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Abstract

An information-theoretic thought experiment is developed to provide a method-
ology for predicting endowment distributions in the absence of information on agent
preferences. The allocation problem is first presented as a stylised knapsack prob-
lem. Although this knapsack allocation is intractable, the social planner can nev-
ertheless make precise predictions concerning the endowment distribution by using
its information-theoretic structure. By construction these predictions do not rest
on the rationality of agents. It is also shown, however, that the knapsack problem
is equivalent to a congestion game under weak assumptions, which means that the
planner can nevertheless evaluate the optimality of the unobserved allocation.

JEL classification: C02, C62, D51, D83.

Keywords: Information theoretic measure, knapsack problem, congestion game,
potential function.

1 Introduction

Economics is traditionally based on the observation of two central stylised facts. The first

is the existence of stable economy-wide characteristics, such as stable prices, demands

etc. The second is the existence of systematic behaviour from agents, which broadly

consist of rational and optimal actions with respect to selfish interests. Standard economic

models show that this systematic behaviour of agents can lead to such stable aggregate

∗The author wishes to thank seminar participants at the GREQAM and at the ESHIA 2010 conference
for their suggestions, and is grateful in particular to Jagjit Chadha, Sonia Moulet, Mishael Milaković,
Alexis Akira Toda and Alan Kirman for their helpful advice. Any remaining errors are the author’s.
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characteristics. However, the reverse link is also of interest: Does the observation of stable

aggregate characteristics imply that agents are rational ? In other words, while systematic

agent behaviour might be a sufficient condition for stable aggregate characteristics, is it

also necessary one?

The existence of this reverse link was raised in particular by Becker (1962), who shows

that downwards sloping market demands can occur independently of agent rationality,

simply through changes in the opportunity set of agents following changes in prices.

Gode and Sunder (1993) analyse this further and show that market discipline can lead

to efficient outcomes even with zero-intelligence traders that perform no optimisation.

Their conclusion is in fact that “learning, intelligence, or profit motivation is not neces-

sary” (Gode and Sunder, 1993, p134). Finally, the nature of the link between these two

stylised facts is also put into question by the result of Sonnenschein (1972, 1973), Mantel

(1974) and Debreu (1974), as their central theorem shows that “the utility hypothesis

tells us nothing about market demand unless it is augmented by additional requirements”

(Sonnenschein and Shafer, 1992, p672).

The relation between these two stylised facts is investigated using a thought experiment

in which the problem of allocating resources between agents is presented as a variant of

the knapsack problem. This is a well known combinatorial optimisation problem where

one has a set of objects with given values and weights and the objective is to pick the

combinations of objects with the highest value without exceeding fixed a weight limit,

i.e. the capacity of the knapsack. The purpose of this thought experiment is to clarify

the sequence of steps required to solve the problem in theory, rather than to provide a

practical solution to allocation problems.

The first key finding of the thought experiment is that information-theoretic consider-

ations strongly constrain the feasible endowment distribution. The second is that under

standard assumptions on preferences the knapsack allocation problem is equivalent to a

congestion game, a form of game identified by Rosenthal (1973) in which a single po-

tential function encodes changes in payoffs when agents switch strategies and attains an

extremum for Nash equilibria. Overall, this implies that the endowment distributions
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depend only on the constraints of the knapsack problem while the conditions under which

the knapsack problem is equivalent to a congestion game only relate to the preferences of

agents.

The rest of the paper is structured as follows. Section 2 presents the the knapsack

framework used to model the allocation problem facing a social planner. Section 3 then

uses an information-theoretic methodology to show how the predicted aggregate distribu-

tions depend on the constraints only and how the similarity between knapsack problems

and congestion games depends only on assumptions relating to preferences. Section 4

discusses the implications of these findings and concludes.

2 A thought experiment: allocation as a knapsack

problem

The allocation problem facing a social planner is modeled using the multichoice multi-

dimensional variant of the knapsack problem (MMKP). Compared to a standard knapsack

problem the MMKP enlarges both the number of choices and constraints, making the

framework more general. In this variant several groups of objects are available, with

each object providing a specific value and requiring distinct resources. The objective is

to pick a single object from each of the groups, maximising their aggregate value while

ensuring the multi-dimensional resource constraint is met.1 The MMKP has already been

used in the operational research literature to model practical allocation problems, for

example allocating nurses with different skills and time preferences to different types of

shifts (Dowsland and Thompson, 2000), or allocating distinct computing resources such

as memory and CPU cycles to several networked users with different session preferences

(Khan, Li, Manning, and Akbar, 2002).

There are N agents in the economy, labeled i ∈ {1, 2, ..., N}, and the social planner

has to allocate Q different units amongst those agents. Although this does not influence

1For instance, in the allocation problem each agent is faced with a group of bundles and the optimi-
sation requires picking a single bundle for each agent.
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the general problem, it will be convenient in the discussion to distinguish K types of

commodities, labeled k ∈ {1, 2, ..., K} for which qk ∈ N units are available, in which case

Q =
∑

k qk. The allocation problem can be solved, in principle with the following four

steps.

• Step 1: The social planner labels all the possible bundles that can be built with

the Q units available and lists them in a 2Q ×Q binary identifier table B, shown in

table (1). The binary string formed by each row provides a unique identifier for the

bundle as well as the bundle’s composition. 2

Table 1: Binary bundle identifiers

B j = 1 j = 2 j = 3 j = 4 ... j = Q
b = 1 0 0 0 0 ... 0
b = 2 1 0 0 0 ... 0
b = 3 0 1 0 0 ... 0
... ... ... ... ... ...

b = 2Q 1 1 1 1 ... 1

• Step 2: The social planner sends the B-table to the N agents who rank the 2Q

bundles according to their preference. The rankings are returned to the social

planner who then builds a 2Q × N ranking table U , shown in table (2). Under

the usual assumptions of transitivity and monotonicity, all agents will rank the full

bundle first and the empty bundle last.

Table 2: Bundle preference ranking

U i = 1 i = 2 i = 3 i = 4 ... i = N
b = 1 2Q 2Q 2Q 2Q ... 2Q

b = 2 ... ... ... ... ... ...
... ... ... ... ... ...

b = 2Q 1 1 1 1 ... 1

• Step 3: The social planner must pick a bundle for each agent, using a 2Q×N choice

matrix X, where the choice variables are Xb,i ∈ {0, 1}. Importantly, each agent only

2As a matter of convention, the first bundle listed is the empty bundle and the last one is the full
bundle.
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receives a single bundle, i.e.
2Q∑
b=1

Xb,i = 1 ∀i ∈ N .3 The goal of the social planner

is to minimise the sum of the ranks over agents while remaining within the resource

constraint. Formally, this can be expressed as the following MMKP:

min tr (UX ′) ,

s.t. :B′X1N = 1Q .
(1)

Here 1N and 1Q are the N and Q-length unit vectors respectively. Choosing an

objective function for the MMKP is directly related to the problem of choosing a

social welfare function. Given the rankings, one can select any bijective function

to transform ranks into cardinal values, with the lowest numeral rank producing

the highest utility. Minimising the sum of the ranks is therefore equivalent to a

maximisation of the sum of the utilities, which is a standard Benthamite social

welfare function.4 The constraint ensures that the sum of the binary identifiers for

each selected bundle equals the unit vector, i.e. each unit in Q is selected only

once. Expressed in scalar notation, this corresponds to the MMKP as presented by

Hifi, Michrafy, and Sbihi (2004); Sbihi (2007). The only differences compared to the

more general framework in the operational research literature is that the program

uses minimisation rather than maximisation, the resource requirement per bundle

in B is the same for all i agents, and the available capacity is restricted to one for

all dimensions in Q:

min
N∑
i=1

2Q∑
b=1

Ub,iXb,i ,

s.t. :
N∑
i=1

2Q∑
b=1

Bb,jXb,i = 1 ∀j ∈ Q .

• Step 4: Once the optimal choice table X∗ is obtained, the social planner can build a

Q×N allocation table A∗ = B′X∗, shown in table (3). This table uniquely assigns

every unit in Q to an agent in N , and can therefore be used for the purpose of

3One can see that even if the agent is allocated two bundles a and b from the B-table 1, then a+ b is
also a bundle in B.

4Any bijective functions is fine, as a utility function is never uniquely defined. Choosing a different
function for different agents is equivalent to choosing different weights for the agents in the linear sum.
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selecting goods one by one and dispatching them to their allocated owner.

Table 3: Allocation table

A∗ i = 1 i = 2 i = 3 i = 4 ... i = N
j = 1 0 0 1 0 ... 0
j = 2 1 0 0 0 ... 0
j = 3 0 1 0 0 ... 0
... ... ... ... ... ...

j = Q 0 0 0 1 ... 0

There are two main advantages to presenting an allocation problem in this way. The

first is that it provides a stylised model that neatly separates the types of hurdles facing

an economic planner, starting with the choice of the correct social welfare function, then,

as pointed out by Hayek (1945), the presence of a high and potentially unfeasible informa-

tional requirement (Step 2), followed by a large computationally complex combinatorial

optimisation (Step 3).5 Given these difficulties, the second advantage of the thought ex-

periment is the fact that the structure of the MMKP problem and its solution provides a

framework within which the state space, and the ignorance of the location within it, can

be measured and used for analytical purposes. This is examined in the next section.

3 An information-theoretic prediction methodology

In theory all four steps of the MMKP are feasible and A∗ exists. However given that it

is not tractable in practice for the social planner to perform either Step 2 or 3 of this

procedure, the optimal allocation A∗ is unknown. As a first step, we show that this

ignorance can not only be precisely measured, but also used to obtain a prediction of the

stable distribution of the Q units over the N agents that relies only on the constraint of

the MMKP. In a second step, we then show that whether or not the stable distribution

is linked to the existence of a decentralised equilibrium depends on characteristics of the

objective function of the MMKP only.

5The knapsack problem is known to be NP-complete, in other words solutions to the problem can be
verified efficiently (in polynomial time), but there is no known algorithm for calculating the solutions
efficiently in the first place.
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3.1 Information-theoretic constraints to aggregate behaviour

Shannon (1948) shows that the information content of an uncertain message M , where

the message is X characters long and each character can take Y values, is given by:

I (M) = X

Y∑
y=1

py log py (2)

Here py is the frequency of the yth character. If one has a frequency distribution {py},

equation (2) gives the amount of bits required to code the message, as is done in Shannon

(1948) with the average information content of English text.6 Alternatively, as explained

by Jaynes (1957a,b), if one can obtain the information content I (M) directly, equation

(2) can be used in the opposite direction, in order to predict the frequency distribution

consistent with the information content and the length of the message. The information

content can be derived either from measurement or from theoretical considerations, as

Theil (1967) and Jaynes (1989) show that the information content of a message is simply

the logarithm of its state space.

This has given rise to the maximum entropy (MaxEnt) methodology, which is used

to describe the aggregate behaviour of a system in situations where there is very little

detailed information available. In an economic setting it has been used by Foley (1994)

and Toda (2010) to prove the existence of a statistical market equilibrium when agents

have “offer sets” of transactions they are willing to accept and interact in a random

fashion. In their framework the uncertainty comes from the sequence of transactions,

while in the thought experiment used here the uncertainty is much more fundamental, as

the social planner is unable to even obtain the preference rankings of agents.

The MaxEnt approach can be applied to the allocation table A∗ obtained from the

MMKP, which has a known state space and can be coded efficiently into a message with

a measurable information content. This information content then strongly constrains the

observable frequencies of the events. The most efficient way of coding the information in

table A∗ (3) would be to use a Q-length output message, where each entry can take N

6The information unit will be the bit only if log2 is used. The natural logarithm produces an infor-
mation measure in “nats” with 1 nat = log2(e) bit (approximately 1.4427 bit).
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possibilities.

Units: j = 1 j = 2 j = 3 j = 4 j = 5 ... j = Q

Agents: 3 4 1 6 1 ... 5

As the social planner reads each entry, the allocated owner of the unit is given by the

label uniquely identifying each agent. The state space of this message is simply NQ. As

a result, the detailed information content of the allocation table A∗ is given by:

I (A∗) = Q logN (3)

If the social planner knows that the Q units can be grouped into K types of commodi-

ties, then this full description of the allocation contains redundancy. Let a K-section

of the allocation table A∗
k be the group of rows in the allocation table (3) that contain

the allocation of the Kth commodity. Because the qk units are undistinguishable, many

bundles in the binary identifier table B are for all purposes identical, and any permuta-

tion of the rows within a K-section A∗
k leads to an identical allocation. This redundant

information can be removed to obtain a more efficient coding of the message. Given qk

units per commodityK, this allows for qk! permutations per givenK-section. Taking logs,

using Stirling’s approximation and subtracting from (3) gives the corrected information

measure for A∗
k:

I (A∗
k) = qk logN − (qk log qk − qk) ,

I (A∗
k) = qk

(
1 + log

N

qk

)
. (4)

This is the information entropy for a qk length message using an exponential distribu-

tion with mean N/qk. The intuition behind this is that permuting rows in a particular

K-section A∗
k is equivalent to permuting cells in the output message. Out of all the pos-

sible permutations a particular one of interest is the one where the qk entries are sorted

by ascending agent label:
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Units: j = 1 j = 2 j = 3 j = 4 j = 5 ... j = qk

Agents: 1 1 2 2 2 ... N

Each agent is expected to be selected qk/N times meaning that new agents arrive in the

string at a rateN/qk, thus explaining the exponential form. Furthermore, the permutation

also reveals the information redundancies mentioned above. Sending a message in this

format is clearly inefficient, particularly if the number of units to be allocated qk is much

greater than the number of agents N . It would be better to convert the message into an

N -length message where each entry simply indicates the number of units to be allocated

to the ith agent.

Agents: i = 1 i = 2 ... i = N

Units: 2 3 ... 4

Performing this change in variable provides the following information content for the

shorter message. The underlying distribution remains exponential, with a message length

of N and an expected endowment of qk/N . This is in line with the result of Foley (1994)

which shows that the MaxEnt prediction for an exchange economy is an exponential

distribution.

I (A∗
k) = N

(
1 + log

qk
N

)
(5)

This illustrates the information-theoretic interpretation of the MaxEnt approach and

the endowment distribution it predicts. Given a message length of N , should the social

planner predict a distribution of endowments that is not exponential, this would imply an

information measure different from (5). This in turn requires the allocated quantities to

be either greater or smaller than qk, both of which violate the MMKP constraint in (1).

Therefore, the only consistent predicted endowment distribution is the one that produces

the same information content as the allocation table (3), subject to known information

redundancies. Any difference between observed and predicted distributions can then be

used to identify the remaining information redundancies in the structure of the allocation

table A∗ that the social planner was initially unaware of.
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This methodology shows that only a single predicted endowment distribution is consis-

tent with a given information structure for the allocation matrix A∗. Crucially, however,

all the allocation tables allowed by the MMKP constraint in (1) carry the same information

content. The existence of the stable distribution therefore has no connection to objective

function of the MMKP. We now move to investigating under which conditions the social

planner can be confident that this distribution describes and underlying equilibrium if the

allocation problem is solved in a decentralised but unobserved manner.

3.2 Knapsacks, congestion games and convergence to equilib-

rium

As explained in section 2, the operational research literature has used the MMKP to

model resource allocation on a network. Similar network allocation frameworks also serve

as illustrations of congestion games, for example the road congestion setting presented

by Rosenthal (1973), where road users attempt to select routes so as to minimise the

congestion they experience. A network congestion framework will therefore be used here

to illustrate the conditions under which the two settings are equivalent. The congestion

game that will be examined here uses an N -edge multigraph, corresponding to N routes

between two points, as illustrated by figure 1. This choice of graph implies that distinct

routes follow separate edges, and avoids the interdependence of costs between edges.7

Each edge is assumed to have a controller who can work out the congestion cost for any

given number of users.

There are qk ∈ N users for each of theK types, who all need to get from the start point

s to the finish point f .8 In terms of the congestion game, there are N routes/strategies

that can be chosen by each user, and the cost to the user is simply the cost of using the

selected edge.

7In other words, this simple example avoids the presence of externalities between routes, where the
cost of a number of users choosing a route depends on the number of users choosing another route that
shares a common edge.

8Following the road congestion example of Rosenthal (1973), one could imagine that the K types
represent different categories of vehicles, such as cars, trucks, etc. who each generate different congestion
costs.
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Figure 1: Multigraph congestion game

The different sequences of this allocation problem can be set up using the MMKP

thought experiment presented in section 2. The only difference is that at step 2, the social

planner sends the B-table to the N edge controllers, who each return the congestion cost

that will arise on their edge for all the possible bundles. As a result, a 2Q ×N cost table

C is obtained.9 This implies that at step 3, the MMKP program uses tr (CX ′) as the

objective function to be minimised.

Two assumptions are required to show the equivalence between the MMKP and con-

gestion game solutions to this framework. In order do so, ∆kCb,i = Cb,i −Cb−,i is defined

as the marginal cost of an extra k-type user, where b− is a bundle obtained by removing

a k-type user from bundle b. Similarly, in the following, b+ refers to a bundle obtained

by adding a k-type user to bundle b.10

Monotonicity: ∆kCb,i > 0 ∀k, i, b i.e. congestion costs on an edge are increasing

with the number of users.

Global convexity: Given two bundles a and b, ∀i, x ∈ N if Cb,i > Ca,x then ∆kCb,i >

∆kCa,x

Monotonically increasing costs are a standard assumption for congestion games. Con-

vexity intuitively means that congestion exhibits increasing marginal values. Furthermore

global convexity implies that removing a k-type user from a heavily congested road brings

a larger reduction in congestion than removing the same user from another less congested

road. As will become apparent in the following proofs, this is needed because the objective

9The difference with the ranking table U in section 2 is that the null bundle is ranked last and the
full bundle is ranked highest. In the cost table C, assuming monotonicity, the null bundle produces the
lowest cost and the full bundle the highest cost.

10∆kCb,i is of course undefined for the empty bundle.
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function used in the MMKP is not the same as the one used in the basic congestion game

framework of Rosenthal (1973). We now prove that if the cost table C satisfies these two

assumptions, the MMKP and congestion game formulations are equivalent.

Proposition: If the cost table displays monotonicity and global convexity, the optimal

solution to the MMKP problem is a Nash equilibrium for the corresponding multigraph

congestion game.

Proof: By contradiction. Let X∗ be the decision table that satisfies the MMKP (1)

and A∗ = B′X∗ the corresponding allocation of the Q users over the N edges of the

multigraph. Let us assume that A∗ is not a Nash equilibrium for the Q users. Then there

exists a k-type user j ∈ Q whose cost is reduced by switching from edge i to edge x.

If b and a are the bundles allocated to edges i and x respectively by X∗, this requires

Cb,i > Ca+,x. Given that the allocated bundles to all the other edges are unchanged, the

change in the objective function of the MMKP is:

Cb−,i − Cb,i + Ca+,x − Ca,x ⇔ −∆kCb,i +∆kCa+,x

Global convexity of costs implies that this term is negative. Following the switch in edge

by the jth user the objective function is smaller, therefore contradicting the fact that X∗

satisfies the MMKP. �

Corollary: If the cost table displays monotonicity and global convexity, the objective

function of the MMKP is an ordinal potential function for the corresponding multigraph

congestion game.11

Proof: Immediate from the definition of convexity and the previous proof. The change

in cost to a k-type user for switching from edge i to x is Ca+,x −Cb,i. The corresponding

change in the objective function of the MMKP is −∆kCb,i +∆kCa+,x. One has:

sgn (Ca+,x − Cb,i) = sgn (−∆kCb,i +∆kCa+,x)

11An ordinal potential occurs when the changes in the potential function and the changes in the payoffs
have the same sign. An exact potential further requires they also have the same value.
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The objective function of the MMKP is an ordinal potential for the corresponding con-

gestion game. �

Monderer and Shapely (1996) show that all ordinal potential game possess the finite

improvement property (FIP), meaning that even a simple a myopic best response path is

enough to lead to the optimal equilibrium in a finite number of steps. Combined with the

proposition shown above, the central implication of this result is that if the preferences

expressed by the N agents/edges are globally convex, then the social planner can be con-

fident that the predictions obtained using the information-theoretic methodology outlined

in section 3.1 will describe the aggregate properties of an underlying optimal outcome.

An important note is that in the U -table (2), preference rankings are monotonically

decreasing with units allocated, while in the C-table costs increase monotonically with

users allocated. The two problems are therefore slightly different, but the equivalence

proposition nevertheless carries across. This formally requires transforming the rankings

in the U -table into proxy utility values by applying a concave inverse mapping, hence

changing the rank-minimisation problem into a utility-maximisation. The global con-

vexity requirement for preferences when minimising overall rank thus becomes a global

concavity requirement for utility, which is a standard assumption in economics.

4 Discussion and Conclusion

The purpose of the thought experiment and the justification for using the MMKP to model

the allocation problem is twofold. First of all, because it provides a clear state-space, it

allows for the use of information theory to obtain the specification for the information

content of the solution, and hence a constraint on predicted distributions at the aggregate

level. The second is that the structure of the MMKP is very similar to that of congestion

games. In fact, the only requirement for the optimal MMKP allocation to also be a

Nash equilibrium and the objective function to be an ordinal potential is the existence of

convexity (or concavity for a maximisation) in the objective function.

As a result, the thought experiment sheds light on the link between rationality and
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aggregate characteristics mentioned in the introduction. As was explained at the begin-

ning of section 3.2, the predictions obtained with the information-theoretic methodology

do not depend on the rationality of agents: all that is required is that the information

content of the message containing the allocation not violate the structure of the allocation

matrix A∗, which depends only on the MMKP constraint and the known redundancies in

the information structure. This is in line with the findings presented in the introduction,

particularly Becker (1962), who shows that changes in the budget constraint of agents suf-

fice to generate observable demand curves. However, the equivalence between the MMKP

and congestion games when preferences are convex reveals that if the allocation problem

is solved in a decentralised manner, the distribution predicted by the social planner at

the aggregate level will indeed coincide with optimum state at the decentralised level.

More generally, the knapsack thought experiment rationalises the use of information-

theoretic methods in economics: useful predictions can be made about endowment distri-

butions even in the absence of detailed information on the consistency of agent preferences.

As pointed by Hayek (1945), we are all observers whose knowledge of the state of the econ-

omy is vanishingly small. Even for the case where some data is accessible, it does not

completely describe the state of the economy. In such a context, the MaxEnt methodol-

ogy developed by Jaynes (1957a,b) uses the information-theoretic Shannon entropy as a

measure of the ignorance of an observer. As a result, following this methodology provides

the best prediction of the state of an economy in the absence of all other knowledge.

The use of this methodology, however, goes beyond simple prediction, as it also allows

for successive improvements in the predictions. As stated above, what can the social plan-

ner conclude if empirical frequency data does not confirm her predicted distribution? The

answer to this question is provided by Jaynes (1989): any significant difference between

the predicted and empirical information measures represents the amount of information

that can be extracted from the frequency data in order to improve the knowledge of the

information redundancies in the system, hence improving further the prediction, and more

importantly, improving the understanding of the underlying data-generating mechanisms.
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