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Abstract

In this paper we consider the option value of the environment employing a general equilibrium

growth model with a stochastic technology. In our model, as in existing studies, because of

irreversibility, the environment has signi�cant real option value. However, unlike the existing

literature in which the uncertainty of the value of the environment is given exogenously, the

value of the environment is endogenously determined. In our model, the elasticity of substitution

� between the environment and consumption plays a crucial role. We show that the option

value, and hence, the optimal decision are both a¤ected by � not only quantitatively but also

qualitatively.
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1 Introduction

The application of option value theory in the environmental economics literature is now well

established (eg, Arrow and Fisher, 1974, Conrad, 1997, Ulph and Ulph, 1997, Bulte et al., 2002,

Kassar and Lasserre, 2004, Morgan et al., 2008, and Leroux et al., 2009) Within the environmental

economics literature reference is frequently made to quasi-option value (QOV). Fisher (2000) argues

the QOV and what Dixit and Pindyck (1994) refer to as real option value are the same. In this paper

we employ option value throughout. Option values have been applied to various environmental and

resource issues including forestry, biodiversity, land use decisions and climate change. The reason for

this breadth of applications is because many decisions relating to environmental resource use can result

in actions that yield irreversible outcomes, such that the net bene�ts of the action are uncertain. The

extent of uncertainty facing environmental economists, as a result of the interaction between economy

and environment, has lead Pindyck (2007) to observe that uncertainty in economics is at its greatest

in the environmental context.

In this paper, to make our discussion concrete, we focus on a simple land use problem, though the

model can be applied to many other country or regional level decision making issues. We consider how

an economy should divide land use between agriculture and the environment. As such, this paper can

be broadly regarded as an extension of Conrad (1997), Bulte et al. (2002) and Leroux et al. (2009),

who all consider essentially the same problem, the identi�cation of the optimal timing and amount of

land conversion from an environmental use (R) (ie, old growth forest) to farmland (A). This literature

considers the situation, in which once R is converted into A, it cannot be converted back to R again,

and as such a decision on land conversion involves the evaluation of the option value of R. As is well

known, real option theory tells us that, under irreversibility and uncertainty, the optimal decision is

slower land conversion than the land conversion implied by a simple present value comparison. This

is intuitive as people are more cautious in making decisions that they cannot take back later.

Within this literature the application of real option theory has typically been conducted by

employing a partial equilibrium framework, in which the value of the environment is assumed to be

given by an exogenous stochastic process. In this paper, we take a di¤erent approach and assume the

value of the environment to be endogenous within a general equilibrium model. We consider this to be

an appropriate means by which to examine the environment, as in many cases resource use problems are
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framed at the macro and sector wide level of the economy. More importantly, the general equilibrium

framework developed in this paper makes the value of the environment endogenous. Consider an area

of old growth forest. What we see today is physically almost the same old growth forest that would

have existed many years ago, which implies that the change in the value (more precisely the shadow

price) of R is not because of the change in the quality of R but the change in the valuation of the

environment This is very di¤erent from other goods produced, such as personal computers. We believe

that identifying the mechanism behind the changes in the value of the environment is a signi�cant

contribution to the literature.

Our model postulates that the value of R changes because, as people become richer, they demand

more R mainly because of the income e¤ect. This income e¤ect on R is nothing more than that on

general consumption goods (C). However, while the supply of C increases as technology improves, the

supply of R is limited, and hence, as R becomes more scarce relative to C, the (shadow) price of R

increases in equilibrium. Figure 1 captures this idea with a �xed supply of R.1

[Figure 1: Indi¤erence Curve around here]

In Figure 1, as society become richer, the chosen mix moves up to the upper-right and the optimum

point moves up along the vertical line at the �xed level of R. The shadow price of R relative to the

price of C, represented by the slope of the indi¤erence curve at the optimum, becomes higher. This

explains one prominent observation that people in rich countries tend to be more eager to conserve

the environment than those in poor countries, such that eagerness is a proxy for the shadow price of

R.

In addition to the endogenous value of R, an advantage of employing a general equilibrium model

is that we can use standard economic variables such as total factor productivity (TFP) to estimate

the exogenous technology process. In the existing literature the value of the environment is normally

assumed to follow an exogenous stochastic process, but an important problem is that the value of

the environment is not readily observable or estimable. This has lead researchers to employ various

proxies to estimate key model parameters. For example, Conrad (1997) assumes that amenity value for

a stand of old growth forest follows geometric Brownian motion (GBM), and his trend and volatility

1Figure 1 only captures the �xed supply of R (ie, R cannot increase or decrease), while what we consider in this
article is the irreversibility of R (ie, R cannot increase but can decrease). In addition, the �gure ignores the production
side. We however believe that Figure 1 conveys the key intuition of the endogenous change in the shadow price of R.
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parameters are estimated by time series data on the numbers of visitors to the forest. Bulte et al.

(2002) also employ visitor numbers, in this case to Costa Rica. As noted by Forsyth (2000), this

approach can be valid as long as bene�ts are broadly de�ned (ie, all non-timber bene�ts). However,

there are also many reasons to think that tourist numbers are a poor proxy; eg, the residents of an

area may limit the number of tourists to conserve their precious environment.

Unlike the existing partial equilibriummodels, the source of uncertainty in our model is a technology

shock which we assume follows GBM. One of the key advantages of our approach is that the parameters

for this technology process can be estimated by using readily available data. In this paper, we use TFP

to estimate the technology process. More speci�cally, we use agricultural TFP (agri-TFP) and a GDP

based TFP (GDP-TFP); the former is chosen because farmland is the most important reason to convert

reserved forest in many developing countries, while the latter is used because we can interpret A as

general land use other than the reserved environment, which is perhaps more relevant to developed

countries. As noted above, although we label A as agricultural land in our theoretical model we do not

need to interpret A literally as farmland in our empirical application. We show results for both TFP

measures and it turns out that our results are quite sensitive to this choice. In fact, environmental

applications of the option value model are in general very likely to be sensitive to the parameters of the

exogenous shock process. As such our model is no exception in the sense that the numerical results are

considerably di¤erent between these two parameter assumptions of the stochastic technology process.

This lack of robustness is commonly observed in this literature. However, one of the merits of our

model is that, given the clear parameter derivation process in our method, we can discuss which

assumption is the most suitable for any empirical application.

Previewing our results, the elasticity of substitution � between general consumption goods and

the service �ow from the environment plays a key role not only quantitatively but also qualitatively.

More speci�cally, if R is elastic (� > 1), as people become richer, the optimal R decreases, while

if � < 1 it increases; ie, there is a threshold at unit elasticity � = 1. Note that � represents how

the environment is irreplaceable in people�s mind. In our model, the production of C requires A as

an input and its productivity grows stochastically. While the improvement of farmland productivity

directly makes the conversion of R into farmland A more attractive, it also makes people richer, such

that the shadow price of R increases. Intuitively, if R is elastic, the reduction of the service �ow
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from R is not very painful, since it can easily be compensated by additional C, and hence, society

will prefer the production of more C by converting R into A. At �rst glance, the case with � < 1

may seem to be counterintuitive; as the productivity of A improves, the demand for A decreases.

This seemingly paradoxical behavior is caused by the same mechanism that generates Baumol�s curse

(Baumol, 1967), in which the key intuition is the cost reduction e¤ect of technological improvement.

When the elasticity is low (� < 1), the optimal combination of R and C does not change very much on

the demand side (literally inelastic), as more productive A implies that less A is necessary to produce

a given level of C on the supply side. Note that we �nd that this property holds even without imposing

the irreversibility of R.

The importance of � is well understood in the environmental literature. For example, Heal

(2009) notes that the elasticity of substitution in production is likely less than one because of basic

technological limitations. However, in the case of consumption, although there are reasons similar to

Heal (2009) to assume that � < 1, it is less clear if it indeed is less than one on the demand side,

than on the supply side. As a result, we examine the behaviour of our model for both � less than and

greater than one.

Quantitatively we �nd that the e¤ects of the option value of R is negligible, if the technological

parameters are taken from GDP-TFP. This is mainly because, compared to the trend GDP growth

rate, its volatility is relatively small; indeed, it is quite rare to see a negative GDP growth rate in

developed countries. In contrast, if these parameters are based on agri-TFP, which is more volatile,

then we �nd signi�cant e¤ects for the option value R; that is, if the option value is ignored, and society

mistakenly converts too much R into A, a mistake can be very large. We �nd that under reasonable

parameter assumptions, the resultant R is smaller than the optimal R by 5 to 30%; in this sense, it is

important to take into account the option value of R. At the same time, however, we also �nd that,

even with agri-TFP, the option value of R itself is very small, and, as a result, society�s welfare loss

due to the ignorance of the option value is also very small. This result has previously been noted in

the literature by Bulte et al. (2002) and others. In this sense, the option value is not important. These

seemingly contradictory results coexist because, for our utility function, the value function F is very

�at in the neighborhood of the optimal point. That is, a �at value function implies that a large change

in R (�R which is a mistake in this case) leads to only a small change in F (�F which is a welfare
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loss in this case), such that �F=�R is small in absolute terms. In a similar vein, losing a small option

value causes a small welfare loss (�F , since the value function is the sum of the non-option and option

values), which is associated with a large mistake in land use (�R). This �nding implies that it is

important to choose a proper measure to evaluate the e¤ects of a land conversion in practical policy

debates.

The structure of this paper is as follows. Section 2 introduces myopic and dynamic models and solve

them. The myopic model is e¤ectively a static general equilibrium model without the irreversibility

constraint. It o¤ers a benchmark to be compared to the dynamic model in which we explicitly analyze

the option value of the environment. Also, the myopic model illuminates how the value (shadow

price) of the environment is endogenously determined and how the elasticity of substitution between

consumption and the environment a¤ects optimal land allocation. Section 3 presents the numerical

results of the dynamic model. Section 4 provides further discussions of the model and results and

Section 5 concludes.

2 Model

2.1 Model Setup

We consider the problem of land conversion in a continuous time dynamic general equilibrium

setting. Our model economy is characterized by the following objective function (1) and constraints

(2).

Value Function : F (R;W ) = maxE0

Z 1

0

e��tU (C;R) dt (1a)

where

Flow Utility : U (C;R) =
C1�1=�

1� 1=� + �
R1�1=�

1� 1=� (1b)
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subject to

Total Land: 1 = A+R (2a)

Agricultural Production: Y = WA (2b)

Resource Constraint: Y = C +W�v (2c)

Technological Growth: dW = ~�Wdt+ ~�Wdw (2d)

Land Conversion Rate: dA = �dR = vdt � 0 (2e)

We assume that the government maximizes the value function F , which is the present value (PV) of

society�s �ow utility U with discount rate �, by choosing the optimal land conversion rate � (1). We

assume that U exhibits constant elasticity of substitution (CES), and it is increasing in both general

consumption goods C and the service �ow from the environment R. The �rst term of (1b) implies

(i) constant elasticity of intertemporal substitution (1=�) and (ii) constant relative risk aversion (�),

while the �rst and second terms imply (iii) constant elasticity of substitution (�) between C and R.

Note, � is the relative importance of the service �ow from R, and it also absorbs the di¤erence in

measurement units. This functional form is chosen mainly because of its tractability and popularity,

but it may be subject to the criticism that three elasticities are all governed by single parameter �.

For ease of exposition, the total land mass is normalized to be one (2a). There are two possible uses

of land; as agricultural land A or as the reserved environment R (eg, old growth forest, conservation

reserves, etc.). Output Y is produced by a linear technology (2b), in which the only production factor

is A, and its technology level W follows a GBM (2d). The only source of uncertainty in our model is

W . Output is consumed or used as land conversion costW�v. We assume that the land conversion cost

is a linear function of conversion rate �, and the marginal cost of land conversion W� is proportional

to W , where � > 0 is a parameter.

We assume that land conversion is an irreversible decision (2e). �dR � 0 implies that the

government can reduce R but cannot increase it. It is known that, since there is no upper bound

for the conversion speed, optimal land conversion is either (i) convert no land (� = 0) if R < R� (W )

or (ii) jump2 immediately to optimal R� otherwise. Note that optimal R� is a function of the technology

2To be precise, R does not jump, if we de�ne jump as a non-continuous movement. R moves continuously but non-
di¤erentiable. Its movement is non-di¤erentiable because it is so zig-zag. In a sense, it exhibits successive "twitches".
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level R� = R� (W ), and hence, is changing over time. Since curve R� (W ) demarcates the state space

between conversion and non-conversion regions and the optimal locus "closely" follows R� (W ), this

type of optimal control problem is referred to as barrier control.3

2.1.1 Short Form

To simplify our exposition, we substitute out several variables. The following short form notation

is exactly the same as the above model setup.

Value Function : F (R;Z) = max
�
E0

Z 1

0

e��tU (R;Z; v) dt (3a)

Flow Utility : U (R;Z; v) = Z
(1�R� �v)1�1=�

1� 1=� + �
R1�1=�

1� 1=� (3b)

Technological Growth :
dZ

Z
= �dt+ �dw (3c)

Land Conversion Rate : dA = �dR = vdt � 0 (3d)

where � = (1� 1=�)
�
~�� ~�2=2�

�
, �2 = (1� 1=�)2 ~�2 and Z = W 1�1=�. We always assume that � < �;

otherwise the value function F explodes. In the following derivation, we use the short form version of

the model. In this short form, �, �, �, �, � and � are parameters, and the other variables (uppercase

letters and �) evolve over time, of which the state variables are R and Z (or W ), while the only choice

variable is v. In non-algebraic expositions, both Z and W are referred to as technology.

2.2 Myopic Version

Before we examine the dynamic version of the model, we consider a myopic model. The key feature

of the myopic version of the model is that it does not include the irreversibility constraint and we

assume there are no conversion costs (i.e., � = 0). Within these assumptions, the myopic choice is

rational. The myopic version of the model provides us with a useful benchmark in evaluating the option

This fact comes from our assumption that the stochastic term in GBM is a Wiener process. Knowing this, we still
(ab)use the word "jump" to depict such a continuous but sudden change in R.

3Bulte et al. (2002) also studies a barrier control model (2e) in a partial equilibrium setting. Note that (2e) is
equivalent to � � 0. If, on the other hand, there is an upper limit of the land conversion rate (ie, �� � � � 0), it is known
that the optimal land conversion rate is either (i) convert no land (� = 0) or (ii) convert as quickly as possible (� = ��).
This type of optimal control problem is called "bang-bang" model and Leroux et al. (2009) analyzed this again in a
partial equilibrium setup. Finally, the land allocation is limited to R = 1 or R = 0 in Conrad (1997); in this model,
e¤ectively the optimization problem is equivalent to choosing optimal timing of land conversion (ie, there is no need to
consider optimal R� (Z) by assumption).
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value of R, and the dynamic version inherits many of the properties from it. Importantly, the myopic

version alone shows that the shadow price of R is higher for countries with a higher technology level

(and hence with higher income), and the elasticity � between C and R plays a key role, implying these

results hold even without option value considerations.

GivenW , the myopic version is e¤ectively a static model (or a sequence of static models over time),

and the optimization problem reduces to the maximization of the �ow utility U .

Myopic Optimization : max
R

C1�1=�

1� 1=� + �
R1�1=�

1� 1=� (4a)

s.t. C = W (1�R) (4b)

where the solution is given by

Ry =
��

W ��1 + ��
(5a)

P = �

�
Ry

C

��1
�

= �

�
Ry

W (1�Ry)

��1
�

= W (5b)

In the myopic version, Ry is labelled as the optimal choice. P is the shadow price of R which is equal

to the slope of the indi¤erence curve at the optimum quantity of reserved land (R = Ry). Regardless

of the parameter values, CES utility implies that P is increasing in the technology level W ; indeed,

P = W in this simple version. On the other hand, the optimal level of Ry can be both increasing and

decreasing in W . That is, if � < 1 (which implies that the environment is inelastic), the optimal level

of Ry increases as technology improves, and vice versa (see Figure 5).

Also, �gure 2 shows the shape of the �ow utility function (4a), which is equivalent to (3b) with

� = 0, for several values ofW . The value function (3a) of the dynamic model inherits many properties

from the �ow utility function (4a). The point that we want to focus on here is that the �ow utility U

is quite �at for intermediate values of R, and so is the dynamic value function F . We will discuss the

importance of this subsequently.

[Figure 2: Period Utility around here]
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2.3 Solution to the Fundamental Partial Di¤erential Equation

In this and the next subsections, we solve the dynamic version with the irreversibility constraint

(3). We follow the standard derivation strategy, in which we �rst derive the fundamental partial

di¤erential equation (PDE) and then solve it separately in the conversion and non-conversion regions

(see Figure 5 to preview the shapes of regions). Note that, for each level of Z, we can �nd the optimal

R� = R (Z�). If R < R�, due to the irreversibility condition, the best thing that the government can

do is just staying at the current R, while, if R > R�, then the land is converted immediately so that

R = R�. In this way, the optimal R� = R (Z) demarcates the two regions.

2.3.1 Fundamental PDE

Following the standard option value methodology (see Dixit and Pindyck, 1994), we rewrite (3a)

in di¤erential form.

�F (R;Z) dt = max fU (R;Z; v) dt+ E0 [dF (R;Z)]g (6)

To �nd dF , we apply Ito�s Lemma to F .

dF (R;Z) = FRdR +

�
FZ�Z + FZZ

�2

2
Z2
�
dt+ FZ�Zdw (7)

where FZ = @F=@Z and so on. The expected value of the last term on the right hand side of (6) is

zero; E0[dw] = 0. Hence, by substituting dF out of (6) and dividing all terms by dt, we obtain the

following fundamental partial di¤erential equation (PDE) that governs the value function F .

�F (R;Z) = Z
(1�R� �v�)1�1=�

1� 1=� + �
R1�1=�

1� 1=� + FZ�Z + FZZ
�2

2
Z2 � FRv� (8)

We now solve this function for the two regions.

2.3.2 Non-Conversion Region (v� = 0)

In the region with R < R�, the government does not convert the land; v� = 0. In this region,

the PDE (8) is not really a PDE but is merely an ordinary di¤erential equation (ODE). Using the

superscript 0 on F 0 to indicate the value function that is de�ned in the non-conversion region, we can
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now re-express equation (8) as:

�F 0 (R;Z) = Z
(1�R)1�1=�

1� 1=� + �
R1�1=�

1� 1=� + F
0
Z�Z + F

0
ZZ

�2

2
Z2 (9)

The analytical solution for this type of ODE is available.4

F 0 (R;Z) =
Z

�� �
(1�R)1�1=�

1� 1=� +
�

�

R1�1=�

1� 1=� +B (R)Z
� (10)

� = a1 + a2 > 1 where a1 =
1

2
� �

�2
and a2 =

r
a21 +

2

�2
�

Term B (R) is the integration constant with respect to Z, and hence it may not be (and indeed is not

in this case) a constant with respect to R. We will determine the exact functional form of B (R) by

using free boundary conditions which are introduced shortly. We also note that we have already used

a boundary condition to eliminate the term with �1 < 0 to derive (10), where �1 is the negative root of

the characteristic polynomial of (9). Since, in general, it is the boundary conditions that characterize

the economic properties of a model, we discuss these in detail altogether. In fact, many real option

problems share the same PDE as (8), and the di¤erences among problems typically come from the

boundary conditions.

An examination of (10) reveals that the �rst two terms are the present value of the two terms of

the �ow utility (3b).5

Z 1

0

e��t

(
Z (t) (1�R)1�1=�

1� 1=�

)
dt =

1

�� �
Z (1�R)1�1=�

1� 1=� =
1

�� �
C1�1=�

1� 1=� (11a)Z 1

0

e��t
�
�
R1�1=�

1� 1=�

�
dt =

�

�

R1�1=�

1� 1=� (11b)

4We omit the derivation of this, since it can be found in many places, including Dixit and Pindyck (1994) and Bulte
et al (2002).

5This is the so-called discounted dividend model (DDM) in accounting. The present value of an eternal constant
dividend �ow D is Z 1

0

e��tDdt =
D

�

If the dividend grows at the rate of �, D (t) = e�tD where D = D (0) is the dividend at t = 0. Then, it follows thatZ 1

0

e��tD (t) dt =

Z 1

0

e��te�tDdt =

Z 1

0

e�(���)tDdt =
D

�� �
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It is important to note that the e¤ective discount rate for the consumption term is �� � > 0. This is

di¤erent from the subjective discount rate �, because of the technological growth. The drift term in

(3c) implies that the rede�ned technology Z (t) grows at rate � on average. In contrast, since there is

no such growth component in the environment term, its e¤ective discount rate is simply �. Note, these

expressions implicitly assume that R is constant at the current level. That is, these terms represent

the value of total land (A and R) if there is no possibility of land conversion in the future. Hence, the

remaining term B (R)Z� > 0 in (10) represents an additional value that emerges from the possibility

of future land conversion, ie, the option value.

Typically, option values are explained as follows. If a decision is irreversible and the situation is

uncertain, even though the net present value of an irreversible decision is positive, it may still be better

to wait for the arrival of new information, rather than making such an irreversible decision right now.

This can be understood as follows in our case. Suppose for a while there are only two possible choices

R1 and R2. If R1 < R2, choosing R2 is keeping an option in the sense that it is still possible to move

to R1 at some point in the future, while choosing R1 is exercising an option in the sense that it is no

longer possible to return back to R2. In this case, even if the present value of having R1 forever is

higher than that of having R2 forever (ie, diff > 0 below), choosing R1 may still not be optimal.

diff =

(
Z

�� �
(1�R1)1�1=�

1� 1=� +
�

�

R
1�1=�
1

1� 1=�

)
�
(

Z

�� �
(1�R2)1�1=�

1� 1=� +
�

�

R
1�1=�
2

1� 1=�

)

This is precisely because of the di¤erence in option values; B (R1)Z� < B (R2)Z�. That is, since Z

is stochastic, the government wants to wait for the arrival of new information about Z until the diff

becomes large enough to make sure that the optimal choice is moving to R1.

2.3.3 Conversion Region (�� > 0)

In the conversion region (R > R�), since R jumps to R� immediately, the total value of land is the

value of the optimal land allocation at R� minus the conversion cost (measured in utility terms). By
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letting F 1 be the value function for the conversion region, we have as follows

F 1 (R;Z) = F 0 (R�; Z)� Conversion Cost

= F 0 (R�; Z)� �Z
Z R

R�(Z)

(1� dR0)
�1
�

= F 0 (R�; Z) + �Z

(
(1�R)1�1=�

1� 1=� � (1�R
�)1�1=�

1� 1=�

)
(12)

where �Z (1�R)
�1
� is the marginal disutility of land conversion, and the total conversion cost is the

integral of it from R to R�. Note that the integration is with respect to R0, and a prime is added

simply in order to distinguish R0 from its end value R.

2.4 Boundary Conditions

As previously noted, in general, boundary conditions play a key role in real option problems. In this

model, we have �ve boundary conditions, of which the main boundary conditions that characterize our

model are three free boundary conditions. These free boundary conditions relate to the barrier curve.

The adjective "free" implies that the boundary condition can move freely; more precisely the position

of the boundary is determined endogenously. We now explain the three free boundary conditions as

well as the two other boundary conditions employed in our model.

[Figure 3: Boundary Conditions around here]

2.4.1 Free Boundary Conditions

The free boundary is the demarcation curve between the two regions, which is algebraically

represented by optimal R� (Z) as a function of Z. The free boundary is also referred to as a barrier

curve. There are three conditions imposed on the free boundary:

� Boundary Condition 1: The level matching condition (LM) implies that the values of F 0 and F 1

must be the same on the barrier curve. That is,

F 0 (R�; Z) = F 1 (R�; Z) (LM)

We have already used this to derive F 1; obviously (12) implies that the (LM) holds when R = R�.
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� Boundary Condition 2: Following Dixit and Stiglitz (1994), we use the value matching (VM)

condition to signify the �rst order optimality condition (with respect to �): F 0R (R
�; Z) = uv (R

�; Z; v).

Or equivalently,

�Z
�� � (1�R

�)�1=� +
�

�
R��1=� +B0 (R�)Z� = �Z (1�R�)�1=� (VM)

Intuitively, (VM) is obtained by taking the �rst derivative of the RHS of (12) with respect to R and

setting it equal to zero. The left hand side of (VM) shows the marginal gain by converting one more

unit of R to A and the right hand side shows the marginal cost of land conversion. At the optimum

(ie, evaluated at R = R�), the marginal bene�t must be equated to the marginal cost. If the left hand

side is greater than the right hand side, then more land should be converted, and vice versa.

� Boundary Condition 3: The smooth pasting condition (SP) must also hold: F 0RZ (R
�; Z) =

uvZ (R
�; Z; v), or

�1
�� � (1�R

�)�1=� + �B0 (R�)Z��1 = � (1�R�)�1=� (SP)

This is the �rst derivative of (VM) with respect to Z. This is perhaps the most di¢ cult condition

to explain intuitively. Essentially, if this condition does not hold, then Et [F 0R (R
�; Z) at t+ dt] 6=

Et [uv (R
�; Z; v) at t+ dt], which means that the "�rst order optimality condition" in the next moment

does not hold. Since dt is an arbitrary short time duration, if, say, Et [F 0R (R
�; Z) at t+ dt] >

Et [uv (R
�; Z; v) at t+ dt], then converting more R is optimal. See Dixit and Stiglitz (1994) for more

details on smooth pasting conditions.

Optimal R� (Z) Given these three free boundary conditions, we now obtain R� as a function of Z

(or equivalently W ), by eliminating the unknown function B0 (R�) from (VM) and (SP). This yields

R� = R� (Z) =
��2

Z� + ��2

�
=

��2
W ��1 + ��2

�
(13)

where �2 =
�

� � 1
�

�
�

1
��� + �

� �
=

�

� � 1
�� �
�

� if � = 0
�

Note that �2 > � for � small enough. For simplicity we assume � = 0 in the following discussion.

Comparing this result with myopic solution (5a), we �nd that the functional forms are the exactly
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same except for the di¤erence between � and �2. More precisely, since �2 > �, R
� > Ry for any Z (see

Figure 5). That is, if the irreversible nature of R is ignored, the government mistakenly converts too

much R into A, and such a mistake R� � Ry is larger when the ratio �2=� > 1 is larger. It is easy to

show that, if � = 0, �2=� reduces to a function of only �=�
2 and �=�2, where remember that � and

� are trend and volatility parameters for Z (see (3c)). Figure 4 plots �2=� as a function of �=�
2 for

several �=�2. It is obvious from the �gure that �2=� is larger if volatility � is larger relative to � and

�. This is quite intuitive because in general the option value is larger when the environment is more

uncertain.

[Figure 4: �2=� around here]

Option Value To �nd the option value B (R�), we �rst eliminate Z (R�) from (VM) and (SP) to

obtain B0 (R�) (14). Next, integrate B0 (R�) to recover B (R�).

B0 (R�) = �3
R�

��1
�

(1�R�)
�
�

(14)

B (R) =

Z R

0

B0 (R0) dR0 = �3

Z R

0

R0
��1
�

(1�R0)
�
�

dR0 (15)

where �3 =
�

�2

�
�+

1

�� � �
1

�

�
(16)

Note, that Z (R�) is an inverse function of R� (Z). Such an inverse function exists because the

relationship between R� and Z is monotonic (see Figure 5). Also, again the integration is with respect

to R0, and a prime is added to R0 to distinguish R0 from its end value R.

2.4.2 Additional Boundary Conditions

The two remaining boundary conditions are imposed along lines Z = 0 and R = 0.

� Boundary Condition 4: This condition appears in most real option problems. It states that the

value function must be non explosive at Z = 0. Remember that, since (9) is a second order ODE, its

characteristic polynomial has two roots (� > 1 and �1 < 0) and there are two elementary solutions

corresponding to these roots. If we have term B1 (R)Z
�1, F 0 (R;Z) explodes at Z = 0, meaning that

F 0 (R; 0) can be either +1 or �1. Also, it can be shown that F 0 (R;Z) � 0 for any Z if � > 1, and
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hence the possible minimum value of F 0 is bounded by 0. All in all, having term B1 (R)Z
�1 of the

negative root, F 0 (R; 0) = +1. Our intuition, however, tells us that, regardless of the land allocation,

a very bad technology must generate a very low value function (note that if � > 1, Z = 0 implies

W = 0), which contradicts to the existence of term B1 (R)Z
�1 . For � < 1, a similar argument leads

us to eliminate the term with �1 < 0; ie, we determine integration constant B1 (R) to be zero.

� Boundary Condition 5: At R = 0, we impose the condition that the option value is zero. This is

simply because, without land to be converted, there is no chance to exercise an option in the future.

This condition is used in (15), in which integration is between 0 and R. The starting value 0 of the

integration (i.e., lower subscript on
R
) is determined by this zero option value condition.

3 Numerical Results

To illustrate the optimal land conversion problem, we undertake a numerical exercise.

3.1 Parameter Selection

We �rst need to provide a number of parameter values. Our choice of parameter values are

summarized in Table 1.

[Table 1: Parameters around here]

Our choice of value for the discount rate, 4%, is guided by the macroeconomic literature. It must

be close to the long-run average of the risk-free short-term bond rate. Interestingly, our choice is

signi�cantly less than the value, frequently 7%, employed in previous studies such as Bulte et al.

(2002) and Leroux et al. (2009). While our discount rate is a primitive parameter, theirs needs to be

e¤ective discount rates to re�ect the partial equilibrium nature of their model setup. We will discuss

this important distinction further in Section 4.2, in relation to environmental discounting.

For the trend growth rate of technology and its volatility, as discussed in the Introduction, we

experiment with two sets of parameters. The �rst one is agricultural TFP (agri-TFP), motivated by

the fact that the leading alternative land use to the reserved environment is farmland especially in

developing countries. Employing the data set of Hu¤man and Evenson (1993) which has TFP for
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US agriculture from 1950 to 1990 we �nd that ~� is equal to approximately 0:0211 (2:11%) and ~� is

0:0604. We also note from the agricultural productivity literature that many countries have annual

TFP growth rates of approximately 2% (eg, Heady et al, 2010), although volatility is not typicaly

reported. The second choice is TFP for GDP (GDP-TFP), which may be suitable for developed

countries, because we do not need to interpret A literary but can understand A as any land use

alternative to the environment. Based on our own estimates of Cobb-Douglas production functions

for Japan, UK and US, we �nd that the trend growth rate of the Solow residual and its volatility are

much lower than those of agri-TFP; the average values are ~� = 0:0117 and ~� = 0:0112.

In terms of the elasticity of substitution � between R and C, as we have already noted, the choice

of this parameter alters model behaviour not only quantitatively but also qualitatively. As a result,

we do not employ a single value for �. Instead, we have chosen two values 5:0 and 0:7, because they

illustrate the importance of this parameter on the behaviour of our model. At this point, it is also

worth noting that in the partial equilibrium models of Bulte et al. (2002) and Leroux et al. (2009) it

is the agricultural returns to scale parameter that plays a similar role. In these models, it is necessary

to impose the restriction of decreasing returns to scale on the agriculture sector for their models to

generate meaningful results. However, since our model needs to be consistent with stylised macro

growth behaviour, it is di¢ cult to deviate from constant returns to scale (CRS) production function

as this is the standard assumption in growth models. Also, there is little guidance to help identify

appropriate values for � (ie, the relative importance of the service �ow from R in the utility). Here,

we simply assume that it is equal to 1:0; �fty-�fty weights on C and R. Note that this choice of �

is innocuous in the sense that its value depends on the choice of the measurement units of variables,

speci�cally, the choice of the measurement unit of Z (and hence that ofW ). Hence, changing � simply

changes the scale unit of the W axis in the following �gures (but in a non-linear way). In Section 4.3,

we discuss how to estimate � and �.

Finally, we simply assume � (coe¢ cient on the marginal cost of land conversion) is zero, mainly

because we want to keep the comparability with the myopic case. This assumption is in keeping with

Bulte et al. (2002).

[Table 2: Key Numbers around here]
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3.2 Barrier Curve

Given our choice of parameter values, we are now able to plot the barrier curve. As discussed, the

e¤ective weight of �2 on R is larger than the myopic weight � (see Table 2 for �2=�), and as such the

optimal level of the reserved environment R� is larger than the myopic level of Ry, as shown Figure

5. The horizontal gap between the solid and broken lines shows the mistake that the government or

society would make if it ignores the option value of R. In other words, if the government ignores the

irreversible nature of R, it converts too much R into agricultural land A. This gap tends to be larger

when � > 1, because the option value tends to be larger when � > 1, which we discuss subsequently.

Also, the gap is larger with agri-TFP, because the volatility of TFP growth is more signi�cant relative

to the TFP trend growth rate; ie, ~�=~�2 is lower for agri-TFP than GDP-TFP. For agri-TFP, if � = 5,

the gap can be almost 30% of the optimal size of R, which is a terrible mistake.

[Figure 5: Barrier Curves around here]

If we evaluate the size of mistakes by examining the vertical gap between the solid and broken

lines, we obtain a further insight into the model. Consider the case with agri-TFP with � = 0:7, for

example. Suppose R = 0:5 and the current level of technology W is around 0:60. In this case, we

can numerically show that the land use is optimal; ie, 0:5 = R� (0:60). Similarly, we can show that

R = 0:5 is myopically optimal if W = 1:00; ie, 0:5 = Ry (1:00). The vertical gap along line R = 5:0,

ie, the di¤erence between 0:60 and 1:00, is very large, re�ecting the steep slope of the barrier curve.

On average, it takes 25:2 years for technology W to grow from 0:60 to 1:00.6 Hence, if the government

mistakenly chooses R = 0:5 when W = 1, then we can say that such a choice was optimal more

than 25 years ago. Similarly, for agri-TFP with � = 5:0, we can numerically show 0:5 = R� (1:08)

and 0:5 = Ry (1:00), and the technology gap between 1:00 and 1:08 corresponds to 3:9 years, which is

not large because the barrier curve is �at in this case. Hence, if the government mistakenly chooses

R = 0:5 when W = 1:00, then it will be optimal in 4 years. Though we do not discuss the vertical

gap any further, this gives a hint to the question that "why does the government convert the land to

R� (W ) knowing that, if � < 1, such a R� will result in too much land conversion in the future?"; it

6Ignoring the volatility term ~�dw in (2d), to evaluate a vertical gap in terms of time, solve WT = W0e
~�T for T ; ie,

T = ln (WT =W0) =~�, where W0 and WT are initial and end technology levels, respectively.
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is because, even if the government chooses R > R� (W ), it will be optimal only in the very distant

future.

3.3 Option Value

Figure 6 shows the option value of R. Remember that the option value is given by B (Z)Z� in

(10), and the option value is zero in the conversion region. This is because, in the conversion region,

the option is exercised immediately (ie, R is converted into A), which means that the remaining option

value is zero. Note that the spikes for � = 0:7 and the jagged edges for � = 5:0 are as a result of the

quality of the graphic resolution7; in reality, they have smooth edges in all four panels. For all cases,

the option value tends to be higher near the barrier curve, because future conversion is more likely.8

Qualitatively, the shapes do not di¤er between agri-TFP and GDP-TFP, but quantitatively agri-TFP

generates larger option values because the size of its volatility ~� relative to its trend growth rate ~�

is larger. Also, the option value is higher with � > 1 compared to the cases with � < 1. Indeed, in

the two right panels, it is almost zero and it takes non-negligible value only in the very narrow region

near the barrier curve. This is because, sinceW is improving on average, for � < 1, an upward-sloping

barrier curve implies that it is unlikely to move into the conversion region from the non-conversion

region in the near future.9 We will discuss this further in Section 4.1. However, even for � > 1, the

option value is small relative to the magnitude of the value function (compare the units of z-axes with

those in Figure 7).

[Figure 6: Option Value around here]

7Under GDP-TFP with � = 0:7, � takes very large values, which makes the computation of (15) unstable. More
speci�cally, under such a parameter assumption, �=� = 624:5 and (� � 1) =� = 623:1 are both large numbers; hence the
inside of the integration is almost "L" shaped, and so is B (R). This not only makes the numerical integration in (15)
unstable but also deteriorates the graphical representation of the option value. Since we compute the option value on
equidistant grid points, some grids capture the points very close to the barrier curve and give relatively large option
values, which appear as spikes in the lower-right panel of Figure 6, while other grids are a bit remote from the curve
and lead to small values, which are dwarfed by the spikes and hence are indistinguishable from zero. Our gird points
are chosen mainly because proper Matlab 3D graphic commands require equidistant grids.

8For � > 1, the option value reaches its peak near the in�ection point of the barrier curve, while, for � < 1, it takes
the maximum value at the origin.

9In addition, when the absolute value of the slope of the barrier curve is smaller (i.e., �atter), the option value tends
to be larger. The intuition behind this is in the same vein as the discussion on the upward- or downward-sloping barrier
curve; it is more likely to cross over the barrier curve when it is �atter. That is, the option value is not monotonic in �.
It is decreasing in � for � < 1 and increasing in � for � > 1; its minimum value is 0 at � = 1.
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3.4 Value Function

Figure 7 shows the shape of the value function over both conversion and non-conversion regions.10

Given W (ie, along the direction of the R axis), the value function is quite �at. This property is

inherited from the �ow utility, which is also very �at with respect to R.

[Figure 7: Value Function around here]

This �at shape along the R axis explains why a small option value can cause a signi�cant gap

between R� and Ry. That is, the �at value function implies that a large change in R leads to a small

change in F (value function), which, in turn, of course, a small loss in F due to the ignorance of

the option value causes a large change in R. However, this �atness also implies that a large gap (or

mistake) in R is not very painful, in the sense that the loss of value function, due to the missing option

value, is not very large. This �nding is in keeping with those previously reported by Alders et al.

(1996) and Bulte et al. (2002).

More formally, Figure 8 shows the consumption equivalence of the welfare loss. Suppose a country

has mistakenly converted too much land and has Ry. This country�s welfare (ie, value) is F
�
Ry;W

�
,

which is typically11 lower than the optimal value F (R�;W ). Suppose that an international organization

or the like is going to give this country some additional consumption to compensate this welfare gap;

then, the consumption equivalence means the amount of this additional consumption good.

[Figure 8: Equivalent Consumption Loss around here]

From Figure 8, we �nd the following three key observations. First, though the qualitative properties

are the same between agri-TFP and GDP-TFP, the magnitudes tend to be larger for agri-TFP, which

is simply because agri-TFP is more volatile than GDP-TFP. For example, with agri-TFP, the gap

between optimal and myopic R can be near 30% of optimal R� if � = 5:0. This means that, if the

10In general, a CES functional form assumption implies that both �ow utility (3b or equivalently 4a) and value function
(3a) take negative values for � < 1. Assuming Z =W 1�1=�, the technology Z is decreasing in W for � < 1. In this case,

Z must be decreasing, because an increase in U is represented by the shrinking negative term; Z (1�R)1�1=�
1�1=� < 0.

11Actually, if � 6= 0, non-optimal R0 can give higher value F (R0;W ) than F (R�;W ). This is because the conversion
cost W�� is a sunk cost, which is not included in F (R0;W ). Note that the optimality of F (R�;W ) means

F (R�;W ) � F (R0;W )� �Z
Z R

R�(Z)

(1� dR0)
�1
� for any R0

where the second term shows the land conversion cost W�� evalueted in utility term (see 12).
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irreversibility of R is ignored, signi�cantly too much Rmay be converted into A in developing countries,

in which the leading alternative use of R is farmland. However, for GDP-TFP, which is much more

stable than agri-TFP, the gap between R� and Ry is much smaller.

Second, the consumption equivalent welfare loss tends to be larger for � < 1, mainly because a low

elasticity of substitution literally means that people are reluctant to substitute R for C. In a sense, a

low � means that preferences are not �exible and, hence, the welfare loss tends to be large. In contrast,

the e¤ect of � on the gap between R� and Ry is mixed and complicated. With GDP-TFP, although

the option value is larger for � > 1, the horizontal gap between R� and Ry is smaller for � > 1,12 which

may seem to be strange. However, since the gap is also a¤ected by the �exibility of preferences, the

size of the option value is not monotonically translated into the size of the gap, especially when we

compare two �, one of which exceeds 1 and the other does not.

Finally, the consumption equivalent welfare loss is not large for all four parameter sets. That is,

the welfare loss of ignoring the option value is very small even with agri-TFP. The cohabitation of

the possible large gap in R and the small welfare loss may seems to be paradoxical, but this is the

consequence of the �at value function, as discussed above. A �at value function implies that a large

change in R leads to a small change in the value function, which in turn means that a small loss in the

value function is related to a large e¤ect on R. In terms of policy implication, as long as we believe

that maximizing the economic welfare is the ultimate goal, this result leads us to conclude that it is

not very harmful to ignore the option value of unconverted land R.

4 Further Discussions

4.1 Initial State Dependence

It is interesting to investigate in more detail the dynamics of the barrier control model we have

developed. Consider the left panel of Figure 9. Suppose that an economy starts from somewhere in

the conversion region (north east of the barrier). Then, no sooner does the government �nd that it is

located in the conversion region, it jumps to R� horizontally. This also means that if a positive shock

hits this economy, then it again jumps to R� horizontally. However, if a negative technology shock

12However, if we measure the gap between R� and Ry based on the vertical distance, we can say the gap is always
larger for � < 1.
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hits, it will be pushed into the non-conversion region, and so no government action will result. That

is, a negative shock leads to no action, while a positive shock yields a horizontal jump. This results

in a zigzag movement along the barrier curve, which is the reason why this type of dynamics is called

barrier control. Note that, since, whatever the starting point is, all economies will be on the barrier

curve in the end, there is little initial state dependence.

[Figure 9: Barrier Control Dynamics around here]

However, a cumbersome outcome occurs for � < 1. In this case, once an economy is pushed a long

way into the non-conversion region, since a technology is increasing on average, it is likely to stay in

that region forever. Of course, it is also possible that the economy is hit by a large negative shock and

moves to left, but such a possibility is low. To be more precise, it is known that the drift term ~�dt

dominates the stochastic term ~�dw in (2d) in the long run. Hence, once an economy is a long way

inside the non-conversion region, it will not come back to the conversion region again. This dominance

of the drift term over the stochastic term has previously been noted in the environmental economic

option value literature (eg, Bulte et al., 2002), albeit in relation to environmental values as opposed

to technology shocks.

One important implication of this behaviour is that an upward sloping barrier curve exhibits strong

initial state dependence, which is often regarded as something theoretically undesirable. For example,

with initial state dependence for any starting point at the initial date, we can always ask ourselves

what happened one day before the initial date. This type of question is not important if the dynamics

are not dependent on the initial state. This is somewhat troublesome because, on the one hand, we �nd

support for a low elasticity, but, on the other hand, having � < 1 causes this initial value dependence

problem.

Also, it is worth considering the main mechanism by which the elasticity of substitution a¤ects the

option value quantitatively. Remember the following two observations: (i) technology is improving on

average (ie, an economy tends to move upward in Figure 9); and (ii) the option value is high when

the possibility of exercising the real option is high in the near future. So consider an economy which

rests just to the left of the barrier curve. Since it is in the non-conversion region, it has a positive

option value. If � > 1, the barrier curve is downward sloping and hence, a positive shock, which takes

place more often, pushes the economy to the conversion region (and hence the real option is likely to
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be exercised). However, if � < 1, the barrier is upward sloping and hence a negative shock, which

takes place less often, sends the economy into the conversion region, meaning that the possibility of

exercising the real option (ie, land conversion) in the near future is less likely. As a result the option

value is smaller. A smaller option value for � < 1 implies that the myopic mistake is smaller.

4.2 Environmental Discounting

As already noted (10) exhibits di¤erent (e¤ective) discount rates for C and R. That is, the e¤ective

discount rate for C is � � �, while that for R is � in our model. Note that since � can be negative

or positive, � � � can be larger or smaller than �. Indeed, as our model is grounded in principle in

relation the land use, it naturally generates the theoretical prediction that is asserted as environmental

discounting; note that the irreversibility constraint is not essential to generate these dual discounting

rates. On the one hand, in our model, we assume that physically the quality of the environment

does not change over time, while the production cost of C decreases as technology improves. Hence,

only the e¤ective discount rate for C is a¤ected by �. On the other hand, typically the literature

of on environmental discounting assumes that the speed of the (exogenous) growth in the value of

the environment is faster than that of the technological growth. So, because of the similar logic, the

discount rate for the environment is lower than �. Of course, it is, at least in principle, possible to

extend our model so that the production function includes R in addition to A, so that as the quality

of R increases exogenously (though we still believe that assuming exogenous increases in the value of

R is not really satisfactory). Essentially, the di¤erences in the e¤ective discount rates arises without

adding any special assumptions, if the model is fairly micro-founded such as that employed here.

As such, the di¤erence in the value of the discount rate between ours and Leroux et al. (2009) and

Bulte et al. (2002) can be explained by environmental discounting. On the one hand, our discount

rate � is a primitive parameter, which is something in people�s mind and is given to the economic

model, since we model both demand and supply sides explicitly. On the other hand, both Leroux et

al. (2009) and Bulte et al. (2002) only consider the production side. Hence, the proper discount rate

for them is not a deep parameter; instead, they need to choose e¤ective discount rates for their own

context that implicitly take into account the factors omitted.
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4.3 Empirical Implication

In the parameter selection, instead of pinning down the best guess of �, given its importance,

we employed two possible values for �, greater and smaller than 1. Like many other researchers we

have emphasized the importance of the elasticity of substitution between reproductive goods and the

environment. However, most existing research discusses the elasticity of substitution as it relates to

the production side of the problem. In the way in which we have developed our model the elasticity

emerges in di¤erent way. As a result our theoretical model o¤ers two (at least potentially) estimable

equations for �. The �rst equation is given by (5b).

Myopic: lnP = ln�� 1
�
(lnR� lnC) (17)

This equation holds in the context that the irreversibility is, if not irrelevant, negligible. Regressing

the log of the shadow price of R on lnR � lnC, we can obtain the estimates of ln� and 1=�. In this

equation, we de�ne the shadow price P of the environment as the value of consumption compensation

required to accept for the temporary reduction of (the service �ow from) environment R. It is for the

temporary reduction of R, because R is assumed to be reversible. Remember that (17) is the optimal

level within the assumption that the irreversibility constraint is absent. Also, remember that we do

not worry about the di¤erence in measurement units, since � absorbs it.

The second means by which we might estimate � is derived mainly from the value function (10)

and optimality condition (13). See Appendix A.2 for the derivation and some additional remarks. It

is useful, when the irreversibility constraint is under consideration.

Dynamic: lnP =
�
ln�+ ln

1

�
+ ln

�

� � 1

�
� 1
�
(lnR� lnC) (18)

In this case, the constant term is the mixture of many parameters, but, since we can calculate � from

�, ~� and ~�, all parameters are identi�able, provided that ~�, ~� and � are already estimated or known.

For (18), we de�ne the shadow price as the value of a one-o¤ consumption compensation to accept a

one unit of permanent reduction in R. It is for the permanent reduction of R, because R is assumed

be irreversible.

Interestingly, the coe¢ cient on lnR� lnC is the same for the both, and the di¤erence concentrates
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on the constant term. Intuitively, ln 1=� represents the di¤erence between temporary and permanent

reductions. Since we assume � = 0:04, the present value of one unit permanent reduction of R is

larger than that of temporary reduction by a factor of 1=� = 25.13 In addition, the option value of R

increases the shadow price of R by �= (� � 1) > 1. As is clear in Table 2, 1=� accounts the most of

the di¤erence between (17) and (18). For agri-TFP with � = 5:0, however, the option value increases

the shadow price P by 81:9%, which is signi�cant, although its e¤ect is negligible for � = 0:7.

The obvious problem with this approach is that shadow price P is usually unobservable. However,

we could employ non-market valuation methods to evaluate P . If such evaluation is available, say,

by conducting a stated preference survey, then we can estimate either (17) or (18), depending on

the context. For example, if individual level data in one region is available over a number of years,

assuming that individual characteristics appear only in � (ie, assuming that all individuals share a

common �), the following panel estimation may be implementable.

lnPit = ln�it �
1

�
(lnRt � lnCit)

�it = � (Xit) where Xit includes any individual characteristics, etc.

A problem with this proposal is that there are very few stated preferences studies that explicitly take

account of temporal changes in value. In a survey of the literature Skourtos et al. (2010) identify

one which examines the temporal reliability of stated preference estimates. However, in principle with

the development of stated preference databases there is potential for the use of some form of meta

analysis to reveal the shadow price P . Another caveat of this approach is that both (17) and (18) are

derived at the societal and government level and not for individuals (see Appendix A.2 for details).

However, we believe these equations are good proxies for individual environmental pricing. Setting

aside the option value of the environment, as many researchers discuss, the elasticity of substitution

between reproductive goods and environmental goods plays a key role in many areas of environmental

economics. Thus, the empirical approaches identi�ed here, that emerge from our model, may well be

worth pursuing as a means to estimate � in the future.

13See footnote 5.
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5 Summary and Conclusions

In this paper, we consider the option value of the environment based on a simple general equilibrium

growth model with stochastic technology shock. In our model, as in existing environmental option value

studies, because of irreversibility, the environment can in principle have a signi�cant real option value.

However, unlike the existing literature in which the uncertainty of the value of the environment is

given exogenously, the value of the environment is endogenously determined. Since we have assumed

that the environment is in �nite supply, as society becomes richer, the relative (shadow) price of

the environment increases in our model, which at least potentially explains why people living in rich

countries are more eager to conserving the environment than those in developing countries.

The most crucial parameter in our model is the elasticity of substitution � between consumption

and the service �ow from the environment; the value of the environment is mainly dependent on how

easily the environment can be substituted by consumption. We have shown that by changing � we can

signi�cantly alter model behaviour not only quantitatively but also qualitatively. Thus, when � < 1,

the optimal amount of the environment is increasing as people becomes richer, and vice versa. This

result is not dependent on the irreversibility of the environment and hence apears to hold in a wide

class of economic models.

With the irreversibility constraint on the land conversion imposed, as anticipated, a huge proportion

of the environment can be mistakenly converted, if the option value of the reserved environment is

ignored. For example, if we assume that the main alternative use of the environment is farmland, given

large uncertainty in agricultural TFP, the area of mistakenly converted reserved land can be near 30%

of the optimal reserved land if � = 5:0, and 6% to 8% if � = 0:7. Such a mistake is much smaller,

if the parameters are taken from GDP based TFP; since the alternative land use is more general in

developed countries, this parameter choice is proper for them. In this sense, the option value of the

environment is important in developing countries, in which the leading reason for land conversion is

to obtain farmland, but not very important in developed countries. Interestingly, at the same time,

the same numerical experiments suggest that such a huge mistake in land allocation does not lead to

a large welfare loss even with agri-TFP, in the sense that the loss of the value function due to the

ignorance of the option value can be compensated by a negligible amount of additional consumption.

This seemingly paradoxical coexistence of a possible huge mistake in land allocation and small welfare
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loss is because of the �at value function in the neighborhood of the optimal point.

In addition to our parametric assumptions, obviously, these quantitative results crucially depend

on our functional assumptions as well. We have chosen the CES utility function because it is standard

in the macroeconomic literature and because its constant � makes the problem tractable. Investigating

the quantitative and qualitative model behavior with non-CES utility function may well be worth

pursuing in future research.

Setting aside the option value discussions, our analysis has also revealed some interesting insights

into environmental economics more generally. First, under our general equilibrium approach, the trend

growth rate of the shock process and its volatility are easily estimated. In many cases, quantitative

results are quite sensitive to these two parameters. One of the challenges of the partial equilibrium

modelling approach is that they rely on the assumption that, say, the value of the environment follows

an exogenous stochastic process, but such a process is often hard to estimate. Second, our explicit

modelling of both production and household sides makes clear that the dual-rates of discounting for

reproductive goods and the environment arise even without adding any special assumptions (even

our irreversibility constraint plays little role in the emergence of dual discount rates), which means

that the theory of environmental discounting holds in a wide range of models as long as they have a

sound economic rationale. Finally, from our model two equations emerge which are at least potentially

estimable, provided that data on environmental prices are available by, say, some non-market valuation

studies. Since, it is widely recognized that � plays a signi�cant role in many branches of environmental

economics, we believe that estimating � and testing if it is larger than or less than unity is a very

worth challenge.
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A Appendix

A.1 Estimation of TFP

While we employ the numbers from Hu¤man and Evenson (1993) for agricultural TFP, because

we cannot �nd the growth rate of GDP-TFP and its volatility from the literature, we have estimated

TFP for Japan, U.K. and U.S. employing the Solow residuals approach. Assuming a Cobb-Douglas

aggregate production function, we can estimate TFP as something remaining after attributing the

GDP growth rate to the contributions of capital and labour .

dW

W
=
dY

Y
� �K

dK

K
� �L

dL

L

where W , K, L and Y are TFP, capital, labour and output, respectively. Parameters �K and �L show

capital and labour shares. Table 3 shows the estimates of TFP based on (a) OLS estimates of �K

and �L and (b) �xed �K and �L. In OLS estimates, constant returns to scale (CRS) is not satis�ed

for Japan and U.S., but imposing CRS as a restriction reduces estimation performance. We limit

ourselves to this simple estimation equation, because using more elaborated methods is beyond our

scope. Fixed factor shares are chosen so that they are consistent with the macroeconomic literature.

The average of the estimated trend growth rate of TFP ~� and its volatility ~� are 0:0117 and 0:0112 for

OLS estimates and 0:0131 and 0:0129 for �xed factor shares calculation. We adopt the average OLS

estimates, but our model results change little if we employ the �xed factor shares assumption (mainly

because ~�=~�2 are very close to each other in the both cases).

[Table 3: TFP around here]

A.2 Derivation of (18)

We de�ne the price P of the environment as the amount of a one-time consumption increase

(�C0) to compensate the decrease in R forever (this decrease is permanent due to the irreversibility
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assumption). Rewrite (10) by using (11a) and C = W (1�R).

F 0 (R;Z) =
Z

�� �
(1�R)1�1=�

1� 1=� +
�

�

R1�1=�

1� 1=� +B (R)Z
�

=

Z 1

0

e��t
C
1�1=�
t

1� 1=�dt+
�

�

R1�1=�

1� 1=� +B (R)Z
�

@F 0

@R
=

�

�
R�1=� +B0 (R)Z� given Ct for 0 � t

@F 0

@C0
= C

�1=�
0 = (W (1�R))�1=� = Z

�1
��1 (1�R)�1=�

We put time subscript on Ct to discriminate current consumption C0 from future consumption in the

integral. Note that all variables other than Ct show the current values; e.g., R = R0. From (SP), at

optimum (i.e., R = R�),

B0 (R)Z� =
W

� (�� �) (W (1�R))�1=� = WC�1=�

� (�� �)

By the implicit function theorem, for a �xed level of the value function �F 0

P = � @
�F 0=@R

@ �F 0=@C0
=
�

�

�
R

C0

��1=�
+

W

� (�� �)

=
�

�

�
R

W (1�R)

��1=�
+
1=�

�� �W

=

�
�=�2
�

+
1=�

�� �

�
W

where (13) is used to derive the second line. Hence, eliminating W from the �rst line by using the

third line, we obtain:

P =
�

�

�
R

C0

��1=�
+

1=�
���

�=�2
�
+ 1=�

���

P =

 
1 +

1=�
���
�=�2
�

!
�

�

�
R

C0

��1=�
=

�
�

�
+
�2=�

�� �

��
R

C0

��1=�
=

�
1 +

1

� � 1

�
�

�

�
R

C0

��1=�
=

�

� � 1
�

�

�
R

C0

��1=�

Or equivalently, omitting time subscript on C,

P =
�

�

�
R

C

��1=�
+

1

� � 1
�

�

�
R

C

��1=�
29



where the �rst and second terms show the decrease in the value function due to the permanent loss of

R and due to losing option value of R, respectively. Comparing to (17), the e¤ect of the permanent

loss of R is larger than that of the temporary loss of R by 1=�. Also, it takes into account the option

value as well. Again, taking the logarithm, we obtain

lnP = ln�+ ln
�=�

� � 1 �
1

�
(lnR� lnC) ((18))

Our model suggests that the log of environmental price in this case must be higher than (17) by

ln �=�
��1 = ln (1=�) + ln (�= (� � 1)) > 0.

The price of R in terms of C derived in this subsection is a concept very close to the equivalent

consumption measure of the myopic loss in Figure 8. Unlike Figure 8, however, setting aside some

rather technical di¤erences, here we do not assume that lost R is used as a production factor. This

assumption is chosen to study the environmental pricing by individuals, because presumably they do

not take into account the bene�ts from converted land. However, in Figure 8, even if society mistakenly

converts too much R, such converted land is used for production, which mitigates the loss in the value

function. As a result, the price increases due to the option value (�= (� � 1) in Table 2 are large

especially for � = 5, while the equivalent consumption measures for ignoring it are negligible in Figure

8.

Finally, note that there is one caveat in using (18) for individual level data. That is, (18) is derived

under the assumption that R = R� for society, which may not be true for all individuals in society. In

other words, (18) is true only under the existence of aggregate utility, which, in general, con�icts with

the variations observed in individual level data. In this sense, (18) is most suitable to time series data

or cross country data, but obtaining such data is usually very costly.
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B Tables and Figures

Table 1: Parameters
Symbol Agri-TFP GDP-TFP Meaning
� 0:04 0:04 Discount Rate
~� 0:0211 0:0117 Trend Growth Rate of W
~� 0:0604 0:0112 Volatility of W Growth
� 5:0=0:7 5:0=0:7 Elasticity of Substitution Between C and R
� 1:00 1:00 Relative Importance of Service Flow of R
k 0:00 0:00 Marginal Cost of of Land Conversion

Table 2: Key Numbers in Each Simulation
� � � �2=� ln �=�

��1 1=� �
��1

Agri TFP � = 5:0 0:017 0:048 2:221 1:064 3:817 25:00 1:819
(~� = 0:0211, ~� = 0:0604) � = 0:7 �0:008 0:026 28:80 1:241 3:254 25:00 1:036

GDP TFP � = 5:0 0:009 0:009 4:255 1:013 3:487 25:00 1:307
(~� = 0:0117, ~� = 0:0112) � = 0:7 �0:005 0:005 437:2 1:534 3:221 25:00 1:022

Table 3: Estimation of Solow Residuals
OLS Fixed Factor Shares

JPN UK US JPN UK US
Constant A 0.0073 0.0144 0.0131 0.0134 0.0141 0.0114

std er 0.004 0.011 0.008 - - -
Capital 0.4024 0.3284 0.1444 0.35 0.35 0.35

std er 0.123 0.492 0.333 - - -
Labour 1.1818 0.7160 0.9653 0.65 0.65 0.65

std er 0.184 0.153 0.094 - - -
SD(e) B 0.0118 0.0130 0.0088 0.0153 0.0130 0.0104
R2 adj 0.792 0.516 0.822 - - -
Period 1980-09 1972-09 1970-09 1980-09 1972-09 1970-09

~� 0.0074 0.0145 0.0132 0.0135 0.0142 0.0115
~� 0.0118 0.0130 0.0088 0.0153 0.0130 0.0104

Notes: Data frequency is annual. "SD(e)" shows the standard deviation of residuals.
Our estimates are: ~� = A+B2=2 and ~� = B. See Reed and Clarke (1990).

33



Figure 1: Indi¤erence Curves with Fixed Supply of R.

Figure 2: Shape of Flow Utility as a Function of R with � < 1.
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Figure 3: Boundary Conditions.
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Figure 6: Option value B (R)Z�.
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Figure 9: Conceptual diagram to show the dynamics of barrier control model.
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