i the distributions of the estimated

parameters cannot be centred around the point estimates θ̂i then.

These reasons induce us to use a (parametric) bootstrap procedure as an alternative

determination of standard errors or, more instructively, confidence intervals. To this end

we work with the null hypothesis that the estimated model is the true data generating

process. Thus, we take the estimated parameters θ̂ and, starting from the steady state

(i.e. the zero vector), run a stochastic simulation of the model over 500+T periods, from

which the first 500 periods are discarded to rule out any transient effects. The underlying

random number sequence may be identified by an integer index b. Repeating this a

great number of times B, with different random number seeds of course, b = 1, . . . , B

artificial time series of length T are obtained. For each of them we compute the vector

of the resulting moments, denoted as m̂b
T , and use their variances to set up the diagonal

sample-specific weighting matrixW b. Subsequently, for each b, the function J(θ; m̂b
T ,W

b)

is minimized over the parameter space Θ. Finally, the frequency distribution of the re-

estimated parameters

{ θ̂b : b = 1, . . . , B } (10)
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can serve as a proxy for the probability distribution of the θ̂. From (10), we can establish

two types of 95% confidence intervals for the i-th component of the originally estimated

vector θ̂, the standard percentile interval and Hall’s percentile confidence interval. Hall’s

method has the advantage that it is asymptotically correct, but it may violate the ad-

missible range of a parameter. Therefore we use Hall’s interval if no such violation occurs

and the standard interval otherwise. The details are spelled out in Appendix A2.

The bootstrap re-estimation experiment can also help us to decide at what significance

level the null hypothesis may or may not be rejected. We only have to consider the

frequency distribution of the values of the loss function,

Jb = J(θ̂b; m̂b
T ,W

b) , b = 1, . . . , B (11)

and compare, let us say, the 95% quantile J0.95 of (11) to the value Ĵ := J(θ̂; m̂T ,W )

that was obtained from the original estimation on the empirical moments in (8). At

the conventional 5% significance level, the model would have to be rejected as being

inconsistent with the data if Ĵ exceeds J0.95, otherwise it would have passed the test. In

this way we can also readily construct a p-value of the model. It is given by the value of

p that equates the (1−p)-quantile of the distribution {Jb} to Ĵ , which says that if Ĵ were

employed as a benchmark for model rejection, then p is the error rate of falsely rejecting

the null hypothesis that the model is true. Hence, in short, the higher this p-value the

better the fit.

It goes without saying that these statements are conditional on the special choice of

the moments that the model is required to match. Certainly, if more and more moments

were added to our list, the p-value will dwindle.

3. The three-equations model

It should be explicitly made clear from the beginning that our estimations are concerned

with a New-Keynesian model in gap form. That is, generally the trend rates π⋆
t and r⋆t

of inflation and interest (or the rates of these variables in a frictionless equilibrium) are

allowed to vary over time, and what is showing up in the three key equations of the model

are not the raw rates of inflation and interest πt and rt (i.e. their deviations from the

zero steady state values in the simpler models), but the inflation gap π̂t := πt − π⋆
t and

the interest rate gap r̂t := rt − r⋆t .
7 There are several ways to interpret the occurrence

of these more general gaps in, especially, the Phillips curve, and the persuasiveness of

the microfoundations presently available for them in the literature is still another issue.

We nevertheless join most of the empirical applications and leave this discussion aside.

7 As for example remarked by Cogley et al. (2010, p. 43, fn 1) when discussing inflation persis-
tence, it is not always completely plain in the literature whether the focus is on raw inflation or
the inflation gap.
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For simplicity, the trend variations themselves are treated as purely exogenous, so that

π⋆
t and r⋆t can remain in the background.

Regarding possible sources of persistence in the endogenous variables, which we then

try to disentangle in the estimations, we concentrate on the Phillips curve. Here we

include both lagged inflation in its deterministic core and serial correlation in the exoge-

nous shocks. This is in contrast to the common practice that from the outset assumes

either white noise shocks or purely forward-looking price setting behaviour. 8 On the

other hand, the random shocks in the IS equation and the Taylor rule are supposed to be

i.i.d. and persistence is only brought about by a lagged output gap and a lagged rate of

interest, respectively. Denoting the output gap in period t by xt, the model thus reads,

π̂t =
β

1 + αβ
Et π̂t+1 +

α

1 + αβ
π̂t−1 + κxt + vπ,t

xt =
1

1+χ
Et xt+1 +

χ

1+χ
xt−1 − τ (r̂t − Et π̂t+1) + εx,t

r̂t = φr r̂t−1 + (1−φr) (φπ π̂t + φx xt) + εr,t

vπ,t = ρπ vπ,t−1 + επ,t

(12)

The time unit is to be thought of as one quarter. The three shocks εz,t are normally

distributed around zero with variances σ2
z (z = π, x, r). All of the parameters are non-

negative. Specifically, β is the discount factor, κ a composite parameter that depends on

the degree of price stickiness and assumptions on the production technology of firms, the

coefficient α represents the degree of price indexation (0 ≤ α ≤ 1), and the persistence

in the supply shocks is given by the autocorrelation ρπ (0 ≤ ρπ < 1). 9 In the IS equa-

tion, χ is the representative household’s degree of habit formation (0 ≤ χ ≤ 1) and τ a

composite parameter containing its intertemporal elasticity of substitution. In the Taylor

rule, φr determines the degree of interest rate smoothing (0 ≤ φr < 1), and φx and φπ

are the policy coefficients that measure the central bank’s reactions to contemporaneous

output and inflation.

It depends on the particular kind of microfoundations whether or not α and χ also

enter the determination of the composite parameters κ and τ , respectively, and whether

the latter continue to be positive and well-defined in the polar cases α=1 or χ=1. In

8 In similar models to ours, examples of excluding autocorrelated shocks in a hybrid Phillips
curve are Lindé (2005), Cho and Moreno (2006) or Salemi (2006), while the purely forward-
looking models studied by, e.g., Lubik and Schorfheide (2004), Del Negro and Schorfheide (2004),
Schorfheide (2005) allow for some persistence in the shock process. We have chosen these refer-
ences from the compilation in Schorfheide (2008, p. 421, Table 3).
9 As it turns out, in some few estimations the fit could be improved by admitting negative values
of ρπ. We will, however, disregard this option since it seems too artificial, conceptually and since
it implies a somewhat ragged profile of the autocovariances of the inflation rate.
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the estimations, however, κ and τ will not be subjected to any theoretical constraints in

this respect.

The moments constituting the estimation of the model are based on the theoretical

covariances of the interest rate gap r̂, the output gap x and the inflation gap π̂. Referring

to the autocovariance matrices Γ(h) from (6) and (7), we are thus concerned with the

nine profiles of Cov(pt, qt−h) = Γij(h) for p, q = r̂, x, π̂ and, correspondingly, i, j = 1, 2, 3,

while the lags extend from h = 0, 1, . . . up to some maximal lagH. Given that the length

of the business cycles in the US economy varies between (roughly) five and ten years,

the estimations should not be based on too long a lag horizon. A reasonable compromise

is a length of two years, so that we will work with H = 8. In this way we have a total

of 78 moments to match: 9 profiles with (1+8) lags, minus 3 moments to avoid double

counting the zero lags in the cross relationships.

The empirical data on which the estimations of (12) are carried out derive from real

GDP, the GDP price deflator, and the federal funds rate. To determine the exogenous

trend rates underlying the model’s gap formulation, we content ourselves with a deter-

ministic setting and specify them by the convenient Hodrick-Prescott filter (as usual,

although debatable, the smoothing parameter is λ=1600). 10

The total sample period covers the time from 1960 to 2007. 11 Despite focussing on

trend deviations instead of levels, one has to be aware that there are still great changes

over these years in the variance of the three variables and partly also in the pattern of their

cross covariances. This makes it necessary to subdivide the period into two subsamples,

which are commonly referred to as the periods of the Great Inflation (GI) and the Great

Moderation (GM). We define the former by the interval 1960:1 – 1979:2 and the latter

by 1982:4 – 2007:2; the time inbetween is excluded because of its idiosyncrasy (Bernanke

and Mihov, 1998). To give an immediate example for the need of the subdivision, the

standard deviation of the annualized inflation gap in GI is 1.41% versus 0.77% in GM;

for the output gap it is 1.77% in GI versus 1.15% in GM.

10 Ireland (2007) and, more ambitiously, Cogley and Sbordone (2008) are two proposals of how
to endogenize trend inflation as the target set by the central bank. Ireland (p. 1864), however,
concludes from his estimations that still “considerable uncertainty remains about the true source
of movements in the Federal Reserve’s inflation target”. Laubach and Williams (2003) and Mes-
sonier and Renne (2007) are attempts at an estimation of a time-varying natural rate of interest.
11The Hodrick-Prescott trend is computed over a longer period, to avoid end-of-period effects.
The time series of the gaps that we thus obtain can be downloaded from
http://www.bwl.uni-kiel.de/gwif/downloads papers.php?lang=en (if this string is copied
into the browser address bar, the underscore character ‘ ’ may have to be retyped manually).
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4. The Great Inflation period

4.1. Basic results

The three-equations model (12) includes 12 structural parameters. Among them, the

discount factor β is not a very critical coefficient and is therefore directly calibrated at

β = 0.99. So the following 11 parameters remain to be estimated: α, κ, ρπ, σπ in the

Phillips curve and its shock process; χ, τ , σx in the IS equation; and φπ, φx, φr, σr in

the Taylor rule. The inflation and interest rate gap in (12) are annualized, which may

be taken into account when considering the order of magnitude of κ, τ , φx and the two

noise levels σπ, σr.

We begin with a Bayesian reference estimation (BR) of the model. The mean values

of the posterior distribution of the parameters are reported in the first column of Table

1 (the priors are documented in Appendix A1). Except perhaps for the relatively high

policy coefficient φx, the results are not dramatically different from other Bayesian es-

timations in the literature. In particular, regarding the sources of inflation persistence,

low coefficients on expected inflation in the Phillips curve (i.e., low values of α) and

a high autocorrelation ρπ in the shock process are typical for them. 12 It is, however,

interesting to note an exception to this rule. Del Negro et al. (2007, p. 132, Table 1)

obtain high price indexation (α = 0.76) and low shock persistence (ρπ = 0.12), despite

their setting of rather opposite priors. 13 This outcome exemplifies that even within the

Bayesian framework, the tendency towards a purely forward-looking Phillips curve with

persistent random shocks is possibly not an unequivocally established property, yet.

The original motivation of this paper was to check the role of α and ρπ from the

outside, by an alternative estimation approach. The pivotal result of our MM estimation

is given in the second column of Table 1, which we will refer to as estimation A, or model

A. As a matter of fact, the most immediate observation is on α and ρπ, for which the

contrast to the Bayesian estimation could not be more striking: α is estimated at its

maximum value of unity and ρπ at its minimum value of zero.

Before we turn to a more comprehensive discussion of these parameters and the other

results in the table, let us consider the matching properties of estimations BR and A.

While it is trivial that BR implies a higher loss J than model A, the differences are

so substantial that in effect the two estimation approaches may appear to concentrate

on rather distinct features of the data, which show no general tendency to imply each

other. This is, however, a preliminary and informal evaluation. In Section 4.3 a rigorous

econometric test will be applied in order to see whether or in what sense it can be

12 For examples from more general models, see Smets and Wouters (2003, 2007), Adolfson et
al. (2007), Benati and Surico (2007), Fève et al. (2009), Cogley et al. (2010). Apart from the
determination of trend inflation, estimation BR can be directly compared to Castelnuovo’s (2010)
results for his so-called TI model, on which he (arguably) imposes α=0.
13The present symbols α and ρπ correspond to their ιp and ρλf

.
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Bayesian Moment Matching

BR A B C

α 0.067 1.000 0.000 0.700
0.000− 0.144 0.543− 1.000

κ 0.198 0.051 0.242 0.067
0.119− 0.275 0.000− 0.085

ρπ 0.552 0.000 0.692 0.550
0.433− 0.668 0.000− 0.334

σπ 0.666 0.571 0.664 0.274
0.492− 0.827 0.242− 0.838

χ 0.758 1.000 1.000 1.000
0.672− 0.844 0.730− 1.000

τ 0.034 0.096 0.062 0.080
0.018− 0.049 0.008− 0.155

σx 0.612 0.610 0.440 0.590
0.511− 0.706 0.296− 0.887

φπ 1.173 1.482 1.524 1.574
1.000− 1.361 1.338− 1.690

φx 1.336 0.030 0.000 0.068
0.705− 1.965 0.000− 0.210

φr 0.792 0.333 0.421 0.383
0.717− 0.866 0.136− 0.457

σr 0.729 0.000 0.000 0.000
0.630− 0.827 0.000− 0.595

J 209.1 47.6 119.4 77.6

MCI missed 21 0 5 1

p-value — 11.6% — —

Table 1: Parameter estimates for GI.

Note: The discount factor is β=0.99 throughout. In estimations B and C, α is fixed at 0.00 and
0.70, respectively. The smaller numbers indicate the confidence intervals; from the posterior
distribution in a Bayesian reference estimation (BR), while in estimation A they are computed
from (A1) in Appendix A2 for α, ρπ, χ, φx, σr and from (A2) for κ, σπ, τ , σx, φπ, φr. The
last row gives the number of moments (‘M’) that miss the confidence intervals (‘CI’) of the
empirical moments. The bold face figures emphasize certain results (model A) or assumptions
(model B and C).

maintained.

It is one purpose of Figure 1 to illustrate the differences from the point of view of

moment matching. The thin dashed lines in the diagrams are the empirical auto- and

cross-covariances of the interest rate, output and inflation (since there will be no more

12



risk of confusion, we will from now on omit the expression ‘gap’ when discussing these

variables). The shaded area is the 95% confidence band around them. The bold (red)

lines depict the moments obtained from the MM estimation A, while the dotted (blue)

lines are the moments implied by the Bayesian estimation BR. Recall that in order to

evaluate their goodness-of-fit as our loss function defines it, only the first eight lags are

relevant.

Figure 1: Estimated versus empirical covariance profiles (GI).

Note: The bold (red) line results from the MM estimation A of Table 1, the solid (blue) line
with dots from the Bayesian reference estimation BR. The shaded area is the 95% confidence
band around the empirical moments.

Inspecting the performance of the MM estimation with the naked eye, the match it

achieves looks very good over the first few lags and still fairly good over the higher lags

until the maximal lag H =8. In any case, it is remarkable that all of the moments are

contained within the confidence intervals of the empirical moments. This even holds true

for the covariances up to lag 20. Hence, at the usual 5% significance level and as far as

the (asymptotic) second moments are concerned that we chose, the model could not be

rejected as being inconsistent with the real-world data generation process.

In finer detail, the model-implied moments show less persistence than the empirical

covariances, in that they return more quickly to the zero level and then stay there. In

other words, with respect to the covariances of its state variables the model predicts a

shorter memory than it seems to prevail in reality. Reproducing a longer memory would,

13



however, ask too much from a small model such as the present one, if the longer memory

is a reliable phenomenon at all.

The covariances implied by the parameters of the Bayesian estimation are far less

satisfactory. In sum, as reported in the first column of Table 1, 15 of their moments are

outside the empirical confidence intervals, although the violation is not overly strong. 14

The best match, actually a very good one, is obtained for the auto-covariances of inflation,

Cov(π̂t, π̂t−h). Still acceptable is the persistence in these statistics for output and the

interest rate, while their initial levels are too low. Mainly responsible for the high value

of the loss function (J =209.1) in Table 1 are the cross-covariances, the performance of

which is rather poor, especially if one has a look at the practically vanishing Cov(xt, π̂t±h)

statistics. Conclusions from the Bayesian estimation that concern the central features of

the dynamic output-inflation nexus may therefore be taken with some care; at least in

the present context the relatively good one-period ahead forecasting properties of this

approach do not seem well suited to deliver authoritative statements about the general

interrelationships of these variables. 15

4.2. Price indexation versus shock persistence

The MM estimation makes a definite statement about the relative importance of price

indexation and the shock autocorrelation as the two main sources of persistence in the

Phillips curve. The outcome of α = 1 and ρπ = 0 is the exact opposite of the mes-

sage from the papers by, for example, Ireland (2007, p. 1864) and Cogley and Sbordone

(2008, p. 2113), who found no significant evidence for backward-looking behaviour in sim-

ilar price setting specifications. They argue that a purely forward-looking Phillips curve

proves fully sufficient because their models appropriately account for time-variation in

the inflation target, which can substitute for the backward-looking terms in previous

estimations on raw inflation data or their deviations from the mean.

Since our inflation gap variable is based on a time-varying trend, too, the contradis-

tinctive results appear somewhat puzzling. There are several possible explanations for

this, beginning with different estimation methods and different sample periods. 16 Also

the specific details in the Phillips curves may be less innocent than a short description

14The highest t-statistic is around 2.30.
15With respect to likelihood methods in general, the different properties of estimation A and
BR tend to contradict the intuition expressed, for example, by Schorfheide (2008, p. 402) that
“[s]uperficially, the likelihood function peaks at parameter values for which a weighted discrepancy
between DSGE model-implied autocovariances of [state vector] xt and sample autocovariances is
minimized.”
16 In particular, Ireland and Cogley&Sbordone estimate their models over longer sample periods,
namely 1959:1 – 2004:2 and 1960:1 – 2003:4, respectively. The common wisdom is that for the
years after 1984, the New-Keynesian Phillips curve needs to explain only a moderate degree of
persistence. We may, however, anticipate that in our estimations of the Great Moderation below
the coefficient on lagged inflation in the Phillips curve is not driven to zero, either.
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of their basic ingredients suggests. Another point makes things even more complicated,

which is to realize that identification of forward- and backward-looking terms in a Phillips

curve may easily depend on assumptions about other structural equations in a general

equilibrium model, including the precise auxiliary assumptions about the shock processes.

To paraphrase the concluding sentence in Beyer and Farmer (2007, p. 527), any attempt

to categorize an observed data series as arising from two different Phillips curve specifi-

cations “is determined as much by subtle choices over the way to model the dynamics as

it is by the data themselves”. 17 Our estimation is therefore far from being able to settle

the controversial subject of backward-looking versus forward-looking behaviour. For the

time being, we can only point out the strikingly different results and must leave it to

further effort to find out more about what essentially is responsible for them.

Within the present framework, one may now scrutinize the reliability of the estimates

α= 1 and ρπ = 0. Because of their common role to generate persistence in the Phillips

curve, the two parameters are also the first candidates the variations of which might

give rise to multiple local minima. This idea motivates the following complementary

estimations: treat both α and ρπ as exogenous parameters, consider a grid of the pairs

(α, ρπ), and estimate the nine remaining parameters for each of the grid points.
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Figure 2: Minimized values of J given α and ρπ (GI).

Figure 2 plots the thus minimized values of J in the three-dimensional space above the

(α, ρπ)-plane, for 0.70 ≤ α ≤ 1.00 and 0.00 ≤ ρπ ≤ 0.70. What immediately leaps to the

eye is the perfect smoothness of the surface and the absence of any local valley. Overall,

17Their paper illustrates this with the distinction between determinacy and indeterminacy.
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Figure 2 can instil additional confidence in us that the corner point (α, ρπ) = (1.00, 0.00)

does indeed constitute the global minimum.

A second feature of Figure 2 can shed more light on the informal question for the

relative importance of price indexation (α) versus the persistence in the shock process

to inflation (ρπ). In the present context, ‘importance’ may be measured by the relative

changes in min J brought about by the variations in α and ρπ. The bold lines on the

surface along the ρπ-axis clearly show that, for fixed values of α, the variations in ρπ have

only a minor impact on the goodness-of-fit, at least for values of ρπ in the range between

0.00 and 0.40, say. For fixed values of ρπ, on the other hand, the deterioration is much

more serious when α is gradually decreased. Indexation is therefore a crucial parameter

for the moment matching and higher persistence in the shocks is not nearly capable of

making up for the negative effects of lower indexation. As this is a global phenomenon

in GI, the best fit for this period entails maximal price indexation, α=1.

Figure 3: MM estimation of the model under exogenous variations of α (GI).

After establishing indexation as the parameter of primary concern in the Phillips curve,

it is interesting to see the changes in the estimation results when only α is exogenously

varied and J is minimized across the remaining ten parameters, which now include ρπ.

Figure 3 presents the most important reactions. First of all, the loss function in the

upper-left panel is monotonically rising as α decreases over the entire admissible range

from unity down to zero. This underlines what has just been said about the dominance of

the effects from α over the effects from ρπ, not only locally but over the full domain of α.

The worsening from J=47.6 at α=1 to J=119.4 at zero indexation (cf. estimation B in

Table 1) appears rather severe, though a discussion of whether it can also be categorized

as statistically significant will be postponed until the next subsection.
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The next effect of interest are the implied changes in the autocorrelation ρπ of the

shocks. As expected, lower indexation gives more scope for higher shock persistence, and

again this holds over the entire range of α; see the upper-right panel in Figure 3. It is,

however, remarkable that between α=0.95 and α=0.94 an almost discontinuous change

in the optimal value of ρπ occurs, when ρπ jumps from 0.051 to 0.262. The reason for

this is that the functions ρπ 7→ J(ρπ) in Figure 2 for fixed values of α are all very flat in

that region, which implies that already small changes in their shape brought about by

small changes in α can shift the minimum of these functions considerably. 18

Our reasoning concerning the Phillips curve has so far left aside the output gap as a

source of inherited persistence. The lower-right panel in Figure 3 for the optimal values

of the parameter κ reveals a stronger influence of this variable as compensation for a

reduced persistence from price indexation.

The results illustrated in these three panels can be related to Fuhrer’s (2006) analysis

of the constituent factors contributing to inflation persistence. For this, he concentrates

on the autocorrelations of the inflation rate as they are brought about by a hybrid Phillips

curve and a simple AR(1) process for the driving variable. Our study is more general in

that it incorporates additional criteria the model is desired to match, and also discusses

the possible influence of persistence in the shock process to inflation. 19 Fuhrer’s main

message from his GMM and maximum likelihood estimations is nevertheless maintained:

little is inherited from the persistence of (the shock and) the driving variable—and if

so, this deteriorates the performance of the model. Hence, “the predominant source of

inflation persistence in the NKPC is the lagged inflation term” (Fuhrer, 2006, p. 79).

Actually, his coefficient on lagged inflation is typically even higher than 0.5025, which is

the maximal value that we can get in eq. (12) when α=1. This is a numerical issue that

we return to in Section 4.4.

Among the other parameters in the estimations of the model and their reactions

to diminished indexation, the lower-left panel of Figure 3 shows the policy coefficient

φπ on the inflation gap in the Taylor rule. Higher values of it might be interpreted as

an indirect source of inflation persistence, acting through the interest rate channel. This

point of view is confirmed by the moderate increase of φπ in response to a reduction in α.

Nevertheless, as indexation decreases further, other mechanisms become more influential

and eventually reverse this effect. Besides, the estimated order of magnitude of φπ (and

also φx) appears to be more reasonable for MM than BR.

18 It actually required special care to spot the jump of the optimal ρπ precisely between 0.94 and
0.95.
19 Fuhrer assumes white-noise i.i.d. shocks and makes a remark that the serial correlation that
might be added to the shock variable will plausibly be relatively low (Fuhrer, 2006, p. 70).
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4.3. Is full price indexation significantly superior?

In the discussion of Figure 1 we have emphasized the much better match of our estimation

A with price indexation α = 1 versus the Bayesian reference estimation BR with an

indexation close to zero. In terms of the loss function, this amounts to a comparison

of J = 47.6 versus J = 209.1. In the previous subsection, when assessing the role of α

in finer detail, it has furthermore been pointed out that imposing the purely forward-

looking case α=0 on the MM estimation deteriorates J from 47.6 to 119.4 (see Table 1).

Nevertheless, these figures as such are not yet sufficient to characterize the differences as

‘significant’. Especially because J is a quadratic function of the moment deviations, the

apparently large differences might be somewhat misleading.

Table 1 also reports that the two models BR and B have, respectively, 21 and 5 of

the model-generated moments outside the empirical confidence intervals. Since all of the

moments of model A are inside the intervals, it might be said that this model cannot

be strictly told apart from the hypothetical true data generation process, whereas the

matching obtained for models BR and B can. On the other hand, this need not necessarily

imply that BR and B are significantly inferior to the unconstrained model. For example,

we would hesitate to subscribe to this statement if, in the comparison of two models,

the set of critical moments were close to the boundaries of the confidence intervals—one

inside, the other outside the intervals.

As a matter of fact, as has been remarked above (see footnote 14), the violations

of the confidence interval conditions by model BR are not very strong, and a similar

statement holds true for model B. In order to decide whether these estimations are

significantly inferior to model A, a test procedure for MM-estimated models proposed by

Hnatkovska, Marmer and Tang (2009; HMT henceforth) seems tailor-made for the present

framework; although the comparison of model A and BR requires a slight modification of

the latter, which is explained further below. It is particularly charming that the authors

are explicitly concerned with misspecified models. 20

The following description recapitulates what is needed to apply the econometric theo-

rems of HMT as a recipe. To set the stage in general, let X and Y be two arbitrary models

that are estimated on the same set of empirical moments. With respect to I = X,Y ,

let θI be the vector of free parameters entering model I and mI(θI) the vector of the

moments generated by θI in model I. Three cases need to be distinguished: (a) Model

Y is nested in model X, which means that for all moments mY(θY) there is a parameter

vector θX with mX(θX) = mY(θY); (b) X and Y are strictly non-nested, which means they

have no moment vector in common; (c) X and Y are overlapping, according to which the

20 See Definition 2.1 in HMT for a precise definition of misspecification, which is here moment-
specific. There is no reason to believe that a small macroeconomic model such as (12) should not
satisfy it, despite the conventional formulation above that model A “cannot be rejected by the
data”.
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models are non-nested and have at least one moment vector in common.

As our estimations were laid out, model A nests model B with its constraint α= 0.

Model A’s optimal value of α is, however, a corner solution (α̂ = 1), whereas the test

statistics put forward by HMT assume that the estimated parameters are in the interior

of the admissible region (see their Assumption 2.5(b)). Hence α must be treated as

being exogenously fixed at unity, by which the two models become strictly non-nested or

overlapping. The same applies to any model and to any of its parameters that has been

estimated at an end-point of the admissible interval.

The basic question of the model comparison approach is whether the lower value of

the loss function of a model indicates a significantly superior performance. If the models

are nested or overlapping, an answer first has to carry out a test that establishes whether

or not model X and Y have the same pseudo-true moments. If they have, one concludes

that the two models have the same fit and the testing is done. If not, and the models are

nested, unequal moment vectors also mean rejection of the null hypothesis of an equal

fit; that is, under these circumstances the model with the lower loss has a significantly

superior fit.

On the other hand, if the moments are found to be significantly different in the over-

lapping case, or if they are strictly non-nested, the fit of one model might still be similarly

good (or bad) to the fit of the other model. It is now the task of another step to decide

on the significance of the difference in the loss.

Both steps in the test procedure are based on a direct comparison of the loss functions

of the two models, which in the present context we write as

JI(θI ; m̂T ,W ) := T [mI(θI)− m̂T ]
′W [mI(θI)− m̂T ] , I = X,Y (13)

(recall that m̂T is the vector of the empirical moments). Letting X be the candidate

of a significant superiority, reference is made to the (positive and scaled) difference be-

tween the two minimized values of JY and JX, as they are brought about by θ̂Y and θ̂X,

respectively. HMT use the acronym QLR for it (alluding to the term ‘quasi-likelihood

ratio’). 21 With respect to the notation in (13), it is defined as

QLR(θ̂Y, θ̂X) := (1/T ) [ JY(θ̂Y; m̂T ,W ) − JX(θ̂X; m̂T ,W ) ] (14)

In the first step, for two nested or overlapping models, HMT derive an explicit expression

for the probability distribution P to which T ·QLR converges in probability under the null

hypothesis that both models have the same pseudo-true moments (formally introduced

shortly below). This proposition involves the weighting matrix W , the (positive-definite)

covariance matrix of the moments Σm and its square root Σ
1/2
m , and two special and

rather complicated matrices VX, VY pertaining to model X and Y, respectively; all of

these matrices have format (nm×nm). The probability element is represented by a random

21 Since we only use QLR as a recipe, notational reference to the sample length T , which is helpful
for the formulation of asymptotic statements, is suppressed.
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vector z the nm components of which are independent and follow the standard normal.

Then, the asymptotic distribution P we are looking for reads,

P ∼ z′Σ1/2
m W (VY − VX)W Σ1/2

m z (15)

In their paper, HMT describe P as a mixed χ2 distribution. The term is somewhat

delusive as the latter has a positive support, while from P also negative values could be

obtained with positive probability, even if model Y is nested in model X. 22 Intuitively,

this may happen if, compared to the estimated model Y , the estimate θ̂X of model X

does not lead to an equal or superior match in all of the moments. In this case a non-

negligible subset of the realizations of the vector z can put sufficient weight on exactly

the moments in which model X is slightly inferior to Y .

The distribution P is nonstandard and, in particular, depends on the unknown true

moments and their covariance matrix. However, the distribution and its critical values

can be approximated by simulations that use (a) consistent estimates of the matrices

entering P , and (b) sufficiently many random draws of the vector z. To be more explicit,

let a hat over Σm, V
X, VY denote the estimates of these matrices (Appendix A3 and A4

give the further details), and consider c = 1, . . . , 1000 random draws zc ∈ IRnm from

the multivariate standard normal. This gives us a collection of 1000 realizations of the

estimated version of (15),

{ z′c Σ̂1/2
m W (V̂Y − V̂X)W Σ̂1/2

m zc : zc ∼ N(0, Inm
), c = 1, . . . , 1000 } (16)

It is the 95% quantile of these simulated values, which may be designated Q0.95, that

enables us to test whether the two models have identical pseudo-true moments, that is,

whether the hypothesis

mY (θY,o) = mX(θX,o) (17)

is satisfied, where θI,o are the pseudo-true parameters of model I (I = X,Y ). 23 Accord-

ingly, at a 5% significance level, the recipe is:

reject (17) if T ·QLR(θ̂Y, θ̂X) > Q0.95 (18)

If (18) applies and the models are nested then, as mentioned above, we can at the same

time conclude that the one with the lower loss succeeds in a significantly better fit. On

the other hand, a failure to reject (17) tells us that the two models have essentially the

same fit, so that the testing is completed.

Taking the second step in the test procedure, let us suppose that the inequality in

(18) is satisfied, or that we already know that model X and Y are strictly non-nested.

22Vadim Marmer clarified this point to us in a private communication, where he also identified
this possible phenomenon in a formal decomposition of the QLR statistic.
23 Formally, with respect to the notation in eq. (8) and to mo as the moment vector resulting
from the unknown true model of the economy, θI,o satisfies JI(θI,o;mo,W ) ≤ JI(θI ;mo,W ) for
all θI in the set of feasible parameters.
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Regarding the relative quality of the fit, the precise formulation of the null and the

alternative hypothesis, H0 and HA, reads,

H0 : JX(θX,o;mo,W ) = JY(θY,o;mo,W )

HA : JX(θX,o;mo,W ) < JY(θY,o;mo,W )
(19)

where mo is the vector of the moments generated by the unknown true data generation

process of the economy. The test of (19) utilizes QLR once again to set up a t-statistic.

To this end, the following estimate of an asymptotic standard deviation is specified,

ŝ = 2 ·
√
{ Σ̂1/2

m W [mY(θ̂Y )−mX(θ̂X)] }′ { Σ̂1/2
m W [mY(θ̂Y )−mX(θ̂X)] } (20)

Letting z1−0.05/2 be the conventional critical quantile of the standard normal distribution,

the second step of the model comparison procedure is:

reject H0 in favour of HA if
√
T QLR(θ̂Y, θ̂X) / ŝ > z1−0.05/2 = 1.96 (21)

To sum up, HMT’s model comparison test is constituted by the results from (18) and, if

the second step is still to be taken, from (21).

When now, in a first application, we want to compare our model A to the Bayesian

reference model BR, we meet with the obstacle that BR has not been estimated by

MM. To fit BR into the MM framework, we help ourselves by fixing all of the numerical

parameters of BR except σπ, which is treated as the one and only free parameter for an

MM estimation. The value that thus minimizes the loss function changes slightly from

0.666 to σπ=0.690, reducing the loss from 209.1 to 208.3. Let us call this modified model

BR’,

σπ = 0.690, other parameters from BR (BR’)

and instead of BR, compare model A to BR’. 24 Clearly, A and BR’ are non-nested,

though we do not know whether they are strictly non-nested or overlapping. Since the

latter cannot be ruled out, we should begin with computing the statistics needed for the

test in eq. (18). The basic figures are reported in the first two rows of Table 2. First, the

difference between the minimized values of J , which equals T ·QLR, clearly exceeds the
95% quantile Q0.95 of the simulated test distribution (16). At the 5% significance level

we can therefore discard the hypothesis that model A and BR’ have equal moments in

the sense of eq. (17), so that we continue with step 2 of the test.

For the standard deviation in (20), ŝ = 13.09 is obtained. Together with
√
T QLR =

T · QLR /
√
T = 160.7 /

√
78 = 18.20, the test statistic in (21) is computed as 1.39. As

this falls short of the critical value, we are not legitimated to conclude that the moment

matching implied by the slightly modified Bayesian estimation BR’ with J = 208.3 is

24 For model A, the parameters α, ρπ, χ, φx, σr are exogenously fixed since they were estimated
at (or close to) the boundary of their feasible range.
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significantly inferior to the match of our basic MM estimation A with J = 47.6, even

though the two models are sure to have different moments. The same result is obtained

when comparing model A with the MM estimation B of the purely-forward-looking model

variant, which has α=0 imposed. 25

Model α J T · |QLR| Q0.95

√
T |QLR| /ŝ Conclusion

GI :

A 1.00 47.6 −− −− −− −−

BR’ vs. A 0.07 208.3 160.7 130.1 1.39 different moments,
but equivalent fit

B vs.A 0.00 119.4 71.8 39.0 1.51 different moments,
but equivalent fit

C vs.A 0.70 77.6 30.0 29.8 −− same moments
(at the 5% margin)

F’ vs. BR’ 2.48 13.0 195.3 149.3 −− different moments,
F’ superior to BR’

F vs. B 2.48 12.7 106.7 48.3 −− different moments,
F superior to B

Fvs.A 2.48 12.7 34.9 21.8 −− different moments,
F superior to A

GM :

A 0.82 54.1 −− −− −− −−
BR’ vs. A 0.03 157.7 103.6 121.7 −− same moments

B vs.A 0.00 68.4 14.3 50.6 −− same moments

Table 2: Comparison of alternative estimations.

Note: Models F, F’ for GI and A, B for GM are introduced below. Column α reproduces the
values for the first model.

An intuitive argument to understand this finding is that there are some moments of

the two models that are on opposite sides of the profile of the empirical moments. This

holds for a comparison of A and BR’ as well as A and B. So the moments are relatively

far apart from each other, while their deviations from the empirical moments are more

moderate. The first phenomenon contributes to the overall conclusion of significantly

25 Ireland (2007, p. 1864) with his maximum likelihood approach obtains a significant result to
the opposite. As already indicated above, in his estimations the parameter α leans up against its
lower bound of zero. He checked this estimate by alternatively imposing the constraint α=1 and
found that this specification was firmly rejected by a likelihood ratio test.
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distinct moments of, say, model A and B in the first step of the test procedure. The latter

deviations are evaluated by the loss function as JA(θ̂A; m̂T ,W ) and JB(θ̂B; m̂T ,W ),

respectively, and although naively the difference between these two values may appear

rather large, the second step of eqs (20), (21) does not yet classify it as significant. If this

is not exactly what one has expected then, given the empirical and asymptotic moments

of the two estimations, the failure of the inequality in (21) to hold true might be viewed

as being due to the fact that our sample size T =78 is too small. 26

After establishing that the two MM estimations A and B yield at least significantly

different moments, let us utilize once more the first step of the model comparison test.

Again treating the degree of price indexation α as an exogenous parameter, we gradually

increase it from α=0 and ask from what value of α on do the moments from the cor-

responding estimations differ no longer significantly from the moments of model A with

α=1. The borderline case is brought about by α=0.70, which gives rise to estimation

C in Table 1. As shown in Table 2, the resulting test statistic T · QLR(θ̂C, θ̂A) is 30.0
and thus essentially equal to the 95% quantile Q0.95 = 29.8 of the simulated distribution

from (16). Estimations where α is fixed at higher values than 0.70—and only these—lead

to T ·QLR < Q0.95 and therefore do not reject the hypothesis of equal moments.

The basic feature of these model comparisons is the scope for obtaining significantly

different moments, which was established in the first step of the test procedure for over-

lapping models. The second step, however, showed that this is not yet sufficient to con-

clude that the model with the lower loss is also significantly better than the other. Hence,

if we like to get the more pronounced result of one model significantly outperforming the

other, we have to broaden the framework of the discussion. This is an issue that we can

return to below.

4.4. Admitting stronger backward-looking behaviour

Having identified the momentous role of full indexation in the price adjustments of the

non-optimizing firms, we may take one step further. In fact, the unchecked fall of the

function α 7→ min J towards the end-point α=1 in the top-left panel of Figure 3 suggests

that still higher values of α would lead to a further improvement in the matching of

the moments. This idea could be pursued in another framework that allows for wider

intervals of the two coefficients on expected and lagged inflation in the Phillips curve.

In the simplest case, a parameter µ ∈ [0, 1] may be introduced and the coefficients on

Etπ̂t+1 and π̂t−1 directly specified as (β−µ) and µ, respectively, without much caring

about the exact microfoundations. 27

26 If θ̂A, θ̂B and the matrices in the above equations remained unchanged,
√
T ′ QLR/ŝ > 1.96

would obtain if T ′ > (1.96/1.51)2 · T , i.e. T ′ ≥ 132.
27This is the version that, without discussing further details of its theoretical background, Fuhrer
(2006, p. 53) presents as the “canonical hybrid New Keynesian Phillips curve”.
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The range of the composite coefficients on the two inflation rates could also be ex-

tended if, to economize on notation, we leave the economic interpretation of the parame-

ter α aside and allow it to exceed unity. This is how we proceed in the present subsection.

Formally, the Phillips curve equation in (12) need not be altered then. Carrying out the

estimation once more without the constraint does indeed drive α further up to a value

larger than 2; see model D in Table 3. With the estimated α=2.214, the composite coef-

ficient on lagged inflation amounts to 0.69, which is higher than the values that Fuhrer

(2006) got from his GMM estimations in a simplified framework but lower than his value

of 0.94 from a maximum likelihood estimation of the same coefficient (for a sample eight

years longer than our GI period; cf. Fuhrer, 2006, pp. 67–69). Although we abstain here

from a discussion of the precision of these results, they underline the important role of

backward-looking behaviour in the firms’ price setting even more strongly than before.

Model α κ σπ χ τ σx φπ φx φr J

A 1.000 0.051 0.571 1.000 0.096 0.610 1.482 0.030 0.333 47.6

D 2.214 0.114 0.419 1.000 0.186 0.476 1.115 0.000 0.115 29.6

E 1.000 0.043 0.536 1.460 0.122 0.488 1.616 0.298 0.484 37.7

F 2.484 0.103 0.303 1.574 0.202 0.444 1.606 0.016 0.000 12.7

Table 3: Estimations when the economic constraints on α and χ are dropped (GI).

Note: In all cases, ρπ = 0 and σr = 0 results. Values of α and χ exceeding one are admitted
for notational convenience; they are not meant to have a meaningful economic interpretation.
In model F, the implied coefficients on lagged inflation and lagged output in (12) are 0.72
and 0.61, respectively. Bold face figures emphasize the kind of ‘excessive’ backward-looking
behaviour admitted in the estimations.

As a somewhat surprising side result we note that the influence of the inherited persis-

tence in the Phillips curve increases, too, rather than decreases, i.e., the estimate of the

slope coefficient κ doubles from 0.051 to 0.114. The effect on the entire output-inflation

nexus is a simultaneous doubling of τ , the coefficient on the real interest rate in the IS

equation.

The improvement in the moment matching to which the higher values of α can give

rise is more than only marginal. It is, in particular, remarkable that in the autocovari-

ance diagrams such as those in Figure 1, they would now succeed in bringing about a

nonnegligible overshooting in all of the nine profiles after their first return to the zero

line. Although this reproduces an empirical feature that takes place at lags beyond the
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horizon of our loss function, the matching over the first eight lags alone diminishes J by

already more than one-third, from 47.6 (for α=1) to J = 29.6.

Since with respect to the indexation parameter α it proved useful to step outside the

original model formulation, we may try the same with the habit parameter χ in the IS

equation, which so far was consistently estimated at its upper bound χ=1. Reintroducing

the upper bound α=1 in the Phillips curve, model E in Table 3 shows that also in this

way a better fit can be obtained, although with J=37.7 less so than with model D. It is

brought about by χ = 1.460, by which the coefficient on lagged output in the IS equation

increases from 0.50 to 0.59.

Lastly, it is only natural to drop the constraints simultaneously on both parameters

α and χ, which constitutes our model F. The inertia thus made possible do not tend

to replace each other but α as well as χ are estimated at similar values to the previous

results with only one of the relaxations. Interestingly, no more persistence is now required

on the part of the interest rate (φr=0), and the noise levels σπ and σx of the exogenous

shocks can subside. Hence the deterministic core of the model gains in importance.

Most remarkable of all, however, is the final improvement in the performance of system

(12) that is thus achieved. Not only that the two persistence effects from higher values

of α and χ do not cancel out, they even reinforce each other. That is, if starting from

model A each effect were maintained irrespective of the rest, the value of J would fall

to 47.6 − (47.6−29.6) − (47.6−37.7) = 19.7. Instead, estimation F reduces the value

of the loss function further down to 12.7. With respect to model A this is as strong an

improvement as 73%.

While the fit of model A was already fairly good, the fit of model F could therefore be

summarized as, we dare say, excellent. The diagrams of the covariance profiles in Figure

4 illustrate this to the naked eye. If there still is something to be desired it is a higher

variance of the inflation rate in the lower-right panel, and a stronger fall from there to

its first-order autocovariance. We would also like to stress that the good matching of the

moments considerably extends beyond the 8-lag horizon of the estimation itself.

Despite our excitement about the close fit of estimation F, it is yet another question if

F can be said to be significantly better than the other estimations. Here, if anything, F

should significantly outperform estimation B with its high value of J = 119.4 for the loss

function when fixing α at zero. For this comparison, B can be regarded as being nested in

F. 28 Calculating the 95% quantile of distribution (16) asQ0.95 = 48.3, which falls short of

the difference in the loss functions 106.7 = (119.4−12.7) = T ·QLR, we do not only know

28Model B has fixed parameters α = 0, χ = 1 and σr = 0, while model F only treats σr = 0
as a fixed parameter. Fixing the latter is necessary since otherwise the matrices F I (I = B,F )

entering the determination of V̂ I in (16) would not be invertible (owing to ∂mI/∂σr = 0 at
σr = 0; cf. Appendix A4). We should add that even though the restriction ρπ ≥ 0 is now dropped
for model F, the coefficient continues to be estimated at zero. Hence all parameters that are free
in B are also free in F.
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Figure 4: Covariance profiles of model F from Table 3 (bold lines).

that B and F have significantly different moment vectors, but we can also conclude that

model B is significantly inferior to model F; see Table 2. Perhaps somewhat surprisingly,

the same table shows that (with the analogous procedure to footnote 28) model F is even

significantly better than model A, which previously seemed so satisfactory. 29 These two

results give strong emphasis on the beneficial role of backward-looking behaviour in

the Phillips curve and IS equation, if we adopt a moment matching perspective. Our

investigation thus calls for a reconsideration of the microfoundations that would permit

the resulting coefficients on lagged inflation and lagged output to become larger than

one-half.

4.5. Evaluation of the estimated parameters

After temporarily transgressing the interpretational framework for the indexation and

habit persistence parameters, we return to our main estimation A with the corner solution

α=1 and χ=1. Let us now have a closer inspection of its parameter estimates. Apart

from the issue of the degree of ‘backwardness’ in the Phillips curve and the IS equation,

another remarkable result concerns the coefficients in the Taylor rule. Straightforward

29 In order to compare F to the modified Bayesian estimation BR’ from above (with its slightly
improved fit), where again we want to take advantage of the nested case treatment, we can
fix σr at σr = 0.729 from BR’ and re-estimate all of the remaining parameters. This gives us
estimation F’ (with a deteriorated fit). The test statistics reported in Table 2 show that then F’
is significantly superior to BR’.
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conventional wisdom has it that over the Great Inflation period the central bank paid

(perhaps unduly) strong attention to the variations of economic activity at the cost of

price stability, an idea that would be captured by a high policy coefficient φx on the

output gap and a low coefficient φπ on the inflation gap not much above one. This is

what we indeed find in the Bayesian reference estimation BR in Table 1. The moment

matching approach, however, reverses the role of the two parameters: the inflation gap

coefficient of model A is almost equal to Taylor’s famous rule-of-thumb value of 1.50

(Taylor, 1993, p. 202), while the output gap takes practically no effect at all. Again in

contrast to the Bayesian estimation, with φr=0.33 there is furthermore only weak own-

persistence in the rule, which appears all the more surprising as the interest rate inherits

no persistence from the output gap.

The complete absence of noise in the monetary policy rule, σr = 0 (something that

would imply a stochastic singularity in likelihood estimations), may not be overrated.

If for conceptual reasons in a broader context a certain randomness in the conduct

of monetary policy were required, we have a wider range over which ceteris paribus

increases of this parameter have no more than a minimal impact on the loss function,

such that in the autocovariance diagrams in Figure 1 the human eye would hardly notice

any difference. For example, the model-generated variance that the interest rate gap in

indirect ways inherits from the other two random shocks is as high as 3.21 for σr = 0,

and a rise of σr to 0.50 would increase it to just 3.46.
30 Technically speaking, σr is thus

only weakly identified, or white-noise effects in the policy rule have an almost negligible

bearing on the overall fit of the model.

The observation on σr brings us to the general question of the accuracy of the estimated

parameters. As indicated at the end of Section 2, we use re-estimations on the model-

generated moments to construct 95% confidence intervals for them. Here Hall’s method

(specified in Appendix A2) serves to obtain the confidence intervals if the parameters

are estimated at an interior value (these are the coefficients κ, σπ, τ , σx, φπ, φr), while

the standard percentile intervals are preferred if they are estimated at, or close to, one

of the end-points of their admissible range (these are α, ρπ, χ, φx and σr). A sample size

of B = 1000 is sufficient for the bootstrap. In this way we arrive at the intervals given

in column A of Table 1.

Most of the confidence intervals of the MM estimation are wider than those from

the Bayesian approach. Apart from σr, all of the other parameters are nevertheless rea-

sonably well identified. The frequency distributions of the re-estimated parameters are

30A further increase of the noise level up to σr = 1.00, say, would have a stronger effect as it
raises the variance to 4.21. Regarding the “the indirect ways” in which the other shocks act on
the interest rate, it may be noted that in spite of φx ≈ 0, a fall of σx to zero in the IS equation
would cause a drop of Var(r̂t) from 3.21 to 1.98. The main reason for this is the fall of Var(π̂t)
from 1.80 to 1.23.
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Figure 5: Frequency distributions of the re-estimations
of the bootstrapped model A (GI).

Note: The bold bars at the bottom indicate the estimates on the empirical moments, the
shaded areas show a 95% probability mass of the distributions.

plotted in the last 11 panels of Figure 5, 31 where the shaded areas indicate a 95% prob-

ability mass with the end-points being determined by the standard percentile intervals.

In particular, the re-estimations confirm that the polar results α=1, ρπ=0 and χ=1 are

no outliers. Note also that even several intervals in the interior of the admissible range

are not symmetric around the estimated parameter values, so that the standard intervals

shown here differ from the Hall percentile intervals in Table 1. Examples for this are the

parameters κ, τ and φr.

Of course, the re-estimated parameter values are not all independent of each other.

On the basis of the discussion of the different sources of persistence in the Phillips curve

it will, in particular, be expected that the estimates of α and ρπ are inversely related.

With a negative correlation coefficient of −0.71, Table 4 documents that this is indeed
the tightest relationships between two parameters that we can find. As indicated by the

bold type numbers there are, however, also other parameters that are closely connected,

where most of the pairwise dependencies are within each of the three equations of the

31The density functions are estimated by means of the Epanechnikov kernel; see Davidson and
MacKinnon (2004, pp. 678–683) for the computational details.
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model. Two remarkable exceptions are a certain tendency that an increase of κ in the

Phillips curve goes along with an increase of τ in the IS equation, and an increase in the

supply shock level σπ (but not persistence ρπ) in the Phillips curve goes along with an

increased persistence φr in the Taylor rule (and therefore with a decrease in σπ). The

other interdependencies do not seem too surprising and may stand for themselves.

α κ ρπ σπ χ τ σx φπ φx φr σr

α : 1.00 −0.08 −0.71 0.29 0.13 −0.06 0.02 0.05 0.04 0.30 −0.11
κ : 1.00 0.35 0.26 −0.14 0.39 0.07 0.18 0.03 0.18 −0.33
ρπ : 1.00 −0.35 −0.10 0.11 −0.02 0.04 0.05 −0.08 −0.02
σπ : 1.00 0.24 0.27 0.03 −0.01 −0.02 0.35 −0.41

χ : 1.00 0.12 −0.44 −0.24 −0.12 0.23 −0.11
τ : 1.00 0.21 −0.14 −0.01 0.00 −0.19

σx : 1.00 0.20 0.13 0.01 0.01

φπ : 1.00 0.39 0.28 −0.22
φx : 1.00 0.47 −0.10
φr : 1.00 −0.49
σr : 1.00

Table 4: Pairwise correlations of parameter re-estimates of model A (GI).

Note: Bold face figures emphasize higher correlation coefficients.

Let us finally turn to the top-left panel of Figure 5, which displays the distribution

of the minimized values Jb of the loss function in the re-estimations; see eq. (11). As

indicated by the shaded area, its 95% quantile is J0.95 = 65.0. The estimated value Ĵ =

47.6 is clearly below this benchmark, so the bootstrap test under the null hypothesis

cannot reject the model. Since the quantile of Ĵ is 88.38%, the model may be said

to have a moment-specific p-value of 11.62%. We nonetheless formulate this only as a

conventional statement to succinctly evaluate the overall goodness-of-fit; of course, it is

not meant to imply that model A could be the “true” model of the economy.

5. The Great Moderation period

In this section we consider the period of the Great Moderation, where in other respects

we can proceed along the same lines as above. Our main result is the comparison of

estimation A with a Bayesian reference estimation BR in Table 5. Again, as in the Great

Inflation sample and emphasized by the bold face figures, in contrast to BR estimation A
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needs no persistence from the shock process in the Phillips curve (ρπ = 0), and it yields

a high degree of price indexation α, although it is here not maximal.

Bayesian Moment Matching

BR A B C D

α 0.033 0.816 0.000 0.459 0.863
0.000− 0.071 0.475− 1.000

κ 0.163 0.030 0.139 0.049 0.020
0.103− 0.221 0.000− 0.046

ρπ 0.389 0.000 0.712 0.000 0.000
0.274− 0.510 0.000− 0.453

σπ 0.517 0.200 0.176 0.455 0.163
0.420− 0.611 0.140− 0.373

χ 0.825 1.000 1.000 1.000 ∞
0.759− 0.891 0.669− 1.000

τ 0.017 0.047 0.045 0.040 0.275
0.009− 0.025 0.000− 0.085

σx 0.346 0.532 0.515 0.504 0.555
0.296− 0.399 0.295− 0.702

φπ 1.181 1.626 2.412 2.784 1.418
1.001− 1.383 0.295− 3.746

φx 1.014 1.031 0.664 0.687 1.296
0.602− 1.419 0.176− 2.129

φr 0.814 0.776 0.753 0.786 0.760
0.762− 0.867 0.673− 0.958

σr 0.449 0.472 0.527 0.393 0.348
0.395− 0.502 0.296− 0.942

J 170.1 54.1 68.4 72.8 39.6

MCI missed 15 3 4 1 2

p-value — 5.4% — — —

Table 5: Parameter estimates for GM.

Note: The discount factor is β = 0.99 throughout. In estimation B, α is fixed at 0.00. The
smaller numbers indicate the confidence intervals; from the posterior distribution in a Bayesian
reference estimation (BR), while in estimation A they are computed from (A1) for α, ρπ, χ,
φπ, φx and from (A2) for κ, σπ, τ , σx, φr, σr. The last row gives the number of moments (‘M’)
that miss the confidence intervals (‘CI’) of the empirical moments.

Apart from that, the general wisdom that inflation during the GM period was less

exposed to exogenous shocks than during GI is corroborated by the estimation of the

noise level σπ, which is reduced by almost two-thirds (cf. estimation A in Table 1). Also
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the driving variables in the Phillips curve and the IS equation have a somewhat weaker

influence than in GI (lower estimates of κ and τ and narrower confidence intervals). On

the other hand, the Taylor rule exhibits stronger persistence φr. In addition, it is more

responsive to the output gap (higher value of φx), while the estimated coefficient on the

inflation gap φπ has a similar order of magnitude to GI. These statements have, however,

to be qualified since, in striking contrast to the Bayesian reference estimation BR shown

in the first column of Table 5, both of these parameter estimates have extremely wide

confidence intervals. 32 In our moment matching estimation approach we have therefore

no firm basis to compare the two policy coefficients φπ and φx between GI and GM. Inci-

dentally, the width of the confidence intervals is not so much different from the intervals

that Cho and Moreno (2006, pp. 1467ff, Tables 2, 4, 5) obtain from their maximum like-

lihood bootstrap re-estimations of a similar three-equations model (their sample period

is 1980:4 –2000:1).

The distributions of the re-estimates from the bootstrap for these and the other param-

eters, on the basis of which the confidence intervals are computed, are shown in Figure

6. Note that just as for GI, the distribution of χ strongly leans against one, and the

distribution of ρπ against zero. Regarding the indexation parameter α, the distribution

has most of its probability mass not very far below unity (the median is 0.846).

Figure 6 is accompanied by the pairwise correlations for these estimates in Table 6.

Comparing it to Table 4 for GI, the following four changes are noteworthy. (1) Not

only is the correlation coefficient between κ and τ reduced by one half, but there is

now also a positive correlation between α and τ , which was previously negligible. (2)

There is a moderate positive correlation between σπ and φπ, and a moderate negative

correlation between σπ and φx, both of which were not present in GI. (3) The previously

weakly positive connection between the re-estimates of χ and τ has strengthened, and

the previously strongly negative connection between χ and σx has weakened. (4) While

in GI the policy coefficients φπ and φx were positively correlated, this has become a

negative relationship in GM.

Turning to the quality of the match of estimation A in GM, with a minimized value

J = 54.1 of the loss function versus J = 47.6 in Table 1 it appears slightly worse than

estimation A in GI. This impression is confirmed by the moment-specific p-value as it

32 Several of the low estimates of φπ might imply indeterminacy with one stable root too many
in the Blanchard-Kahn condition. This poses no problem for us since the solution matrix Ω
in (2) was computed by employing the brute force iteration procedure mentioned in Binder and
Pesaran (1996, p. 155, fn 26). First, for the present model even a crude initialization like 0.80 times
the identity matrix proves good enough to ensure convergence. Second, in the case of multiple
solutions the iteration selects one of the solution matrices automatically and, as we have checked
by a number of examples, the most appropriate one—which means that Ω changes continuously
when ceteris paribus variations of φπ lead the system from determinacy to indeterminacy. By
the way, the high robustness of the method is in contrast to the sufficient, somewhat special
conditions for local convergence given by Bai et al. (2005, pp. 116f).
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Figure 6: Frequency distributions of the re-estimations
of the bootstrapped model A (GM).

Note: The bold bars at the bottom indicate the estimates on the empirical moments, the
shaded areas show a 95% probability mass of the distributions.

was discussed at the end of Section 4.5. In the top-left panel of Figure 6, which presents

the distribution of the minimized values Jb of the re-estimations, it can be seen that its

95% quantile J0.95 almost coincides with the originally estimated Ĵ . The exact numbers

are J0.95 = 55.0 and Ĵ = 54.1, which constitutes a quantile of 94.6%. The model’s p-value

therefore amounts to 5.40%, compared to 11.63% for GI. 33

Considering the matching of the single moments, there are now three moments that

miss the empirical confidence intervals, versus none in GI. Figure 7 shows that responsible

for this is the steep initial decline of the auto-covariance profile of the inflation gap, which

means that in GM there is noticeably less persistence in π̂t than in GI. As it turns out, the

model is not too well prepared for that, so that one may be even tempted to say that in its

entirety the model tends to exhibit too much, rather than too little, inflation persistence.

33Cho and Moreno (2006) evaluate their three-equations model by bootstrapping and re-
estimating the model and a low-order unconstrained VAR, from which subsequently a likelihood
ratio test statistic can be computed. The resulting p-value is zero for their base model but inter-
estingly, with p = 3.90% (see their Table 6 on p. 1474, panels A and B) this statistic is not too
different from ours if they admit auto- as well as cross-correlations in all of the random shocks
(which on the other hand are features that our estimates can dispense with).
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α κ ρπ σπ χ τ σx φπ φx φr σr

α : 1.00 −0.08 −0.62 −0.05 0.22 0.35 0.27 0.11 0.01 0.11 −0.08
κ : 1.00 0.22 −0.12 −0.21 0.20 0.18 −0.03 0.22 0.10 −0.11
ρπ : 1.00 −0.39 −0.10 −0.17 −0.16 −0.06 0.02 −0.05 0.01

σπ : 1.00 0.00 0.11 0.03 0.29 −0.22 −0.04 −0.05

χ : 1.00 0.33 −0.16 0.15 −0.04 0.04 −0.08
τ : 1.00 0.45 0.06 −0.03 −0.18 −0.05

σx : 1.00 0.09 0.05 0.03 −0.09

φπ : 1.00 −0.26 0.20 −0.11
φx : 1.00 0.59 −0.22
φr : 1.00 −0.33
σr : 1.00

Table 6: Pairwise correlations of parameter re-estimates of model A (GM).

Specifically, it seeks to find a compromise by first strongly underestimating the level

of the variance of π̂t, the corresponding t-statistic being −3.17, and then moderately

overestimating Cov(π̂t, π̂t−1) and Cov(π̂t, π̂t−2) with a t-statistic of 2.30 in both cases;

see the bold (red) line in Figure 7. In this—but only in this—respect, the Bayesian

reference estimation BR (see the dotted (blue) line) proves to be somewhat superior; for

the other types of moments, BR displays a similar inferiority to that in GI.

In an attempt to force all of the model-generated moments into the empirical con-

fidence intervals, we also experimented with an ad-hoc modification of the present loss

function. It is essentially the sum of the skilfully weighted and nonlinearly transformed

t-statistics of the single moment deviations (mi(θ) − m̂i,T ), which tolerate small and

medium deviations and heavily penalize t-statistics close to or above 2. However, our

effort in thus tuning the function was not fully successful. The best we could achieve is

a miss of just one confidence interval, which by the way requires a lower degree of price

indexation and still no persistence in the supply shocks. Table 5 reports this parameter

set as estimation C. It goes without saying that the price for this kind of improvement

is a larger deterioration of the original loss function J . The remaining moment that

is not satisfactorily matched is again an autocovariance of the inflation gap, this time

Cov(π̂t, π̂t−4) with a t-statistics of −3.63. This underestimation may nevertheless be con-
sidered to be pardonable given the peculiar peaks every four quarters in Cov(π̂t, π̂t−h),

h = 4, 8, . . . (although the data is seasonally adjusted and the phenomenon is completely

absent in GI).
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Figure 7: Estimated versus empirical covariance profiles (GM).

Note: The bold (red) line results from the MM estimation A of Table 5, the solid (blue) line
with dots from the Bayesian reference estimation BR. The shaded area is the 95% confidence
band around the empirical moments.

After discussing the main estimation A, we can follow the second part of the analysis

in Section 4.2 (neglecting the more detailed first part for reasons of space). Accordingly,

we study the impact of varying degrees of price indexation α on the estimated shock

persistence ρπ and the resulting overall fit of the model. Again including the estimates

of κ and φπ in this exercise, Figure 8 is obtained. Its main difference from Figure 3 for

GI is, of course, that the function α 7→ min J has an interior minimum, although the

performance of the model for α=1 is not much worse. Also to the left of the estimated (i.e.

minimizing) α, the deterioration of J is not very dramatic. Actually, the test procedure

introduced in Section 4.3 tells us that the value J = 68.4 for the purely forward-looking

case α=0 (which is estimation B in Table 5) is not significantly different from J = 54.1

for α̂ = 0.816 in estimation A. More precisely, as documented in the lower part of Table

2, even the moments generated by the two estimations cannot be significantly told apart.

Incidentally, a comparison of model A with the Bayesian reference estimation leads to

the same conclusion. 34

34Analogously to the treatment for the GI period in Section 4.3, BR is modified to BR’ by using
σπ as the one and only parameter that is reset to minimize the MM loss function; the new value
is then σπ = 0.428, which reduces the loss from 170.1 to J = 157.7.
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Figure 8: MM estimation of the model under exogenous variations of α (GM).

Regarding the estimates of ρπ, κ and φπ that are associated with the exogenous

variations in α, Figure 8 shares with Figure 3 the feature that these parameters are low

if α is high and vice versa. Again, there is also a discontinuous jump of ρπ. In Figure 8 it

is, however, extreme and instead of the monotonic increase of ρπ as α decreases, there are

practically just two states of shock persistence: the estimated ρπ is zero for 0.64 ≤ α ≤ 1,

and it marginally falls (rather than increases) from 0.739 to 0.712 as α decreases from

0.63 down to zero. The jump of ρπ is furthermore so strong that it makes itself also felt

in the estimates of κ and φπ.

At the end of this section, we again step outside the interpretational framework of the

parameters α and χ and generally admit values exceeding unity for them. Estimation D in

the last column of Table 5 shows that the price indexation α makes no use of this option;

even if the minimum search procedure for the loss function initializes α considerably

above unity, the parameter soon returns into a region of roughly 0.80 or 0.90 (before

the other parameters settle down on their final values of the estimation). By contrast,

the habit persistence χ strongly tends away from unity, even extremely so. Practically,

χ can be said to head towards infinity, which only means that the full weight in the IS

equation is on lagged output and the forward-looking component completely disappears.

As far as we know, a purely backward-looking IS equation has not yet been obtained in

the estimation of New-Keynesian models of similar complexity.

6. Conclusion

Being concerned with the estimation of contemporary macroeconomic DSGE models,

the main purpose of this paper was a challenge of the dominant position of the Bayesian
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approach. Our alternative was the method of moments (MM). In the present application

it seeks to match the model-generated second moments of the economic variables to their

empirical counterparts, thus summarizing the basic dynamic properties of the model.

Besides the relatively low computational cost, a main advantage of the method is its

transparency. In this respect, MM allows the researcher to concentrate on what he or

she considers to be the most important stylized facts of the economy, and requires him

or her to make them explicit. While in the end the choice of moments is a matter of

judgement, it is a useful and informative decision to make since a model, at whatever level

of complexity, cannot possibly reproduce all of the empirical regularities that we observe.

In addition, the MM approach provides us with an intuitive notion of the goodness-of-fit

of a model, which may be checked by visual inspection of suitably organized diagrams or

more formally by an econometric assessment of the minimized value of a loss function.

A novel feature of the paper is that it contrasts the MM with the Bayesian estimation

results. To this end we limited ourselves to an elementary three-equations model of

the New-Keynesian macroeconomic consensus, where the inflation and interest rates

in the structural equations are specified as the deviations from an exogenous flexible

trend. Special emphasis was placed on a comparison of the degree of backward-looking

behaviour in the hybrid Phillips curve. A typical result of many (though not all) Bayesian

estimations, to which our framework was no exception, is that lagged inflation tends to

play only a minor role in the Phillips curve. Inflation persistence is here brought about by

serial correlation in the shock process, besides the inherited persistence from the output

gap.

Our MM estimations may add new insights into this discussion. In fact, they found

strong evidence to exactly the contrary. With α ≈ 0.80 the degree of price indexation is

high in the Great Moderation (GM) period and it is estimated at its maximal value of

α = 1.00 in the sample of the Great Inflation (GI), whereas in both cases the supply side

shocks are white noise and inherited persistence is weak.

We even took one step further and showed that if, hypothetically, the parameter α

were permitted to exceed unity, then in GI it would be as high as almost 2.50. This means

that the composite coefficient on lagged inflation in the Phillips curve would be larger

than 0.70. The habit persistence parameter χ in the IS equation, by the way, would also

be higher than one if it were free in this respect (in both GI and GM).

The much stronger role for the backward-looking elements is all the more important

since, already in the presence of the constraints α ≤ 1 and χ ≤ 1, the matching of

the empirical moments proves to be fairly good. The general qualitative impression is

supported by (moment-specific) p-values above the 5% significance level. Moreover, if

the constraints were dropped, the match for GI is so strongly improved that we dared

to characterize it as excellent. In that case a new econometric test by Hnatkovska et al.

(2009) enabled us to conclude that it is significantly better than our MM benchmark

estimation with α=1.
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From our perspective there are thus primarily two issues that future research may turn

to. First, reconsider the microfoundations for lagged inflation and output in the Phillips

curve and IS equation, which still are arguably ad hoc—if they at all allow for coefficients

on these variables that are larger than one-half. 35 Second, apply the MM approach to

models with a richer theoretical structure, which would also extend the scope for the

moments entering the estimations. The obvious question would then be whether or not

the present results will survive.

Appendix A1: Prior densities of the Bayesian reference estimation

The prior densities are essentially taken over from Castelnuovo (2010). One exception

is that we mistrust his relatively high estimate of the policy parameter φπ in the GI

period, the posterior mode of which, guided by his prior normal distribution around

1.70, amounts to more than 1.80. Following the results by Lubik and Schorfheide (2007)

and Benati and Surico (2009), we prefer a lower prior mean and decide on φπ ∼ β(1.3, 0.2)

for this distribution.

Regarding the prior for the price indexation parameter α we cannot draw on Casteln-

uovo since, basically (apart from some other specification details), he alternatively fixes

α either at zero or one. As his results, like the ones by Ireland (2007) and Cogley and

Sbordone (2008) mentioned in the text, favour the purely forward-looking Phillips curve

with α = 0, we choose a prior mean less than 0.50 but still with some scope for α to

move to higher values in the estimation process. So we assume α ∼ β(0.3, 0.2). Neverthe-

less, as reported in both Table 1 and 5, with this setting our estimations show a strong

tendency, too, for α to lean against zero. To be self-contained, the priors are all listed

in Table A1. 36 We checked that the posterior densities to which they give rise are in

fact well-behaved. This concerns their relationship to the prior densities as well as the

convergence checks by Brooks and Gelman (1998), which are summarized in the uni- and

multivariate diagnostics provided by Dynare.

Appendix A2: The standard percentile and Hall’s percentile confidence
interval

Let a collection { θ̂b : b = 1, . . . , B } of parameter re-estimates be given, as stated in (10).
With respect to a significance level α = 0.05, let θ̂i,L be the estimate from (10) such that

35 For the ad hoc nature of the common microfoundations of a hybrid Phillips curve, see Rudd
and Whelan (2005, pp. 20f), which is the longer version of Rudd and Whelan (2007, p. 163, fn 7).
An interesting new concept to make the Phillips curve more flexible is the hazard function studied
by Sheedy (2010), although it comes at the cost of a more complicated structure of lagged and
also expected inflation.
36Note that our rates of interest and inflation are annualized, while Castelnuovo’s are not.
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α κ ρπ σπ

β(0.3, 0.2) Γ(0.4, 0.1) β(0.6, 0.1) IΓ(1.0, 8.0)

χ τ — σx

β(0.5, 0.1) Γ(0.037, 0.0125) — IΓ(0.25, 2.0)

φπ φx φr σr

β(1.3, 0.2) Γ(1.2, 0.8) β(0.5, 0.28) IΓ(1.0, 8.0)

Table A1: Prior densities of the BR estimations in Tables 1 and 5.

only a fraction α/2 of all the bootstrap estimates θ̂bi are less than this value, and likewise

θ̂i,H the estimate that is exceeded by only α/2 of the bootstrap estimates. The standard

percentile confidence interval is then given by

CIS(θi) = [ θ̂i,L, θ̂i,H ] (A1)

(the index S indicating that (A1) is regarded as the standard method.) If the original

estimate θ̂i from (8) lies on the boundary of the admissible set of the parameters, Θ, and

θ̂i,L (or θ̂i,H) coincides with it, then θ̂i,H (or θ̂i,L) itself will be the (1−α/2)-quantile (the
α/2-quantile, respectively).

Although (A1) is a straightforward specification, it has to be taken into account that

it may not have the desired coverage probability. In particular, if θ̂i is a biased estimate

of θoi , the bootstrap distribution may be asymptotically centred around θoi plus a bias

term and, hence, CIS(θi) is a (1−α)% confidence interval for the latter quantity and may

thus have a grossly distorted range as a confidence interval for θoi .

An alternative to (A1) that fixes this problem is Hall’s percentile confidence interval,

which essentially is defined as

[ 2θ̂i − θ̂i,H , 2θ̂i − θ̂i,L ] (A2)

It is based on the idea that the bootstrap distribution (θ̂bi− θ̂i) approximates the distribu-

tion (θ̂i− θoi ). This implies that Prob(θ̂i,L− θ̂i < θ̂i− θoi < θ̂i,H − θ̂i) ≈ Prob(θ̂i,L− θ̂i <

θ̂bi − θ̂i < θ̂i,H − θ̂i) = 1−α, and the first probability expression is easily seen to be equal
to Prob(2θ̂i − θ̂i,H < θoi < 2θ̂i − θ̂i,L) = Prob(θoi ∈ CIH(θi)). Hence Hall’s percentile

method is asymptotically correct.
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It can, however, happen that 2θ̂i − θ̂i,H falls short of a lower bound θi,aL of the

admissible range of the parameter (something which by construction is not possible with

the standard percentile interval). The lower end of the confidence interval may then be set

equal to θi,aL. Similarly so if 2θ̂i − θ̂i,L exceeds an upper bound θi,aH of the admissible

range. We leave such a modification of (A2) aside since in these cases it seems more

meaningful to resort to (A1).

Appendix A3: Estimation of the moment covariance matrix Σ̂m

Let pt, qt stand for the empirical interest rate (gap) rt, the output gap xt or the inflation

(gap) πt, as the case may be (the hat on r and π is here omitted). The theoretical covari-

ance of pt and qt−h is given by E[(pt −Ept)(qt−h −Eqt)] = E(ptqt−h)− (Ept)(Eqt−h) =

E(ptqt−h) − (Ept)(Eqt). Correspondingly, with respect to a sample period of length T ,

we specify the empirical covariance Cov(pt, qt−h) as being equal to the time average of

the products ptqt−h minus the product of the time averages of pt and qt. For the nm

covariances of interest, let there be a total of na such average values involved and collect

them in a vector â ∈ IRna . For a suitable function g(·) defined on (a subset of) IRna and

attaining values in (a subset of) IRnm , the empirical moments can be expressed as

m̂T = g(â) (A3)

In order to obtain the covariance matrix of the moments, we first estimate the covariance

matrix of the average values â. If zt is a vector the components of which contain all of

the lags h of rt, yt, πt that we need (h = 0, 1, . . . H), and fj(·) for j = 1, . . . na are

suitable real functions (to be detailed in a moment) that are defined on these stretches

zt, the time averages can be written as being given by

âj =
1

T

T∑

t=1

fj(zt) , j = 1, . . . , na (A4)

While ao is the ‘true’ value of the real-world data generation process, the vector of its

estimates â is distributed around it as
√
T (â− ao)

a∼ N(0,Σa) (A5)

For some suitable lag length p (the usual symbol, not to be confused with the above pt

representing rt, xt or πt), a common HAC estimator of the covariance matrix Σa is the

following (na×na) Newey-West matrix,

Σ̂a = Ĉ(0) +

p∑

h=1

(1− h

p+ 1
) [ Ĉ(h) + Ĉ(h)′ ]

Ĉ(h) =
1

T

T∑

t=h+1

[f(zt)− â] [f(zt−h)− â]′ , h = 0, 1, . . . , p

(A6)

39



Specifically, we follow the advice in Davidson and MacKinnon (2004, p. 364) and scale p

with T 1/3. Accordingly we may set p = 5 for the two subsamples of the Great Inflation

and Great Moderation.

Next, putmo = g(ao) and Go = [∂gi(a
o)/∂aj ] ∈ IRnm×na . Employing the delta method

(cf. Davidson and MacKinnon, 2004, pp. 207f), we know that asymptotically

√
T (m̂T −mo)

a∼ N(0, GoΣaG
′
o) (A7)

Thus, on the basis of (A6) and the estimated matrix of the partial derivatives Ĝ, which is

constituted by the elements ∂gi(â)/∂aj , the (nm×nm) covariance matrix of the moments

m̂T from the finite sample {zt}Tt=1 can be estimated as

Σ̂m = Ĝ Σ̂a Ĝ′ (A8)

Entering the calculation of the moments Cov(pt, qt−h) mentioned in the text (p, q =

r, x, π) are the mean values of the products pt qt−h and, in addition, the three mean values

of rt, yt and πt (as already indicated above). This gives us the dimension na = nm + 3.

Denoting the mean value of a series pt by ap and the means of the products pt qt−h by

apq(h), the nm covariances can be written as being given by Cov(pt qt−h) = apq(h)−ap aq.

There are nine different types of covariance profiles. We organize these moments in

nine index sets I1, . . . , I9. They do not all contain the same number of indices since

for two distinct variables p and q it has to be taken into account that Cov(pt, qt−h)

is included with the lags h = 0, 1, . . . , H in the objective function, but the reverse

covariances Cov(qt, pt−h) only with lags from h = 1 onwards. The first and last index

in the index sets and the type of covariances assigned to these sets are detailed in the

following table. Besides, it once again makes it clear that with H=8, the total number

of moments in the objective function is nm = 9 (H+1)− 3 = 78.

Regarding the na functions fi(·) in (A4), the first nm of them are defined in accordance

with the pairs of variables that are associated with index i in Table A2, that is, f1(zt) =

rt rt−0, f2(zt) = rt rt−1, etc., until fnm
(zt) = πt πt−H . The remaining three functions

capture the average values of the single variables in the obvious order,

fnm+1(zt) = rt , fnm+2(zt) = xt , fnm+3(zt) = πt

All ingredients are thus available to compute Σ̂a from (A6).

With a1 = arr(0), a2 = arr(1), etc., the matrix Ĝ can be readily set up from the last

column in Table A2. For i, j = 1, . . . , nm we simply have ∂gi(â)/∂aj = 1 if i= j, and

the partial derivatives are zero otherwise. The last three columns of Ĝ, which are the

derivatives with respect to anm+1 = ar, anm+2 = ax, anm+3 = aπ, are given in Table A3.

It remains to plug this matrix into eq. (A8) to obtain the covariance matrix Σ̂m of the

estimated moments.
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number of functions
Cov index set first index last index indices gi(·)

rt rt−h I1 1 H+1 H+1 arr(h)− a2r
rt xt−h I2 (H+1) + 1 2 (H+1) H+1 arx(h)− arax

rt πt−h I3 2 (H+1) + 1 3 (H+1) H+1 arπ(h)− araπ

xt rt−h I4 3 (H+1) + 1 4 (H+1)− 1 H axr(h)− arax

xt xt−h I5 4 (H+1) 5 (H+1)− 1 H+1 axx(h)− a2x
xt πt−h I6 5 (H+1) 6 (H+1)− 1 H+1 axπ(h)− axaπ

πt rt−h I7 6 (H+1) 7 (H+1)− 2 H aπr(h)− araπ

πt xt−h I8 7 (H+1)− 1 8 (H+1)− 3 H aπx(h)− axaπ

πt πt−h I9 8 (H+1)− 2 9 (H+1)− 3 H+1 aππ(h)− a2π

Table A2: Specification of the index sets.

rows column

corresponding to nm + 1 nm + 2 nm + 3

I1 −2 âr 0 0

I2 −âx −âr 0

I3 −âπ 0 −âr

I4 −âx −âr 0

I5 0 −2 âx 0

I6 0 −âπ −âx

I7 −âπ 0 −âr
I8 0 −âπ −âx
I9 0 0 −2 âπ

Table A3: The last three columns of matrix Ĝ.

Appendix A4: Specification of the matrices V
X and V

Y in equation (15)

First, compute for each model I (I=X,Y ) the following matrix F I , which in the speci-

fications further below will be assumed to be non-singular:

F I =
∂mI(θI)′

∂θI
W

∂mI(θI)

∂θI′
− M I
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M I = {EI ⊗ [(m̂T −mI(θI))′W ]} ∂

∂θI′
vec

[∂mI(θI)

∂θI′

]

It is understood that the derivatives are evaluated at the estimated parameter vector

θ̂I (we currently omit the hat). These derivatives are well-defined since in the present

context only those parameters are treated as free parameters the estimated values of

which happen to be in the interior of the admissible set. 37 Letting nI
θ be the dimension

of the vector of the free parameters in model I, EI is here the nI
θ × nI

θ identity matrix.

The matrices ∂mI′

/∂θI and ∂mI/∂θI
′

have format nI
θ × nm and nm × nI

θ, respectively,

so that F I and M I are nI
θ ×nI

θ square matrices. The format of M
I derives from the fact

that the matrix in square brackets is a (1× nm) row vector, so that the matrix in curly

brackets from the Kronecker product is nI
θ × (nI

θ ·nm), while the matrix of the derivative

of the vec-expression has the suitable format (nI
θ · nm)× nI

θ.

The matrix F I enters three matrices V I
1 , V

I
2 , V

I
3 , which are now easily seen to be

nm × nm square matrices:

V I
1 =

∂mI(θI)

∂θI′
(F I′

)−1
∂mI(θI)′

∂θI
W

∂mI(θI)

∂θI′
(F I)−1

∂mI(θI)′

∂θI

V I
2 =

∂mI(θI)

∂θI′
[(F I′

)−1 + (F I)−1]
∂mI(θI)′

∂θI

V I
3 =

∂mI(θI)

∂θI′
(F I′

)−1 (M I′

+M I) (F I)−1
∂mI(θI)′

∂θI

Finally, the matrices V I in (15) are given by

V I = V I
1 − V I

2 − V I
3 , I = X,Y
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