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ABSTRACT 

Equilibria in a Dynamic Global Game: The Role of Cohort Effects* 

by Paul Heidhues and Nicolas Melissas 

We introduce strategic waiting in a global game setting with irreversible 
investment. Players can wait in order to make a better informed decision.  We 
allow for cohort effects and discuss when they arise endogenously in 
technology adoption problems with positive contemporaneous network effects.  
Formally, cohort effects lead to intra-period network effects being greater than 
inter-period network effects.  Depending on the nature of the cohort effects, the 
dynamic game may or may not satisfy dynamic strategic complementarity.  If it 
does, our model has a unique rationalizable outcome.  Otherwise, there exists 
parameter values for which multiple equilibria arise because player have a 
strong incentive to invest at the same point in time others do.  
 
Keywords:  Global Game, Strategic Waiting, Coordination, Strategic 

Complementarities, Period-specific Network Effects, Equilibrium Selection. 
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ZUSAMMENFASSUNG 

Gleichgewichte in einem Dynamischen Globalen Spiel: Die Rolle von 
Kohorteneffekten 

Koordinationsspiele haben typischerweise multiple Nashgleichgewichte mit sich 
selbsterfüllenden Erwartungen. Die Theorie der globalen Spiele führt 
Unsicherheit und private Informationen in statischen Koordinationsspielen ein 
und zeigt die Bedingungen auf, unter denen dies zu einem eindeutigen 
Gleichgewicht führt. In diesem Beitrag untersuchen wir ein Zweiperiodenspiel, in 
welchem die Spieler eine irreversible Investitionsentscheidung mit einer 
positiven Netwerkexternalität treffen. In der ersten Periode wählen die Spieler, 
ob sie sofort investieren oder auf bessere Informationen über das Projekt 
warten. Wir zeigen, dass Kohorteneffekte bei Technologiewahlproblemen mit 
positiven Netzwerkexternalitäten auftreten und untersuchen ihre Auswirkungen. 
Kohorteneffekte führen dazu, dass die Intraperioden-Netzwerkeffekte größer 
sind als die Interperioden-Netzwerkeffekte. Aus technischer Sicht bestimmen 
die Kohorteneffekte, ob das globale Spiel die Eigenschaft der dynamischen 
strategischen Komplemantarität erfüllt. Diese Eigenschaft wiederum impliziert, 
dass unser Modell eine eindeutige rationalisierbare Lösung hat. Ist diese 
Eigenschaft nicht erfüllt, so hat jeder Spieler einen hohen Anreiz zum gleichen 
Zeitpunkt wie die andern Spieler zu investieren. In diesem Fall exstieren 
Parameterwerte für welche unser Spiel multiple Nashgleichgewichtslösungen 
hat. 
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1 Introduction

In many economic situations, the optimal action of an economic agent is comple-

mentary to the actions undertaken by other agents. For example, a consumer’s

payoff from buying a computer software is typically increasing in the number of

other consumers who also use that software. Or, think of a consumer who decides

to buy a durable consumption good such as a car. As more consumers buy this

brand of car, more repair shops will have the know-how and spare parts to repair

the car quickly.1 Models of situations in which the agents’ optimal actions are

complementary to each other are often plagued by multiple equilibria with self-

fullfilling beliefs: If a player expects the other players to buy the software, then

it is in her best interest to buy it as well. If a player expects the other players

not to acquire the software, she wants to refrain from buying. This multiplicity

result is annoying from an economic-policy point of view. Without an adequate

theory of equilibrium selection, one cannot use these theories to predict the market

outcome. How then does one judge, for example, whether policies to subsidize/tax

the adoption of information technology should be implemented? How does one

predict the market power of firms who sell their products in markets with network

externalities?

For two-player coordination games, Carlsson and van Damme (1993), henceforth

CvD, developed an equilibrium selection theory, which was adopted to a coordi-

nation problem with a continuum of players by Morris and Shin (1998). CvD

assume that the agents’ payoffs depend on the action chosen by the other agent in

the economy and some unknown economic fundamental summarized by the state

of the world θ. Agents receive different signals about θ, which generate beliefs

about the state of the world and a hierarchy of higher order beliefs (beliefs about

the other agent’s beliefs, beliefs about the other agent’s beliefs about his beliefs,

etc...).2 CvD called this incomplete information game a global game and showed

1Complementarity of optimal actions is also a key ingredient of many models of macroeconomic
coordination failures such as currency crises, debt crises, bank runs, financial crashes, and Keynes-
type underemployment (Obstfeld (1996), Cole and Kehoe (1996), Diamond and Dybvig (1983),
Bryant (1983)). Milgrom and Roberts (1990) discuss other examples of games with strategic
complementarities such as R&D competition, oligopoly, coordination in teams, arms races, and
pretrial bargaining.

2Carlsson and van Damme’s work is based on the insight developed in Rubinstein’s (1989)
famous electronic mail game, in which he illustrated that the risk-dominated equilibrium of
the common knowledge game is selected as the unique equilibrium in the absence of common
knowledge.
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that if the potential type space is rich enough, the game has a unique equilibrium.3

Thus, the global game framework enables researchers to base policy recommenda-

tions on theory that predicts behavior in coordination games. It has been applied

to a wide variety of contexts within a static framework.4 In reality, however, many

economic coordination problems are essentially dynamic. Players can always post-

pone their investment decisions in order to make a better informed decision at a

later point in time. In this paper, we investigate conditions under which the global

game approach can be extended to model dynamic technology adoption problems.

To address this question, we build a dynamic global game. We consider a contin-

uum of investors, who have the opportunity to engage in a risky investment project

in either of two periods. Investments are irreversible. Payoffs depend positively

on the realization of a random variable, which we refer to as the fundamental, and

on the mass of investors. All players receive some noisy private information con-

cerning the realization of the fundamental. For very high signals, it is a dominant

strategy to invest immediately and for very low signals it is a dominant strategy

not to invest. For intermediate signals, a player’s optimal behavior depends on

her beliefs about how other investors act. If a player decides to wait, she gets a

more informative signal concerning the realization of the fundamental at the cost

of foregone profits. Our signaling technology is simple in the sense that we as-

sume a uniform distribution of period-one signals. Moreover, we assume that each

player at time two can either receive good or bad news. Our signaling technology

ensures that the posterior about the fundamental is distributed uniformly around

a player’s signal in both periods. This simplifies the computation of our equilib-

rium strategies and permits us to get closed-form solutions. It also enables us to

3We refer to any binary action game that is characterized by strategic complementarity,
incomplete information, and in which for some types it is a dominant strategy to adopt one
action while for others it is a dominant strategy to adopt the other as a global game. That
heterogeneity of agents can lead to a unique equilibrium in situations in which the agents actions
are complementary to each other was shown earlier by Postlewaite and Vives (1987) in a bank-
run model. One novel insight of the global game approach is that lack of common knowledge
about the distribution of types often suffices to select a unique equilibrium even if heterogeneity
in first-order beliefs is small and payoffs are identical. For a comprehensive survey of the global
game literature, see Morris and Shin (2001). For an extension of the global game approach to
many action games, see Frankel, Morris and Pauzner (2002).

4It is used, for example, to model currency crises (Morris and Shin (1998), Corsetti et al.
(2000)), bank runs (Goldstein and Pauzner (2000), Rochet and Vives (2000)) and car-dealer
markets (Dönges and Heinemann (2000)).
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work with a flexible dynamic payoff structure in which a player’s gain of investing

not only depends on the total mass of players who invest, but also on when the

other players invest. We say that our payoffs exhibit an early (late) mover cohort

effect if the early (late) adopters enjoy more network benefits from the other early

(late) adopters than from the late (early) ones. Four main results emerge from our

analysis.

First, we show that cohort effects can arise endogenously in a dynamic set-up

with contemporaneous network effects. We discuss three archetypical technology

adoption problems. In the first, which we refer to as the fixed horizon technol-

ogy adoption problem (FH), players decides to adopt a technology that becomes

obsolete at some given point in time. In the interim period in which late movers

have not invested yet, early movers in this example are subject to a contempora-

neous network effect, which depends on the mass of early movers only. For late

investors, however, the network benefit in any period depends on the total mass

of players who have adopted the technology, which includes early as well as late

movers. This example is thus characterized by an early mover cohort effect and is

void of any late mover cohort effect. In the second example, which we refer to as

(FL), players invest into a technology that has a fixed lifespan of T periods before

becoming obsolete. Here, not only the above early mover cohort effect is present

but also a late mover cohort effect. The reason is that the early movers technology

becomes obsolete while late movers are still using the technology. But then after

the early movers technology has become obsolete, late movers contemporaneous

network effect depends only on the mass of late adopters. In the last example,

which we refer to as (PI), players pledge to invest before the technology becomes

available. As the technology becomes available to all players at the same point in

time, there is neither an early nor a late mover cohort effect.

We next introduce a condition on ex-post payoffs called dynamic strategic comple-

mentarity, which ensures that a unique rationalizable outcome exists. Call both

a change from not investing to investing late and a change from investing late to

investing early a move to a higher action. Dynamic strategic complementarity im-

plies that as a higher percentage of the population takes a higher action, it becomes

weakly more profitable to take a higher action. For example, it requires that as

more players invest late rather than not at all, it becomes weakly more profitable

to invest early. Our second result shows that a technology adoption problem that

exhibits contemporaneous strategic complementarity does not necessarily exhibit
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dynamic strategic complementarity. In particular, dynamic strategic complemen-

tarity requires that there is no late mover cohort effect and it is thus violated by

the FL problem discussed above. The other examples given, however, satisfy dy-

namic strategic complementarity.

Our third main result proves that dynamic strategic complementarity indeed im-

plies the existence of a unique rationalizable outcome. We start by observing that

active players who have a “very high” second-period signal always want to invest,5

since they believe that the fundamental is so good that investing is profitable no

matter what actions the other players choose. Now consider a player who has an

“extremely high” first-period signal so that she foresees that her second-period

signal will be very high even if she gets bad news. Obviously, she strictly benefits

from investing immediately and saving the waiting costs if she expect no other

player to invest.

Now consider a player who has a “high” but not an “extremely high” first-period

signal. If she expects no other player to invest in either priod, then she would

prefer to refrain from investing as well. Given her signal, it is equally likely that

the other players received a higher or lower signal than herself. Therefore, in equi-

librium, she cannot expect no other player to invest. As her signal is “high,” her

knowledge that everyone with an extremely high signal invests early and everyone

with a very high signal invests late induces her to invest early as well. Similar,

the knowledge that everyone with an extremely high signal invests early and all

active players with a very high signal invest late, gives active players with a high

but not very high signal a strict incentive to invest in the second period. This

will, in turn, convince players with slightly less favorable signals to also invest,

etc... . This process of iterative elimination of dominated strategies ends at some

cutoff vector (k1, k2). At this cutoff vector a player with a first-period signal equal

to k1 is indifferent between investing immediately and waiting if she expects all

players to invest in period t whenever they receive a signal above kt and refrain

from investing otherwise. Similar, a player with a second-period signal equal to

k2 who has the above expectation about the other players’ behavior is indifferent

between investing and not investing. Mirroring the above argument, because it

is a dominant strategy not to invest for very low signals, players with low signals

refrain from investing. Iteratively eliminating players for whom it is a dominant

strategy not to invest, there is a critical cutoff vector (k1, k2) such that a player

5With “active” we mean that a player did not invest at time one.
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refrains from investing in period t whenever she has a signal below kt. The proof is

then completed by arguing that these cutoff vectors give rise to symmetric switch-

ing equilibria and that if payoffs satisfy dynamic strategic complementarity, then

there exists a unique symmetric switching equilibrium.

Fourth, we characterize symmetric switching equilibria for a wide range of parame-

ter values. We find closed form solutions for all economic examples introduced ear-

lier. For the economic interpretations that satisfy dynamic strategic complemen-

tarity, we thus characterized the unique symmetric switching equilibrium, which

allows us to do comparative statics. We show, for example, that as players become

more patient, immediate investment activity can increase while late investment

activity decreases in the FH example. The characterization also allows us to il-

lustrate why multiple equilibria can arise if dynamic strategic complementarity is

violated. In essence, if dynamic strategic complementarity is violated, then players

have an incentive to invest at the same point in time at which other players invest.

If this incentive is strong enough, it gives rise to self-fullfilling expectations accord-

ing to which some players invest late if and only if they believe other players to

invest late. We also give a necessary and sufficient condition for the fixed lifespan

interpretation to have a unique equilibrium within the class of symmetric switching

equilibria. Thus, at least within the class of symmetric switching equilibria, dy-

namic strategic complementarity is not necessary for the uniqueness of equilibrium.

This is not the only paper to introduce dynamic elements in a global game. Cham-

ley (1999) studies a dynamic global game in which there is uncertainty about dis-

tribution of the investment costs in society. The distribution of investment costs

evolves stochastically through time. Players use the observed previous aggregate

behavior together with their knowledge of equilibrium strategies, to update their

beliefs about the state of the world. As long as their is sufficient heterogeneity in

the population, each period can be analyzed similar to a static global game and,

hence, there is a unique equilibrium.6 A key difference to our paper is that there

6Recall that in a static global game set-up, if players observe a public and a private signal
and the public signal is sufficiently precise, then multiple equilibria prevail as players can use the
public signal as a coordination device (see Hellwig (2002)). In Chamley’s model, if the population
is sufficiently heterogenous, the inferences players draw based on past observed behavior are less
precise. Because the parameter of the distribution of investment costs changes only slowly over
time, heterogeneity is needed to rule out equilibria in which players ignore their private signals
and use their common equilibrium knowledge of the distribution of the states of the world as a
“public signal” to coordinate behavior.
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is a new population of players in every period. Thus, players cannot choose when

to invest.7

Morris and Shin (1999) study the onset of currency crises using a dynamic global

game in which the fundamental follows a Markov process. As long as their has

been no successful attack, all players chooses whether or not to attack in every

period. Players observe the past realizations of the fundamental and a private

signal regarding the current realization. If the private signal is sufficiently precise,

each period can be analyzed as a static global game and the model has a unique

equilibrium.8 In contrast to our model, investments are not irreversible.9

Dasgupta (2001) introduces elements of strategic waiting in a global game with

irreversible investment. Players can invest in two periods. If a player delays, she

observes a noisy signal about the past economic activity at the cost of foregone

profits. Dasgupta shows that his game, under some additional assumptions on

the prior distribution and the signaling technology, is characterized by a unique

equilibrium within the class of switching strategies. The main difference between

our paper and Dasgupta (2001) is that we investigate cohort effects, which are not

7Burdzy, Frankel, and Pauzner (2001) investigate a complete information dynamic model in
which the state evolves stochastically through time and in each period a continuum of players is
randomly matched to play a 2x2 game with strategic complementarities. Under the assumptions
that (i) in some states of the world playing one action is dominant while in others the other is
dominant and (ii) that in each period a player has only a small chance of revising her action,
they show that players choose to play the risk-dominant equilibrium in the limit as revision
opportunities arrive quickly. Frankel and Pauzner (2000) use a similar setup to investigate a
model of sectoral choice in which there are external increasing returns and show that there is a
unique equilibrium even if frictions are nonnegligible. In contrast to our paper, players cannot
engage in strategic waiting in either of these papers. Also, the arguments in both papers rely on
only a small set of player being able revise their action at any given point in time, while in our
paper all players can move at the same time.

8Technically, however, Morris and Shin focus on Markov strategies only when proving their
result. Intuitively, this is justified because the past realization of the fundamental is common
knowledge and hence there is no incentive to engage in social learning through observing the
rivals’ past behavior.

9Toxvaerd (2002) analyzes merger waves in which investment are irreversible using essentially
the same observability conditions and signaling assumptions as in Morris and Shin (1999). He
assumes that potential targets are scarce, the potential benefits of mergers are uncertain, and
that there are positive rents from takeovers. Because increased merger activity by rivals increases
the risk of not being able to engage in a profitable merger, there is a negative externality in
the takeover game. This leads to strategic complementarity in the waiting decision. Toxvaerd
shows that if the private signals are sufficiently precise, there exists a unique perfect Bayesian
equilibrium within the class of (Markovian) symmetric switching strategies.
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present in his model in which payoffs depend only on whether a sufficient number

of players invest in either period. Another difference is that in his model one wants

to delay to engage in social learning, while in our model a player delays to obtain

a more precise signal. Furthermore, when establishing uniqueness in the absence

of cohort effects, we do not restrict attention to switching strategies only.

The remainder of this paper is organized as follows. In section 2, we introduce our

formal model. In section 3, we relate the parameters of our model to different eco-

nomic environments. In section 4, we analyze equilibrium behavior in our model.

We first state our definition of dynamic strategic complementarity and show that,

when our payoffs satisfy that condition, our model features an essentially unique

outcome (subsection 4.1). Next, in subsection 4.2, we provide closed-form solu-

tions for two important types of symmetric switching equilibria and we analyze

when (i.e. for which values of our exogenous parameters) our model has multiple

equilibria. In section 4.3 we detail on the basis of two (pedagogical) examples the

driving force behind our multiplicity result. Section 5 presents some comparative

static results when our model features an essentially unique equilibrium. Final

comments are summarized in section 6. All proofs can be found in the appendix.

2 The model

Assume a continuum of risk-neutral players with mass one that are indexed along

the line [0, 1]. All players have the opportunity to undertake one risky investment

project. Investments are irreversible. A player can invest at time one, at time two,

or can decide not to invest at all. If player i decides to invest at time one, she gets

a utility U i
1 equal to:

U i
1 = θ + n1 + αn2 − 1,

where n1 (n2) denotes the mass of players who invest at time one (two). The state

of the world θ is randomly drawn from a uniform distribution along the entire real

line. A period-two investor enjoys a utility equal to:

U i
2 = τ(θ + γn1 + n2 − 1−∆).

If player i decides not to invest in both periods, she gets zero. Throughout, we

assume that τ, α, γ ∈ [0, 1] and that ∆ ≥ 0. We postpone the discussion of the

economic motivation for our payoff structure until the next section.
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All players possess a private and imperfect signal concerning the realized state of

the world. Formally, player i’s first-period signal, si
1, equals:

si
1 = θ + εi

2 + εi
1,

where εi
2 ∼ U [−ε, ε] and εi

1 ∈ {−ε, ε}. The prior probability that εi
1 = −ε equals 1

2
.

εi
2 and εi

1 are independently distributed. Player i’s second-period signal, si
2, equals:

si
2 = θ + εi

2.

The first- (and second-) period errors εi
1 (εi

2) are uncorrelated among the different

players.

Note that our model possesses some “desirable” features that highly simplify the

computation of our equilibrium strategies and enable a direct comparison with the

static counterparts of our model. First, note that si
1 is constructed by adding noise

to si
2. In statistical terms, this means that si

2 is a sufficient statistic for si
1. In par-

ticular, this implies that E(θ|si
2, s

i
1) = E(θ|si

2). Second, we know that si
2 = θ + εi

2.

This last equality can be rewritten as θ = si
2 − εi

2. Hence, θ|si
2 ∼ U [si

2 − ε, si
2 + ε],

and E(θ|si
2) = si

2. Similar, one has θ|si
1 ∼ U [si

1 − 2ε, si
1 + 2ε], and E(θ|si

1) = si
1.

That is the errors are uniformly distributed in both periods. This ensures that

if players were allowed to invest either only in the first or only in the second pe-

riod, then our game would be characterized by a unique equilibrium in switching

strategies.10

The timing of the game we study is as follows:

0) Nature chooses θ. All players receive their first-period signals.

1) All players simultaneously decide whether to invest or wait.

2) Player i observes whether εi
1 = ε or εi

1 = −ε but not n1. If she did not invest at

time one, she decides whether or not to do so at time two.

3) All players receive their payoffs and the game ends.

Each player’s time-one action space, A1, equals {invest, not invest}. Player i’s time-

two action space, A2, equals {invest, not invest} if ai
1 = not invest, and equals {not

invest} if ai
1 = invest. Player i’s observable history at time one is H i

1 = {si
1|si

1 ∈ <}
and at time two is H i

2 = {(si
1, s

i
2)|si

1 ∈ <∧si
2 ∈ {si

1−ε, si
1+ε}}×A1. Let σi = (σi

1, σ
i
2)

10Using a similar argument to Morris and Shin (2001), this extends to an essentially unique
equilibrium in rationalizable strategies.
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denote player i’s behavioral strategy, where σi
1(s

i
1) represents the probability with

which player i invests at time one given her first period signal and σi
2(s

i
1, s

i
2) rep-

resents the probability with which player i invests at time two given (si
1, s

i
2) and

that she did not invest in the first period. (Trivially, a player cannot invest in the

second period if ai
1 =invest, i.e. if she already invested in the first period.) We

denote a strategy profile by σ.

Frequently, we will refer to symmetric switching strategies. A strategy profile is a

symmetric switching strategy profile if it can be parameterized by a single vector

k ≡ (k1, k2) with the interpretation that: (i) σi(si
1) = invest if and only if si

1 > k1,

(ii) σi(si
1, s

i
2) = invest if and only if si

2 > k2 for all i. An equilibrium in symmetric

switching strategies is a k∗ such that player i’s strategy is a best response at every

information set given (i) her beliefs about the state of the world, and given (ii) the

equilibrium behavior of all other agents.

3 Economic Interpretations

The general payoff structure of our model nests a wide variety of more specific

models. We provide three detailed examples below.

Fixed Horizon Technology Adoption Problem (FH). Suppose players can invest in

a new technology with an unknown quality. This technology exhibits positive

network effects and becomes obsolete in period T + 1. For simplicity, players are

only allowed to invest in period 1 or period 2 and have a common discount factor

δ. Call a player who invested at time one (two) an (a) early (late) adopter. When

investing, players need to pay a setup cost s ≥ 0. The (net of any per-period cost)

return of the investment in period t (t = 1, ..., T ), is given by vi
t = θ̃ + mt, where

mt denotes the mass of players who invest in period t or who have invested earlier.

Assume, for the sake of simplicity, that T = 2. In this case the payoff of a player

investing in period 1 is given by

V i
1 = (1 + δ)θ̃ + (1 + δ)n1 + δn2 − s,

and of a player investing in period 2 is given by

V i
2 = δ(θ̃ + n1 + n2)− δs.

Setting θ = θ̃− s
(1+δ)

+ 1 and using the following utility transformation U i
t =

V i
t

(1+δ)

shows that this economic model is a special case of our model in which α = τ =

9



δ
1+δ

< 1, γ = 1, and ∆ = δ
1+δ

s.11

Note that at time one the early adopters do not enjoy any network benefits from

the late adopters. Therefore early adopters care more about the mass of players

who bought the technology at time one than about the mass of players who bought

it at time two (which explains why in this case α < 1). The FH model can be

interpreted as a stylized model of the credit card industry. The more popular a

credit card becomes, the more widespread its acceptance will be. Early adopters

of a credit card are therefore hampered by its small installed base in the sense

that they will find few shops willing to accept it. On the other hand, late movers

care as much about the mass of early as about the mass of late adopters (which

explains why in this case γ = 1).12 Whenever an early (late) adopter exhibits a

stronger preference for her fellow adopters to invest early (late), we say that our

model exhibits a cohort effect for the early (late) adopters.

Adopting a Technology with a Fixed Lifespan (FL). Rather than assuming that the

technology becomes obsolete at time T + 1, suppose the technology, once bought,

can be used for T periods. For the sake of simplicity, assume that T = 2 (i.e. in

this case an early adopter uses her technology at times one and two, while a late

adopter uses it at times two and three). If the setup remains otherwise unchanged,

one can use a similar procedure as above to show that this is a special case of our

model in which τ = δ, α = δγ < γ = 1
1+δ

< 1, and ∆ = 0.13

To illustrate this interpretation, consider the following example: Assume everyone

has the opportunity to buy a video player. The more people who buy a video

player, the higher the availability of video movies, video rental stores, etc. A video

player can only be used for two periods. Everyone knows that at time 3 the DVD

player will be introduced in our economy. As DVD technology is superior to video

technology, from time 3 on, no one wants to buy a new video player anymore.

However, people only switch to the superior DVD technology once their video

11If T > 2, one should set θ = θ̃− s
1+δ+...+δT−1 +1 and use the following utility transformation:

U i
t = V i

t

1+δ+...+δT−1 . After some computations we then get that α = τ = δ+...+δT−1

1+δ+...+δT−1 , γ = 1, and

∆ = δT s
(δ+...+δT−1)(1+δ+...+δT−1)

.
12In the credit card example, one may want to think about T as tending towards infinity.
13If T > 2 one must apply the utility transformation which appears in our earlier footnote.

One can check that the values of τ , α and ∆ then remain unchanged. γ would then be equal to
1+δ+...+δT−2

1+δ+....+δT−1 .
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player becomes “too old” (i.e. early adopters switch to the superior technology at

time three, while late adopters switch to the new technology at time four). In this

set-up for the same reason as the one explained in our earlier interpretation, our

model exhibits a cohort effect for the early adopters. However, in this case late

adopters know that the installed base will become smaller at time three due to

the early adopters’ switching to the new technology. Therefore, the FL model also

exhibits a cohort effect for late adopters.

The model can be adopted to account for other environments. Consider, for exam-

ple, a consumer deciding when to buy a given software. One can easily incorporate

situations in which at time two a later version of a computer software is sold that

is imperfectly compatible with the earlier version. The following example shows

that one can also imagine situations in which cohort effects are absent.

Pledging to Invest (=PI). Suppose there are two periods in which players can

commit to invest into a project prior to the time in which the project will take

place. For example, firms may commit to buy some land in a soon-to-be developed

industrial zone (or individuals may commit to become a member of some club

or join a lobbying organization). In the first period, the land is sold at a lower

price than in the second period (or there is a reduced membership rate). The

more players invest in either period, the better the infrastructure provided (or the

more exciting it will be to visit the club or the more influential will the lobbying

organization be). In period 3, all players that committed to invest pay the amount

due and start getting the benefit from the planned activity. This can be captured

by a model in which α = γ = τ = 1 and ∆ > 0. This example is thus void of any

cohort effects.

4 Analysis of Strategic Waiting

In this section we analyze the dynamic investment game. We first introduce some

concepts that will be used throughout the following subsections. In the first sub-

section, we define dynamic strategic complementarity and show that it implies

the existence of a unique rationalizable outcome of the dynamic investment game.

We also show, however, that contemporaneous strategic complementarity does not

necessarily imply dynamic strategic complementarity. The next subsection charac-

terizes a class of symmetric switching equilibria. This allows us to do comparative

statics for technology adoption problems for which the investment game has a

11



unique equilibrium. We also use this characterization in the final subsection to

illustrate multiplicity of equilibria in the absence of dynamic strategic complemen-

tarity. In essence, in the absence of dynamic strategic complementarity players

have a strong incentive to invest when other players invest. This gives rise to a

coordination problem of when to invests that allows for self-fullfilling expectations.

Let

h(si
2, σ) ≡ si

2 + E(γn1 + n2|si
2, σ)− 1−∆.(1)

h(si
2, σ) is the expected payoff of a player who invests in the second period after

getting a signal si
2, expecting that all other players play according to the strategy

profile σ. Similar, we define

W (si
1, σ) ≡ τ

2
max{0, h(si

1 + ε, σ)}+
τ

2
max{0, h(si

1 − ε, σ)}.(2)

W (si
1, σ) denotes the gain of waiting for player i, given her first-period signal si

1

and given that all other players play according to σ. If player i postpones her

investment decision, then with probability 1/2 she will get “bad news,” i.e. she

will learn that at time one she was too optimistic because εi
1 = +ε. With probability

1/2, however, she will receive “good news” in the sense that she will learn that

εi
1 = −ε. Equation (2) states that player i’s gain of waiting equals her expected

second-period payoff given that she will make an optimal second-period investment

decision (i.e. not invest at time two if and only if her gain of investing is negative).

For brevity, define

g(si
1, σ) ≡ si

1 + E(n1 + αn2 | s1
i , σ)− 1−W (s1

i , σ).(3)

Trivially, it is optimal to invest in the first period for a player with a signal si
1

(who believes that all his rivals play according to σ) if and only if g(si
1, σ) ≥ 0.

4.1 Dynamic Strategic Complementarity and Uniqueness

In this subsection, we first define dynamic strategic complementarity, which is a

condition on ex-post payoffs. Intuitively, because we look for a condition on ex-

post payoffs, we can ignore the dynamic aspect of the investment problem when

defining strategic complementarity. From an ex-post perspective, a player either

did not invest in either period (which we refer to as action 0), invested in the sec-

ond period (which we refer to as action a2), or invested in the first period (which

we refer to as action a1). Think of not investing as the lowest action and investing

12



in the first period as the highest action. We say there is dynamic strategic com-

plementarity whenever it is the case that if a positive mass of players moves to a

higher action, the payoffs of moving to a higher action weakly increase.

Formally, denote the difference in ex-post payoffs between investing in the second

period and not investing by

∆U i(a2, 0) ≡ τ(θ + γn1 + n2 − 1−∆),

and denote the difference between investing in the first period and investing in the

second period by

∆U i(a1, a2) ≡ θ + n1 + αn2 − 1− τ(θ + γn1 + n2 − 1−∆).

We say that the payoffs exhibit dynamic strategic complementarity if and only if:

(i)
∂∆U i(a2, 0)

∂n2

= τ ≥ 0,

(ii)
∂∆U i(a1, a2)

∂n2

= α− τ ≥ 0,

(iii)
∂∆U i(a2, 0)

∂n1

− ∂∆U i(a2, 0)

∂n2

= τ(γ − 1) ≥ 0,

(iv)
∂∆U i(a1, a2)

∂n1

− ∂∆U i(a1, a2)

∂n2

= 1− τγ + α− τ ≥ 0.

Condition (i) states that as more players invest in the second period, investing in

the second period becomes more attractive relative to not investing. This condition

is implied by the fact that the contemporaneous payoff function exhibits strategic

complementarity. Condition (ii) requires that if more players invest in period 2, it

becomes weakly more profitable to invest early. Intuitively, it implies that as more

players invest in the second period, there is no additional gain from switching and

investing late rather than early. It thus requires that the inter-period network effect

α, which measures the increase in payoffs for a player who invests immediately,

is no less than the discount factor τ , which measures the increase in payoffs for

a player who invests late. Condition (iii) states that as more players move from

investing late to investing early, it becomes weakly more profitable to invest late

rather than not to invest at all. Observe that this condition can only be satisfied

in the absence of late mover cohort effects, i.e. if γ = 1. Finally, condition (iv)

states that as more investors invest early rather than late, investing early becomes

13



more profitable. This is a rather weak condition, which is satisfied if α ≥ τ and

γ = 1. We conclude that our payoffs exhibit dynamic strategic complementarity if

and only if α ≥ τ and γ = 1. This implies the following observation:

Proposition 1 The fixed horizon technology adoption problem (FH) and the pledg-

ing to invest model (PI) exhibit contemporaneous and dynamic strategic comple-

mentarity. The adopting a technology with a fixed lifespan problem (FL) exhibits

contemporaneous but not dynamic strategic complementarity.

The above observation implies that with irreversible investments, contemporaneous

network effects do not imply that the investment game satisfies dynamic strategic

complementarity. Rather, whether the dynamic problem satisfies dynamic strate-

gic complementarity depends on the exact nature of the technology adoption prob-

lem. The important consequences of whether the payoffs satisfy dynamic strategic

complementarity or not, are discussed below. We start by observing that dynamic

strategic complementarity implies the existence of a unique rationalizable outcome

in our setup.14

Proposition 2 If there are positive waiting costs (τ < 1 or ∆ > 0) and overall

strategic complementarities in payoffs (γ = 1 and α ≥ τ), there exists an essentially

unique rationalizable outcome.

Intuitively, the argument proceeds as follows. Suppose player i did not invest

at time one. Then, not investing (at time two) is dominated for her whenever

si
2 > 1 + ∆. Now consider any type who has a signal si

1 > 1 + ∆ + ε. This player

foresees that she would want to invest in the second period independent of whether

she receives good news or bad news. But under the assumption that no other player

invests, it is obvious that waiting and investing for certain is dominated by invest-

ing immediately and saving the waiting cost. Indeed, understanding that she will

invest in the second period if si
2 > 1 + ∆, a player at time one can calculate her

benefit of investing under the assumption that no other player invests in either

period, and determine a cutoff level s1
1 such that for all higher first-period signals,

she prefers to invest immediately. Dynamic strategic complementarity ensures that

investing dominates not investing for all players who receive a signal si
1 > s1

1 or

14In static global games, one typically derives the existence of a unique rationalizable equilib-
rium. In our dynamic game, we only show a unique rationalizable outcome because we cannot
determine behavior at out-of-equilibrium information sets through the iterative elimination of
dominated strategies.
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si
2 > 1 + ∆. The reason is that as other players invest (in either of the two pe-

riods), investing early becomes even more attractive relatively to investing late,

which in turn becomes even more attractive relatively to not investing at all. Call

s1 = (s1
1, 1 + ∆).

A rational player anticipates that all other players invest (in one of the two pe-

riods) if they receive a sufficiently high signal. Now, consider a player with a

second-period signal slightly below 1 + ∆ and suppose she has not invested in pe-

riod one. Because a player with signal 1+∆ expects at least half of the population

to invest, a player with a signal close to 1 + ∆ strictly prefers to invest. Similar,

a player with a signal si
1 = si

1 must expect that half of the population invests

early and perhaps that some players invest late. But as the number of early (and

late) investors increases, dynamic strategic complementarity implies that waiting

becomes less desirable. Hence, we can determine a new cutoff vector s2 = (s2
1, s

2
2)

where both s2
t ’s are computed such that if si

t = s2
t , player i is indifferent between

investing and not investing given that player i anticipates that all players invest at

time one (two) if their first-period signals are higher than s1
1 (if they did not invest

at time one and if their second-period signals are higher than 1 + ∆). Repeat-

ing this procedure, we get a decreasing sequence of cutoff vectors. This sequence

must converge, as investing is dominated for sufficiently low signals. Furthermore,

it must converge to a symmetric switching equilibrium. To see this note that a

player with a signal s∞1 must be indifferent between investing immediately and

waiting presuming that her “rivals” invest if and only if they receive a signal above

the cutoff vector (s∞1 , s∞2 ). The reason is that it must be optimal for players with

higher signals to invest and it can not be strictly optimal for players with a slightly

lower first-period signal to invest, by the construction of the sequence. Players with

even lower first period signals prefer not to invest if their rivals play according to

(s∞1 , s∞2 ) because they have a lower estimate of the fundamental and expect less

players to invest, which makes waiting more desirable. A similar argument ensures

that a player with a second-period signal s∞2 is indifferent between investing and

not investing.

For players who receive sufficiently low signals it is a dominant strategy not to

invest, even if they expect all other players to invest. Mirroring the above ar-

gument, one can construct an increasing sequence of cutoff vectors below which

every player refrains from investing. This sequence must converge to a symmet-

ric switching equilibrium. To complete the proof, we suppose that the iterative

15



elimination from above and below converge to different symmetric switching equi-

libria and show that this leads to a contradiction. To see the logic underlying

the contradiction, observe that a player who receives a signal equal to the first-

(respectively second-) period cutoff level is indifferent between investing and wait-

ing (respectively not investing). Thus, a player who receives a cutoff signal must

expect less investment activity in the higher equilibrium as he is more optimistic

about the fundamental. For a player who receives a first- or second-period cutoff

signal, the expectation of the total number of investors is function of the difference

k1 − k2 only because all realizations of the fundamental are equally likely. In the

higher equilibrium, a player with a signal equal to the second-period cutoff level

expects lower investment activity only if less players have already invested in the

first period, that is k1 is higher relative to k2. This requires that the difference

k1 − k2 has a higher value in the higher equilibrium. But a player with a signal

equal to the first-period cutoff level k1 expects a lower level of investment activity

only if k2 is relatively higher, which ensures that he expects less players to invest

in the second period. This requires that k1 − k2 has a lower value in the higher

equilibrium, which establishes the contradiction. Thus, there exists a unique sym-

metric switching equilibrium and hence a unique rationalizable outcome.

The above argument uses three ingredients. Firstly, players with sufficiently high

signals want to invest and players with sufficiently low signals do not want to in-

vest, independent of their expectations of what their rivals are doing. Secondly,

due to waiting costs, a player with a sufficiently high signal prefers to invest im-

mediately rather than to wait and invest late if he expects no one else to invest.

Thirdly, dynamic strategic complementarity ensures that we can rank the invest-

ment decision from a lowest (not investing) to a highest decision (investing early).

Using this ranking we can extend the standard contagion argument.

4.2 Characterization of Symmetric Switching Equilibria

In this section, we characterize some symmetric switching equilibria. This allows

us to derive comparative statics results in the FH and the PI interpretation of

our model. Furthermore, we will use the explicit characterization of equilibria to

discuss how the absence of dynamic strategic complementarity can lead to multiple

equilibria in the following subsection.

A necessary condition for a strategy profile k∗ in which k∗t < ∞ (for t = 1, 2) to
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be an equilibrium (strategy profile) in symmetric switching strategies is that it

satisfies the following two equations:

g(k∗1, k
∗) = 0,(4)

h(k∗2, k
∗) = 0.(5)

Equation (4), which can be rewritten as

k∗1 + E(n | k∗, s1
i = k∗1)− 1 = W (k, s1

i = k∗1),

states that a player possessing a first-period signal si
1 = k∗1 must be indifferent

between investing and waiting. Equation (5) says that a player who receives a

second-period signal si
2 = k∗2 is indifferent between investing and not investing.

In case k∗1 = ∞, equation (4) must be replaced by the condition g(si
1, k

∗) ≤ 0,

for all si
1. That is, it must be optimal to refrain from investing for all first period

signals. Similar, in case k∗2 = ∞, condition (5) must be replaced by the condition

h(k∗2, k
∗) ≤ 0 for all si

2.

If g(si
1, k) (respectively h(si

2, k)) are monotonically increasing in si
1 (respectively

si
2), then any strategy profile k∗ satisfying (4) and (5) is clearly an equilibrium

strategy profile. However, note that h(·) is a function of E(γn1 + n2 | ·). In some

symmetric switching equilibria, players refrain from investing for sufficiently low

signals and all players invest immediately in the first period for sufficiently high

signals. For intermediate signals, however, players wait and invest in the second

period when receiving good news. If there are late mover cohort effects (γ < 1) in

such a candidate equilibrium, h(·) need not be monotone in si
2 as E(n2 | ·) is not.

When characterizing the set of symmetric switching equilibria, we first look for

candidate equilibria that solve equations (4) and (5) and then carefully verify that

these candidate equilibria are indeed equilibria. To economize on notation, we will

from now on denote equilibrium strategy profiles (and candidate equilibria) by k

rather than k∗.

We refer to an equilibrium k in which no player invests in the second period as

an immediate investment equilibrium. Formally, k is an immediate investment

equilibrium if and only if k2 ≥ k1 + ε.

Proposition 3 There exists an immediate investment equilibrium if and only if

∆ ≥ −1
2

+ ε + 3
4
γ. In an immediate investment equilibrium k1 = 1

2
.
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The parameter condition under which an immediate investment equilibrium exists

is intuitive. As the payoff reduction for late movers ∆ increases, players have an

incentive to move early and thus an immediate investment equilibrium is more

likely to exist. As γ decreases, a player who deviates in order to invest late en-

joys a smaller (inter-period) network effect, which makes deviating less attractive.

Hence, as γ decreases, an immediate investment equilibrium is more likely to ex-

ists. To understand why an increase in ε makes it harder to sustain an immediate

investment equilibrium, consider a player with a signal si
1 = 1/2. This player is

uncertain about whether the fundamental θ is high enough to make his investment

profitable. As ε increases, more uncertainty about θ is resolved between period one

and two, which makes it more desirable to wait in order to receive more information.

To further understand the role of ε, it is useful to note that the expected net-

work benefit for a player with a signal si
1 = k1 is 1/2 in an immediate investment

equilibrium.15 Intuitively, player i knows that all players possessing a signal higher

(lower) than hers invest (do not invest) at time one. Player i asks herself the ques-

tion: What is the mass of players who received a first-period signal greater than

k1? Player i knows that θ lies in a 2ε neighborhood of si
1. If θ > si

1, she knows that

more than 1/2 of the population possesses a signal higher than hers. Conversely,

if θ < si
1, she knows that more than 1/2 of the population posses a signal strictly

lower than hers. Given hat θ|si
1 is symmetrically distributed around si

1, player i

knows that the event θ > si
1 is as likely to occur as the event θ < si

1. Therefore

E(n1|si
1 = k1, (k1,∞)) = 1/2. Stated differently, player i always believes to lie

in the center of the world. She always expects half of the population to possess

a signal strictly higher than hers, with the other half possessing a signal strictly

lower than hers.

Now, for the sake of argument, suppose that there is no inter-period network effect

for late movers (γ = 0) and that ∆ = 0. Then an immediate investment equilib-

rium does not exist whenever ε > 1/2. The intuition for this result is as follows:

In an immediate investment equilibrium a player with a signal si
1 = k1 is indiffer-

ent between investing and not investing, which is the action she will take if she

15Formally, using the n1(θ, k) function derived in Appendix 2 and the fact that

E(n1 | si
1 = k1, k) =

1
4ε

∫ k1+2ε

k1−2ε

n1(θ, k) dθ,

it is easy to verify that E(n1 | si
1 = k1, k) = 1

2 .
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decides to wait. So her expected payoff must be zero. Furthermore, as discussed

above, she expects half of the population to get a better signal than herself. So

her expected gain from the network effect is 1/2. But if ε > 1/2, this player could

wait, forfeit the expected network effect and only invest if she learns that she was

too pessimistic. In this case her expected payoff when getting good news changes

by ε − 1/2, while her expected payoff when getting bad news remains zero. So if

ε > 1/2 this is a profitable deviation and an immediate investment equilibrium

cannot exist. In general, the more uncertainty about the fundamental is revealed

before the second period, the more attractive it becomes to wait, and the less likely

it is that an immediate investment equilibrium exists.

We will refer to an equilibrium in which players with high signals invest immedi-

ately and players with intermediate signals wait and invest later when receiving

good news (but not when receiving bad news) as an informative waiting equilib-

rium. When solving for informative waiting equilibria, it is convenient to slightly

relax the definition of symmetric switching equilibria and solve for all symmetric

strategy profiles that can be characterized by a vector (k1, k2) with the interpre-

tation that (i) σi(si
1) = invest if and only if si

1 > k1, and (ii) for all si
2 < k1 + ε,

σ(si
1, s

i
2) = invest if and only if si

2 > k2. We refer to such equilibria as weak

symmetric switching equilibria. The difference to our earlier definition is that we

only require switching behavior on the equilibrium path. In the out-of-equilibrium

event that a player with signal si
1 > k1 did not invest and gets a signal si

2 > k1 + ε,

we do not solve for this player’s optimal behavior explicitly.16 Formally, an infor-

mative waiting equilibrium is a (weak symmetric switching) equilibrium in which

k1 − ε < k2 < k1 + ε.

For brevity, let x ≡ 4ε + γ and let

D ≡ −16∆ + 16ε− 8 + 12γ + [(2− α)− (2− τ)x]2,

∆a ≡ ∆b +
1

16
[(2− α)− (2− τ)x]2,

∆b ≡ −1

2
+

3

4
γ + ε,

16We, nevertheless, require that player i’s strategy is sequentially rational, i.e. that she invests
in the second period if and only if it is profitable. This optimal behavior may, however, require a
player with signal si

2 > k2 not to invest following an out-of equilibrium history in which she did
not invest when receiving a signal si

1 > k1.
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∆c ≡ γ

4
(1 + τ)− (1 + α) + 4ε(1− τ)

4
.

We are ready to characterize when an informative waiting equilibrium exists.

Proposition 4 There exists an informative waiting equilibrium (k11, k21) if the

following three conditions are satisfied: (a) ∆ ≤ ∆a, (b) either (2− α) > (2− τ)x

or ∆ ≤ ∆b, and (c) ∆ > ∆c. In this informative waiting equilibrium

k11 =
1

8
{τ(τ − 2)x2 + 2x[1− (1− α)(1− τ)] + (1− α)2 + 3 + (xτ − α)

√
D},

k21 =
1

8
{−
√

D(α+8ε−xτ)+x2τ 2+2τx(1−α−4ε−x)+(2−α)2−8(1−α)ε+2α(1+x)+16εx}.

Furthermore, there exists an informative waiting equilibrium (k12, k22) if the fol-

lowing three conditions are satisfied: (a) ∆ ≤ ∆a, (d) (2− α) > (2− τ)x, and (e)

∆ > ∆b. In this informative waiting equilibrium

k12 =
1

8
{τ(τ − 2)x2 + 2x[1− (1− α)(1− τ)] + (1− α)2 + 3− (xτ − α)

√
D},

k22 =
1

8
{
√

D(α+8ε−xτ)+x2τ 2+2τx(1−α−4ε−x)+(2−α)2−8(1−α)ε+2α(1+x)+16εx}.

Conversely, there exists no other informative waiting equilibrium.

To understand under what conditions an informative investment equilibrium ex-

ists, suppose first that (2 − α) < (2 − τ)x, as is the case if the payoffs satisfy

dynamic strategic complementarity. Then, since condition (d) is violated, the

(k12, k22) equilibrium does not exist. Next, observe that in this case conditions (a)

and (b) are satisfied whenever ∆ is too low to sustain an immediate investment

equilibrium, i.e. when waiting to act on more information is profitable. The role

of condition (c) is to ensure that the relevant decision for a player with signal

si
1 = k1 is whether to wait for good news or whether to invest immediately. If it is

violated, the player would prefer to invest in the second period also when getting

bad news (which explains why condition (c) gives a lower bound on ∆). Condition

(c) can only be binding if the payoffs violate dynamic strategic complementarity.

Whenever the payoffs satisfy dynamic strategic complementarity, the only reason

to wait is to collect information in order to make a better informed decision. So

if a player would prefer to invest when getting bad news, he could invest immedi-

ately and save the waiting costs. If cohort effects are such that dynamic strategic

complementarity is violated, however, one may want to wait and invest both when
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getting good news and when getting bad news. In this case a player waits in order

to benefit from a higher network effect. Note that this requires that γ is sufficiently

greater than α; that is late movers must enjoy a higher inter-period network effect

than early movers. The intuition for this is that a player with signal si
1 = k1

expects half of the population to invest in the first period. So she can expect at

most half of the population to invest late. Therefore, she can only expect to gain

a larger network effect by moving late if the inter-period network effect for late

movers γ is greater than its first period counterpart α.

We are left to consider the case in which (2−α) > (2− τ)x. Trivially, this implies

that conditions (b) and (d) are satisfied. Clearly, then the equilibrium (k11, k21)

exists for all ∆ ∈ (∆c, ∆a] and the equilibrium (k21, k22) exists for all ∆ in the

nonempty interval (∆b, ∆a]. Since an immediate investment equilibrium exists for

all ∆ > ∆b, this implies that if (2 − α) > (2 − τ)x, there exist values of ∆ for

which our model has multiple equilibria as long as ∆a ≥ 0. Observe that a necessary

(though not sufficient) condition for (2 − α) > (2 − τ)x is that the payoffs vio-

late our definition of dynamic strategic complementarity. As either cohort effects

increase (i.e. α or γ decrease), the condition is more likely to be satisfied. One in-

terpretation of this fact is that as cohort effects become more important, dynamic

coordination becomes more important. A player then only wants to invest if she

believes that the other players invest at the same point in time. Second, if τ < 1,

then decreasing γ is more likely to make this condition hold then decreasing α by

the same amount, reflecting the fact that a first-period decision maker discounts

the second-period investment payoffs. Third, as the uncertainty ε increases, the

conditions is less likely to hold. Intuitively, as ε increases more uncertainty about

the fundamental is revealed before the second period. For a player who is unsure

whether he should invest in the first period, it is thus more profitable to wait

for additional news and relatively less important to invest when the other play-

ers invest. As the coordination aspect becomes relatively less important, multiple

equilibria are less likely to exists.

The following Lemma rules out the existence of other (weak) symmetric switching

equilibria in all of the economic environments discussed in Section 3.

Lemma 1 If τ < 1 or if α = γ = τ = 1 and ∆ > 0, then there exists no (weak)

symmetric switching equilibrium in which k1 = ∞. Furthermore, if 1
2
(τγ − α) −

ε(1 − τ) < ∆ then there exists no equilibrium in the class of (weak) symmetric

switching equilibria in which k2 < k1 − ε < ∞.
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The first set of conditions rule out an equilibrium in which players only invest in

the second period. If τ < 1 players discount the payoffs of investing in the second

period as their benefits from investing are delayed. In this case, as the funda-

mental θ increases without bound, the foregone first-period benefit grows without

bound. In other words, if τ < 1, then it is a dominant strategy to invest in the

first period for sufficiently high signals. Thus, there cannot exist an equilibrium in

which players only invest in the second period. In the PI case considered, a player

with a very high second period signal has a strict incentive to invest. Hence, a

player with a very high first period signal realizes that she will want to invest in

the second-period independent of whether she gets good or bad news. But then

she is better of investing immediately and saving the waiting cost ∆.

The second condition ensures that a symmetric switching equilibrium in which

players wait in order to invest in the second period with certainty fails to exist.

This type of behavior rules out any informational reason for waiting. Rather

waiting must be driven by the desire to coordinate the timing of the investment.

This can only be profitable if there are cohort effects and if, as discussed above,

the second-period cohort effect is sufficiently less than the first-period cohort effect

(i.e. γ > α).

4.3 Cohort Effects and Multiplicity

In this subsection, we provide illustrative examples to discuss why the lack of dy-

namic strategic complementarity can lead to multiple equilibria. These examples

help in distinguishing the underlying force behind our multiple equilibrium phe-

nomena from that found in other dynamic global game models. We then observe,

however, that even though the FL interpretation of our model always violates dy-

namic strategic complementarity, it has a unique equilibrium within the class of

symmetric switching strategies for a wide range of parameter values.

Example 1. Consider the FL game with a discount factor of δ = 3/5 and let

ε = 1/64. Using the normalization introduced in Section 3, one has τ = 3/5,

α = 3/8, γ = 5/8 and ∆ = 0. Since ∆ > ∆b = −1/64 in this case, Proposition 3

implies that there exists an immediate investment equilibrium. Furthermore, as in

addition ∆ < ∆a ≈ 0.046 and (2−α) > (2− τ)x, Proposition 4 implies that there

exists two informative waiting equilibria in this example.
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Indeed, in the above example there exist multiple continuation equilibria for some

first-period cutoff levels. To see this, consider the second-period continuation game

of the immediate investment equilibrium. That is suppose that it is common

knowledge that all player invested in the first-period if and only if they received

a signal si
1 > 1/2. Obviously, there exists a continuation equilibrium in which no

player invests as otherwise the immediate investment equilibrium would not exist.

We now show that there exists another continuation equilibrium in which an active

player invests if and only if he receives a signal si
2 > 1/2. Consider first a player

whose si
2 = 1

2
. Using Lemma 3 (which can be found in the Appendix) it is easy to

verify that E2(n1 | 1/2, (1/2, 1/2)) = 1/2 and that E2(n2 | 1/2, (1/2, 1/2)) = 3/16.

Player i’s gain of investing, given her anticipation that all active players with a

si
2 ∈ [1

2
, 1

2
+ ε] invest at time two, equals

h(
1

2
, (

1

2
,
1

2
)) =

1

2
+

5

8

1

2
+

3

16
− 1 = 0.

We next show that
∂h(si

2,( 1
2
, 1
2
))

∂si
2

> 0 for all si
2 ∈ [1/2, 1/2 + ε], thereby proving that

it is optimal to invest for all signals above 1/2 in the continuation game if all other

players follow the same cutoff strategy. One has

∂h(si
2, (

1
2
, 1

2
))

∂si
2

= 1 +
γ

2ε
[n1(s

i
2 + ε, (

1

2
,
1

2
))− n1(s

i
2 − ε, (

1

2
,
1

2
))]

+
1

2ε
[n2(s

i
2 + ε, (

1

2
,
1

2
))− n2(s

i
2 − ε, (

1

2
,
1

2
))]

Using Lemma 3 to substitute all relevant n1(·)’s and n2(·)’s in the above equation,

the reader can check that

∂h(si
2, (

1
2
, 1

2
))

∂si
2

≥ 1 +
2γ − 1

8ε
> 0 ∀si

2 ∈ [1/2, 1/2 + ε].

Hence, there also exists a continuation equilibrium in which all active players with

a si
2 ∈ [1/2, 1/2 + ε] invest at time two.

Thus, in Example 1 the continuation game is not a global game. This bears some

resemblance with the models of Angeletos, Pavan and Hellwig (2003) and Cham-

ley (1999). Nevertheless, the multiplicity is driven by another force. In the papers

mentioned above, all players observe a public signal, which informs them about the

state of the world. For example in Angeletos, Pavan and Hellwig player observe

that a devaluation has not occurred. From this, they can deduce in equilibrium
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that devaluing is never a dominant strategy for the central bank. Hence, attack-

ing is never a dominant strategy in the continuation game. In Chamley, players

draw inference about the state of the world based on the outcome induced by past

aggregate behavior and their private signal. As the observation of past behavior

is shared by all agents, it again acts similar to a public signal. In particular, if the

observation becomes too informative about the state of the world, then Chamley’s

model has multiple equilibria.17 Because aggregate past behavior is not observed

in our model, the above does not drive the multiplicity result in our model. In-

deed, if investment was perfectly reversible as in Angeletos, Pavan and Hellwig,

our model would predict a unique rationalizable outcome.18 Similar, if there was

no endogenous timing decision, as in Chamley, our model would predict a unique

rationalizable outcome.

The multiplicity in our model comes from the fact that with irreversible investment

and strong cohort effects, players have an incentive to invest when other players

invest. This gives rise to coordination problem regarding the timing of investment.

Example 2 further illustrates this timing problem.

Example 2. γ = 1; α = 1
2
; ε = 1

16
; τ = 0.99 and ∆ = 0.315.

In this example

∆b =
1

4
+

1

16
= 0.3125 < ∆ = 0.315 < ∆a = ∆b +

1

16
((2−α)− (2− τ)x)2 = 0.316,

and

(2− α)− (2− τ)x ' 0.24 > 0.

Hence, from Propositions 3 and 4 we know that our example is characterized by

multiple equilibria.

As γ = 1, if players follow a cutoff strategy in the first period, then in Example 2

the continuation game is always a well defined global game. More precisely, fix any

k1 and construct an induced game in which nature invests on behalf of a player

17See the discussion in the Introduction.
18To continue to abstract from social learning, one would need to assume that the first-period

investment payoffs are only observed after the second-period investment decision.
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in the first period if and only if the player receives a signal si
1 > k1 and which is

otherwise identical to the above example. We now argue that this induced game

is always solvable through iterative elimination of dominated strategy. Clearly

it is not optimal to invest for very low signals. Iteratively eliminating strategies

from below, there will be a unique level s∞2 below which it is optimal to refrain

from investing. In case s∞2 ≥ k1 + ε, iterative elimination of dominated strategies

implies that no player wants to invest in the second period. Hence, consider the

case in which s∞2 < k1 + ε. In this case, a player who receives a signal si
2 = s∞2

is indifferent between investing and not investing if she presumes that all active

players with a higher second-period signal invest. Because, however, γ = 1 the

profitability of investing late depends only on the state of the world and the total

number of investors in either period. Now consider a player who receives a higher

second-period signal and believes that all active player with a higher signal than

herself invest. This player thus is more optimistic about the state of the world and

must expect (weakly) more players to invest overall. But then she strictly prefers

investing. In particular, for a player with signal si
2 = k1 + ε, the condition that all

active players with a higher signal than herself invest is vacuous and therefore she

strictly prefers investing. Iterative eliminating strategies from above, hence implies

that all players with a signal above si
2 = s∞2 have a strict incentive to invest.

Why then does Example 2 have multiple equilibria? The reason is that as α < τ

dynamic strategic complementarity is violated and a player who believes that more

players wait and invest late, has a higher incentive to also wait and invest late.

On the other hand, if she thinks that the other investors are more likely to move

early, moving early becomes more attractive. Hence, the lack of dynamic strate-

gic complementarity gives rise to a coordination problem regarding the timing of

investment.

The lack of dynamic strategic complementarity, however, does not imply that the

coordination problem regarding the timing of investment is severe enough to give

rise to multiple equilibria. For example, if ∆ is very high then investing early

always dominates investing late and our game has a unique equilibrium. More

interestingly, the following proposition gives necessary and sufficient conditions

for the existence of a unique symmetric switching strategy equilibrium in the FL

interpretation of our model. The proof follows immediately from the results of the

previous subsection and is thus omitted.

Proposition 5 Consider the adopting a technology with a fixed lifespan (FL)
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interpretation of our model. In this interpretation, there exists multiple equilibria

if and only if the following holds:

−1

2
+ ε +

3

4
γ < 0 < −1

2
+ ε +

3

4
γ +

1

16
[(2− δγ)− (2− δ)(γ + 4ε)]2,

(2− δγ) > (2− δ)(γ + 4ε).

One implication of the above proposition is that for any given level of setup costs s

and any given discount factor δ, if the technology last a sufficiently large number of

periods T, then the FL model has a unique symmetric switching equilibrium. The

technical reason is that as T increases, γ approaches 1 and both 0 < −1
2

+ ε + 3
4
γ

and (2− δγ) < (2− δ)(γ +4ε). Economically, the late mover cohort effect becomes

less and less important and thus the dynamic coordination issue becomes less rel-

evant. Hence even though dynamic strategic complementarity is only satisfied in

the limit as T →∞, there exists a unique equilibrium within the class of symmet-

ric switching strategies for all large enough T .

Similar, if players discount the future heavily, i.e. δ is very low, then γ becomes

large and there exists a unique symmetric switching strategy. Intuitively, as δ

goes to zero players strongly discount the future and hence the belief that many

investors move late does not suffice to encourage a player to wait and invest late.

Again the dynamic coordination aspect becomes too small to sustain multiple equi-

libria. Furthermore, as ε, which measures the uncertainty about the fundamental

that is resolved between the first and the second period, becomes sufficiently large

there exists a unique equilibrium. Intuitively, the belief that many investors invest

early will have less of an impact because it is more important to wait and gather

information about the true fundamental. In this sense, the dynamic coordina-

tion aspect becomes relatively less important and a unique symmetric switching

equilibrium is more likely to exist.

5 Comparative Statics

In this section we restrict ourselves to the case in which our payoffs comply to

our definition of dynamic strategic complementarities. We use the closed form

solutions (computed in subsection 4.2) of our essentially unique equilibrium to es-

tablish some comparative static results.
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We start with the following technical clarification. If one takes the improper prior

literally, then the probability that θ lies in any finite interval is zero and hence

with probability one players have a dominant strategy. Nothing in our analysis

hinges on the fact that the prior is distributed over the entire real line and one

could assume instead that it is distributed U [−a, a] for sufficiently large a, which

we will do implicitly when deriving our comparative static results. More seriously,

we will derive comparative static results on parameters of the underlying economic

interpretations given in Section 3. When doing these comparative statics, we fix

the distribution of θ̃ and ask how investment activity is affected by changes of the

underlying parameters. It is thus important to realize that as we change these

parameters, not only do the equilibrium cutoff levels change but also for any real-

ization of the true fundamentals θ̃, the normalized realization of the fundamental

θ changes.

We first show that as ∆ increase more players invest immediately. Recall that in

the PI interpretation, ∆ reflects the discount in investing costs for players who

invest early. As this discount increases, more player invest immediately. More

generally, the result shows that subsidies for early adopters increase the speed

with which the technology is adopted.

Proposition 6 Suppose there are positive waiting costs and dynamic strategic

complementarity in payoffs. Then first period investment activity strictly increases

in ∆ over [0, ∆b] and remains constant thereafter. Second period investment activ-

ity strictly falls in ∆ over [0, ∆b] and remains zero thereafter.

Next, we focus on the FH interpretation of our model. We first show that as the

setup costs s increases, investment activity falls in both periods. We then show

that as the discount factor δ increases, there exists parameter values for which more

players invest immediately and less players invest late. This is perhaps somewhat

surprising because as δ rises, the ex-post difference between investing early and

investing late ∆U(a1, a2) falls.

Proposition 7 Consider the fixed horizon technology adoption problem (FH). As

the setup costs s increase, investment activity in both periods falls. As players be-

come more patient, there exists parameter values for which early investment activity

rises and late investment activity falls.
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6 Conclusion

We investigated irreversible investment decision with positive network effects using

a dynamic global game approach. In contrast to most papers on global games, we

did not focus on determining conditions on the prior distribution and signaling dis-

tribution that give rise to a unique equilibrium. Instead, we used a Laplacian prior,

a simple signaling technology, and abstracted from social learning. This allowed us

to focus on the interaction between positive network effects and irreversible invest-

ments. We showed that with irreversible investments positive contemporaneous

network effects do not necessarily imply dynamic strategic complementarity.

Using this fact, we illustrated that in a dynamic setting the global game approach

may not give rise to a unique prediction. If dynamic strategic complementarity is

violated a dynamic coordination aspect arises: Players have an incentive to invest

at the same time others do. If this dynamic coordination aspect is strong enough,

our global game has multiple equilibria. Nevertheless, we found the global game

approach to be powerful. Even in the fixed lifespan technology adoption prob-

lem (FL) that always failed dynamic strategic complementarity, we could provide

weaker conditions for the existence of a unique symmetric switching strategy equi-

librium. Indeed, we could show that there are at most three such equilibria in the

FL problem.

Our results highlight that the assumption that the network benefit depends only

on the total number of investors and not on when others invest can have strong

consequences if investments are irreversible. Even in the financial sector, reversing

ones investment decisions is typically costly. We believe an interesting question

for future research is how big the impact of such transaction costs are in dynamic

models of speculative attacks or other macroeconomic coordination failures. In our

model cohort effects rest a.o. on technological factors (e.g. in the FL interpretation

of our model it was assumed that early adopters use the technology during periods

1 and 2, while late adopters use the technology during periods 2 and 3). We believe

that cohort effects may also arise in other contexts due to different reasons: For

instance a successful speculative attack is more likely to occur when all speculators

attack the currency at the same time than if they were to attack the peg at different

moments in time. Future research may also shed some light on the nature and

causes of cohort effects in different economic environments.
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Appendix

We start by establishing a few Lemmas and by introducing some notations.

Lemma 2 E(nj|si
1, k) = 1

2
E(nj|si

2 = si
1 + ε, k) + 1

2
E(nj|si

2 = si
1 − ε, k) ∀j = 1, 2.

Proof: Trivially, one has

E(nj|si
1, k) =

1

4ε

∫ si
1+2ε

si
1−2ε

nj(θ, k) dθ

=
1

2
{ 1

2ε

∫ si
1

si
1−2ε

nj(θ, k) dθ +
1

2ε

∫ si
1+2ε

si
1

nj(θ, k) dθ}

.

=
1

2
E(nj|si

2 = si
1 + ε, k) +

1

2
E(nj|si

2 = si
1 − ε, k).

Q.E.D.

Lemma 3 One has

n1(θ, k) =



0 if θ < k1 − 2ε,

2ε+θ−k1

4ε
if k1 − 2ε ≤ θ < k1 + 2ε,

1 if k1 + 2ε ≤ θ,

and ∀k2 ∈ (k1 − ε, k1 + ε), one has

n2(θ, k) =



0 if θ < k2 − ε,

ε−k2+θ
4ε

if k2 − ε ≤ θ < k1,

k1+ε−k2

4ε
if k1 ≤ θ < k2 + ε,

k1+2ε−θ
4ε

if k2 + ε ≤ θ < k1 + 2ε,

0 if k1 + 2ε ≤ θ.
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Proof: To compute n1(·) and n2(·) we will work with the following figure and vari-

ants thereof:

[Insert Figure 1 here]

In the above figure,the two thick black lines represent all the possible realizations

that (εi
2, ε

i
1) can take. For example, player a in the graph received a εi

1 = εi
2 = −ε,

while player d received εi
1 = εi

2 = ε. All the players who received a εi
1 = −ε are

situated on the lower thick line. Those players will receive good news at time two.

Similarly, all players situated on the upper thick line will receive bad news at time

two. Actually, one can best think of the graph above as possessing a third dimen-

sion representing f((si
1, s

i
2)|θ). From above, we know that Pr(εi

1 = ε) = 1
2
, that εi

2

is independent of εi
1 and that εi

2 is drawn from a uniform distribution. Hence, we

know that half of our population receive an εi
1 = −ε and lie, uniformly distributed,

on the lower thick black line, while the other half lie, uniformly distributed, on

the upper thick black line. Therefore, this third dimension is “trivial” and is not

shown in the figure.

The diagonal “k1− θ” represents the combination of all (εi
2, ε

i
1) such that εi

1 + εi
2 =

k1 − θ. All players who lie to its right and above possess a first-period signal

si
1 > k1, since si

1 = θ + εi
1 + εi

2 ≥ k1 if and only if εi
1 + εi

2 ≥ k1 − θ. Hence, the

diagonal k1 − θ permits us to compute the mass of period one investors.

e denotes the point in which the diagonal k1 − θ cuts the upper thick black line.

What are the coordinates of point e? We know that all points on the diagonal

satisfy the restriction that their x and y coordinates sum up to k1 − θ. We also

know that in point e the y coordinate equals +ε. Therefore the coordinates of

point e are (k1 − θ − ε, ε). If k1 = θ, then the diagonal goes through the points

b and c (in both points k1 − θ = θ − θ = 0 = ε − ε). If k1 = θ − 2ε, then the

diagonal goes through the point a. This is because in the point a, k1 − θ = −2ε.

Similarly, if k1 = θ+2ε, then the diagonal goes through the point d. By continuity,

if θ − 2ε < k1 < θ, the diagonal k1 − θ cuts the thick line situated on the X-axis.

Similarly, if θ < k1 < θ + 2ε, the diagonal cuts the upper thick line.

The vertical “k2−θ” permits us to compute the mass of players who invest at time

two. For example, in graph one all players situated on the X-axis and to the right

of k2 − θ invest at time two. The reason is that an active player having received
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an εi
1 = −ε invests at time two if and only if si

2 = θ + εi
2 > k2 or if and only if

εi
2 > k2 − θ. f denotes the point in which the vertical k2 − θ cuts the X-axis.

When doesn’t the vertical k2−θ cross the lower thick line? k2−θ > ε if and only if

k2 − ε > θ. This is intuitive: If θ is “low”, then no player who received good news

will invest at time two. In that case point f lies to the right of point b. Similarly,

k2− θ < −ε if and only if k2 + ε < θ. In hat case point f lies to the left of point a.

When computing n2(·), we focus on an equilibrium in which k1 − ε < k2 < k1 + ε.

This implies that

k1 − 2ε < k2 − ε < k1 < k2 + ε < k1 + 2ε.

Therefore we must consider the following six cases: (i) θ < k1 − 2ε, (ii) k1 − 2ε <

θ < k2 − ε, (iii) k2 − ε < θ < k1, (iv) k1 < θ < k2 + ε, (v) k2 + ε < θ < k1 + 2ε, and

(vi) k1 + 2ε < θ.

In case (i) we know that θ < k1 − 2ε < k2 − ε. From above, we know that this

implies that points e and f lie to the right of (respectively) d and b. Hence,

n1(θ < k1 − 2ε, k) = n2(θ < k1 − 2ε, k) = 0.

In case (ii) we know that point f lies to the right of point b, implying that - due

to a low θ - n2(k12ε < θ < k2ε, k) = 0. Moreover we also know that in this case

θ < k1 which implies that the diagonal k1 − θ cuts the upper thick line. This case

is represented in Figure 2.

[Insert Figure 2 here]

In this case all players situated between points e and d invest at time one. Hence,

it is straightforward to compute that n1(k1 − 2ε < θ < k2 − ε, k) = 2ε+θ−k1

4ε
.

In case (iii) θ is still strictly lower than k1 but the vertical k2 − θ crosses the two

thick black lines. This case is represented in Figure 1. The coordinates of e are

(k1−θ−ε, ε) and the ones of point f ′ are (k2−θ, ε). We are focusing on an equilib-

rium in which k2 > k1−ε. This last inequality can be rewritten as k2−θ > k1−θ−ε

which amounts to stating that point f ′ always lies to the right of point e. From

above we thus know that n1(k2 − ε < θ < k1, k) = 2ε+θ−k1

4ε
. All players lying

between [f, b] invest at time two. Hence, n2(k2 − ε < θ < k1, k) = ε−k2+θ
4ε

.
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In case (iv), θ is higher than k1. This implies that the diagonal k1 − θ cuts the

lower thick line. Therefore all players who received an εi
1 = ε (and who are thus

situated on the upper thick line) invest at time one. This case is represented in

Figure 3.

[Insert Figure 3 here]

From above we know that the coordinates of point e are (k1 − θ + ε,−ε). The

coordinates of point f are (k2 − θ,−ε). Note that k2 − θ < k1 − θ + ε if and only

if k2 < k1 + ε. As we work here under the assumption that k2 < k1 + ε, it follows

that point f lies to the left of point e. From the graph it should be clear that

n1(k1 < θ < k2 + ε, k) = 1
2

+ ε−k1+θ−ε
4ε

= 2ε+θ−k1

4ε
and that n2(k1 < θ < k2 + ε, k)

= k1−θ+ε
4ε

− k2−θ
4ε

= k1+ε−k2

4ε
.

In case (v) point f lies to the left of point a. From above it should be clear that

n1(k2+ε < θ < k1+2ε, k) = 2ε+θ−k1

4ε
, and that n2(k2+ε < θ < k1+2ε, k) = k1+2ε−θ

4ε
.

In case (vi) point e (see Figure 3) lies to the left of point a. Therefore n1(k1 +2ε <

θ, k) = 1 and n2(k1 + 2ε < θ, k) = 0. Q.E.D.

Lemma 4 For any k that solves equations (4) and (5) and for which k2 ∈ (k1 −
ε, k1 + ε), one has h(si

2, k) < 0 if si
2 < k2 and h(si

2, k) > 0 if si
2 ∈ (k2, k1 + ε).

Proof: Since

h(si
2, k) = si

2 +
∫ si

2+ε

si
2−ε

[γn1(θ, k) + n2(θ, k)]dθ − 1−∆,

Leibnitz’s rule implies that

∂h(si
2, k)

∂si
2

= 1 + [γn1(s
i
2 + ε, k) + n2(s

i
2 + ε, k)− (γn1(s

i
2 − ε, k) + n2(s

i
2 − ε, k))].

We have shown in Lemma 3 that n1(·) is weakly increasing in θ and therefore a

sufficient condition for h(·) to be strictly increasing is that

n2(s
i
2 + ε, k) ≥ n2(s

i
2 − ε, k).

By Lemma 3, n2(·) is weakly increasing in θ for all θ ≤ k2 + ε and hence h(si
2, k)

is a strictly increasing function in si
2 for all si

2 ≤ k2. Since k solves the equations
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(4) and (5), h(k2, k) = 0 and we conclude that h(si
2, k) < 0 if si

2 < k2.

Next, consider si
2 ∈ (k − 2, k1 + ε). Since h(k2, k) = 0, one can rewrite h(si

2, k) as

h(si
2, k) = (si

2−k2)+γ[E(n1 | si
2, k)−E(n1 | si

2 = k2, k)]+[E(n2 | si
2, k)−E(n2 | si

2 = k2, k)].

As si
2 > k2, the first term is positive. Since, by Lemma 3, n1(θ, k) is weakly

increasing in θ, Leibnitz’s rule implies that E(n1 | si
2, k) is weakly increasing in

si
2. Hence [E(n1 | si

2, k) − E(n1 | si
2 = k2, k)] ≥ 0. Thus a sufficient condition for

h(si
2, k) > 0 is that

[E(n2 | si
2, k)− E(n2 | si

2 = k2, k)] ≥ 0.(6)

To prove that condition (6) is satisfied, we establish below that (i) E(n2 | si
2, k) is a

concave function in si
2 for all si

2 ∈ (k2, k1 + ε), and that (ii) E(n2 | si
2 = k1 + ε, k) =

E(n2 | si
2 = k2, k). By Leibnitz’s rule,

∂E(n2 | si
2, k)

∂si
2

=
1

2ε
[n2(s

i
2 + ε, k)− n2(s

i
2 − ε, k)],

and thus
∂2E(n2 | si

2, k)

∂(si
2)

2
=

1

2ε
[
∂n2(s

i
2 + ε, k)

∂si
2

− ∂n2(s
i
2 − ε, k)

∂si
2

].

Using the facts that k2 + ε < si
2 + ε < k1 + 2ε, k2 − ε < si

2 − ε < k1, and Lemma 3,

it is easy to check that
∂2E(n1|si

2,k)

∂(si
2)2

= − 1
4ε2

.

We are left to show that E(n2 | si
2 = k1 + ε, k) = E(n2 | si

2 = k2, k). Using Lemma

3, one has

E(n2 | si
2 = k1 + ε, k) =

1

2ε

∫ k2+ε

k1

k1 + ε− k2

4ε
dθ +

1

2ε

∫ k1+2ε

k2+ε

2ε + k1 − θ

4ε
dθ,

and

E(n2 | si
2 = k2, k) =

1

2ε

∫ k1

k2−ε

ε− k2 + θ

4ε
dθ +

1

2ε

∫ k2+ε

k1

k1 + ε− k2

4ε
dθ.

Thus

E(n2 | si
2 = k1+ε, k)−E(n2 | si

2 = k2, k) =
1

8ε2
[
∫ k1+2ε

k2+ε
(2ε+k1−θ)dθ−

∫ k1

k2−ε
(ε−k2+θ)dθ].
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Integrating this last expression shows that E(n2 | si
2 = k1 + ε, k) − E(n2 | si

2 =

k2, k) = 0. Q.E.D.

Let Σ0 be the set of all strategies. Let Σn be the set of all strategies that are

undominated after n rounds of iterative elimination of dominated strategies. Let

σn ∈ Σn. Let sn
t (σn) be the supremum below which σn prescribes all players to

refrain from investing with positive probability at time t. Let sn
t = inf{sn

t (σn) |
σn ∈ Σn}. Call sn = (sn

1 , s
n
2 ) the strategy in which all players invest at time one if

and only if si
1 > sn

1 and in which all active players invest at time two if and only

if si
2 > sn

2 . Let

ĝ(si
1, σ̂

n, σn) ≡ (si
1 − 1)(1− τ

2
(I{h(si

1−ε,σn)>0} + I{h(si
1+ε,σn)>0}))

+
1

2
E2(n1|σ̂n, si

1 − ε)(1− τI{h(si
1−ε,σn)>0}) +

1

2
E2(n1|σ̂n, si

1 + ε)(1− τI{h(si
1+ε,σn)>0})

+
1

2
E2(n2|σ̂n, si

1 − ε)(α− τI{h(si
1−ε,σn)>0}) +

1

2
E2(n2|σ̂n, si

1 + ε)(α− τI{h(si
1+ε,σn)>0})

−τ

2
(I{h(si

1−ε,σn)>0}(−ε−∆) + I{h(si
1+ε,σn)>0}(ε−∆)),

where I{·} denotes the indicator function, and σ̂n ∈ Σn. We first state and prove

the following lemma.

Lemma 5 If α ≥ τ , g(si
1, s

n) ≥ g(si
1, σ

n) ∀si
1 and ∀σn ∈ Σn.

Proof: Observe that

g(si
1, s

n)− ĝ(si
1, σ

n, sn) =
1

2

∑
si
2∈{s

i
1−ε,si

1+ε}
{[E2(n1|sn, si

2)(7)

−E2(n1|σn, si
2)](1−τI{h(si

2,sn)>0})+[E2(n2|sn, si
2)−E2(n2|σn, si

2)](α−τI{h(si
2,sn)>0})}.

For each si
2, define the expression between {...} of the above equation as

f(si
2, σ

n) ≡ (1− τI{h(si
2,sn)>0})m(si

2, σ
n) + (α− τI{h(si

2,sn)>0})m
′(si

2, σ
n),

where m(si
2, σ

n) and m′(si
2, σ

n) are defined as

m(si
2, σ

n) ≡ 1

2ε

∫ si
2+ε

si
2−ε

(n1(θ, s
n)− n1(θ, σ

n))dθ,
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m′(si
2, σ

n) ≡ 1

2ε

∫ si
2+ε

si
2−ε

(n2(θ, s
n)− n2(θ, σ

n))dθ.

As all players with a si
1 > sn

1 invest under sn, it follows that m(si
2, σ

n) ≥ 0

for all si
2 and for all σn. Hence, if m′(si

2, σ
n) ≥ 0, then f(si

2, σ
n) is positive.

Thus suppose that m′(si
2, σ

n) < 0. Then f(si
2, σ

n) is bounded below by (1 −
τI{h(si

2,sn)>0})(m(si
2, (σ

n
1 , sn

2 )) + m′(si
2, (σ

n
1 , sn

2 ))). Note that

m(si
2, (σ

n
1 , sn

2 )) + m′(si
2, (σ

n
1 , sn

2 )) =

1

2ε

∫ si
2+ε

si
2−ε

[(n1(θ, s
n) + n2(θ, s

n))− (n1(θ, (σ
n
1 , sn

2 )) + n2(θ, (σ
n
1 , sn

2 )))]dθ,

which is nonnegative and we conclude that g(si
1, s

n) ≥ ĝ(si
1, σ

n, sn). As g(si
1, σ

n)

prescribes optimal time-two behavior, trivially ĝ(si
1, σ̂

n, sn) ≥ g(si
1, σ

n), and thus

g(si
1, s

n) ≥ g(si
1, σ

n) ∀σn ∈ Σn. Q.E.D.

Let sn
t (σn) be the infimum above which σn prescribes all players to invest at time t

with probability 1. Let sn
t = sup{sn

t (σn) | σn ∈ Σn}. Call sn = (sn
1 , s

n
2 ) the strategy

in which all players invest at time one if and only if si
1 > sn

1 and in which all active

players invest at time two if and only if si
2 > sn

2 .

Proof of Proposition 2:

It follows from Lemma (5) that, conditional on si
1, investing in the first period is

dominated after n + 1 rounds of iterative elimination of dominated strategies if

and only if g(si
1, s

n) < 0.

Furthermore, (n1 + n2)(θ, s
n) ≥ (n1 + n2)(θ, σ

n) for all σn ∈ Σn because sn pre-

scribes an active player to invest whenever investing is not dominated after n

rounds of iterative elimination of dominated strategies. Using this fact, it is easy

to check that h(si
2, s

n) ≥ h(si
2, σ

n) for all σn ∈ Σn. Hence, conditional on si
2, in-

vesting in the second period is dominated after n+1 rounds of iterative elimination

if and only if h(si
2, s

n) < 0. We conclude that when iteratively deleting dominated

strategies from below, we can restrict attention to switching strategies sn.

We now show by induction that sn
1 and sn

2 are increasing sequences. Trivially,

(s0
1, s

0
2) = (−∞,−∞). Because it is a dominant strategy not to invest for suffi-

ciently low first- and second-period signals, (s1
1, s

1
2) >> (s0

1, s
0
2). We are left to
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show that, sn−2 ≤ sn−1, implies that sn−1 ≤ sn.19

We first show that sn−1
1 ≤ sn

1 . By definition of sn−1
1 , we know that g(sn−1

1 , sn−2) = 0.

As sn−1 ∈ Σn−2, from Lemma (5) we know that g(sn−1
1 , sn−2) ≥ g(sn−1

1 , sn−1). sn
1

cannot be strictly lower than sn−1
1 because, by definition of sn−1

1 , ∀si
1 < sn−1

1 all

strategies which prescribe player i to invest at time one with positive probability

are dominated ones. As g(sn−1
1 , sn−1) ≤ 0 and as there exists some s̃i

1 for which it

is a dominant strategy to invest (i.e. for which g(s̃i
1, s

n−1) > 0), continuity of g(·)
implies that there exists sn

1 such that g(sn
1 , s

n−1) = 0.

Next, we show that sn−1
2 ≤ sn

2 . It is obvious that E2(n1 + n2|si
2, s

n−2) ≥ E2(n1 +

n2|si
2, s

n−1). Therefore,

sn−1
2 + E2(n1 + n2|sn−1

2 , sn−1)− 1−∆ ≤ sn−1
2 + E2(n1 + n2|sn−1

2 , sn−2)− 1−∆ = 0

This implies that sn−1
2 ≤ sn

2 because si
2 + E2(n1 + n2|si

2, s
n−1) − 1 − ∆ is strictly

increasing in si
2 and by definition

sn
2 + E2(n1 + n2|sn

2 , s
n−1)− 1−∆ = 0.

Hence, as n → ∞, sn converges to some cutoff vector s that satisfies g(s1, s) = 0

and h(s2, s) = 0. Using reasoning that mirrors the one for sn, shows that sn is a

decreasing sequence that, as n → ∞, converges to a cutoff vector s that satisfies

g(s1, s) = 0 and h(s2, s) = 0.

We are left to show that s = s. Suppose otherwise. Both s and s solve the following

system of equations.

g(k1, k) = 0,(8)

h(k2, k) = 0.(9)

First, observe that if s1 = s1 then s2 = s2 because h(k2, (k1, k2)) is strictly in-

creasing in k2. Thus, s1 < s1. s2 and s2 must be chosen such that h(s2, s) and

h(s2, s) = 0, which implies that

(s2 − s2) = E2(n1 + n2|s2, s)− E2(n1 + n2|s2, s)(10)

To gain some insight about E2(n1+n2|·)’s consider the following two pair of cutoffs

(k′1, k2) and (k′′1 , k2). Both strategies possess the same second-period cutoffs but

19When comparing two vectors, we use ≤ to indicate that for all i, the ith component of the
first vector is ≤ to the ith component of the second vector.
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suppose without loss of generality that k′1 < k′′1 . Consider any arbitrary (si
1, s

i
2).

Clearly, if player i invests in either period under strategy (k′′1 , k2), she also invests

under strategy (k′1, k2). Hence, E2(n1 + n2|k2, (k1, k2)) is weakly increasing in

k2 − k1. Hence a necessary condition for for equation (10) to hold is that

s2 − s1 < s2 − s1.(11)

Now consider a player whose si
2 = k1 +ε. Consider two different second-period cut-

off levels k′2 and k′′2 , and suppose without loss of generality that k′2 < k′′2 . Consider

any si
1 < k1. Clearly, if player i invests at time two under (k1, k

′′
2), she will also

do so under (k1, k
′
2). Hence, E2(n2|k1 + ε, (k1, k2)) is weakly decreasing in k2 − k1.

The same logic can be applied to E2(n2|k1 − ε, (k1, k2)). Thus from (11) follows

that

E2(n2|s1 + ε, s) ≥ E2(n2|s1 + ε, s)andE2(n2|s1 − ε, s) ≥ E2(n2|s1 − ε, s).(12)

We also know that s1 and s1 must be chosen such that g(s1, s) = g(s1, s) = 0.

Note that

g(s1, s)− ĝ(s1, s, s) = (s1 − s1)(1−
τ

2
I{h(s1+ε,s)>0} −

τ

2
I{h(s1−ε,s)>0})

+
1

2
(E2(n2|s1 + ε, s)− E2(n2|s1 + ε, s))(α− τI{h(s1+ε,s)>0})

+
1

2
(E2(n2|s1 − ε, s)− E2(n2|s1 − ε, s))(α− τI{h(s1−ε,s)>0}).

From (12) and from the fact that s1 > s1, it follows that g(s1, s) > ĝ(s1, s, s). As

ĝ(s1, s, s) ≥ g(s1, s) it follows that, under (11), g(s1, s) > g(s1, s), a contradiction.

Q.E.D.

Proof of Proposition 3:

In an immediate investment equilibrium no player invests in the second period.

Hence,

h(si
2, k) = si

2 + γE(n1|si
2, k)− 1−∆.

It follows from the derivation of n1(θ, k) in Lemma 3 that n1(θ, k) is weakly in-

creasing in the fundamental θ. Thus,

E(n1|si
2, k) =

1

2ε

∫ si
2+ε

si
2−ε

n1(θ, k) dθ
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is weakly increasing in si
2, and hence h(si

2, k) is strictly increasing in an immediate

investment equilibrium. Therefore, there exists a unique k2 such that h(si
2, k) ≤ 0

if and only if si
2 ≤ k2. By definition, we look for an equilibrium in which k2 ≥ k1+ε,

which implies that h(si
2 = k1+ε, k) ≤ 0. Hence, the gain of waiting must be equal to

zero. Therefore, k1 must be set such that a player who possesses a signal si
1 = k1

is indifferent between investing and not investing. Thus k1 solves the following

equation

k1 + E(n1 | si
1 = k1, k)− 1 = 0.

Using the function n1(θ, k), derived in Lemma 3, and the fact that

E(n1 | si
1 = k1, k) =

1

4ε

∫ k1+2ε

k1−2ε
n1(θ, k) dθ,

it is easy to verify that E(n1 | si
1 = k1, k) = 1

2
. Thus, in an immediate investment

equilibrium k1 = 1
2
. Using this fact to rewrite the condition that no player has an

incentive to invest in the second period, i.e. that h(si
2 = k1 + ε, k) ≤ 0, gives

1

2
+ ε + γE(n1 | si

2 = k1 + ε, k) ≤ 1 + ∆.(13)

Similar, using n1(θ, k) and the fact that

E(n1 | si
2 = k1 + ε, k) =

1

2ε

∫ k1+2ε

k1

n1(θ, k) dθ,

it is easy to verify that E(n1 | si
2 = k1 + ε, k) = 3

4
. Substituting this into equation

(13) and rewriting yields ∆ ≥ −1
2

+ ε + 3
4
γ, which is a necessary condition for an

immediate investment equilibrium to exist. Because we already established that

h(si
2, k) is strictly increasing, it suffices to show that g(·) is (weakly) increasing to

show that an immediate investment equilibrium exists whenever ∆ ≥ −1
2
+ ε+ 3

4
γ.

First, observe that for all si
1 < k2 − ε, one has

g(si
1, k) = si

1 + E(n1 | si
1, k)− 1,

which is strictly increasing in si
1 because E(n1 | si

1, k) is weakly increasing in si
1.

Second, for all k2 − ε < si
1 < k2 + ε,

g(si
1, k) = si

1 + E(n1 | si
1, k)− 1− τ

2
h(si

1 + ε, k).

Using Lemma (2) and equation (1), one can rewrite the above equation as

g(si
1, k) = (1−τ

2
)si

1+
1

2
[E(n1 | si

2 = si
1−ε, k)+(1−τγ)E(n1 | si

2 = si
1+ε, k)−τε−(2−τ)+τ∆].
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Since E(n1 | si
2 = si

1 − ε, k) and E(n1 | si
2 = si

1 + ε, k) are weakly increasing in

si
1, and τ, γ ≤ 1, g(si

1, k) is strictly increasing in si
1 in this subcase. Third, for all

k2 + ε < si
1, one has

g(si
1, k) = si

1 + E(n1 | si
1, k)− 1− τ

2
[h(si

1 − ε, k) + h(si
1 + ε, k)].

Rewriting this equation using Lemma (2) and equation (1) yields

g(si
1, k) = (1−τ)si

1+
(1− τγ)

2
[E(n1 | si

2 = si
1−ε)+E(n1 | si

2 = si
1+ε)]−(1−τ)+τ∆.

Since E(n1 | si
2 = si

1 − ε) and E(n1 | si
2 = si

1 + ε) are weakly increasing in si
1, and

τ, γ ≤ 1, g(si
1, k) is weakly increasing in si

1 in this subcase. Q.E.D.

Proof of Proposition 4:

Rewriting (4) and (5) using the fact that k1 − ε < k2 < k1 + ε in an informative

waiting equilibrium gives

k1+
1

2
+(

α

8ε
)(k1+ε−k2)−1−τ

2
{k1+ε+

3γ

4
+

1

16ε2
(k1+ε−k2)(k2+3ε−k1)−1−∆} = 0,

k2 + γ{1

4
+

1

4ε
(k2 + ε− k1) +

1

16ε2
(k1 + ε− k2)(k2 + 3ε− k1)} − 1−∆ = 0.

Thus, (4) and (5) are a pair of quadratic equations, which is equivalent to a fourth

order polynomial. Hence, there exists a routine procedure to solve this system of

equations. Using mathematica to solve this system of equations shows that there

are only two pair of roots (k11, k21) and (k21, k22). Rewriting, gives the expressions

given in the proposition above. Because (4) and (5) are necessary conditions for

an equilibrium, all informative waiting equilibria ar either of the form (k11, k21) or

(k21, k22).

Observe that all roots are real if and only if D ≥ 0. This requires that

16ε− 8 + 12γ + [(2− α)− (2− τ)x]2 ≥ 16∆.

Rewriting gives condition (a).

(k11, k21) is a valid solution only if k11 − ε < k21 < k11 + ε, because otherwise the

functional form of (4) and (5) would differ from the one used above. That is, we

require that (i) −ε < k11 − k21 and that (ii) k11 − k21 < ε. Using the fact that

k11 − k21 = ε[1− α− (2− τ)x +
√

D],
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condition (i) holds if and only if

(2− τ)x− (2− α) <
√

D.

Note that this inequality is satisfied if either (2− α) > (2− τ)x or if

[(2− τ)x− (2− α)]2 < −16∆ + 16ε− 8 + 12γ + [(2− α)− (2− τ)x]2.

Rewriting gives condition (b).

Using k11 − k21 = ε[1− α− (2− τ)x +
√

D], to rewrite condition (ii) gives
√

D < α + (2− τ)x.

Squaring this inequality on both sides and rewriting yields

−16∆ + 16ε + 12γ − 4(1 + α)− 4x(2− τ) < 0,

which is equivalent to condition (c) in the proposition. Hence, conditions (a), (b),

and (c) are necessary conditions for (k11, k21) to characterize an equilibrium.

Similar, (k12, k22) is a valid solution only if both (i)−ε < k12−k22 and (ii) k12−k22 <

ε hold. Using the fact that k12 − k22 = ε[1 − α − (2 − τ)x −
√

D], condition

(i) holds if and only if
√

D < (2 − α) − (2 − τ)x. Hence, condition (i) requires

that (2 − α) > (2 − τ)x, which is condition (d) in the proposition, and that

D < [(2−α)−(2−τ)x]2, which is equivalent to condition (e) in the proposition. We

conclude that conditions (a), (d) and (e) are necessary conditions for (k12, k22) to

characterize an equilibrium. (Note also that k12−k22 = ε[1−α−(2−τ)x−
√

D] < ε.)

Hence, we have established that no other informative waiting equilibrium than the

ones characterized in the proposition exist. To show that (k11, k21) and (k12, k22)

are indeed equilibria under the above conditions, we are left to verify that (i)

h(si
2, k) < 0 for all si

2 < k2, (ii) h(si
2, k) > 0 ∀si

2 ∈ (k2, k1 + ε], and that (iii)

g(si
1, k) < 0 if and only if si

1 < k1. Conditions (i) and (ii) follow from Lemma (4).

The proof of Condition (iii) is available upon request. Q.E.D.

Proof of Lemma 1:

We start by proving the first statement. Suppose otherwise, i.e. there exists a

symmetric switching equilibrium in which no player invests in the first period.

Rewriting condition (5) gives

h(si
2, k) = k2 + E(n2 | si

2 = k2, k)− 1−∆ = 0.
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It is easy to check that E(n2 | si
2 = k2, k) = 1

2
, and hence k2 = 1

2
+ ∆. Consider a

player with a signal si
1 > k2 +3ε. This player knows in equilibrium that all (other)

players invest in the second period. Hence,

g(si
1, k) = si

1 + α− 1− τ [si
1 −∆].

Rewriting, yields g(si
1, k) = (1 − τ)si

1 − (1 − α) + τ∆. If τ < 1, then for all

sufficiently high si
1 one has g(si

1, k) > 0. Similar if α = γ = τ = 1 and ∆ > 0, then

g(si
1, k) = ∆ > 0. But if g(si

1, k) > 0 a player has a strict incentive to invest in

the first period, which contradicts the fact that all players refrain from investing

in the first period.

We now prove the second statement. Recall that E(n1 | si
1 = k1, k) = 1

2
. Also, note

that since k2 < k1 − ε, a player with signal si
1 = k1 who waits will invest in the

second period for certain. Using these facts and Lemma (2) to rewrite equilibrium

conditions (4) and (5) gives:

k1(1− τ) +
1

2
(1− τγ) + (α− τ)E(n2 | si

1 = k1, k)− 1 + τ(1 + ∆) = 0,(14)

k2 = 1 + ∆− γE(n1 | si
2 = k2, k)− E(n1 | si

2 = k2, k).(15)

Observe that any player with a signal si
2 < k2 does not invest in either period

because in this case si
1 ≤ si

2 + ε < k2 + ε < k1. Hence, E(n1 + n2 | si
2 = k2, k) = 1

2

and thus E(γn1 + n2 | si
2 = k2, k2) ≤ 1

2
. Using this fact and equation (15), we

conclude that k2 ≥ 1
2

+ ∆.

Rewriting equation (14) shows that

k1 =
1

1− τ
{1

2
(1 + τγ − τ(1 + ∆) + (τ − α)E(n2 | si

1 = k1, k))}.

First, suppose that α ≥ τ. In this case

k1 ≤
1

1− τ
{1

2
(1 + τγ − τ(1 + ∆)}

and since k2 ≥ 1
2

+ ∆ a necessary condition for k1 > k2 + ε is that

{1

2
(1 + τγ)− τ(1 + ∆)} ≥ (1− τ)(

1

2
+ ∆ + ε).

This is equivalent to 0 ≥ ∆ + ε(1− τ) + τ
2
(1− γ), a contradiction.
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We are left to consider the case in which α < τ. Observe that since E(n1 | si
1 =

k1, k) = 1
2

and n1 + n2 ≤ 1, E(n2 | si
1 = k1, k) ≤ 1

2
. Hence,

k1 ≤
1

1− τ
{1

2
(1 + τγ − τ(1 + ∆) + (τ − α)

1

2
}.

Thus, a necessary condition for k1 > k2 + ε is that

{1

2
(1 + τγ − τ(1 + ∆) + (τ − α)

1

2
} ≥ (1− τ)(

1

2
+ ∆ + ε).

Rewriting this condition establishes the Lemma. Q.E.D.

Proof of Proposition 6:

We know from Proposition 2 that the equilibrium is unique in this case. For all ∆ ≥
∆b, the unique equilibrium is the immediate investment equilibrium characterized

in Proposition 3. In this equilibrium a player invests in the first period if and only

if he receives a signal si
1 > 1/2. For ∆ < ∆b the unique equilibrium (k11, k21) is

characterized in Proposition 4. Differentiating k11 and k21 with respect to ∆, one

has
∂k11

∂∆
=

1√
D

(α− xτ) < 0,

∂k21

∂∆
=

1√
D

(α + 8ε− xτ) > 0.

The Proposition thus follows from the fact that as ∆ approaches ∆b, k11 approaches

1/2, which can be verified by substituting ∆b into the expression for k11. Q.E.D.

Proof of Proposition 7:

Define s ≡ (1
4
+ ε)(1+δ

δ
) and note that if s = s then ∆ = ∆b. As delta is increasing

in s, we know that for all s ≥ s the immediate investment equilibrium is played

and hence no player invests in the second period. Furthermore, because ∂θ
∂s

= − 1
1+δ

it is clear that the first period investment activity is strictly decreasing in the setup

costs s for all s ≥ s.

For s < s, first period investment activity falls if

∂θ

∂s
<

∂k11

∂s
.
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Differentiating and rewriting gives −1
1+δ

< δ
(1+δ)

√
D

(−4ετ), which can be rewritten

as D > 16ε2δ4

(1+δ)2
. Using the facts that D is decreasing in s, δ < 1, and τ < 1, it is

easy to see that the above holds since

D > D(s) = (2− τ)216ε2 >
δ4

(1 + δ)2
16ε2.

Furthermore, it is straightforward to verify that ∂k21

∂s
> 0 and therefore second

period investment activity declines in s whenever it is strictly positive.

We are left to show that there exists parameter values for which an increase in

δ increases early investment activity and reduces late investment activity. Let

φ = δ
1+δ

. One has,

∂k11

∂φ
=

1

8
{4ε(

√
D − 8ε(1− φ))− 32εφ√

D
(s + 2ε2(2− φ))}.

Evaluating the above at s = s and rewriting, using the fact that
√

D(s) = (2−φ)4ε,

one has
∂k11

∂φ
|s=s=

−(1
4

+ ε)

2− φ
.

Thus,
∂k11

∂δ
|s=s=

−(1
4

+ ε)

2− φ

1

(1 + δ)2
.

Note that ∂θ
∂δ
|s=s=

s
(1+δ)2

=
( 1
4
+ε)

(1+δ)2
δ

1+δ
. Hence, ∂k11

∂δ
|s=s<

∂θ
∂δ
|s=s . As the inequality

is strict it also holds for some s less than but sufficiently close to s. Hence, for such

s as player become more patient, more players invest early.

The expected late investment activity is an increasing function of the difference

k11 − k21 = ε[1− α− (2− τ)x +
√

D]. Differentiating gives

∂(k11 − k21)

∂φ
= ε{4ε− 1

2
√

D
[16s + 32ε2(2− φ)]}.

Evaluating the above at s = s shows that

∂(k11 − k21)

∂φ
|s=s= − 16s

(2− φ)8ε
< 0.

Hence the expected second period investment activity is decreasing in δ for s less

but sufficiently close to s. Q.E.D.
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Figure 1: Graphical representation of the mass of players investing in the two periods
as a function of (k1,k2).
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Figure 2: Graphical representation of the mass of players investing in the two periods
as a function of (k1,k2).
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Figure 3: Graphical representation of the mass of players investing in the two periods
as a function of (k1,k2).
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