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ABSTRACT

Localized Competition, Multimarket Operation and Collusive Behavior

by Frank Verboven*

This paper studies collusive behavior in a repeated oligopoly model with localized
competition. Private information about the rivals' past actions naturally arises from this
product market structure. The resulting communication problems imply that firms should
adopt strategies with sufficiently lenient punishments. Infinite grim punishments are too
severe for large discount factors. The standard stick-and-carrot punishments from the
perfect public information model are too severe for all discount factors. Modified stick-
and-carrot punishments can be used, though for a smaller range of discount factors than
the standard stick-and-carrot punishments under public information.

ZUSAMMENFASSUNG

Lokaler Wettbewerb, Multimarkt-Strategien und kollusives Verhalten

In diesem Beitrag wird das kollusive Verhalten in einem Oligopolmodell mit lokalem
Wettbewerb untersucht. Private Information über die Aktionen des Konkurrenten resul-
tieren normalerweise aus der Produkt-Marktstruktur. Das daraus folgende Kommunika-
tionsproblem bedeutet, daß Unternehmen jene Strategien anwenden sollten, die moderat
im Hinblick auf Bestrafung sind. Uneingeschränkt harte Strafen sind beim Vorliegen
hoher Abzinsungsfaktoren zu schwerwiegend. Die übliche "Zuckerbrot und Peitsche"-
Bestrafung des Modells mit vollständig öffentlicher Information sind für alle Abzinsungs-
faktoren zu hart. Eine modifizierte "Zuckerbrot und Peitsche"-Bestrafung kann verwen-
det werden, jedoch nur für einen engeren Bereich von Abzinsungsfaktoren als dies für die
Standard "Zuckerbrot und Peitsche"-Bestrafung gilt.

                                               
* I thank V. Bhaskar, Patrick Bolton, Eric van Damme, Javier Gimeno, Val Lambson, Henk

Oosterhout, and Johan Stennek for helpful comments or discussions. Particular thanks go to two
anonymous referees for improving the paper. Financial assistance from the EC Human Capital and
Mobility Program is gratefully acknowledge.



1. Introduction

The essential problem of enforcing collusive agreements in an oligopoly consists of both

detecting and punishing past cheating. This has become increasingly understood since

Stigler's (1964) original contribution and the subsequent repeated game literature. Most

contributions on collusion assume that cheating will be detected and punished with a

one-period lag by all firms in the industry. Although this approach may be justified in

some simple product markets, it is rather unrealistic in more complex economic

environments. The present paper considers a product market with localized competition,

and explores the enforcement problem in detail. Under localizedcompetition different

firms typically compete with different sets of rivals. Problems of private information

about the firms' past actions endogenously arise. These information problems create

serious difficulties in both detecting and punishing past cheating.

In the absence of an information exchange mechanism firms cannot easily observe

their rivals' past actions. In simple product markets this is no serious problem since firms

can still make inferences about these actions, based on their past realized profits. This is

the case in a simple homogeneous goods oligopoly with certain demand. In such a

market all firms compete directly with each other. As a result, an unexpectedly low price

or high output by a cheating firm would be inferred by all other firms in the industry,

because they would all suffer from a profit reduction. Most product markets, however,

are more complex than that. They contain aspects of localized competition, with different

firms competing directly with different sets of rivals. In such markets, cheating by one of

the firms only affects a subset of the other firms in the industry, so that firms unevitably

make different inferences about their rivals' past behavior. This creates the following

communication problem. A firm who has privately observed cheating by one of its close

competitors may consider to conceal this information by not punishing the cheater: such

a strategy would avoid or delay a further punishment by the ignorant firms and make it

possible to at least continue to collude with these firms. This communication problem

applies when the firms who privately observed cheating are not able to impose selective

punishments on the cheater through discriminatory actions. As will be argued below, the
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presence of localized competition and the absence of discrimination between submarkets

of competitors are reasonable and common phenomena.

In a repeated oligopoly model that captures the essential properties of localized

competition, I analyze the communication problem in detail. I stress the importance of

chosing sufficiently lenient punishments, in order to induce communication of privately

observed cheating. The infinite grim-trigger punishments, as in Friedman (1971), are too

severe for large discount factors. Less severe punishments are constructed to sustain

collusion for this range of discount factors. In addition, the "standard'' stick-and-carrot

punishments, which are the optimal (symmetric) punishments under perfect public

information1, are too severe for all discount factors. This implies that the communication

problem hinders collusion in a nontrivial sense. "Modified'', less severe stick-and-carrot

punishments can still be used, though for a much smaller range of discount factors than

the standard stick-and-carrot punishments under public information.

Aspects of localized competition are present in many, if not most, product markets.2

Producers of materials such as cement, steel or hardwood lumber tend to be scattered

geographically throughout the country and are subject to significant transportation costs.

Retailers of consumer products (e.g. gazoline stations) are located at different places in

the city. Furthermore, many products are differentiated in non-geographical dimensions.

To the extent that consumers are heterogeneous in that they value the characteristics of

the products differently, competition can again be localized. Feenstra and Levinson

(1995), for example, provide strong econometric evidence of localized competition in the

car market. Schmalensee (1985) establishes the presence of localized competition in the

breakfast cereal industry. At a more theoretical level, it has been shown that localized

competition is present in a product market if the number of products is sufficiently large

compared to the number of dimensions in which firms can differentiate themselves.3 As

                                               
1 See Abreu (1986).
2 The best known economic model of localized competition is Hotelling's (1929) famous linear city

model. The general discussion on whether competition can be most adequately described as
localized or nonlocalized dates back to Chamberlin (1933) and Kaldor (1935). See Anderson, de
Palma and Thisse (1992) for a discussion.

3 See Anderson, de Palma and Thisse (1989). For example, in Hotelling's (1929) one-dimensional
linear city there should be at least three firms for competition to be localized.
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explained above, the communication problem applies to these examples provided that

firms are not able to impose selective punishments through discriminatory actions that

affect only the cheater. If localized competition is based on non-geographic

differentiation, discriminatory actions that only affect the cheater are not likely to be

feasible. In the automobile and breakfast cereal examples firms would need to obtain

information about the consumers' brand preferences, i.e. their "locations'' or ideal

products and their "transportation costs'' or costs of buying brands that differ from their

ideal products. A straightforward mechanism to obtain this information does not seem to

be readily available. Consequently, in these industries it seems impossible to selectively

punish a cheater by offering discriminatory discounts to those consumers who would

otherwise have purchased from the cheating brand. In contrast, if localized competition is

based on geographic differentiation, then price discrimination to hurt a cheating firm may

be easier, through the use of delivered pricing systems. In such systems firms accept to

cover (part of) the -- verifiable -- consumers' transportation costs, so that buyers at

different geographic locations pay different prices. Mund and Wolf (1971, p. 238-239)

provide interesting evidence on delivered pricing practices in the cement industry, where

firms charge low prices by covering transportation costs in areas where past cheaters are

located, while maintaining high prices elsewhere. Although such discriminatory delivered

pricing practices may alleviate the communication problem, they are frequently

challenged and declared illegal by antitrust authorities, as discussed in detail in Scherer

and Ross (1990).

Notice, finally, that localized competition may also be present in industries with

multimarket operation absent multimarket contact, provided the multimarket firm is not

able to follow a discriminatory policy between the markets in which it is active, as is the

case under of small consumer arbitrage costs.4 Multimarket operation absent multimarket

contact would then hinder collusion due to the communication problem analyzed in this

paper, in sharp contrast with the established theoretical results on multimarket contact by

Bernheim and Whinston (1990).

                                               
4 See Verboven (1995) for a detailed discussion on the relationship between localized competition

and multimarket operation.
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The results in the paper may help to better understand the potentially collusive role of

information exchange mechanisms, such as trade associations. Trade associations collect

detailed information on all firms' past prices and market shares, frequently under the

supervision of a third party. Defendants argue that a more widespread dissemination of

accurate information increases market efficiency, e.g. by reducing uncertainty about cost

or demand conditions.5 Opponents, in contrast, argue that information exchange is

anticompetitive, because it facilitates detection of cheating by reducing the detection

lag.6 The usually unaddressed question is how information exchange could reduce the

detection lag. If competition is nonlocalized, then all firms simultaneously make the same

inferences about past cheating based on their own realized profits. The exchange of

information on past prices and market shares would then come "too late" and be largely

redundant in reducing the detection lag.7 In contrast, if competition is localized, then

cheating is private information to some firms, and information exchange serves to make

this information public.

Two antitrust cases may illustrate the use of trade associations as means of reducing

the detection lag in the presence of localized competition. In the U.S. Hardwood case in

1921 the Court declared illegal a trade association of hardwood manufacturers. The

association had adopted an "open-competition plan", collecting and providing detailed

information on sales, production, inventories and prices. There were about 300 members,

all of them being scattered widely throughout the U.S., located near the sources of

supply and subject to high transportation costs. The industry defendants used this

evidence on location as a proof that information was difficult to obtain, thereby causing a

substantial risk of overproduction.8 However, this same evidence may be used to argue

                                               
5 There is a large theoretical literature on the incentives and welfare effects of information exchange

in the presence of uncertainty about the rivals' cost or demand. This literature abstracts from
collusive considerations. See, for example, Vives (1990).

6 See Salop (1985) for an overview of practices that -- in his view – reduce the detection lag. Scherer
and Ross (1990) take the view that information exchange is anticompetitive because it facilitates it
ex ante coordination to a collusive agreement.

7 The information would only be useful to identify the cheater, allowing the firms to impose
asymmetric punishments.

8 See the view of Justice Brandeis as discussed in Posner (1976).
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that competition was highly localized in the market for hardwood lumber, making

cheating difficult to detect and punish in the absence of information exchange.

In the more recent 1992 U.K. agricultural tractor case the European Commission

declared illegal an information exchange agreement between eight manufacturers and

importers of agricultural tractors in the U.K. In ist report the Commission objected

against the high detail of exchanged information on retail sales, with breakdown by

geographic territory (including counties, dealer territories and postcode sectors), by

product (horsepower) group and by model. As argued by the Commission, "this

therefore permits each member to follow the sales performance and market performance

of each participating competitor [...] in respect of all the products, specific products and

within the smallest geographic area."9

These cases illustrate the presence of information exchange in product markets with

localized competition. In future research, it would be interesting to take a more

systematic (econometric) approach in order to examine the role of localized competition

in price-fixing cases involving information exchange.10

Much of the economic literature on collusive behavior has assumed perfect public

information about the firms' past actions. The most famous exceptions are by Stigler

(1964) and by Green and Porter (1984). Both contributions consider an industry with

uncertain demand, in which firms face the problem of distinguishing between a negative

demand shock and cheating, after observing a low realized sales level. Green and Porter

analyze this inference problem in a repeated game framework. Crucially, in both

contributions competition is nonlocalized, with firms competing symmetrically, so that an

unexpectedly low profit is observed by all firms. As a result, the models by Stigler and

                                               
9 See OJ L68, 13.3.92, p 19, article (19).
10 Two interesting papers have collected detailed statistical evidence on price-fixing cases with trade

associations and other characteristics. Hay and Kelley (1974) find that 29 percent of the U.S. price-
fixing cases involve trade associations; Fraas and Greer (1977) find that 36 percent of the cases
involve trade associations. Both studies also analyze the role of product differentiation. The
interaction between the role of trade associations and product differentiation (and localized
competition) is ignored. An empirically testable hypothesis is that trade associations are more
likely to occur in complex, differentiated product markets.
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Green and Porter, and the subsequent generalizations11 are models of imperfect public

information. In contrast, the present model with localized competition generates private

information about the firms' past actions. To the best of my knowledge, this is the first

economic oligopoly model in which such problems of private information arise naturally

from the product market structure.

A few game-theoretic papers have addressed some aspects of private information

about the players' actions in a repeated game. These papers only consider very patient

players, i.e. with discount factors close to one. Fudenberg and Levine (1991) further

assume "epsilon rational'' players, playing in "informationally connected'' games.12 Ben-

Porath and Kahneman (1993) and Kandori and Matsushima (1994) consider rational

players. However, they assume that players can make explicit public announcements at

certain periods in time about their obtained private information. In contrast with these

previous contributions, the present paper considers rational players who are not able to

make explicit public announcements about their own private information.

Section 2 presents the model of localized competition. Section 3 provides preliminary

observations and section 4 obtains the main results. Section 5 discusses the generality of

the results and the directions for future research.

2. The model of localized competition

2.1 Demand and profits

Consider a representative consumer with the following quadratic utility function:

     U(q0,q1,q2,q3) = D(q1+2 q2+q3) - ( )β
2

21
2

2
2

3
2q q q+ +  - J(q1q2 + q2q3) + q0  (2.1)

                                               
11 See especially Fudenberg, Levine and Maskin (1994).
12 Epsilon-rational players do not mind behaving suboptimally for some time if they are very patient.

In informationally connected games a message can always be passed from one player to another,
regardless of which single player might try to interfere. With localized competition this property
may not hold.
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where qi, i = 0,1,2,3, is the quantity consumed of good i. Assume D > 0, E t J ! 0. Good

0 is the outside good: the utility from its consumption is independent of the consumption

of all other goods. The utilities from the consumption of good 1 and good 3 are

independent of each other. The utilities from the consumption of good 1 and 2, and of

good 2 and 3 are, however, interdependent: good 1 and 2, and good 2 and 3, are

substitutes for each other.13 One may think of good 2 as a good with multiple

independent uses: with respect to its first use it is a substitute for good 1; with respect to

its second use it is a substitute for good 3. Solving the representative consumer's utility

maximization problem subject to the budget constraint y p qii i≥
=∑ 0

3
, where y is income

pi is the price of good i, with p0 = 1, yields the inverse demand equations for good 1, 2

and 3:

p1 = D - Eq1 - Jq2, i = 1,3

p2 = 2>D - Eq2 - J(q1 + q3)/2@.

There are three firms. Each firm i chooses to produce the quantity of a single good i, qi,

given the quantity chosen by the other firms. Normalizing marginal cost to zero and

ignoring fixed costs, firm i 's one-shot profit function is given by

          S1(qi, q2) {  (D - Eqi - Jq2)qi,  i = 1,3

(2.2)

     S2(qi, q2, q3) {  2>D - Eq2 - J(q1 + q3)/2@q2.

These profit functions reveal that competition is localized in the following sense: firm

i 's profit, i =1,3, directly depends only on its own quantity choice and the quantity of firm

2, and not on the quantity choice of the third firm. In other words, firm 1 and firm 3 do

not directly compete with each other; they only compete indirectly through the

interaction with the common competitor firm 2.

                                               
13 The case in which good 1 and 3 are complements, J < 0 is analogous. See Verboven (1995).
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The model is admittedly somewhat specific, and there are several alternative ways to

model localized competition. Alternative models capturing localized competition, are

discussed in section 5. Appendix B analyzes a Hotelling triopoly model with price-setting

firms. It is shown that the main conclusions continue to hold. At this point, it is worth

emphasizing that the chosen model facilitates a close comparison with the results

obtained in the literature on collusion with perfect public information.14 In particular, it is

possible to make a comparison with Abreu's (1986) results in a homogeneous goods

industry (using stick-and-carrot punishments) and with Deneckere's (1983) and Ross'

(1992) results in a differentiated goods oligopoly (using grim-trigger punishments).

2.2 Information

In the one-shot game each firm i chooses a quantity independent of the past. In the

infinite horizon game each firm i may condition its own quantity choice in every period t

on the observed sequence of the firms' past quantity choices. Define firm i's history h i
t at

the end of period t, t t 1, as the sequence of its own past quantity choices,

( )h q qi
t

i i
t≡ 1,..., . Define firm i's null-history at the end of period 0 as hi

0 . At the

beginning of period t, each firm i observes its own history hi
t−1  and the sequence of its

own realized profits (π πi i
t1 1,..., − ). From this information each firm can make some

inferences about the other firms' history. However, due to the localized structure of

competition, these inferences are imperfect. Upon observing their own history and their

own past realized profits, firm 1 and firm 3 can infer firm 2's history, with whom they

directly compete, but they cannot infer each others' history. In contrast, firm 2 can infer a

sequence (q q qt
1
1

3
1

1
1+ −,..., ). Assume for simplicity that firm 2 can identify the quantity qr

1

from qr
3 .15 This then gives the following information for each firm i.

                                               
14 The close comparison is made possible due to some convenient symmetry properties of the model

and due to the assumption of quantity-setting firms.
15 This can be justified if firm 2 can decide in each period whether or not to spend an amount H upon

observing a certain (unexpected) sequence q q q qt t
1
1

3
1

1
1

3
1+ +− −,...,  in order to identify qr

1  from



9

x� At the beginning of period tt1, firm i 's information set, i=1,3, is (h hi
t t− −1

2
1, ).

x� At the beginning of period tt1, firm 2's information set is ( h h ht t t
1

1
2

1
3

1− − −, , ).

Hence, only firm 2 is perfectly informed. Firm 1 and 3 are imperfectly informed.

Clearly, the localized structure of competition generates this private information

structure.

If firm 1 and 3 could make a binding information exchange agreement at the start of

the game (e.g. through the use of a third party), then a game of perfect public

information results, yielding information sets ( h h ht t t
1

1
2

1
3

1− − −, ,  for each firm i at the

beginning of each period t. It will be instructive in the analysis below to compare the

results under private information with this standard case of public information.

2.3 Strategies

In the infinite horizon game with private information a strategy for firm i is a sequence of

quantity functions { }f i
t

t=

∞

1
. Each function f i

t  assigns a quantity qi
t  to every information

set at every period t. In particular, for firm i, i =1,3, ( )f h hi
t

i
t t− −1

2
1,  is the quantity to be

chosen in period t when its information set is ( )h hi
t t− −1

2
1, . For firm 2, ( )f h h ht t t t

2 1
1

2
1

3
1− − −, ,  is

the quantity to be chosen in period t when its information set is ( )h h ht t t
1

1
2

1
3

1− − −, , .

Assuming firms discount the future at a common factor G, the (normalized) present value

of each firm i's continuation profit from following ist strategy, given the other firms

follow their strategy, is at any period t at every information set:

( ) ( ) ( )[ ]1 2 2 1 2 3− −

=

∞

∑δ δ πr t

r t
i i

r
i
r r r r r rf h h f h h h, , , , , i = 1,3,

                                                                                                                                         
qr

3  for some r. In the Hotelling model of localized competition, presented in Appendix B, firm 2

(in the middle) may be assumed to be able to inspect the actual customers that he served in the past
in order to distinguish between the prices charged by the left neighbour and the prices charged by
the right neighbour.
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( ) ( ) ( ) ( )[ ]1 2 1 1 2 2 1 2 3 3 3 2− −

=

∞

∑δ δ πr t

r t

r r r r r r r r r rf h h f h h h f h h, , , , , , .

The normalization factor (1-G) serves to measure the one-shot profits and the

continuation profits in the same units.

There are several ways to describe strategies. In the present context, it is notationally

most convenient to describe strategies using the language of machines.16 Firm i's machine

consists of three components: (i) a set of states Si, with an initial state si
0  � Si; (ii) a

quantity function f Si i: → ℜ+ , assigning a quantity to each state si; and (iii) a transition

function g S Si i i: × ℜ →+
2  for i=1,3, assigning a state to each vector (si, qi ,q2), and

g S S2 2
3

2: × ℜ →+  for firm 2, assigning a state to each vector (s2, q1, q2 ,q3).

In principle, machines and the strategies they execute can be very complex, containing

a large set of states, and sophisticated quantity and transition functions. To simplify the

analysis, I impose some restrictions. The significance of these restrictions is discussed in

section 5. Let ci be firm i's initial state and call it the "collusive'' state. Furthermore, let

mi
i , i=1,3 be firm i 's "communication'' state, and let m2

1 , m2
2  and m2

3  be firm 2's first,

second and third "communication'' state, respectively. Finally, let pi
j  be firm i 's j-th

"punishment'' state. Abbreviate firm i 's quantity choice prescribed in the collusive state by

( )q f ci
c

i i≡ . The transitions from the collusive and communication states are restricted as

follows, as illustrated on Figure 1 and explained intuitively below.

Transitions from ci, for all i:

Firm 2: • move to p2
1  if at least q qc

2 2≠ ,

• move to mi
2  if only q qi i

c≠ ,  i = 1,3

• move to m2
2  if only q qc

1 1≠ and q qc
3 3≠

• stay in c2 otherwise.

                                               
16 See Osborne and Rubinstein (1994) for an overview, and Verboven (1995) for a discussion in the

present context.
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Firm i, i=1,3: • move to pi
1 if at least q qc

2 2≠ ,

• move to mi
i  if only q qi i

c≠ ,
• stay in ci otherwise.

Transitions from mi
i , for all i, j:

Firm 2 in mi
2 , i = 1,3 : • move to p2

1  if q qc
2 2≠ ,

• move to m2
2  if q qc

2 2=  and q q j ij j
c≠ ≠, , 2,

• move to mi
2  if q qc

2 2=  and q q j ij j
c= ≠, , 2.

Firms i in mi
i , i = 1,2,3: • move to pi

1 if q qc
2 2≠ ,

• stay in mi
i otherwise.

The initial state is the collusive state. If firm 2 deviates from the quantity prescribed in its

collusive state, qc
2 , then all firms move to the first punishment state, pi

1. This is because

firm 2's action is publicly observed. In contrast, if only firm i, i=1,3 deviates from ist

quantity prescribed in the collusive state, then firms i and 2, who observed the deviation,

move to an intermediate communication state.17 If firm 2 chooses a quantity different

from its collusive quantity qc
2  in this intermediate communication state, then firm i 's past

deviation becomes "communicated" and all firms can move to the first punishment state.

Otherwise, play remains in a communication state.

If there would be perfect public information, say due to an information exchange

agreement, then the communication states would be redundant. After a deviation from

the collusive quantity qi
c  by any of the firms, play could immediately go to the first

punishment state pi
1.

                                               
17 Firm 2 may go to three different communication states m2

1 , m2
3  and m2

2 , depending on whether

firm 1, firm 3 or both have deviated in the past.
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3. Preliminary observations

3.1  One-shot best-response functions

Important elements in the analysis are the firms' one-shot best-response functions. Using

the profit functions (2.2), firm i's unilateral one-shot best-response function is:

( )q q qi i
U= 2

( )
≡

−α γ
β

q2

2
,  i = 1,3 (3.1)

( )q q q qU
2 2 1 3= ,

( )
≡

− +α γ
β

q q1 3 2

2

/
.

Due to the localized structure of competition firm i's best-response quantity, i=1,3, does

only depend on firm 2's quantity. Firm 2's best-response quantity, in contrast, depends on

both firm 1's and firm 3's quantity.

Firm i and firm 2's simultaneous, or bilateral, one-shot best-response quantities to the

third firm j 's quantity qi , j i≠ , 2, are given by the solution to the system ( )q q qi i
U= 2 ,

and ( )q q q qU
2 2 1 3= , :

( )q q qi i
B

j= {
( )2 2

8

2

2 2

α β γ γ
β γ
− +

−
qj

 ,     i = 1,3, j i≠ ,2 (3.2)

( )q q qB
j2 2= {

( )α β γ γβ
β γ

4 2

8 2 2

− −
−

qj
 ,     j i≠ ,2.

3.2 Necessary equilibrium conditions

An appropriate solution concept for the infinite horizon game with private information is

the concept of perfect Bayesian equilibrium, developed in Fudenberg and Tirole (1991).

This solution concept requires a consistent specification of firm 1 and 3's beliefs about
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each others' history, at every information set ( )h hi
t t− −1

2
1,  at every period t. A specification

of beliefs is consistent if it can be derived from the strategies using Bayes' rule whenever

possible. The following simple specification of beliefs is consistent with the strategies in

this paper, and will henceforth be used: at every information set at every period, firm 1

(firm 3) believes that firm 3 (firm 1) has chosen the quantity prescribed by its equilibrium

strategy.18 A perfect Bayesian equilibrium then results if no firm i has an incentive to

deviate from ist strategy in any state si, given the other firms' strategies and given

consistent beliefs.

Let wi be firm i's (normalized) continuation payoff once play has moved to the first

punishment state pi
1, i.e. firm i 's punishment payoff. This payoff will be determined in

the next section. For given values of wi it is now possible to obtain the firms' no-

deviation constraints in the collusive states ci and the communication states mi
j , using

the transitions from ci and mi
j  described above. Call these constraints briefly the

collusion and communication constraints.

Observation 1 shows that the collusion and the communication constraints can hold

only if the firms choose their one-shot best-response quantity in the communication state.

OBSERVATION 1. Given the transitions from ci and mi
j  described above, a perfect

Bayesian equilibrium obtains only if:

( )f mi i
i  = ( )q qi

B
j
c , i = 1,3, j i≠ ,2

( )f mi
2 2  = ( )q qB

j
c

2 , i = 1,3, j i≠ ,2; ( )f m2 2
2  = ( ) ( )[ ]q q q q qU B c B c

2 1 3 3 1, .

                                               
18 Consider firm 1's period t beliefs after an observed history ( )h hi

t t− −1
2

1, . Suppose first that firm 1

did not observe a period t-1 defection by firm 2 from its equilibrium strategy. It can then use Bayes'
rule to infer that firm 3's period t-1 quantity choice was according to its equilibrium strategy.
Suppose next that firm 1 did observe a period t-1 defection by firm 2 from its equilibrium strategy.
It can then have any belief about firm 3's period t-1 quantity choice. Specify these beliefs such that
firm 1 believes firm 3 did not defect in period t-1. A similar specification of beliefs applies to firm
3.
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PROOF: See Appendix.

The intuition is simple. First, there can be no equilibrium in which firm 2 chooses qc
2  in

its communication state, because then firm i, i =1,3, would always have an incentive to

deviate in its collusive state (as this deviation would go ''uncommunicated''). Next, given

that firm 2 chooses a quantity different from qc
2  in its communication states, all firms in

their communication states expect the punishment state to obtain independent of their

own action. As a result, the one-shot best-response quantity remains the single candidate

equilibrium quantity in the communication state. Given observation 1, it is possible to

write the collusion and communication constraints as follows, after some rearrangements

(see Appendix).

Collusion constraints for firm 1, 2 and 3:

c2: ( )π2 1 2 3q q qc c c, ,  t  ( ) ( )[ ]1 2 1 2 1 3 3 2− +δ π δq q q q q wc U c c c, , ,

ci, i = 1,3: ( )π i i
c cq q, 2 t  ( ) ( )[ ] ( ) ( ) ( )[ ]1 12 2 2

2− + − +δ π δ δ π δi i
U c c

i i
B

j
c B

j
c

iq q q q q q q w, ,

(3.3)

Communication constraints for firm 2:19

m2
1 : ( ) ( ) ( )[ ]1 2 1 3 2 3 3 2− +δ π δq q q q q wB c B c c, , t ( )[ ]π2 1 3 2 3q q q qB c c c, , (3.4)

m2
3 : ( ) ( ) ( )[ ]1 2 1 2 1 3 1 2− +δ π δq q q q q wc B c B c, , t ( )[ ]π2 1 2 3 1q q q qc c B c, ,

Firm 2's collusion constraint states that the (normalized) present value from colluding

forever should be at least as high as the profit from (optimally) deviating once and then

going to the first punishment state. Firm i 's collusion constraint, i =1,3, is slightly

                                               
19 The communication constraints for firm 1 and 3 (states m1

1 and m3
3 ) and for firm 2 (state m2

2 )

are trivially satisfied.
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different: firm i realizes that, after deviating from its collusive quantity qi
c , there is an

intermediate state before the first punishment state, in which the quantities from

observation 1 are produced. Firm 2's communication constraints say that firm 2's

(normalized) profit from communicating a past deviation by firm i, i =1, 3, to the third

firm, and then going to the first punishment state, should be at least as high as the present

value of the payoff from never communicating firm i's defection to the third firm, and

hence at least keeping collusion with firm 3.

These constraints may be contrasted with the case of perfect public information due to

an information exchange agreement. Recall that, under public information, the

communication states are redundant and play can immediately go to the first punishment

state after a deviation from the collusive quantity by any of the firms. Consequently,

there are no communication constraints. Furthermore, firm i 's collusion constraint, i=1,3,

needs an appropriate modification as it does no longer obtain an intermediate

communication payoff before it is punished. Firm 2's collusion constraint retains its form.

Generally speaking, the collusion constraints are more likely to be satisfied the lower

the punishment payoffs wi. Public information models have emphasized one bound on the

severity of the punishments: the punishment should not be so severe that firms have an

incentive to deviate from their strategy in any of their punishment states. The present

model with private information now identifies a new potential bound on the severity of

the punishment: the punishment should not be so severe that firm 2 has an incentive not

to communicate a privately observed deviation. From (3.4), if the punishment is too

severe, firm 2 may prefer not to communicate a deviation by one of the other firms. This

allows him to at least continue to collude with the other firm, who did not observe the

deviation.
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3.3 Symmetric collusive outcomes, symmetric punishments

The static Cournot-Nash outcome is given by the solution to firm 1, 2, and 3's one-shot

best-response functions (3.1). This solution turns out to be symmetric and is given by:20

q qi
n n= ≡

+
α

β γ2
,  i =1, 2,3.

In the infinite horizon game attention will be restricted to the set of symmetric collusive

outcomes}, defined as the set of symmetric outcomes (q,q,q) that give all firms strictly

greater profits than the Cournot-Nash profits. This restriction can be defended as

follows. As is easily seen from the profit function (2.2), for all symmetric outcomes

(q,q,q), the firms' profits are in the same, constant proportion, i.e. S1(q, q) = S2(q, q,q)/2

=  S3(q, q). Consequently, because the one-shot Cournot-Nash outcome (qn, qn, qn) is

symmetric, any symmetric collusive outcome (q,q,q) increases the firms' profits

proportionally, a property frequently imposed in the literature.21

Attention is further restricted to symmetric punishments, defined as punishments such

that all firms choose the same quantity in a given j-th communication state, i.e. ( )f p j
1 1  =

( )f p j
2 2  = ( )f p j

3 3  for all j, implying that w1= w2/2 = w3. Symmetric punishments reduce

all firms' profits proportionally after a publicly observed deviation. This generalizes

Abreu's (1986) notion of symmetric punishments.

It is now possible to make the following observation, determining which of the

collusion and communication constraints is nonbinding.

OBSERVATION 2. Given a symmetric collusive outcome (q,q,q) and a symmetric

punishment, firm 1 and 3's collusion constraints coincide. Moreover, firm 2's

                                               
20 The intuition for the symmetry between firm 1 and firm 3 is straightforward. The additional

symmetry with firm 2 follows from an exact balance of two forces. On the one hand, firm 2 has a
higher "intrinsic" demand, inducing it to set higher quantities. On the other hand, firm 2 has two
competitors instead of just one, inducing it to set lower quantities.}

21 Friedman and Thisse (1993), for example, define the collusive solution as the Pareto-optimal
solution that yields profits that are in the same proportion as in the one-shot equilibrium.
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communication constraint in m2
1  and in m2

3  coincide. Finally, firm i's collusion constraint,

i=1, 3, is nonbinding if ( ) ( )[ ]π i i
B Bq q q q, 2  - wi d 0; otherwise, firm 2's collusion constraint

is nonbinding.

PROOF: Check the collusion and communication constraints (3.3) and (3.4), noting that

S1(q,q) = S2(q,q,q)/2 = S3(q,q), ( )[ ]π1 1 2q q q qU B, ,  = ( )[ ] ( )[ ]π π2 2 3 32q q q q q q q qU U, , , / ,= ,

( ) ( )[ ]π2 1 2q q q q qB B, ,  = ( ) ( )[ ]π2 2 3q q q q qB B, , , ( )[ ]π2 1q q q qB , ,  = ( )[ ]π2 3q q q qB, ,  and w1 =

w2/2 = w3.

Using observation 2, it suffices to consider only (i) either firm 1 or firm 2's collusion

constraint depending on the sign of ( ) ( )[ ]π i i
B Bq q q q, 2  - wi, (ii) firm 2's first

communication constraint, and (iii) the no-deviation constraints in the punishments

states, or shortly, the punishment constraints. These punishment constraints  are derived

in the next section for alternative punishments.

The joint-profit maximizing outcome, i.e. the outcome that maximizes the sum of the

firms' profits, is given by:

( )q qi
c c= ≡

+
α

β γ2
 for each i. (3.6)

This outcome (qc,qc,qc) belongs to the set of symmetric collusive outcomes.

Furthermore, it is Pareto-optimal. The analysis below focuses attention on the

sustainability of this particular outcome. Given that observations 1 and 2 hold for all

symmetric collusive outcomes, it would be straightforward to use the results to also

compute the symmetric  most collusive outcome from the relevant incentive constraints,

whenever the joint-profit maximizing outcome is not sustainable.
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4. Alternative punishments

4.1 Grim-trigger punishments

First consider infinite grim-trigger punishments, as in Friedman (1971). These are

defined as follows. For each firm i, there is only one punishment state, pi
1. In pi

1 firm i

produces its Cournot-Nash quantity qn. Transitions from pi
1 are very simple: once in pi

1,

firms always stay in pi
1.

With infinite grim punishments, the punishment constraints are trivially satisfied for

each firm i, given that its rivals produce their Cournot-Nash quantity. From observation

1, necessary and sufficient conditions for a perfect Bayesian equilibrium are then firm 2's

first communication constraint in (3.4), and either firm 1 or firm 2's collusion constraints

(3.3), where w1=w2/2 is substituted by ( )π1 q qn n,  = ( )π2 2q q qn n n, , / . Using the joint-

profit maximizing outcome as the collusive solution, straightforward calculations show

that firm 1's collusion constraint is satisfied whenever firm 2's collusion constraint is

satisfied; firm 2's collusion constraint is satisfied if and only if δ δ≥ g ; and firm 2's

communication constraint is satisfied if and only if δ δ≤ g , where

( )
( ) ( )δ

σ

σ σ
g ≡

+

+ + +

2

2 4 1

2

2

( )
( ) ( )( ) ( )δ

σ

σ σ σ σ σ
g ≡

+

+ + + − −

2

2 4 8 4

2

2 2 2
/

,

and where V { J/E is the substitution parameter.22 These findings yield:

                                               
22 The calculations follow from substituting the collusive and Cournot-Nash quantities in the payoffs,

and from substituting the obtained payoffs in the various constraints. Mathematica is used to
perform some of these calculations. The case of complements, J � 0, follows analogous reasoning
and is presented in Verboven (1995).
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PROPOSITION 1. Suppose firms use infinite grim-trigger punishments. The joint-profit

maximizing outcome is sustainable as a perfect Bayesian equilibrium if and only if

G �[ ]δ δg g, .

Proposition 1 is illustrated on Figure 2, plotting the range of feasible discount factors,

delineated by the critical discount factors δ g , and δg , as a function of the substitution

parameter V. It is straightforward to show that ∂δ g  0 and ∂ δ ∂ σg / %0 , as drawn:

the closer the goods become substitutes, the smaller the range of discount factors for

which the joint-profit maximizing solution is sustainable.

These findings may be compared with the case in which there would be perfect public

information, say due to an information exchange agreement between firm 1 and 3 prior

to the game. In this case only firm 2's collusion constraint would be relevant,23 so that the

joint-profit maximizing outcome would be sustainable if and only if δ δ≥ g . This is

exactly the same condition as in Deneckere (1983), in a related model without localized

competition.24 The analysis then stresses that when there is private information due to

localized competition, there exists a binding upper bound on the discount factor, δg , in

addition to the standard lower bound from the public information model, δ g . This upper

bound arises from firm 2's incentive problem to communicate privately observed

deviations by firm 1 or firm 3. If firm 2 is very patient, then it prefers to continue to

collude with even just one firm, rather than to communicate and then to be punished.

This suggests that the infinite grim-trigger punishment may sometimes be too severe,

rather than insufficiently severe as argued in the literature on public information [e.g.

                                               
23 To see this, recall that under public information, there are no communication constraints and firm

i 's collusion constraints, i =1,3, need modification, because there is no intermediate
communication state. In fact, in the present symmetric model, firm i 's collusion constraint, i =1, 3,
turns out to coincide with firm 2's collusion constraint if there is public information.

24 The results on product differentiation and collusion differ somewhat when firms set prices rather
than quantities. See Deneckere (1983), Chang (1991) and Ross (1992).
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Abreu (1986)]. The question now arises whether the upper bound may be relaxed if firms

follow alternative, less severe punishments. 25

Consider therefore the following less severe punishments: finite grim punishments.

These punishments specify T punishment states, i.e. { }p pi i
T1, ...,  for each firm i. In each

state pi
j  firm i produces its Cournot-Nash quantity qn . The transition from pi

j ,

j=1,...,T-1, is always to pi
j +1; the transition from pi

T  is to ci. In other words, after a

deviation by firm 2, each firm i reverts to the Cournot quantity for only a finite number

of periods, T, and then goes back to the collusive state.

The punishment constraints in all states pi
j , j=1,...,T, are trivially satisfied for each

firm i, given that its rivals produce their Cournot quantity. Necessary and sufficient

conditions for a perfect Bayesian equilibrium are then the collusion and communication

constraints (3.3) and (3.4), where w1=w2/2 is now substituted by ( )π1 q qn n,  +

( ) ( )[ ]δ π πT c c n nq q q q1 1, ,− . Clearly, as To f  the case of infinite grim punishments

obtains; as T decreases, the punishment payoff increases and hence the punishment

becomes less severe. This generates a great deal of flexibility on the punishments. Figure

3 plots the range of discount factors that sustain the joint-profit maximizing outcome for

alternative punishment lengths, T o f , T=50 and T=10. As could be expected, reducing

the punishment length, and thus softening the punishment, has two effects: the collusion

constraint is tightened and the communication constraint is relaxed. For high discount

factors, the collusion constraint is nonbinding and the communication constraint is

binding, so that a reduction of the punishment length is in fact appropriate. Is it possible

to vary the punishment length such that the joint-profit maximizing outcome becomes

sustainable for all discount factors above δg ? The following proposition establishes that

this is indeed the case.

                                               
25 An alternative way to relax the upper bound may seem to be to increase firm 2's profit from

communicating. However firm 2 is already producing a one-shot best-response strategy against the
other firms. Hence, the only way to increase firm 2's communication profit is by changing firm i,
i ≠ 2  quantity when it is in the communication state. By observation 1 this is not possible.
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PROPOSITION 2. There are grim punishments, finite or infinite, such that the joint-

profit maximizing outcome is sustainable as a perfect Bayesian equilibrium for

G �[ ]δ g ,1 .

PROOF. First, T o f  supports collusion for G �[ ]δ δg g,  by proposition 1. Now

consider T=2. Straightforward algebra using the collusion and communication constraints

(3.3) and (3.4) with the appropriate substitutions shows that a grim punishment with

length T=2 supports collusion if G �[ ]δ * ,g 1 , where

( )
δ

σ
σg

* ≡ +
+
+

−














1

2
1

2

1
1

2

.

Furthermore, ∂δ ∂σ ∂ δ ∂σg g
* / , / %0 0 ; and at V = 1, δ g

*  =.673 < δ g  = .698.

Therefore, for any 1 0≥σ δ δ %, *
g g . This implies that the regions [ ]δ δg g,  and [ ]δ g

* ,1

overlap so that the range [ ]δ g ,1  is covered by either infinite grim punishments or grim

punishments with length T=2. This suffices to show the proposition.

This analysis shows that less severe punishments than infinite grim-trigger

punishments can and should be used to sustain collusion for discount factors above δg .

This contrasts with the literature on public information [Abreu(1986)], which criticizes

infinite grim-trigger punishments as being not sufficiently severe.

4.2 Stick-and-carrot punishments

Do there exist punishments such that collusion is sustainable for some discount factors

below δ g ? This requires relaxing the collusion constraints (3.3), which should be done

by making the punishments more severe than the infinite grim punishments considered

above. To find the ''true'' lower bound on the discount factor, the most severe credible
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punishments should be found. In a perfect public information model Abreu (1986,

Theorem 14) has shown that the most severe punishments, within the class of symmetric

punishments, take the unique simple form of stick-and-carrot punishments: a very severe

one-period punishment after which collusion is restored. In Abreu's public information

model, the severity of the punishment is limited solely by a simple no-deviation constraint

in the punishment state. In the present model with private information the severity of the

punishment may be further limited due to communication constraints.26

As in the previous subsection, the focus is on the joint profit maximizing outcome

(qc,qc,qc). An analysis of alternative symmetric collusive outcomes (q,q,q) would follow

similar arguments.

Stick-and-carrot punishments are defined as follows. For each firm i, there is one

punishment state, pi
1 . In this punishment state firm i chooses a symmetric punishment

quantity ( )q f pp
i i≡ 1  yet to be determined. Transitions from the punishment state are

analogous to transitions from the collusive state as described above:

Firm 2: x stay in p2
1  if at least q qp

2 ≠

x move to mi
2  if only q qi

p≠

x move to m2
2  if only q qp

1 ≠  and q qp
3 ≠

x move to c2 otherwise.

Firm i, i =1, 3: x stay in pi
1  if at least q qp

2 ≠

x move to mi
i  if only q qi

p≠

x move to ci otherwise.

In contrast to Abreu's model with public information, firms cannot always immediately

move back to the first punishment state pi
1  in the event one of the firms has deviated

                                               
26 I will assume here that firms operate at a sufficiently large marginal cost c, D > c > 0. This rules

out cases in which the punishment quantities cause prices to be negative. In this section, the
parameter D should therefore be interpreted net of (a sufficiently large) marginal cost.
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from the prescribed punishment quantity qp. This is only possible if it was firm 2 who

deviated. If firm 1 or 3 deviated, an intermediate communication state is required.

To determine the punishment quantity qp in the stick-and-carrot punishment, note that

firm i 's (normalized) continuation profit at the start of the punishment state, wi, is now

given by

w1 = w2/2 = w3 { (1 - G)S1(q
p,qp) + GS1(q

c,qc)

and that the punishment constraints for firms 1, 2 and 3 are:27

wi t  (1 - G)Si ( )[ ] ( ) ( )[ ]q q q q q q wi
U p p

i i
B c c

i, ,+ − +1 2δ δπ δ ,    i =1, 3

w2 t (1 - G)S2 ( )[ ]q q q q q wp U p p p, , ,2 2+δ .

The punishment quantity qp in the stick-and-carrot punishment is then determined as

follows: qp minimizes the punishment payoff (4.1) subject to all no-deviation constraints.

The following observation is useful to determine which of the punishment constraints is

nonbinding.

OBSERVATION 3. Given a symmetric collusive outcome and symmetric stick-and-

carrot punishments, firm 1 and 3's punishment constraints coincide. Furthermore, firm i's,

i=1, 3, punishment constraint is nonbinding if ( ) ( )[ ]π i i
B c B c

iq q q q w, 2 0− ≤ ; otherwise firm

2's punishment constraint is nonbinding.

PROOF: Check (4.2), noting that S1 ( )[ ]q q qU p p
1 ,  = S2 ( )[ ]q q q q qp U p p p, , ,2

/2 =

S3 ( )[ ]q q qU p p
3 , , ( )[ ]π1 1q q qB c c,  = ( )[ ]π3 3q q qB c c,  and w1=w2/2= w3.

From observations 2 and 3, it suffices to consider only (i) firm 2's first communication

constraint, and (ii) either firm 1's collusion and punishment constraints or firm 2's

                                               
27 In contrast to grim-trigger punishments, these constraints are not trivially satisfied.
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collusion and punishment constraints depending on the sign of ( ) ( )[ ]π i i
B c B c

iq q q q w, 2 − .

Using observations 2 and 3, it is straightforward to show that qp is the largest quantity

that solves either firm 1's punishment constraint in (4.2), o} firm 2's punishment

constraint in (4.2) or firm 2's communication constraint (3.4) as an equality without

violating any of the other no-deviation constraints. Call these solutions respectively

� , ~q q and qp p p .

If there would be public information, say due to an information exchange agreement,

then communication constraint (3.4) would be absent and firm 1's punishment constraint

in (4.2) would look the same as firm 2's punishment constraint. As in Abreu (1986), qp is

then the largest solution to firm 2's punishment constraint in (4.2) , i.e.

( )
( )

q qp p= ≡
+

+ − +

+ − +















α
β γ

β γ β β γ δ

β γ β β γ δ2 2
.

Call the stick-and-carrot punishment using this quantity q p  the standard stick-and-carrot

punishment (referring to Abreu), and the stick-and-carrot punishments using either �qp  or

~q p  the modified stick-and-carrot punishments. Under public information the standard

stick-and-carrot punishment is the unique most severe, and hence optimal, punishment in

the class of symmetric punishments28.  The corresponding lower bound on the discount

factor for the joint-profit maximizing outcome to be sustainable is found from firm 2's

collusion constraint (3.3), after substituting w2 given in (4.1) with qp = q p :

( )
( )δ δ

σ
σ

≥ ≡
+
+s

2

16 1

2

 .

This lower bound is always below the grim punishment lower bound δ g , as could be

expected (see Figure 4).

                                               
28 This was shown by Abreu for J = E; it immediately generalizes to J � E.
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The first question is whether the standard stick-and-carrot punishment, which is

optimal in the public information model, is still feasible under private information. This

question is answered in the following proposition:

PROPOSITION 3. When firms use the standard stick-and-carrot punishment (qp = q p ),

the joint-profit maximizing outcome is not sustainable as a perfect Bayesian equilibrium.

PROOF: See Appendix.

Intuitively, under private information the standard stick-and-carrot punishment is too

severe to induce firms 1 and 3 to carry out the punishment, or to induce firm 2 to

communicate deviations by firm 1 or 3. More specifically, for all V� (0,1], the standard

stick-and-carrot punishment violates firm 1 and 3's punishment constraint. (Deviating

gives them an intermediate communication payoff.) Furthermore, for V� (0,0.795], the

standard stick-and-carrot punishment violates firm 2's communication constraints. Given

Abreu's result that the standard stick-and-carrot punishment is the unique optimal

(symmetric) punishment under public information, Proposition 3 implies that problems of

private information hinder collusion in a nontrivial sense. This then helps to explain the

presence of information exchange agreements, designed to make private information

public in order to facilitate collusion.

The next question is for which range of discount factors the modified stick-and-carrot

punishments, with either qp = �qp  or qp = ~q p , can sustain the joint-profit maximizing

outcome. An answer to this question will give more concreteness about the firms'

reduced collusive possibilities. Let the value of the discount factor for which firm 1's

collusion constraint (3.3) is just satisfied with equality be �δs  if qp = �qp , and 
~
δs  if

qp = ~q p . We then have:

PROPOSITION 4. Suppose firms use modified stick-and-carrot punishments. (i) For

V� (0,0.117], the joint-profit maximizing outcome is sustainable as a perfect Bayesian

equilibrium if and only if δ δ≥ �
s, where δ δ δs s g% %

� .
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 (ii) For V� (0.117,1], the joint-profit maximizing outcome is sustainable as a perfect

Bayesian equilibrium if and only if δ δ≥
~
s , where δ δ δs s g% %

~
.

PROOF: See Appendix.

Intuitively, for V�(0,0.117] firm 1 and 3's punishment constraints are the binding

constraints, so that firms produce �qp in the punishment state, i.e. the largest quantity

such that firm 1 and 3are just indifferent between punishing and deviating in their

punishment state. For V� (0.117,1], firm 2's communication constraint is the binding

constraint, so that firms produce ~q p , i.e. the largest quantity such that firm 2 is

indifferent between communicating and not communicating in its communication states.29

Propositions 3 and 4 are illustrated on Figure 4. The lower bounds�δs  and 
~
δs  are

much below δ g , the lower bound when grim punishments are used. They are also,

however, much aboveδ s , the lower bound when the standard stick-and-carrot

punishments from the public information case would have been feasible.

5. Suggested extensions

This paper has studied the stability of collusive behavior when cheating is privately

observed due to localized competition. Several extensions are desirable, both at a game-

theoretic and at an economic level.

The paper has focused attention on a restricted class of strategies, in particular on

symmetric punishments.30 Removing these restrictions would make it possible to

                                               
29 Although for V� (0,0.117], ~q p  is more severe than �qp , this would violate firm 1's punishment

constraint for discount factors close to the lower bound�δs  in this range of V. Furthermore,

although for V� (0.117,1] �qp  is more severe than ~q p , this would violate either firm 1's collusion

constraint or firm 2's communication constraint for any discount factor in this range of V.
30 Propositions 1-4 focused on the sustainability of the joint-profit maximizing outcome. However,

Observations 1-3 apply to the whole set of symmetric collusive outcomes, as defined in the text.
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characterize the full set of perfect Bayesian equilibria. Unfortunately, as illustrated by

Abreu's (1986) analysis of a simple homogeneous goods model, the analysis of

asymmetric punishments quickly becomes intractable. Furthermore, new theoretical work

would be required, in particular an extension of Abreu's (1988) results to games with

privately observed actions. In a public information model with discounting Abreu (1988)

shows that any subgame perfect equilibrium can be generated by a strategy profile that

specifies that play switches to the worst equilibrium for player i, i=1  n, whenever i has

deviated from its prescribed action. A strategy profile then simply consists of an initial

path, and n asymmetric, player-specific punishments. However, with private information,

player-specific punishments are only possible if the firms with private information on the

identity of the cheater can credibly signal the identity of the cheating firm to the

uninformed firms. In the model adopted in this paper, cheating by, say, firm 1 is observed

by firm 1 and 2, and not by firm 3. A punishment, specific for firm 1, would require that

firm 2 be able to credibly signal firm 1's past deviation to firm 3. If it can be shown that

this is not possible, then the restriction to symmetric punishments would become natural,

in contrast with the public information models. A detailed analysis on the possibility and

the properties of asymmetric, player-specific punishments in oligopoly with private

information is an extremely interesting and promising topic for future research.

The chosen economic model made it possible to formalize the information problems

generated by the product market structure in a relatively simple way. The model allowed

for sharp results and a close comparison with the existing collusion literature under

perfect public information. Nevertheless, the chosen model describes a somewhat specific

oligopolistic industry. In the Introduction it was argued that the phenomenon of localized

competition is widespread; different economic models are required to describe different

industries. Do the results extend to alternative economic models where similar private

information problems arise from the product market structure?

A first alternative worth investigating is a triopoly model with price-setting firms,

rather than quantity-setting firms. One possibility is the well-known Hotelling model,

                                                                                                                                         
Consequently, the analysis could be easily extended to the symmetric most collusive outcomes
when the joint-profit maximizing outcome is not sustainable, i.e. for low discount factors.
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with three firms located on a line representing a one-dimensional product space.31 This

model is studied in greater detail in Appendix B. It yields localized competition, with

exactly the same information structure as the representative consumer model studied in

the text: the firm located in the middle of the line can infer the prices set by its left and

right neighbours from its realized past sales; the left and right firms can only infer the

prices set by the firm in the middle and not the prices set by the third firm. One may

therefore view the analysis of the Hotelling triopoly model as a test for the sensitivity of

the results to the specific functional forms, given the same information structure.

Observations 1 and 2 can be immediately applied. It is shown that results similar to

Propositions 1 and 2 hold.

Second, it would be interesting to analyze more realistic oligopoly models with an

information structure such that firms can only delay a punishment by not communicating

past cheating, but not fully prevent it as in the present model. One possibility is Salop's

(1979) model, with four or more firms located on a circle, rather than on a line. In this

model, a firm realizes that he cannot unilaterally "block" its private information about

past cheating: in choosing whether or not to communicate a past deviation, he realizes

that independent of his action the whole industry will eventually become informed about

the deviation anyway, through the equilibrium communications taking place at the other

side of the deviator. A similar possibility of delay, rather than full prevention of

punishment, may occur in more realistic product markets in which products are

differentiated in multiple dimensions.

Third, it is worthwhile to consider industries with more than three firms. Most

existing economic models predict that collusion is harder to sustain as the number of

firms increases. However, none of these models capture the conventional antitrust

wisdom that detection becomes more difficult as the number of firms increases.32 Models

with localized competition may better capture this conventional antitrust intuition.

                                               
31 Note that the representative consumer model adopted in this paper would no longer yield localized

competition if firms set prices rather than quantities. This can easily be seen from inverting the
demand system (??).

32 The intuition is instead based on a change in the relative payoffs from collusion, deviation and
punishment as n changes.
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Consider first Salop's circular model with one-dimensional product differentiation, as

described above. With two or three firms, all firms can detect cheating with a one period

lag. With four firms an extra period is required before cheating is ''communicated'' to all

firms in the industry. The detection lag further increases as the number of firms increases.

More generally, consider product markets with multidimensional product differentiation.

As the number of differentiating dimensions increases, a larger number of firms is

required for competition to be localized, see Anderson, de Palma and Thisse (1989).33 In

complex product markets with multidimensional product differentiation it may therefore

be expected that information problems due to localized competition are absent when

there is a small number of firms, and emerge when the number of firms becomes

sufficiently large.

Finally, it would be interesting to extend the model of localized competition to allow

for random demand shocks, as in Stigler (1964) or Green and Porter (1984). The model

in this paper assumes that the goods produced by firm 1 and 3 are fully independent of

each other. This assumption may be viewed as the opposite extreme of most other

repeated oligopoly models with quantity-setting firms, in which firms compete fully

symmetrically.34 It is possible that results similar to those obtained in the present paper

hold in a model with an intermediate level of interdependence between firm 1 and 3

(different from the level of interdependence between firm 1 and 2, and firm 3 and 2),

provided that some random noise is added.

                                               
33 See also footnote 3.
34 See, for example, Green and Porter (1984), Abreu (1986), Deneckere (1983) and Ross (1992).
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A. Appendix

Proof of Observation 1. First I show that ( )f mi
2 2  z qc

2 . Given ( )f mi
2 2  z qc

2 . I then

show that firms should produce their one-shot best-response quantity in the

communication states.

Suppose ( )f mi
2 2  = qc

2 . Then firm i's, i =1, 3, collusion constraint (state ci) is given by

( )π i i
c cq q, 2  t (1 - G) ( )( )π i i

U c cq q q2 2,  + ( )[ ]δπ i i i
i cf m q, 2 .

For this to hold it is necessary, given ( )( )π i i
U c cq q q2 2,  ! ( )π i i

c cq q, 2  for ( )q q qi
c

i
U c≠ 2 , that

( )( )π i i
U c cq q q2 2,  ! ( )[ ]π i i i

i cf m q, 2 (A.1)

Moreover, if ( )f mi
2 2  = qc

2 , then firm i's, i =1, 3, communication constraint (state mi
i ) is:

(1-G) ( )[ ]π i i i
i cf m q, 2  + ( )[ ]δπ i i i

i cf m q, 2  t (1 - G) ( )( )π i i
U c cq q q2 2,  + ( )[ ]δπ i i i

i cf m q, 2

so that it is necessary that ( )[ ]π i i i
i cf m q, 2  t ( )( )π i i

U c cq q q2 2, , which contradicts (A.1). This

demonstrates that ( )f mi
2 2  z qc

2 . Given that ( )f mi
2 2  z qc

2 , the communication

constraints for firm 1 and 3, and for firm 2 in m2
1  are as follows:

mi
i , i = 1,3: (1-G) ( ) ( )[ ]π i i i

i if m f m, 2 2 + Gwi t (1-G) ( )( ) ( )[ ]π i i
U i iq f m f m2 2 2 2,  + Gwi

m2
1

: (1-G) ( ) ( )[ ]π2 1 1
1

2 2
1

3f m f m qc, ,  + Gw2 t

max ̂  (1-G) ( ) ( )( )[ ]π2 1 1
1

2 1 1
1

3 3f m q f m q qU c c, , ,  + Gw2,

(1-G) ( )[ ]π2 1 1
1

2 3f m q qc c, ,  + G(1-G) ( ) ( )[ ]π2 1 1
1

2 2
1

3f m f m qc, ,  + G2w2 ̀
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For these inequalities to hold it is necessary that ( ) ( )[ ]π i i i
i if m f m, 2 2  t

( )( ) ( )[ ]π i i
U i iq f m f m2 2 2 2,  and ( ) ( )[ ]π2 1 1

1
2 2

1
3f m f m qc, ,  t ( ) ( )( )[ ]π2 1 1

1
2 1 1

1
3 3f m q f m q qU c c, , , . A

similar argument holds for the communication states m2
2  and m2

3 . This shows

Observation 1.

Proof of Proposition 3. By definition of the standard stick-and-carrot punishment firm

2's punishment constraint in (4.2) is just satisfied with equality. It may be verified that

firm 1's punishment constraint is satisfied if and only if ( )[ ]π1 1q q qU p p,  t

( ) ( )[ ]π1 1 2q q q qB c B c, , which holds after some calculations if and only if

G � ( ) ( )
σ

σ σ

2

24 1− +
.

It can be easily verified that this condition is violated for 1 t V > 0, given that (3.3)

should hold for firm 2's collusion constraint to be satisfied. This is sufficient to prove the

proposition. (Note that it can analogously be checked that firm 2's communication

constraint (3.4) is violated for .795 t V > 0, given that (3.3) should hold for firm 2's

collusion constraint to be satisfied.)

Proof of Proposition 4. Given that the standard stick-and-carrot punishment, in which

qp  = q p , is not a perfect Bayesian equilibrium by Proposition 3, only the stick-and-

carrot punishments in which qp = �qp  or qp = ~q p  remain to be considered. The

punishment quantity �qp  is the maximum quantity such that firm 1's punishment

constraint (4.2) is just satisfied with equality; ~q p  is the maximum quantity such that firm

2's communication constraint (3.4) is just satisfied with equality. For both qp = �qp  and

qp = ~q p , tedious calculations show that if firm 1's collusion constraint is satisfied, then

( ) ( )[ ]π1 1 2q q q qB c B c,  - w1 t 0. This implies, by observations 2 and 3, that firm 2's collusion

and punishment constraints are nonbinding. (a) For qp = �qp , it then remains to check

firm 1's collusion constraint and 2's communication constraint. These two inequality



34

constraints are tedious, but depend on only two parameters: G and V . Hence numerical

simulations can be used to determine when the two constraints are simultaneously

satisfied. These simulations show that for V  t 0.117 these constraints cannot be

simultaneously satisfied, and that for V  < 0.117 these constraints are satisfied if and only

if G � [ ]� , �δ δs s′ , where δ s
 < �δs  < δ g , and where �′δs  is the upper bound on the discount

factor for firm 2's communication constraint to be satisfied. (b) For qp = ~q p , it remains

to check firm 1's collusion and punishment constraints. Simulations show that for V  t

0.117 the constraints are satisfied if and only if G t 
~
δs where δ s  < 

~
δs  < δ g , and for V <

0.117 these constraints are satisfied if and only if G t 
~

′δs , where 
~

′δs  is the lower bound

on the discount factor for firm 1's punishment constraint to be satisfied. Combining (a)

and (b), part (ii) of Proposition 4 immediately follows. Further simulations show that, for

V d .117, �δs  < 
~

′δs < �′δs , from which part (i) of Proposition 4 follows.
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B. Appendix

This Appendix considers a Hotelling triopoly model with price-setting firms. The model

generates the same type of information structure and similar symmetry properties as the

representative consumer model developed in the text. As a result, Observations 1 and 2

immediately apply. One may view the exercise in this Appendix as a test to evaluate the

sensitivity of the results to the specific assumptions about the functional forms, given the

assumed information structure. A discussion on the sensitivity of the results to the

assumed information structure is found in the concluding section (section 5).

Consider three price-setting firms located on a line of length 2L. Firm 1 is located at

the extreme left (at 0); firm 2 is located in the middle (at L); firm 3 is located at the

extreme right (at 2L). Consumers are distributed uniformly on the line. A consumer

located at a distance y from firm $, purchasing one unit of good i, obtains a utility of:

v - ty - pi,

where t is a unit transportation cost. Note that transportation costs are linear in distance

y. Each consumer chooses the good that yields the highest utility. Aggregate demand for

each good i is found in the standard way by calculating the location, x*, of the consumer

indifferent between good 1 and 2; and the location, x**, of the consumer indifferent

between good 2 and 3. Assuming that the market is fully covered, these locations define

the borders of the firms' market areas. These locations are given by:

x* = 
p p

t

L2 1

2 2

−
+  and x** = 

p p

t

L3 2

2

3

2

−
+ . (B.1)

Assuming the market is fully covered, demand for good 1 is given by D1(p1,p2) = x*;

demand for good 2 is given by D2(p1,p2,p3) = x**-x*; demand for good 3 is given by

D3(p3,p2) = 2L-x*, or, using (B.1):

Di(pi,p2)=  
L p p

t
i

2 2
2+

−
, i =1,3
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D2(p1,p2,p3) = L - 
p p

t

p p

t
2 1 2 3

2 2

−
−

−
.

Normalize marginal costs to zero, so that the firms' profits just equal their revenues.

The Bertrand-Nash equilibrium prices are straightforwardly derived from solving the

system of first-order conditions from revenue maximization, given the demand functions

(B.2). It turns out that this solution is a symmetric solution (pn,pn,pn), where

pn = tL.

The corresponding Bertrand equilibrium demands are L/2 for firm 1 and firm 3, and L

for firm 2. The Bertrand equilibrium profits are given by π π π1 2 3
22 2n n n tL= = =/ / . It can be

verified that the market is indeed fully covered, as assumed, if products are sufficiently

close subtitutes, i.e. v t (3/2)tL. If this condition is violated, the problem of collusion

becomes trivial since firms are local monopolies.

Candidate collusive prices are the prices such that the market is just covered. These

are the prices such that the consumer indifferent between 1 and 2, and the consumer

indifferent between 3 and 2, obtain zero surplus. This yields a symmetric solution

(pc,pc,pc), where

pc = v-
tL

2
,

with corresponding collusive profits ( )π π π1 2 32 2 2c c c v tL L= = = −/ / / . It can be verified that

the candidate collusive prices are in fact the actual collusive prices, i.e. firms cannot do

better by charging even higher prices so that the market would no longer be fully

covered.35

The information structure is similar to the representative consumer model presented in

the text: firm 2 can infer firm 1 and firm 3's past prices by inspecting the customers it

served; firm 1 and 3 can only infer firm 2's past prices and not those of the third firm.

Furthermore, the Bertrand-Nash and collusive prices are symmetric, and firm 2 obtains

                                               
35 See Chang (1991) for a similar observation for the case of quadratic transportation costs.
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twice the profits of firm 1 and 3 at symmetric prices. These facts make it possible to

immediately apply Observations 1 and 2. One can easily calculate the unilateral and

bilateral best-response functions, as defined in the text. For simplicity, only the cases

with an interior solution are considered, requiring some additional restrictions on the

parameters, as given below. The firms' unilateral best-response prices to the collusive

prices pc,given above, are:

( ) ( ) ( )p p p p p p p
v tLU c U c c U c

1 2 3 2 4
= = = +, ,

assuming v d (7/2)tL. The firms' bilateral best-response prices to the collusive price pc of

the third firm, are given by:

( ) ( )( )p p v tLi
B c = +

1

7
11 2/ ,     i = 1,3

(B.2)

( ) ( )p p v tLB c
2

2

7
2= + ,

assuming v d (29/10)tL.

Consider infinite grim punishments, restricting attention to the range of parameters v

� [(3/2)tL,(29/10)tL]. The punishment payoffs wi are then simply given by the Bertrand-

Nash payoffs computed above, and the punishment constraints are trivially satisfied.

From Observation 2, it remains to check only firm 2's communication constraint, which

has the form analogous to (3.4), and either firm 1 or firm 2's collusion constraint, similar

to (3.3). It can be shown that ( ) ( )( ) ( )π π1 1 2 1p p p p p pB c B c n n, ,−   < 0 for v < 5.116 tL,

which is satisfied, so that from Observation 2 firm 1's collusion constraint is nonbinding.

Calculations show that firm 2's collusion constraint is satisfied if and only if G t δ h ; and

firm 2's communication constraint is satisfied if and only if G d δh , where

δ h

r

r
≡

−
+

2 3

2 5
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δ h
r

r
≡

−
+

2 3

2 11

25

4
,

and where r { v/tL is the subsitution parameter. These findings yield a proposition similar

to Proposition 1 in the text. A proposition similar to Proposition 2 can also be shown,

i.e. less severe, finite grim punishments can be constructed to also support collusion for

the range of discount factors [ ]δ h,1 . To see this, consider a grim punishment with length

T=1, i.e. after a deviation by firm 2, firms set the Bertrand-Nash price for one single

period, after which they go back to the collusive prices. It can be verified that firm 2's

communication constraint is now always satisfied; firm 1's collusion constraint is

nonbinding and firm 2's collusion constraint is satisfied if and only if δ δ≥ h
* , where

δ h

r* ≡
−2 3

8
.

It can be verified that δ h
* < δh  for v < (39/2)tL, so the regions [ ]δ δh h,  and >δ h

* ,1]

overlap, analogous to the proof in Proposition 2. An analysis of the more severe stick-

and-carrot punishments, to check the sustainability of collusion for discount factors

below δ h , is more involved. The problem is that the action space is bounded: prices

cannot be negative. The worst punishment price is therefore zero and the sales do not

become arbitrarily high at this price in the Hotelling model. Consequently, payoffs cannot

be made arbitrarily low and the punishment phase may have to last for more than one

period.


