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CH-8092 Zürich, Switzerland

Tel.: +41.44.632 46 24

Fax: +41.44.632 12 18

Email: cmueller@kof.ethz.ch

First version: January 27, 2006

This version: January 30, 2006

Abstract

Growth regression economics are haunted by the fact that re-

sults are easily overthrown by regressing alternative model spec-

ifications. Recent research therefore aims at obtaining robust

regression results by systematically running multiple models and

picking surviving variables. This note shows that a very popular

of these approaches, the robust regression due to Sala-i-Martin

(1997) very likely leads to inconsistent conclusions but may be

remedied by refining the ‘testimation’ algorithm. To that aim I

do not need to run a single regression.
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The question what are the determinants of economic growth and

hence welfare has always been one of the key issues in economics.

Therefore, many theoretical and econometric studies have tried to shed

light on this subject. Especially in the aftermath of Barro’s (1991)

survey on potential growth factors, the growth regression literature

itself has experienced enormous growth. However, particularly to non-

experts the evidence seems to be very confusing to the effect that

hardly anything appears to be a robust finding as to what really causes

economies to grow faster than others.

Consequently, several attempts have been made to generate ‘ro-

bust’ empirical results. For example, Levine and Renelt (1992) ap-

plied Leamer’s (1985) extreme bound analysis concluding that any

variable that changes sign or becomes insignificant in any single re-

gression model variant should be labelled non-robust. Granger and

Uhlig (1990) modify (and simplify) Leamer’s (1985) approach by let-

ting the researcher choose how ‘extreme’ the selection should actually

be. Against that Sala-i-Martin (1997) (henceforth SIM) proposed an

alternative that is based on a systematic re-sampling of the potential

regression models. He derives a test statistic that measures the disper-

sion of the coefficient of interest across models. If the probability mass

of the corresponding empirical cumulative distribution function is far

away from zero, then the corresponding variable appears robust. Both

these approaches are now well established in the literature, a recent

application is due to Sturm and de Hahn (2005), for example.

This note fills a gap in SIM’s argument that arises due to the omis-

sion of an explicit statement of the null and alternative hypotheses.

It is pointed out that particular assumptions are needed to derive the
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robustness statistic. Unfortunately, it turns out that the SIM proposal

easily runs into inconsistency which severely limits its use in applied

research.

The structure of the paper is as follows. The next section describes

the SIM approach in more detail. Then, the arguments are reviewed,

the tacit assumptions highlighted, and the limits of the method are

discussed. Finally, a potential remedy is presented and conclusions are

drawn. As this is rather a technical note, not a single regression is run.

I Sala-i-Martin revisited

The starting point is a regression model of the following type

y = β1x1 + β2x2 + β3x3 + u(1)

u ∼ i.i.d.(0, σ2
u)

with y being the independent variable, usually the economies’ growth

of income, and xi, i = 1, 2, 3 are the (potential) explanatory variables

for growth while u represents orthogonal white noise.

Let me call x1 ∈ X1 the robust variables, x2 the variable(s) in

question and x3 ∈ X3 noise variables. The researcher wants to know

whether x2 ∈ X1 or x2 ∈ X3, in other words, is x2 signal or is it noise?

As SIM observes, standard t-tests appear not fully suitable to an-

swer this question since their results are not robust with respect to the

choice of x3. Therefore, he suggests to build a statistic on a sample

of estimated β2 coefficients (and their standard deviations) where the

values are drawn from the set of models that is given by the M possible

combinations of x3. In SIM’s example the set X3 comprises K3 = 58
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variables while the vector x3 is made up of k3 = 3 variables. Therefore,

a total of M = K3!
(K3−k3)!k3! = 30, 856 models can be estimated for every

choice of x2.

Calling β̂2,j and σ̂β2,j the jth draw of the estimated coefficient and

its standard deviation respectively, SIM calculates

β̃2 =
M∑

j=1

ωj β̂2,j(2)

σ̃2
β2

=
M∑

j=1

ωj σ̂
2
β2,j(3)

with ωj ,
∑M

j=1 ωj = 1 as weights reflecting the model fit in terms of

the relative likelihood value. Using β̃2 and σ̃2
β2

as mean and standard

deviation respectively, SIM constructs the cumulated normal density

function (CDF) of the across-equation mean of β2. It is then easy to

see whether or not the probability mass is far enough away from zero

to call x2 robust.

II Tacit assumptions and their implications

In this section a possible set of assumption is discussed that would be

able to justify SIM’s statistic. Notice that there may be alternative sets,

however, as SIM does not provide a set himself, the current discussion

appears warrantable. The key argument of the SIM method is the

derived CDF. Therefore, its quality is crucial for the conclusions that

may be drawn from it. The CDF needs two parameters to be identified.

Thus instead of looking at the CDF it is sufficient to scrutinise β̃2 and

σ̃2
β2

. For both of them to be useful, it first of all need to be assumed

that their estimates given in (2) and (3) converge to their true values,
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i.e. they need to be reliable estimates of their population means.

The literature knows several measures of convergence (see e.g. Hamilton

1994, chapter 7). Since SIM does not define the measure he has got in

mind, I suppose a very weak one. Thus, we first have to assume that

all β̂2,j are drawn from the same population. This population shall be

the population of consistent estimates for β2. We may hence write

β̂2,j ∼ (
β2, σ

2
β2,j

)
(4)

which indicates that all population members have the same expected

value. In order to simplify matters we may confine our analysis to

β2. The arguments regarding σ2
β2

would be virtually identical and will

therefore not be discussed. Likewise, the choice of ωj is not going to

be discussed since the only interesting one would be zeros for certain j

(see the discussion below). As this is extremely unlikely for likelihood

ratios, it is not worth considering.

The question thus is under what circumstances will (4) hold? Re-

member that β̂2,j is the estimation result of a regression defined in

(1). Therefore, every single regression must be such that (4) applies.

It is again possible to use standard results. One central (and mild)

assumption of standard regression techniques is

lim
R→∞

1
N

∑
xi

2u
i = 0,(5)

where i = 1, 2, . . . , N is the number of observations (i.e. the number

of countries in the sample). A stronger assumption would for example

require independence of x2 and residuals. Less technically speaking,

(5) demands that the explanatory variable of interest is asymptotically

uncorrelated with the innovations. This condition is important to en-

sure consistency of the estimate in every jth draw. Disregarding (5)
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would almost surely introduce a bias in β̂2,j and since SIM shows no

indication of supposing malpractice on parts of the growth researchers

it appears save to put (5) on the list of tacit assumptions. The prob-

lem now becomes how to make sure that (5) holds for all j. Remember

that the choice of x3 differs for different values of j, that is for different

model variants. Therefore, if a set x3,j is related to y by a coefficient

β3,j �= 0 then consistency of β̂2,j+i, i �= 0 is only available if

Corr (x3,j , x2,j+i) = 0.(6)

In other words, the variables from the noise set must not be correlated

with the variable of interest, that is with x2. This, however, seems to be

a very unlikely situation. Putting it the other way round, (6) imposes a

sharp selection criterion for the SIM approach to work since many the-

oretically attractive variables will fail to pass (6). All those variables

that have to be deselected can of course not be subjected to the SIM

test and hence the SIM robustness check appears severely limited. It

may be interesting to note that SIM found ten dummy variables such

as Sub-Saharan Africa, number of revolutions and military coups and

religious orientation (Confucian, Buddhist, etc.) to be robust out of

22 robust variables in total. This rather high share may thus simply

reflect the fact that these dummy variables are very likely to be inde-

pendent of the remaining potential explanatory variables. Therefore,

they probably comply with (6) making reliable inference feasible. In

contrast, other robust variable may not have been detected because the

related coefficient estimates are inconsistently estimated. Accordingly,

the ‘robust variables’ may not be robust at all, it just cannot be told.
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A seemingly simple way to circumvent (6) is to assume

β3,j = 0 ∀j.(7)

Doing so is equivalent to avoiding an omitted variable bias at a later

stage: Suppose that the first variable of interest that is checked for

robustness, say x2(1), turns out non-robust according to SIM. Then

another variable x2(2) would be chosen out of X3(1) and the first can-

didate be moved to X3(2). If it happens that this new x2(2) appears

robust it would automatically imply that the previous inference was

wrong since (7) was violated. Thus, every robust variable that is found

reduces the reliability of the testing procedure.

Would it pay to to shift x2,j+1 to X1 instead and restart the whole

analysis? Probably not very much so, since any further detection of

a robust variable would invalidate the (previous) decision to shift. In

fact, the only feasible such robustness check is able to check exactly

one variable x2. Otherwise, only non-robust variables can be identified,

provided of course that the null hypothesis is not rejected for any x2

possible.

In short, finding a robust variable appears not very desirable al-

though it is the overriding objective of the whole approach. However,

how bad is the effect of a robust variable actually? To answer this

question I define s as the number of robust variables in X3, and by

M∗ ≤ M I denote the number of consistent estimations. We may now

calculate the share of admissible, that is consistent, regressions of the

total number of regressions. For example, for k3 = 3 as in SIM, and a

hypothetical s = 1 we have to calculate the number of pairs of variables

out of the set X3 that can be complemented with the robust variable

in order to obtain consistent estimators. Only those triplets where

7



the robust variable is included generate consistent estimates because

there will be no omitted variable bias. Therefore, M∗ can be given

as M∗ =
(

K3 − 1
k3 − 1

)
=

(
K3 − 1

2

)
using Euler’s binomial coefficient

notation. After some algebra it turns out that M∗ is proportional to

K2
3 whereas M increases proportional to K3

3 . Thus, M∗/M is propor-

tional to K−1
3 which implies that the share of consistent β2,j estimates

entering (2) approaches zero as K3 increases. In general,

M∗ =

⎧⎨
⎩

(
K3 − s
k3 − s

)
, ∀s ≤ k3

0, else,

and hence M∗/M is proportional to K−s
3 . There is no nonzero s for

which (2) provides a consistent estimate unless (6) holds. In partic-

ular, if s > k3 and x2 is non robust then not a single regression will

yield consistent estimates. For s = k3 there will be exactly one valid

regression, no matter how large K3 is. Relating this result to SIM, one

might note that if the 12 robust (non-dummy) variables SIM claims

to have found were really non robust, then just less than half of the

nearly 2 million regressions delivered consistent estimates for β2. As

remarked before, these consistent estimates may have been obtained

for the dummy variables.

Summarising this section gives the following picture. We may either

drop (7) and find us put back where we started from, namely to the

position where we have to choose x1, x2, and x3 and play around with

various such choices. The chances of learning about the true determi-

nants of growth would remain as thin as before. Or, we could assume

that (7) holds and trust that research on growth is fruitless, i.e. newly

suggested explanatory variables are non-robust. As neither of these

two perspectives is very attractive, the next section suggests a slight
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manipulation of the SIM method that solves some of the problems.

III An alternative route

The previous section demonstrated that it is possible to consistently

accept non-robustness of all variables in question. Suppose now, that

instead of identifying robust variables, we only find non-robust variables

by the method of SIM. Then, if there are any robust variables available,

they must be in X1. Thus a promising alternative is to start with a

rather large set X1 and reduce it as far as possible by throwing out

those elements that in fact belong to X3. The following algorithm can

be applied. Start with some choice of X1, x2, and x3 where now, X1

should contain many variables, in particular those which are in focus.

Apply the SIM method. If x2 turns out non-robust, move it to X3 and

chose another x2 from the (now smaller) set X1. If however, x2 turns

out robust, put it (back) to X1 and select another x2 from X1. Repeat

these steps until all variables in X1 have been tested and only robust

variables remain in X1. Notice that this procedure is consistent because

(7) can always be maintained. A serious caveat however, arises if one

considers the possibility of wrongly accepting the null. If that happens

and it will almost surely happen when X1 has many elements, then (7)

is also almost surely violated. A way out here would be not to shift

the non-robust x2 variables to X3 but remove them from the exercise

altogether because (7) could still be maintained. Unfortunately, the

only choice that cannot be checked is the definition of the initial set X3.

That regrettably mimics again the current situation where it is exactly

the initial choice of explanatory variables in growth regressions which
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leads to these contradictory results. Nevertheless, due to its consistency

the alternative approach seems to be preferable to the suggestion by

SIM.

IV Summary and conclusions

Sala-i-Martin (1997) has suggested an intuitively appealing way to

check the robustness of explanatory variables in economic growth re-

gressions. Complementing the intuition with explicit assumptions about

the properties of the proposed statistic reveals a severe drawback, how-

ever. In fact, even under rather mild assumptions the possibilities to

really find robustness appear very limited. The proposed method will

in general not be applicable to the whole set of potentially robust ex-

planatory variables and the result of the robustness check cannot be

regarded robust itself.

An alternative algorithm has been suggested. Although it will not

solve the entire problem, it provides an internally consistent way to

address robustness.
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