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Abstract

An exhaustible stock of resources may be exploited by N
players. An arbitrarily long duration of the game is only
possible, if the utility function satisfies certain restrictions at
small values R of extraction. We find that stability against
unilateral defection occurs if the elasticity of the marginal utility
turns out to be larger than (N - 1 )/N, however independent of the
value of the discount factor. Hence we find that cooperation does
not depend on the discount factor for a certain range of
elasticities. Analogy to phase transitions in statistical physics is
discussed.
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1 Introduction

Since its beginnings in economics, a basic question of game theory has been
whether cooperative behavior can be expected in an environment in which
every player cannot credibly commit himself to a certain strategy. The folk
theorem has demonstrated that cooperation may emerge when all players
face a sufficiently long time horizon, are sufficiently patient and actions of
every player are not unique. If games are repeated, repetition may play
a disciplinary role for cooperation because future behavior may be made
dependent on past actions. The folk theorem has demonstrated that all
rational outcomes including perfect cooperation and no cooperation may
be sustained by repetition. Furthermore, it has shown that the chances for
cooperation increase with the discount factor. The reason is that unilateral
defection from a cooperative behavior is not profitable when future outcomes
are sufficiently taken into account and present defection is punished by the
opponents in future periods. The strategies taken by players responding to
defection of a single player have been discussed extensively in (Abreu, 1988)
and (Farrell, 1989).

The proof of the folk theorem for general games in strategic form has been
presented by Fudenberg and Maskin (Fudenberg, 1986), Abreu, Dutta and
Smith (Abreu, 1994) and Wen (Wen, 1994). Fudenberg, Levine and Maskin
(Fudenberg, 1994) have shown that the folk theorem even holds when past
actions are not observable but influence a stochastic variable. Benoit and Kr-
ishna (Benoit, 1985) have demonstrated that cooperation can be sustained
in finitely repeated games if at least two one-shot Nash equilibria exist one
of which Pareto-dominates the other. In this case, the agents' strategy is
supposed to revert to the "worse" equilibrium if one agent deviates from
the cooperative outcome. If no agent has defected before the last period is
reached, every agent's strategy is to take the "better" equilibrium in the last
period which may prevent defection in the next to last period. Dropping the
assumption of complete information, reputation can play a role for sustain-
ing cooperation (for reputation and repetition in prisoners' dilemma games,
see (Kreps, 1982). In (Bernheim, 1995) it has been demonstrated that the
folk theorem holds also in infinitely repeated games when the discount factor
declines. Kandori (Kandori, 1992) and Smith (Smith, 1992) have derived a
folk theorem for models with overlapping generations. In all these models,
the whole set of attainable outcomes may result from a long-run equilibrium.



The folk theorem holds for repeated games. Repetition is a very specific
assumption with respect to the time structure of a game. In general, games
involving a time structure can be dynamic so that the action space and the
utilities are not stationary but change endogenously as a result of past ac-
tions. From this perspective, repeated games are a real subset of the set
of dynamic games because they make the specific assumption that neither
the action space nor the utility functions change. Dutta (Dutta, 1995) has
demonstrated that this distinction is significant because the folk theorem
does not hold for dynamic games in general. Repeated games imply a co-
operative and a non-cooperative equilibrium which do not depend on the
discount factor but the equilibria of dynamic games do in general. The rea-
son is that the time preference does also determine the optimal behavior of
the stock variables. The interdependence between discount factor and stock
variables implies that the equilibria itself vary with the discount factor, and
it implies that the chances for cooperation do not necessarily increase with
the discount factor. Consider for example an exhaustible resource which can
be exploited simultaneously by JV players. Suppose that non-cooperative be-
havior (i.e. defection) implies that a single player takes the whole rest of the
resource, given cooperative behavior of his opponents. When the discount
factor increases, two effects can be observed: first, the future non-availability
of the resource after defection is given a stronger weight. This effect makes
defection less profitable. Second, the cooperative solution is changed in favor
of more resource conservation. More resource conservation, however, implies
that defection is made more profitable because the remaining stock in every
period which may be seized unilaterally is increased.
It is this game which is the starting point of this paper. We are interested
in exploring not only the role of the discount factor but the role of the util-
ity function defining the benefits of each player as well. We consider utility
functions which can be normalized and we restrict our attention to those
utility functions which are able to support long-run cooperation. We discuss
the chances of cooperative resource extractions in a fairly general setting of
N identical players. Cooperation is immune against defection if the short-
run gains of defection fall short of the long-run gains of cooperation for each
player. We find that cooperation is immune against defection if the elasticity
of the marginal utility does not fall short of (N — l)/N, irrespective of the
discount factor. This result demonstrates that cooperation is never at a risk
in our model for a certain class of utility functions. The behavior as func-
tion of the elasticitiy has much in common with phase transitions in physics



where a quantity called order parameter is zero below a critical value of a
parameter and is different from zero above. In our case, the order parame-
ter is the discount factor which distinguishes a cooperation and a defection
phase, and the parameter the elasticitiy. For the range of elasticities between
(N — l)/iV and 1, the critical value of the discount factor is zero, and we find
a phase transition at (N — 1)/N where the discount factor becomes relevant
for cooperation.
In order to derive our results, we employ the Legendre transformation which
transforms the utility function and its first and second derivatives. This
method is standard in physics for determining phase transitions. The paper
is organized as follows. Section 2 presents the model. Section 3 derives the
cooperative solution. Section 4 discusses whether the cooperative solution
is immune against defection in two different games, a game under partial
control and a game which not subject to any external control. This section
derives also the essential results of this paper. Section 5 presents an exam-
ple and discusses the relationship of our results to the phenomena of phase
transitions in physics. Section 6 contains some concluding remarks.



2 The Model

We assume iV players which may extract from an exhaustible resource. This
exhaustible resource is assumed to be a common pool resource so that it
cannot be divided into individual claims of each player. The exhaustible
resource stock will be denoted by S(t) with a discrete integer time t. The
resource is storable only as a common pool so that any extraction of a player
is identical to instantaneous consumption. The equation of motion for the
resource stock is

S(t + l) = S(t)--£Ri(t) (1)

with Ri(t) > 0, S(t) > 0 and S(0) = S. R,(t) denotes actual resource
extraction of player i at time t. We assume that only the initial stock size S
can be observed, but that future stock sizes cannot. The game ends in tg, if
all players realize an empty stock in time step to + 1. An individual resource
extraction Ri(t) gives a certain instantaneous utility denoted by u(R) with
the following properties:

u'(R) > 0 and u"(R) < 0 V R e (0,5) (2)

Equ.(2) specifies that the marginal utility is positive and decreasing. The
utility function identical for all players depends only on the resource extrac-
tion R. Their intertemporal preference is given by a constant discount factor
5 . All games which we consider are started in period t •= 0. The utility
function F for all players is given by

F{R) = E E <W)) * (3)
i=l i=0

The strategy space of each player comprises his planned resource extractions
Ri(t) at each time ( with 0 < Ri(t) < S. It contains the cooperative solution
R'{t), which is given by the maximum of F in (3) under the condition

= s (4)

This solution Pareto-dominates all other non-cooperative equilibria. These
depend on the distribution rule to be applied, if the demand Si Ri(t) exceeds
the available stock size S(t). We will not discuss different distribution rules



because these rules will be relevant only if they affect the planned extractions
of the cooperative players. Instead, we assume that the demands of the
cooperative players will always be served in any period in which the resource
is not yet completely exploited. This assumption implies that defection will
not affect extractions of the cooperative players from a nonempty stock.
Hence, in all three scenarios we are going to discuss below the following rule
must be implied by the distribution mechanism. The defecting player will be
denoted with i = 0.

Rule 1 (G) IfS(t) > 0 => Ri(t) = R'(t) fori^O

Rule (G) ensures that for a non empty stock the demands of the cooperating
players are satisfied. Therefore the optimal strategy for a defecting player is
to seize the remaining stock at defection time tD. Our discussion of defection
is valid for any non-cooperative strategies as long as rule (G) is implied by
the distribution mechanism.
We consider three game3 which differ by the amount of external control.

• In a game under complete control (hereafter referred by CC) the exter-
nal control checks ex ante, whether the plan of each player exceeds the
cooperative extraction. If it does, all his present and future extractions
are set equal to 0. This enforces the cooperative plan, since no player
can gain by defection.

• In a game under partial control (PC) the external control performs
the same test ex post and excludes the defecting player from future
extractions. Hence, it is rational for him to seize the whole remaining
stock and thereby the defecting player finishes the game.

• In a game with no control (hereafter referred by NC) the defecting
player may optimize his sum of discounted utilities up to time to at
which the stock is exhausted. Obviously, in this case only the initial
stock size is known to the players, but not the time evolution (1).

The cooperative resource extraction policy is sustainable in game PC or NC,
respectively, if the benefits of the defection option are less than the benefits
of cooperation. Table 1 summarizes the games we consider.

The game will depend on the properties of u. In the remainder of this
section we discuss some aspects of u which will be important in later sections.
We assume, that u(R) is twice differentiable with positive marginal utility



Game

CC

PC

NC

controlled
quantity

Ri(tD) > RT(tD)
ex ante

Ri(tB) > R*(tD)
ex post

none

punishment

Ri(t) = 0 t > tD

Ri(t) = 0 t >tD

none

optimal defection

not possible

seize the rest of the
resource stock
in period tD

seize the rest of the
resource stock

during Jo periods

Table 1: Controlled quantity, punishment and optimal defection in different
games. In all cases rule (G) is implied by the distribution mechanism.

u'(R) and concave (u"(R) < 0) in the intervall (0, Rmax]. Utility functions
are defined only up to an additive constant and an arbritrary scale, i.e. they
can be changed according

u -> u(R) - \u(R) + u0

The common utility function (3) changes according

F -> F{R) = F(XR) + uo/(l - 5)

(5)

(6)

only by an irrelevant additive constant. u(R) must be be finite at R = 0,
otherwise the infinite sum in equ.(3) becomes meaningless for a finite stock
size 5. The freedom in the choice of Uo w e can use to require without loss
of generality u(0) = 0. Therefore our utility functions are non negative func-
tions of R. This seems to exclude the frequently used logarithmic function.
Since

(7)
7->0

holds, this function can be approximated by a power law. It is impossible
to distinguish In R empirically from a power law with small 7 within finite
measuring accuracy. The normalization u(0) = 0 requires in the use of equ.
(7) an arbitrary large constant u0 — I/7. In table 2 we list some examples
for commonly used utility functions.



utility function

u(R) = Q0/(l - e) R1-
u'(R) = Q0R-<

e< 1

u(R) = QOR[1 + HRo/R)}
u'{R)=Q0\nR0/R,

R<Ra

u(R) = QORO[1 - exp(-R/R0)]
u'(R) = Qoexp(-R/Ro)

ti(fl) = QOR(1 - R/(2R0))
u'(R) = «Jo(l - R/Ro)

R<RQ

Legendre Transf.

g(Q) = -0o[«/(i -«)]
•(Q0/Qf-e)"

g'(Q) = {QolQ)1"-
g(Q) = -QoRoexp(-Q/Qo)

g'(Q) = Roexp(-Q/Qo)

g(Q) = R0[Q - Qo
+QIR{Q0/Q)\, Q<QO

g<(Q) = R0\n(Q0/Q)

g(Q) = ROQ(1 - Q/(2Qo))
g'(Q) = Roil - QIQo)

Q<Qo

t0 = CO

Qmax = °O

«M = «

t0 = oo
<2mal = OO

to . = 0

i0 < oo

«.. = 0

i0 < oo

Table 2: Examples for utility functions u(R) (column 1). In column 2 its
Legendre tranformed function is given and in column 3 its properties. The
first example can be immune against defection, the second cannot.

The scalefactor in (5) defines the units the utility function is measured
with. A nontrivial case is obtained, if this scale can be tight on scale changes
of the resource R by

u(XR) = A1"tu(fl) (8)

A scaling law like (8) occurs in physics, especially in chaotic systems, in a
number of different cases (e.g. fractal dimensions, phase transitions, quantum
field theory of renormalizable fields a.s.o.). The exponent — e is called the
anomalous dimension of u. Requiring equ.(8) at all R would restrict u(R) to
a powerlike behavior as example 1 in table 2. For some of our applications it
is sufficient that the scaling law is only valid for small R, which is expressed
by the following definition:



Definition 2.1 u(-R) is asymptic scaling with anomalous di-
mension —eas if for sufficient small R the in-
equality

\u{R) - at •

holds with positive constants oj, a2 and ui.

Small R means, that the corrections to scaling proportional to R" can be
neglected, u has to exist at R -+ 0, therefore ea, has to be restricted to
eO3 < 1. Only the first example in table 2 has a nonvanishing anomalous
dimension — ea,. e,,, coincides with the value of the elasticity of u'iR) at
fl-> 0 :

e«, .im (9)
R-»o u'iR) v '

It is easy to prove that asymptic scaling utility functions satisfy equ.(8) at
small R.
Frequently the utility function u appears in an optimization problem. A
common method applied in statistical physics (Landau, 1969) is the use of
the so called Legendre transformed function giQ) (Rockafellar, 1970), which
is defined by the transformation

Q = u'iR) (10)

9(Q) = Q-g'(Q)-uiRiQ)) ( l i)

In (11) RiQ) is obtained from (10) by inverting the function u'iR), which is
given in terms of g as

R = g'iQ) (12)

It is easy to show that giQ) has the same convexity properties as «(/?), i.e.
g'iQ) > 0 and g"iQ) < 0. A problem can be characterized equally well
by 9{Q) as by «(/?). For our examples the Legendre transformed can be
computed (column 2 of table 2). Note that linear combinations of positive
utility functions with positive coefficients are again positive utility function
respecting (2). An important property is the support of g given by equ.(10).
The intervall R e [ 0, Rmax ] is mapped on the intervall Q e [ Qmax , Qmin ].
For our game utility functions with the property

Definition 2.2 u(R) has infinite range, if Qmax = co and
u"iR)R/u'iR) is integrable near R = 0.



can support infinite long duration of the game, as will be shown in the next
section.

10



3 Cooperative game

In the cooperative game the extraction fl;(i) of player i at time t follows
from the maximum of the common utility function

EE
with respect to R with the subsidiary condition

) = s (14)
i 1=0

In equ. (13) it is assumed, that the game ends after step io- Since u(0) = 0, all
sums extent only up to i0. The actual duration can be found by maximizing
F with respect to i0. If this optimal duration t0 vanishes, the outcome of the
game is the same as in a non-cooperative solution where each player plans to
extract the whole stock and receives the share S/N. Long term cooperation
is characterized by io = °°- The solution R' of the maximum of (13) can
be expressed in terms of the Legendre transformed giQ) (see for example
Rockafellar(1970)) in the following way

R'it) = sVn (15)
The shadow price /i(S,<5) has to be determined from condition (14)

J V E s V O = 5 (16)
1=0

Equ. (16) yields a one to one relation between y. and 5. The stock can be
equally well characterized by shadow price /i instead of S. Therefore the
nonlinear equation (16) needs not to be solved explicitly, which is one of
main advantages of using Legendre transformations. The optimal value of
the utility function (13)

F'(/.,«5,io) = F(fi-) (17)

depends also on to- Since fiS~' becomes large at t —> co, a necessary condition
for infinite duration is that u(fl) leads to Qmax = oo. In addition the now
infinite sum in (16) has to be convergent, which can be expressed as an
integrability condition of «(/?)• Thereby we arrive at our necessary condition
for infinite duration (the proof is given in the appendix A.I)

11



Criterion 3.1 An infinite duration is only possible if u has
infinite range according definition 2.2

Criterion 3.1 is met by the first two examples in table 2. Criterion 3.1 alone
does not guarantee infinite duration. If u'iR) diverges too fast at R -> 0,
then contributions of high t in equns.(16) and (13) become very small, and
finite io will be favoured. This is formulated more precisely by the following
theorem which is is proven in appendix A.2.

Theorem 3.1 // u has infinite range according definition
2.2 and satisfies l im^o R • u'iR) = 0, the
optimal duration to becomes arbitrary large
(to = co;.

The additional restriction of vanishing R • u'(ii) at R = 0 is not very severe,
since it needs a rather singular function u(fl) to have simultaneously ti(0) = 0
and R • u\R) / 0 at R = 0. As a consequence all examples in table 2 do
not violate this restriction. The first two examples satisfy also criterion 3.1
and support therefore infinitely long cooperation. They differ, however, with
respect to immunity against defection we will discuss in the next section.

12



4m Institute fur Weltwirtschafl

4 Stability against defection
The CC game discussed in the previous section has a Pareto optimal solution
given by (15). However, the game is in general not stable against unilateral
defection, if the PC or NC rules are imposed. For the rest of this section we
assume an utility function having infinite long duration under CC-rules. We
want to investigate conditions, under which a player may deviate from the
optimal extractions R* given by equ. (15). In PC one player may cooperate
to — 1 time steps and seize the rest of the stock after the extraction of the
other players. He will be inclined to do this, if his total gain

/<«?> = ' g 1 „ (ff<(^-<)) 5' + [u{S{tD)) - (JV - 1W(H6-'°))] 5<° (18)
1=0

exceeds his gain by cooperation

1=0

In equ.(18) S(io) denotes the stock size in time step to given by

S(lD) = S-ff'fSV-') (20)
1=0

Since the other players know that this player defects if the stability condition

is violated, we may say that the outcome of the game will be Pareto-inferior
in this case. Only if (21) is satisfied, we know that cooperation is immune
against unilateral defection. To study the effect of condition (21) we eliminate
as before S in favour of fi by equ.(16) with t0 = co and S(JD) by introducing

defined by

) (22)
!>lD

With the help of Q{pc) the function /(/>c» can be written

' g 'uig'^5-')) + P'ukfiQWS-*)) (23)

13



Now we replace u by its Laplace transformed g. After using equ. (22) we can
arrange A/<PC) as the sum of two terms

A/( p c »=A/ 1 " > c ) +A/ 2 (24)

with

A / r c ) = 0* - Qlpc>)g'iQlpc>&->°) + 5'°igiQlpc>8-'°) - S(M<T'°)) (25)

and
A/2 = - E PW) + (N- 1 W(/iO] (26)

1>1D

The first term is positive and depends also on Ql-PC^in,8) given by equ.(22)
as function of /i and 8. Using the convexity property of g one proves the
inequality (for a proof see appendix B )

0 < A/rC ) < (/i - Q(PC>)ig'iQlpc)8-<°) - g'i^")) (27)

A/2 is independent of Q'PC ', but not necessarily positive. If A/2 > 0 un-
der certain conditions, than A/ 'P C ' > 0 holds and cooperation is immune
against unilateral defection. Before doing this we discuss the analogous ex-
pressions in the NC game. The difference to the PC game is, that one player
can take more than his share in a cooperative game so that the stock is ex-
hausted after time step to and the game will be finished. The other N — 1
players cannot observe this defection and will continue to take their share
given by equ.(15). The actual resources taken by the defecting player involve
an optimization problem similar to the one discussed in section 3 and also
the solution precedes in a similar way as in the PC-game discussed in the
beginning of this section. These calculations are given in appendix B. The
result for the difference A/(JVC) = /(Arc) - / ( c c ) is the following

(28)

with

A/r c ) = E (/* - QiNC))9'(Q
iNC)n+8'[giQiNC)n - g(»n] w

!<'D

and A/2 the same as before. QlNC) is given by

E g'(QiNC)6-') - g'i»6-<) = N E </'(/<n (30)
1<1D We

14



Af[N is positive and obeys the inquality

0 < A/<W) < E 0* - Q(NC))(S'(Q(NC)r') - g'irf-')) (31)
t<iD

As we see the NC game differs form the PC game only that in the definition
of A/, the condition for Q(NC) and the inequality a sum £,<|D appears
instead of a single term.
For both games cooperation will be supported if A/2 > 0. Let us first
consider the case of small, but positive 8. The utility function satisfies the
necessary criterion (3.1), therefore the right hand sides of equ. (22) and (30)
are small, which implies a small difference /i — Q'wc*. Since A/{ and
A/I" are of second order in this small difference, they can be neglected. If
in addition u satifies asymptotic scaling (see definition 2.1), the sum for A/2

in (26) can be carried out for small 8

A/2 = - ^ V - 1 / f " • N L, - ^ ) • 8^'°V<~ (32)

The neglected terms in (32) are of order 8^+'D)/'" and Sll+u+t^/e". A/2 is
only positive if the asymptotic elasticity is larger than ec = (JV — 1)/JV. This
completes the proof of the following theorem

Theorem 4.1 // the utility function has infinite range ac-
cording definition 2.2 and satisfies asymp-
totic scaling with the anomalous dimension
eas, the game is for small 8 immune against
NC or PC defection if and only ifea, > ec =

At finite 8 the situation is more complicated, since a negative A/2 can be
balanced by the positive contribution of A/{ or A/J , which depends
on the details of the utility function. Therefore the requirement of positive
A/2 is only sufficient. A/2 is a sum of terms

r(Q) = ~(g(Q) + (N- l)Qg'iQ)) (33)

For the derivative of riQ) we obtain

r'iQ) = -NJiQ) - (JV - l)Qg"iQ) (34)

15



By replacing g"(Q) by the elasticity e(R) = -g"(Q)/(Qg"{Q))

(35)

we find, that r'(<2) is negative for all c(i?) > ec with R = g'iQ). If we
know, that for values Q -> co r(Q) is positive, equ. (35) implies that r(<3)
is positive for all Q with f(ii) > ec. Q -> co corresponds to the case 5 -> 0,
for which we can apply theorem 4.1. This finding we express in the following
theorem which gives the most salient result of our paper.

Theorem 4.2 // the utility function has infinite range ac-
cording definition 2.2 and satisfies for the
elasticity e(R) > ec for all R < S, the game
is immune against NC or PC defection for
all 8 > 0.

Theorem 4.2 states that the discount factor plays no role for sustaining co-
operation for a certain range of elasticities. Instead, cooperation can emerge
irrespective of the discount factor. This result is in deep contrast with the
findings of the theory of repeated games. Theorem 4.2 says that the discount
factor is irrelevant under certain conditions. In this case, time preferences
play no role for the sustainability of cooperation. If N is small, there is al-
ways a chance that all players cooperate irrespective of the discount factor.
If N is equal to 2, the range of possible elasticities supporting long-run coop-
eration irrespective of the discount factor is divided equally into a subrange
in which the discount factor is irrelevant and into a subrange in which the
discount factor matters. As we learn from the example in the next section
sufficiently large <5 may lead to cooperation even if e(i?) > ec is violated, and
there are cases, where e(K) > te is sufficient for cooperation. Therefore no
general statement is possible, unless more restrictions are imposed on the
utility function.

16



5 Example and Phase Transition

As an example we discuss the utility function of example 1 in table 2 given

by '

«(«) = YZ~e (36)

and its Laplace transformed function

g(Q) = j ^ Q ^ " (37)

u(i?) has infinite range (definition 2.2). The elasticity e is independent of R
and therefore it is also asymptotic scaling with eaj = e. Acording criterion
3.1 it supports infinite duration of the cooperative game. From theorem 4.2
we learn, that this cooperation will be sustained for

* > <c = ^ (38)

With the equations (36) and (37) the optimal extractions i?*(i) for the con-
trolled game CC and from there the differences A/'1 ' for defection with type
i = PC, NC can be computed

R*(t} = —(i x)x* (39)

Af(PC) = (S\ * ^ [ ( 1 _ x y t _ { 1 + {N _ 1 )a ; )1_€] { 4 0 )

[ 1 - (1 + (AT - l ) i 'D + 1)1- ' ( l - i ' D + 1 ) ' ] (41)

(42)

where we used the abbreviation x = 8ll'. The A/'1 ' change sign at 8 =
8^it,to). For the partial controlled game S^.PC^(t) is independent of the
time to where defection happens. Since the gain —A/'PC ' decreases with
to, the optimal time of defection is to — 0. The critical curve <5^PC)(e) is
shown for N = 2,4,10 in figure 1. For e > ec = (Af — 1)/N the function

17
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Figure 1: Critical curves 8C within PC-defection are shown in the (<5, e)— plane
for various number of players N. To the right of each curve are regions where
cooperation id sustained, to the left regions where one player will defect.

8ci(.) = 0 vanishes in agreement with theorem 4.2. For c < ec the game (PC)
still supports cooperation for sufficient large 8 > <5c(e).
In contrast to the iPC) case the critical curve S^.Nc^{e,tu) depends on tD.
Again the relation (5jwc'(t,t£i) = 0 holds for e > ec . For e < ec the function

(Arc) can be maximized with respect to tD

In 8
(43)

with ec = iN — 1)/N. Since tD has to be a non negative integer, we get
regions in the e,8 plane where —Aft-NC\e,to) is maximal. These regions
are shown in figure 2 in the (e, <5)-plane. For € < ec and sufficient small 8
the time step to = 0 is optimal. In this case there is no difference between
PC and NC strategy. If e approaches ec, to gets larger and larger and
approaches the value iD = co , where NC becomes identical to the CC
strategy. Therefore for all e < ec there will be a timestep to where defection
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becomes profitable for one player, within Â C rules. In contrast to NC
rules PC rules allow also cooperation for 6 < ec if the discount factor 8 is
sufficiently large.

Figure 2: Critical curves 8C within NC-defection at various defection times
to are shown in the (i5, e)—plane for N = 2 players. Dashed lines give the
loci of maximal A/(Arc)(tD) with respect to tD, solid lines A/ (WC)(iD) =
A/'w c ' ( iB + 1) holds. As in figure 1 regions of cooperation are to the left of
the curves.

The critical curve i5jPC'(e) shown in figure 1 allows an interpretation in
physical terms. The behavior of 8C as function of e

0 : £ > ec

l - e ( l / 2 ) e : e - > 0
(44)

is typical for a second order phase transition (Binney, 1992). In that case 8C

would be called an order parameter (magnetization, difference of density of
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liquid and gas, ratio of components in alloys or mixtures of liquids, asym-
metry of a cristal, orientation of polar molecules in a LCD device a.s.o.). It
vanishes as function of £ above a critical value £c of an parameter or field £
(which may be the temperature, pressure, chemical potential, voltage a.s.o.),
exhibits a power law near £c as in equ. (44) and saturates for small e as
in equ.(44). It divides in the (5, £)-plane regions of two phases, which are
distinguished by Sc = 0 (disordered phase) and <5C / 0 (ordered phase). The
importance of those phase transition in physical applications rests on two
properties:

• Near the critical point all systems exhibit long range correlation in
the ordered phase and physical quantities have anomalous dimension
(sometimes called soft chaotic behavior), which means observables like
Sc obey power laws as (44).

• The power laws are universal in the sense, that the exponents depend
only on the type of order parameter (scalar, vector, phase factor a.s.o.)
and the dimension of the system, but are independent of the details of
the dynamics.

In physical applications the underlying dynamic is known at least qualita-
tively. In our case we have in the cooperation phase only an equilibrium
condition, that the common utility function (3) ought to have a maximum.
In the defection phase even this condition is missing. This phase is only char-
acterized by the inequality A/'1' < 0. As a consequence one cannot claim
that 5C(E) is the true orderparameter, but any function of <5C may serve the
purpose equally well. Interpreting the time steps as a one dimensioned lattice
space, the cooperation phase corresponds to the ordered phase, since cooper-
ation establishes a long range correlation in time, whereas the defection may
be called the disordered phase. Our phase transition is of second order since
at the critical line A/<<> = 0_ and 9A/ ( l ' /95 = 0 hold simultaneously. This
follows from the fact that S dependence of A/'*' is merely a factor Sl~*.
An important support for this interpretation is the universality. Near the
critical point only values of 8 near zero are important. As we have shown in
section 4, for small 8 only the behavior of u(/?) near R —• 0 is important.
Any utility function obeying asymptotic scaling will lead to a phase diagram
near <5 = 0, £„, = £c similar to the one shown in figures 1 and 2. The exponent
£r appearing in (44) is also universal in the sense it does not depend on the
utility function, but only on the number of players N. This size dependence
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is somewhat disturbing from a physical point of view. As excuse we can
argue, that the order parameter may not be 8C, but rather xc = 8}/'. Then
a universal exponent 1 would follow. Another argument could follow from
the fact, that our model is one dimensional (t is a one dimensional discrete
index). According to a well known theorem (Mermin, 1966) those systems
should not lead to a phase transition unless in the dynamic forces of infi-
nite range exist. Since in our case past and future are known to all players,
this exception will happen. In this case a N dependent exponent may be
reasonable.
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6 Concluding Remarks

This paper has explored the scope for cooperation in an exhaustible resource
extraction game. In order to face a relevant problem, we have assumed an
utility function which reduces to a power law at small values of resource ex-
tractions. In view of theorem 3.1 this is a rather mild additional assumption
beyond the necessary infinite duration. For those utility functions we have
been able to show that cooperation can emerge irrespective of the discount
factor for a certain range of elasticities. If the elasticity of the marginal
utility does not fall short of (AT — 1)/N with N the number of players, co-
operation is never at a risk. We have observed that the minimum value for
cooperation of the discount factor behaves similar as an order parameter in
second order phase transitions in statistical physics. For elasticities above
the critical value, the discount factor plays no role, for elasticities below the
critical level, cooperation depends on the discount factor.
Compared to the folk theorem in repeated games, our results stress the rele-
vance of the elasticity of the marginal utilities. Increasing f.e. the elasticity
has two effects. Firstly, the resource extraction decreases in the beginning of
the game making defection more attractive. Secondly, defection itself is made
less profitable since the total gain for each player increases with the elasticity.
Our result shows that the second effect overcompensates the first effect for
all elasticities above the critical level. The example has demonstrated that
below the critical value the game can exhibit a behavior expected from the
folk theorem, that cooperation depends on the discount factor.
The logarithmic function is of special relevance for our results. If the num-
ber of players becomes large, cooperation independent of the discount fac-
tor is possible only if the elasticity e is close to 1, which is equivalent to
a logarithmic utility function. For such functions cooperation is sustained
irrespectively of the discount factor and also of the number of players. Al-
though logarithmic functions are often thought of to explain observable in-
tertemporal behavior, for example saving behavior, one cannot claim this as
evidence in real-life resource extraction games with long-term cooperation.
The prediction of our model that long-term cooperation with many partici-
pants independent of the discount factor should imply logarithmic behavior
at small values of resource extractions, could be tested empirically.
Acknowledgements. The authors would like to thank Horst Herberg, Grenot
Klepper and Oliver Lorz for valuable discussion.
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A General Proofs

A.I Proof of Criterion 3.1

Suppose the duration io of the game becomes io = co. The normalization
condition (16) requires g'iQ) at arguments Q = /x<5~' becoming arbitrarily
large for i -+ co. Therefore the support of the function g'iQ) must include
Qmai — co. The sum over i in (16) involves decreasing positive terms. It
exists only if the integral over t exists:

EsV~')< Cdtg'i^) (45)
, ./to

In the integral on the r.h.s. of (45) we replace the variable t by R = p'(/a<5~')
and obtain

< (~l/ln<5) [^ dR R i-u"iR))/u'iR) (46)
i J o

According the assumption in criterion 3.1 the integral exists. In a similar
way one can estimate, that the discrete sum is larger than an integral like in
equ. (46) with a different upper limit R'o (or i0). The finding Qmax = co and
the necessary existence of the integral completes the proof of criterion 3.1.

A.2 Proof of Theorem 3.1

The optimal duration io of the game will tend to i0 -> co if we can prove the
inequality

AF = F*(/i(i0 + 1), i0 + 1) - P*(M«o), io) > 0 (47)

First we prove two lemmata.

Lemma A.I // the utility function u(fl) satisfies u(0) = 0
and limil-toRu'(R) = 0, its Legendre trans-
formed is negative g(Q) < 0.

The Legendre transformation maps the point R = 0 to Qmax = u'(0). Setting
in the definition (11) of giQ)

giQ) = Ru'iR)-uiR)

Q = Qmox and R = 0 we find giQmax) = 0. Since g'iQ) > 0 all Q < Qmat,
this implies giQ) < 0.
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Lemma A.2 The shadow price /x(to) is an increasing func-
tion of to, or alternatively the difference
Afj, = /i(io + 1) — M(<O) W nonnegative: Afj. >
0

Subtracting the equation (16) for to from the corresponding for to + 1 we
obtain

g' ((/x + Afi)S-'"'1) + E g' ((M + Au,)S-') - g'ifiS-') = 0 (48)
1=0

From the mean value theorem of the analysis we write for g' ((/J + Ay)8~')

g' {itx + An)S-<) = g'inS-') + A ^ g " ^ ) (49)

with fj. < p, < p. + Afi. Inserting (49) into (48) we obtain

A/i = -g' (Ox + A^S-*-1) IE s"(^-')5-'
t=o

Since g' > 0 and g" < 0, the inquality Ay. > 0 follows. The difference AF
can be expressed in terms of the Laplace transformed g:

AF = SAy - 8^lg (/x(i0 + l^"'"-1)

-E« l (9(( /* + A/ i )a - ) - S ( / iO) (50)
1=0

The mean value theorem applied twice leads to

giin + An)6->) = gitf->) + AnS-'g'irf-') + A^/i, - ^)ff"(/.2r')r2 ' (51)

with fi < y.2 < A*i < Afi + fi. Inserting the expression (51) into (50), we get

A F = 5'»+1 [- *] [ }

According the lemmata g < 0 and A/i > 0 hold. Since /ii > /J and 3" < 0 AF
is a sum of only positive terms. Positive AF means F*(io, y) is an increasing
function of to which proves the optimal i0 tends to co.
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B Optimization for NC defection
The defecting player's utility function is given by

(52)
1=0

He maximizes f(NC) with respect to his extractions it(t) and the subsidiary
condition

E«W + (^- l )EsVn = 5 (53)
1=0 1=0

The condition for the maximum reads

R(t) = </(Q("C)<5-<) (54)

where the defecting shadow price Q'iVC' is determined from equ. (53). Elim-
inating S in favor of \i we obtain

-') - S'(M-')1 = ff E JW1) (55)
1=0 !>iD

Since g1 is positive and decreasing, the inequality

Q{NC) < It (56)

holds. His optimized gain is

/<"c> = ̂ IQl^g'iQ^S-') - StgiQ^8-')] (57)
1=0

if we use the function giQ) = QR — «(i?) instead of u. Subtracting the gain
(C) g j v e n by eqU (19^ w e obtain for the difference

+ ENVn-s(A"5- ' )5 ' ] (58)
1=0

Eliminating £ « i D g'ifiS'') by equ. (56) A / ' w c ' can be cast in the form equ.
(28)

(vc» A/ 1 " v c ) +A/ 2 (59)
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with A/2 given by (26) and

A/r c ) = E I(A« - Q(JVCV(Q("C)O + 5'(5(Q("c)r' - g^-))] (60)

To prove the inequalities (27) and (31) we consider the function d(x)

d(x) = (x - xo)g'ixo) + gix0) - g(x) (61)

Since the tangent of a concave function is always above the function, we have
the following inequality for any i and x

g(t)<g{x) + it-x)g'ix) (62)

Setting i = x0 we get

9(xo)<g(x) + (xo-x)g'(x) (63)

A second inequality is obtained by interchanging Xo and x

9{x) < gixo) + (x - xo)g'ixo) (64)

Both inequalities (63) and (64) inserted into (61) leads to

0 < d(x) <(x- x0) (s '(x0) - g'ix)) (65)

If we set x = y8'tD and x0 = QlNC)6~'D equ.(65) is equivalent to equ.(27).
Since Af[NC) is a sum of d functions with x = yS'1 and x0 = Q<-NC)8-' (65)
immediately proves the inequality (31).
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