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1 Introduction

This paper develops a general theory of the emergence of region-specific norms of be-

havior and uses it to suggest a possible resolution of a famous public health puzzle—the

well-documented effect of geography on the choice of medical procedures. Over the years,

a number of studies have found that medical choices tend to be relatively uniform within

geographic regions and yet quite diverse across regions. Surprisingly, the phenomenon

persists today despite vast improvements in communication technology. In this paper,

we show that the observed geographic treatment patterns are likely to be a consequence

of local social interactions among physicians—interactions that result in a positive cor-

relation between the choices of a given physician and the choices of her local colleagues.

We expect such a relationship to arise in the medical context for (at least) two reasons:

(1) physicians may learn and acquire skills from one another, and (2) there may be social

pressure to conform to local practice norms. We posit that both of these mechanisms

are grounded in face-to-face encounters and therefore should operate most strongly at

the local level. A model adapted from the mathematical theory of interacting particle

systems represents medical treatment choice in the presence of local social interactions

and reproduces the stylized facts of the geographic variations puzzle. The theoretical

model, although tailored to the requirements of the puzzle at hand, is quite general. The

model predicts that, within a region, patients of all ages will tend to receive the treat-

ment that is best suited to the patient of modal age for that region. As a result, a given

patient will be treated differently in different regions, depending on the dominant age

group in the region.1 We find strong support for these predictions among extensive data

on coronary patients from Florida. We also use the model to show that patient welfare

need not improve under a system of practice guidelines designed to eliminate regional

treatment variations.

The extent of geographical variation in medical care in the United States is quite

1In our theoretical model, “location” and “region” do not correspond to fixed area sizes or political
divisions. Rather, a region refers to a set of contiguous treatment locations, such that the mix of patient
types is the same (in expectation) at each location in the region. This mix varies across different sets of
treatment locations, resulting in different regions. Based on interactions between treatment decisions,
treatment choice can become uniform throughout an entire region, while differing across regions. We
test the model’s predictions at the level of the individual hospital. Because we consider only hospitals
performing major cardiovascular surgery, heart treatment patterns at these hospitals correspond roughly
to those at the level of the “hospital referral region,” as defined in the Dartmouth Atlas of Cardiovascular
Health Care (Wennberg and Birkmeyer 1999).
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striking. Consider the case of two procedures used to treat heart conditions. In a

comparison of hospital referral regions across the country, rates of coronary artery bypass

grafting (CABG) among Medicare enrollees varied by a factor of more than 3.5, while

the rates of coronary angioplasty (or PTCA, for percutaneous transluminal coronary

angioplasty) ranged from 2.5 to 16.9 per 1,000 enrollees (see Wennberg and Cooper

1999). Such high variation has been recorded for many procedures and treatments,

spanning all areas of medicine and often persisting over time. The systematic study

of treatment variations appears to begin with Glover’s (1938) presentation to the Royal

Society of Medicine. In the United States, Wennberg and his colleagues have documented

the phenomenon comprehensively over a number of years (see, for example, Wennberg

and Gittelsohn 1973, Wennberg and Birkmeyer 1999, O’Connor et al. 1999, and Pilote

et al. 1995).

The variations have proved remarkably robust to controls for incidence of illness

and demographic and socioeconomic factors (Phelps and Mooney 1993, Wennberg and

Gittelsohn 1982). Wennberg and Gittelsohn (1982) attributed geographic variations to

geographic differences in physician “practice style,” defined as a set of beliefs about the

efficacy and appropriateness of alternative forms of care. However, inquiries into the

role of practice style in treatment variations have yielded mixed results concerning its

importance (for example, contrast Grytten and Sorensen 2003 with Folland and Stano

1989). Phelps and Mooney (1993) present a model, based on Bayesian updating, of how

regional norms might persist once they are in place, but the model does not explain

how diverse norms might arise in the first place. More recently, Chandra and Staiger

(2004 and 2007) attribute medical treatment variations to local productivity spillovers.

Although this explanation overlaps with our own, we show that conformity effects can

just as readily explain treatment variations. Furthermore, the empirical evidence to date

cannot distinguish neatly between these two sources of choice interactions.

We develop a formal model to explain how geographical variations in medical care

arise and why there may be resistance to efforts to standardize practice. In this model,

two key features drive the emergence of regional treatment norms: local choice interac-

tions among physicians and regional variation in patient characteristics. Concerning the

former, we assume that the choices of a physician’s nearby colleagues exert an influence

on her own choices, either because of local increasing returns or because of pure con-

formity effects. As an example of local increasing returns, a surgeon’s own expertise in
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a given treatment or procedure may improve as her peers gain experience in the same

treatment and share their insights. If so, a given treatment will yield better outcomes

and so become increasingly favored within a group of interacting peers, the more fre-

quently it has been used in the past. Alternatively, choice spillovers among neighboring

physicians could reflect pure conformity effects. Conformity of behavior within a group

may arise because individuals have an innate preference for social esteem, as in Bernheim

(1994), or because of incentives in the institutional environment. For example, in the

United States, malpractice claims are judged by comparing a doctor’s actions to standard

practices within the local medical community, thereby discouraging deviation from such

practices.2 Either form of social influence contributes to the emergence of geographical

variations, but the welfare implications will be quite different between these two cases.3

The second key feature of the model is that patient characteristics differ on aver-

age across geographic regions, and these characteristics influence the treatment choice.

Specifically, we assume that the “ideal” treatment for a given patient—the treatment

that maximizes the probability of a successful outcome independent of the local treat-

ment history—depends on underlying traits, such as age, in addition to (unmodelled)

transitory symptoms. This assumption agrees with the observation, for example, that

heart bypass surgery carries greater risks among the elderly than among the young and

hence is less common among the former group.4 To see how this assumption contributes

to the emergence of regional treatment variations, consider what happens when a young

patient arrives for treatment in a region with a high proportion of elderly patients. The

young patient’s physician will take the patient’s age into account, but will also be drawn

towards the treatment she observes her neighbors performing most often, which will likely

be the treatment that is ideal for elderly patients. In the long run, the dynamic feedback

between physicians’ choices and patients’ types produces a stable treatment pattern in

which the regional treatment norm represents the ideal treatment for the modal patient

in the region. In this long-run equilibrium, patients of different types in the same region

2This is the dominant legal standard in the United States. In Florida, “the prevailing professional
standard of care for a given health care provider shall be that level of care, skill, and treatment which, in
light of all relevant surrounding circumstances, is recognized as acceptable and appropriate by reasonably
prudent similar health care providers.” “Similar health care providers” are, inter alia, ones who practice
in the same or similar medical community (Florida Statutes 766.102).

3It is worth noting that other forms of social influence exist. In another study, of the adoption of
new technologies in medicine, we found a significant influence of the choices of “star” physicians (Burke,
Fournier, and Prasad 2007).

4See, for example, Hannan and Burke (1994) and Alexander and Peterson (1997).
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will receive the same treatment, and a patient of a given type will receive a different

treatment depending on where she lives because the modal patient varies across regions.

We test the model’s predictions using a census of Florida patient discharge records,

focusing on patients over the age of 25 with a primary diagnosis of either coronary

atherosclerosis or acute myocardial infarction (AMI, or “heart attack”). The usable

sample covers over 500,000 inpatient stays during the periods 1995–2001. Consistent with

our predictions, we find that younger patients are less likely to be treated by invasive

heart treatment—either coronary angioplasty or heart bypass surgery—at hospitals with

a larger proportion of older patients, and older patients are more likely to be treated by

angioplasty at hospitals with a larger proportion of young patients. (In the case of all

heart surgeries, the latter effect has the expected sign but is not statistically significant.)

Based on the assumption that regional treatment variations imply net welfare losses,

policies have been proposed that would seek more uniform compliance with guidelines

for medical practice that are based solely on patient characteristics and symptoms (see,

for example, Congressional Budget Office 2008). However, our model implies that the

welfare implications of treatment variations depend on the underlying motivation for the

social influences on treatment choice. In the presence of increasing returns, treatment

variations have benefits, in the form of gains from specialization that accrue to the

dominant patient type in a region, as well as costs that fall on the minority-type patients

in a region. If the benefits outweigh the costs, treatment variations will dominate a

system of strict treatment guidelines. On the other hand, if conformity pressure drives

the choice spillovers, patients would be better off if physicians were constrained to make

treatment decisions based solely on patient characteristics. To the extent that the data

provide information about patient outcomes, we find little evidence that patient welfare is

adversely affected by the presence of regional treatment norms. While the welfare findings

are not conclusive, they suggest that knowledge spillovers, rather than conformity effects,

are the primary source of treatment variations in our data.

2 A Model of Medical Treatment Choice

We construct a formal model of treatment choice that incorporates local social influence

and demographic variation. We represent the social environment as a one-dimensional,

4



stochastic interacting particle system, as in Liggett (1999).5 Physicians reside at fixed

locations along a line. At a given location, patients arrive at random intervals, one

at a time. Patients can be one of two “types,” and the physician must choose one

treatment (between two options) for each patient.6 The patient’s “type” can refer to any

characteristic that is relevant to the treatment decision, but we find it useful to let type

refer to age, so that some patients are “old” and some are “young.” At a given treatment

opportunity, the physician selects the treatment that maximizes her payoffs. The payoff

functions (which are identical for all doctors) depend on the patient’s type and also on

the recent treatment choices of the physician’s two adjacent neighbors, where the latter

dependence can represent either source of social influence described above. The line

consists of two (connected) regions, each with a distinct mix of old and young patients.

Because the neighborhoods of adjacent physicians overlap, social influence percolates

across the line of physicians and results, in equilibrium, in a single treatment being

applied to all patients in a given region regardless of age. At the same time, regional

differences in the age mix mean that the dominant treatment—the one that is “ideal”

for the majority-type patient in the region—will differ across regions. Furthermore,

the emergence of region-specific norms does not require extreme differences in the age

distribution across regions. If the share of old patients is greater than fifty percent in one

region and less than fifty percent in the other, the treatment norm will differ between

the regions.

2.1 Theoretical Model

Physicians are indexed by their location on Z, the set of integers. For each x ∈ Z,

{x− 1, x+1} denotes the set of neighbors of x. There are two types of patients, denoted

α and β, and two treatments, A and B. We characterize the physician payoffs to a

given treatment choice in terms of a single number, U(z, h, L,R), where z ∈ {A,B}

5Such systems have been used to study problems in evolutionary game theory. The modeling frame-
work builds upon ideas in Ellison (1993), Morris (2000), Young (1998), Young and Burke (2001), and
Burke, Fournier, and Prasad (2006). Our main theoretical contribution is to generalize Ellison’s model
to allow payoffs (and hence choices) to depend on a factor that varies across locations, where in the
medical example this factor is the patient’s type.

6For convenience, we assume that physicians control treatment choices. In practice, treatment choice
is a complicated combination of physician and patient preferences, as well as of constraints imposed
by institutions like insurance companies, hospital administrations, and governments. We show below
that our key results hold when patient preferences regarding treatment are incorporated. Institutional
constraints on choice will be evaluated in our discussion of welfare issues.

5



represents the chosen treatment, h ∈ {α, β} represents the patient’s type, and L and

R represent, respectively, the last treatments chosen by the physicians to the left and

to the right of the given doctor (L and R each belong to {A,B}). To capture the

case of social influence derived from knowledge spillovers, we identify the physician’s

utility with the objective quality of the treatment choice, and assume that this quality

is fully captured by the probability that the given treatment succeeds. That is, a given

treatment can either “succeed” or “fail,” and physicians choose treatments to maximize

the (objective) probability of success. Symbolically, we let πz(·) denote the probability

function of treatment success and we assume the following identity:7

U(z, h, L,R) = πz(h, L,R).

For example, πA(α,A,B) denotes the probability that treatment A succeeds on a

patient of type α, assuming the neighboring physicians to the left and right applied

treatments A and B, respectively, at their last treatment opportunities; this probability

captures the physician’s utility of choosing treatment A in the given context. We as-

sume that all physicians know these conditional probabilities; hence the function πz is

identical across physicians. This formulation captures knowledge spillovers because, as

described in detail below, we assume that a treatment’s probability of success increases

in the number of neighboring physicians who used it at their last treatment opportu-

nity. To capture a preference for conformity rather than knowledge spillovers, we can

use a mathematically identical payoff structure and simply shift the interpretation of

the utility function. In this alternative interpretation, physicians care about treatment

success and about conformity to local practice patterns. Treatment success now depends

only on patient characteristics, but conformity benefits depend on the recent choices of

neighbors, and physicians trade off the benefits of acting like their neighbors against the

dictates of patient characteristics. Such a model can lead to identical descriptive results

but, as described below, carries different welfare implications. In the exposition below

7The fact that patient and physician interests are completely aligned does not require altruism on
the part of physicians. For example, physician’s incentives (which we do not model explicitly) could be
aligned so as to make their interests coincide with patient welfare. In general, physician payoffs may
depend on a number of factors, including, for example, the monetary rewards to different treatment
choices (which depend, in turn, on reimbursement systems such as Medicare) and the variability of
treatment outcomes. We also do not allow outcomes to depend on unobserved factors such as the
quality of complementary inputs and the physician’s skill and level of effort.
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we adhere to the knowledge spillovers interpretation except when specified otherwise.

The essential assumptions about physicians’ payoffs are the following: (1) payoffs from

using a treatment increase with the number of neighbors who use the same treatment;

(2) neither treatment dominates the other (that is, neither is better regardless of what

neighbors do); and (3) when neighbors are evenly split between the two actions, then

A is optimal for type α and B is optimal for type β.8 Property 3 is a stronger version

of the reasonable requirement that, for any fixed neighborhood, A yields higher payoffs

when used on an α type than when used on a β type (and B yields higher payoffs when

used on a β type than on an α type). In our two-action setting, the above properties are

equivalent to:

Property P. Preferences satisfy the following two conditions:

(a) Treatment A is optimal for α–patients if one or more neighbors use A, but B is

optimal if both neighbors use B.

(b) Treatment B is optimal for β–patients if one or more neighbors use B, but A is

optimal if both neighbors use A.

This is not a strong condition. To illustrate its reasonableness, we present, and graph,

an example of such preferences. Suppose, as above, that U(z, h, L,R, . . .) = πz(h, L,R).

Let

πA(α,B,B) = 0.3 πA(β,B,B) = 0.2

πA(α,A,B) = 0.4 πA(β,A,B) = 0.3

πA(α,A,A) = 0.5 πA(β,A,A) = 0.4

Similarly, for treatment B the payoffs are

πB(α,B,B) = 0.4 πB(β,B,B) = 0.5

πB(α,A,B) = 0.3 πB(β,A,B) = 0.4

πB(α,A,A) = 0.2 πB(β,A,A) = 0.3

8The first two assumptions are required for the very possibility of coordination on two different
standards. The third property is closely related to the concept of risk dominance in game theory. Recall
that in two-person coordination games an action is risk-dominant if it is the case that the action is
optimal whenever there is a better than 50 percent chance that the opponent also uses the same action.
For its application within a local interaction system similar to ours, see Ellison (1993). We have modified
the property to allow for multiple types.
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Figure 1. Physician payoffs for procedures A and B and an -patient

Figure 1 (directly above) illustrates physician payoffs from using each treatment on

an α-patient. Observe that the preferences satisfy property P(a).9

Patients arrive randomly at each location, with inter-arrival times that are exponential

with parameter λ. Without loss of generality, we take λ = 1. The concentration of patient

types varies by region. We partition Z into two regions, East and West. The negative

integers constitute the West, while the non-negative integers constitute the East. The

probability that a patient who arrives at any given location in the East (West) is of type

α will be given by pE (pW ). The state of the system is a function from integers to {A,B}

(ω : Z → {A,B}). An ‘A’ at location x (that is, ω(x) = A) indicates that the physician

at x used treatment A on her most recent patient. A ‘B’ denotes the use of treatment

B on the most recent patient. The set of states is denoted by Ω.

9Conformity effects can be modeled formally using a standard formulation (as in Brock and Durlauf
2001). Relabel the choices z ∈ {−1, 1}, and let U(z, h, L,R) = πz(h)−J(z− z̄)2. πz(·) still represents the
success probability of treatment z, but now this depends only on the patient’s type. The term J(z− z̄)2

represents the non-conformity penalty for deviating from the (most recent) average behavior (z̄) in the
physician’s neighborhood. Let πA(α) > πB(α) and πB(β) > πA(β). If the neighboring choices differ
from each other, the non-conformity cost is just J for either treatment choice, and treatment follows
the patient’s type—that is, A (B) is chosen if the patient is of type α (β). If both neighbors choose
the same action and if J is sufficiently large, the physician will choose the same action as her neighbors
regardless of the patient’s type.

8



When a patient arrives at a specific location x ∈ Z, the physician must make a

choice between A and B. The choice depends on the type of patient, as well as the

choices made (in the recent past) by neighboring physicians. Following the norm in

the evolutionary game theory literature, we assume best-response dynamics—physicians

maximize πz(h, L,R). The state of the system can be visualized as an infinite sequence,

with values at each location indicating the most recent choice made by the physician

there:

· · ·AABBBABAAABA · · · .

At random moments in time there is a transition: the value at one location changes from

A to B or vice versa. The process is a continuous time Markov chain, Xt, and we are

interested in the invariant (equivalently stationary, or equilibrium) distributions of this

process.

Let A ∈ Ω denote the state ω with ω(i) = A for all i ∈ Z. In other words,

A ≡ · · ·AAAAAAAAAAAA · · · .

Similarly, B ∈ Ω denotes the state ω with ω(i) = B for all i ∈ Z:

B ≡ · · ·BBBBBBBBBBBB · · · .

The configuration at time t will be identified by ωt.

Let δω be the probability that puts all of its mass on ω. Clearly, δA and δB are

invariant measures. If we somehow reach the configuration A (or B), the process can

never escape from this state. Following Liggett (1999), we say the process coexists if there

is an invariant measure that is not a mixture of δA and δB. Alternatively, the process

coexists if for i and j, limt→∞Prob{ωt(i) 6= ωt(j)} > 0. We show that the process Xt

defined above coexists by identifying an invariant distribution in which both procedures

are used with strictly positive probability at the same dates.

Define the set of states S ⊂ Ω as follows: ω ∈ S if there exists m ∈ Z such that

ω(i) = A for all i < m and ω(i) = B for all i ≥ m. In other words, S consists of states

such as

· · ·AAAAAABBBBBB · · · .

S is irreducible—every state in S is reached with positive probability from any other
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state in S. It is closed—once in S, we can never escape. It is recurrent—we eventually

return to every state in S—but not periodic.10

We prove the existence of an invariant distribution that has S as its support. For

simplicity, the distribution is characterized by the location of the boundary point between

the region in which treatment A is the norm and the region in which treatment B is

the norm. In the proposition below, ρ(·) specifies the probability distribution of this

boundary point. Proofs are in the appendix.

Proposition 1. Suppose preferences satisfy property P. Let pW > 1/2 and pE < 1/2.

Then the physician choice process coexists. Specifically, there is an invariant measure ρ,

with support Z, such that

ρ(m) =
1

K

(

1 − pW

pW

)−m

if m < 0

ρ(m) =
1

K

(

pE

1 − pE

)m

if m ≥ 0.

K is a real number constant which can be chosen to ensure that ρ is a probability.

The proposition above tells us that the location of the East-West boundary is random.

The probability ρ(m) gives us the likelihood that the boundary will be m. Imagine the

process as follows: each state consists of an infinite string of A’s followed by infinitely

many B’s, but the boundary between the two regions can drift to the left or to the right

along the line (by at most one unit at a time), according to the probabilities governed

by ρ(·).11 We refer to the long-run outcome ρ to describe the steady state in which the

states from S appear according to probability ρ.

Remarks. (1) In case pW < 1/2 and pE > 1/2, we get a similar result, only now the

support consists of a string of B’s followed by A’s. In case pW < 1/2 and pE < 1/2,

the invariant distribution is δB. If pW > 1/2 and pE > 1/2, it is δA. (2) When pW =

pE = 1/2, the state always remains in S and the boundary performs a symmetric random

10Strictly speaking, periodicity (or lack thereof) is a property of discrete Markov chains rather than
continuous-time processes. Thus, the (lack of) periodicity in our case refers to the discrete chain of
states that emerges from our continuous time process as a result of the random transitions. For formal
definitions of these properties, see Norris (1998).

11This drift occurs because, at the given boundary location at any time, the last treatment choices
on either side differ from each other. Therefore, the next treatment decision at the boundary will be
governed solely by the next patient’s (random) type. Depending on this type, the next treatment could
differ from the previous one, leading to a shift in the boundary position.
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walk, as in the one-dimensional linear voter model (see Liggett 1999). Despite the fact

that the state always remains in S, the process does not coexist. This is because limt→∞

Pr{ωt(i) 6= ωt(j)} = 0. (3) The proof of Proposition 1, as of Proposition 2 below, requires

infinitely many locations (in this case, Z). In the finite case, we would reach either A

or B with positive probability and then be trapped. However, we suspect that one can

recover geographical variation by adding a small amount of noise to the model (see Burke,

Fournier, and Prasad (2007) for suggestive simulation results). (4) If pE = pW = 1, then

only α patients arrive at each location. This case corresponds to the model studied in

Ellison (1993), and the risk dominant equilibrium A will be played.

In our model, choices depend upon recent decisions of neighbors but not on the recent

decisions of the decision-maker herself. However, we can allow dependence on own past

decisions with no alteration of results. To see this, assume that the neighborhood of x

is defined by N ≡ {x − 1, x, x + 1}. Now suppose property P is modified so that: (1) if

all three players in N choose an action, then the physician at x chooses the same action.

Otherwise, (2) she chooses A (B) if the patients is of type α (β). Now consider a state

ω ∈ S. We need consider only states at the boundary, which are states where the two

adjacent neighbors make different choices. For such states, a choice of A is made for an

α patient, and B is chosen for a β patient. This is exactly as before, and must lead to

the same conclusion as Proposition 1.

So far we have ignored the role of patient preferences in the treatment decision. In

practice, patient preferences are important and could be subject to social influences—for

example, patients may request a treatment based on the recommendation of a friend.

Accordingly, we can recast our treatment choice model in the case that patients influ-

ence treatment choices, and adopt the conformity model of social influence described in

footnote 8. We can think of each location on our lattice as a “family” within which,

say, cardiovascular events arise occasionally. The two regions of the lattice differ in the

age composition of families, such that patients are younger, on average, in one region.

Patients are randomly matched with physicians, who are not themselves subject to so-

cial influence. If choices in the neighborhood are diverse, then the physician-patient pair

chooses treatment A for α-patients and treatment B for β-patients. If both neighbors

make the same choice, however, and if social influence among patients is sufficiently

strong (J is large), the physician-patient pair conforms to the neighbors’ choice regard-
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less of the patient’s type, Property P is satisfied, and Proposition 1 holds.12 As before,

regional variation in medical practice will emerge and treatment will depend on where a

patient lives.

2.2 Emergence of Norms

Since the Markov process described above has several invariant distributions, we would

like to identify the distribution that is most likely to be selected in the long run from

randomly chosen initial conditions. It turns out that we can show (Proposition 2) that,

starting from almost any initial state, the system eventually converges to an equilibrium

that involves regional treatment norms (as opposed to globally uniform treatment choice).

That is, the uniform states A and B are, in a well-defined sense, exceptional, and the

system’s long-run behavior will typically be described by the invariant distribution ρ

from Proposition 1.13

Proposition 2. Suppose the initial distribution is νθ, the Bernoulli product measure with

density θ ∈ (0, 1), and let pW > 1/2 and pE < 1/2. Let πt denote the distribution of the

Markov chain at time t. Then πt converges weakly to ρ as t → ∞.

2.3 Welfare

The fact that medical treatment depends on geographic location leads naturally to the

concern that the quality of care might also vary geographically. This concern has been

examined, from various perspectives, in the medical literature and in the health policy

literature. For example, Krumholz et al. (2003) find that the treatment of myocardial

infarction (MI) differs in New England compared with its treatment in other regions

along several dimensions (after controlling for patient, hospital, and physician character-

istics), such as in the usage rate of beta-blockers, and that 30-day mortality rates are

12Since physicians in this formulation do not override patient preferences, we can expect similar results
if patients seek out doctors who offer the type of treatment they desire rather than being matched
randomly with physicians.

13The proof is patterned after Durrett (1988) and Bramson and Griffeath (1981), who investigate the
so-called “biased voter model.” Our process is not identical to the biased voter model, but the differences
are inconsequential for the main arguments. One difference is that we have regions with different “bias”
or patient mix and another is the transition rate at a site where neighbors make opposing choices. While
we deal with the much simpler one-dimensional case, in light of Bramson and Griffeath our results should
generalize to Z

2 and higher dimensions.
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also lower in New England than elsewhere. A 2008 report by the Congressional Budget

Office (CBO 2008 “Geographic Variation in Health Care Spending”), based on a survey

of studies, describes large variations in Medicare spending across regions of the United

States. The report finds that greater spending does not generally lead to higher-quality

care and, in some cases, results in lower-quality care, where the quality of care was based

either on patient outcomes or on clinical appropriateness. The report suggests that

greater standardization of care, for example, through the provision of incentives for uni-

versal compliance with accepted medical practice guidelines, could reduce inefficiencies

in health care delivery. Official guidelines are already widely disseminated (for examples

of guidelines in coronary care see Eagle et al. 1999, and Gunnar et al. 1990), but enforce-

ment is weak and potentially controversial. Consistent with the findings of Chandra and

Staiger (2007), the CBO report also acknowledges that a push toward globally uniform

practice may result in losses for some patients.

Our theoretical framework can shed light on the tradeoffs involved between a treat-

ment pattern involving region-specific norms and a hypothetical pattern involving global

uniformity (subject to patient characteristics). In the context of the model, we can define

patient welfare in terms of the probability of success of the selected treatment, and ag-

gregate welfare as the average probability of treatment success across all locations.14 We

can then compare aggregate welfare between the long-run distribution described above

and an alternative long-run distribution that represents a policy of enforced treatment

guidelines. We represent such a policy as one that requires that patients of type α receive

treatment A and patients of type β receive treatment B.

Recall that, in the model, regional treatment variations can reflect either the presence

of local increasing returns (as a result of knowledge spillovers, for example) or a preference

for conformity (among physicians or patients). While the choice between these motivating

mechanisms does not affect the long-run treatment patterns, it does affect the welfare

analysis. Under increasing returns, the likelihood of success of a treatment increases with

local experience in the treatment and hence some patients benefit from local uniformity

of practice. Under conformity preferences, however, no benefits from local specialization

accrue and some patients receive a suboptimal treatment. Accordingly, we find that the

14This aggregate welfare criterion is equivalent to life-years gained, a standard criterion adopted in
the public health and medical literature. Unlike the Pareto criterion, this welfare measure permits inter-
personal comparisons. Unlike the Kaldor-Hicks criterion, our approach does not measure the willingness
to pay for life-years gained in order to determine whether those who are worse off could be compensated
by those who are better off.

13



net benefits of a policy that imposes uniform practice guidelines (based solely on patient

characteristics) will depend on which mechanism is driving the treatment variations.

Even in the case of increasing returns, however, we can show that the desirability of

strict treatment guidelines is not clear cut.

Suppose that physician preferences are not subject to pure conformity effects and,

as in Section 2.1, utility equals the likelihood of success of the treatment used. We

consider a policy that involves enforcement of treatment guidelines requiring the use of

A on α-patients and B on β-patients.15 We consider whether the policy improves the

expected likelihood of success for the patient population as a whole. Note that, from our

definition of physician payoffs, the long-run average utility of the physician at location x

(in equilibrium ρ) is a measure of the average success rate of treatments for the patient

population. Consequently, we can use this as a measure of welfare. We prove the following

statement:

Proposition 3. The long-run outcome ρ need not maximize the success rate of treatments

for the patient population. In particular, the outcome ρ may be dominated, at every

location x ∈ Z, by the policy of enforced treatment guidelines.

Proving the proposition involves identifying a plausible technology for which the

guidelines policy is superior to the long-run outcome ρ at every location. In general,

guidelines are more likely to dominate the long-run outcome (a) the more similar the

population profiles between the two regions (for example, if both pW and pE are close to

1/2), (b) the greater the payoff advantage to having neighbors that choose two different

treatments rather than the same treatment, and (c) the smaller the losses from having

to reverse the treatment choice at locations at which the two neighbors choose the same

treatment.16 By an analogous argument, one can also show that ρ may dominate the

policy of enforced treatment guidelines.

Proposition 4. A policy of enforced treatment guidelines can be dominated by the long-

run outcome ρ.

The proof is immediate from inspection of the proof of Proposition 3, and hence omitted.

To summarize, when they are driven by knowledge spillovers between physicians, regional

15The policy alternative of moving patients to regions based on their characteristics is considered
infeasible.

16Note that following treatment guidelines when others do so is not a best response—the policy requires
enforcement, the costs of which we do not consider.
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variations in practice may not be undesirable. Propositions 3 and 4 help to delineate

some of the circumstances under which treatment guidelines may be desirable.

3 Empirical analysis

Our model holds the testable implication that the treatment a patient receives will be the

one that is medically best suited to the dominant patient type in the region. While the

model, with its stylized assumptions, predicts absolute uniformity of treatment choice

within regions, we do not expect such a stark outcome in the real world. However, the

model suggests that, other things constant, the characteristics of the local patient pool

will skew treatment in a predictable direction for all patients in a given region or at a

given treatment location, such as a hospital. In the case of coronary care, given that

heart surgery rates decline on average with age, we expect that the probability that a

younger patient will receive heart surgery (as opposed to non-invasive treatment of the

disease) will be lower at a hospital that receives a relatively high proportion of older

coronary patients. Conversely, surgery rates for older patients will be higher at hospitals

with a relatively young patient pool than at hospitals with an older patient population.17

We test these hypotheses using a census of patient discharge records from Florida,

focusing on the treatment of heart disease. Heart disease (defined below within the con-

text of our data) is an appropriate choice for our empirical analysis because its treatment

mirrors a number of features of our theoretical model. First, the treatment options can

be divided into two discrete categories, surgery and “medical management.” The surgi-

cal options include: (1) percutaneous transluminal coronary angioplasty (PTCA or, in

common parlance, coronary angioplasty) and (2) coronary artery bypass grafting surgery

(CABG, or heart bypass surgery); medical management involves the use of drugs (such

as beta blockers, calcium channel blockers, and ACE inhibitors) and other non-invasive

therapies (such as diet and exercise modification).18 Consistent with the payoff structure

17While our empirical analysis focuses on age effects, there may be other characteristics that lead
to treatment variations in a similar manner. Nichols (2006) reports differences in the treatment and
outcome patterns of African-American patients with AMI admitted to hospitals with disproportionately
black patient populations. Consistent with the predictions of our model, he finds that providers with
greater numbers of black patients adopt treatment practices that are particularly effective in treating
conditions common among African-Americans.

18While the surgical options differ from each other, the distinction between invasive (that is, surgical)
and non-invasive treatments is standard in the literature (see, for example, Smith et al. 2001), suggesting
a bright line between these treatment modes.
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in our model, there is evidence that the invasive treatments are, on average, less suitable

for older patients than for younger patients (see, for example, Smith et al. 2001). Our

data agree with the presumption of age-dependence, in that the raw (Pearson) correlation

between patient age and the probability of receiving surgical treatment for heart disease

is negative and significant (see Table 1). In addition, the age distribution of patients

admitted to hospitals for coronary care varies considerably across hospitals (and regions)

in Florida, and elderly patients (defined as 73 years of age or older) are well-represented.

We have access to the entire sample of quarterly patient discharge records from Florida

hospitals for the years 1995 to 2001, from a legally-mandated and audited census of inpa-

tient stays. Each record gives the patient’s age, race, sex, principal diagnosis, and (where

applicable) secondary diagnoses, treatments received, the hospital name and county lo-

cation, the length of stay, and related information.19 From this census, we extract the

records of patients 25 years of age and older who were admitted with a diagnosis of

coronary artery disease, in the form of either atherosclerosis or acute myocardial infarc-

tion (AMI).20 Among patients with these diagnoses, we keep those that received either:

(a) angioplasty (PTCA), (b) bypass surgery (CABG), or (c) neither PTCA nor CABG,

where this last classification intends to capture those who received only drug treatments

and/or other non-invasive therapies.21 We restrict our sample to records from hospitals

that, as of the observation period, held the legal authority (that is, a “certificate of need”

license) to perform heart surgery and maintained the required surgical facilities. In addi-

tion, we eliminated records from hospitals that reported patient discharges in fewer than

five quarters. The final sample contains 572,316 patient records, spanning 62 hospitals

and 25 quarters. The sample accounts for a high proportion of all hospital-based coro-

nary treatment events in the state during the period of observation, and represents all 11

of the state’s “Administrative Health Care Districts.” Summary statistics are presented

in Table 1.

19Each observation is a single hospital stay rather than a longitudinal patient record. Identifiers for
individual patients are masked, such that repeat hospitalizations are censored. Long-term outcomes,
such as 30-day survival, are not available.

20The CCS Diagnosis Categories were used to identify the 56 ICD-9CM categories relevant to these
patients and to identify broad categories of co-morbidities.

21The third group includes some patients who received coronary angiography, a somewhat invasive
diagnostic procedure, but only if this diagnostic was not followed by either PTCA or CABG. Most
patients (greater than 60 percent) in the sample who received angiography subsequently received surgery
and hence will be counted as receiving invasive treatment. Also, we exclude patients who received heart
transplants, heart valve surgery, implanted defibrillator devices, or pacemakers.
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3.1 Hospital-Level Panel Regression Model

We choose the hospital as the geographic unit of analysis, for several reasons. First,

doctors working at the same hospital are likely to interact with at least some subset of

their colleagues and observe one another’s treatment choices. Second, we can control for

(fixed) unobserved heterogeneity at the hospital level that could create the appearance

of local treatment norms for reasons other than local social influence. Third, we can

also control for time-varying hospital factors, such as total volume in cardiac surgeries,

which (if omitted) could also yield spurious results. Therefore, the identification exploits

within-hospital variation over time in the age distribution of the treated patients that is

orthogonal to other observed changes in hospital characteristics. We also include time

dummies to control for statewide changes in treatment tendencies over time.

From the usable patient records, we aggregate to the hospital-quarter level the vari-

ables of interest, obtaining a panel of 1448 observations. To test the model, we consider

whether hospitals with a greater proportion of young (old) patients will be more likely

(less likely) to apply invasive treatments to their old (young) patients. We define “young”

and “old” based on the bottom and top terciles, respectively, of the age distribution of

heart patients in the sample. As a result, young patients are those aged 62 or younger

and old patients are those aged 73 or older. The dependent variables refer to rates of

invasive treatment (at the hospital-quarter level) among either old patients or young

patients. When the dependent variable refers to a treatment rate for old patients, the

main explanatory variable of interest is the share of young patients treated at the same

hospital in the same quarter, and vice versa when the dependent variable refers to young

patients. We construct two different measures of the rate of invasive treatment to ensure

robustness of results. In the first case we use the angioplasty rate, and in the second

case we use the rate of surgery in general, including either angioplasty (PTCA) or bypass

(CABG).22 In the case of the treatment of old patients, the model is as follows:

treatment(73)ht = αh + ct + γAge(62)ht + βXht + δVht + ǫht. (1)

The model in (1) is estimated using ordinary least squares. The dependent variable is

the rate (per thousand patients) of angioplasty (alternatively, either of the two surgical

22We might predict, for example, that results will be weaker when using the rate of a single type of
surgery (such as PTCA), since some hospitals, including those with many young patients, may specialize
in just one type of surgery, such as CABG.
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options) performed in the hospital for coronary patients aged 73 or older in the given

quarter. This treatment rate depends on the fixed tendencies of the hospital, αh; the

current calendar date, ct (a specific quarter); the average income, racial composition,

and insurance status, respectively, of the hospital’s current patients, Xht; the hospital’s

overall volume of angioplasty (surgery) procedures in the quarter, Vht; and the proportion

of young patients treated at the hospital in the quarter, Age(62)ht. We predict that the

coefficient γ is positive—old patients are more likely to get invasive procedures, all else

equal, the greater the proportion of young patients treated at the same hospital in the

same period.

For the treatment of young patients, the model is analogous, as follows:

treatment(62)ht = αh + ct + γAge(73)ht + βXht + δVht + ǫht. (2)

In the above, the dependent variable, treatment(62)ht , measures the treatment rate

of young patients, and the explanatory variable, Age(73)ht, is the proportion of old

patients at the same hospital in the same quarter. We predict that γ takes a negative

sign.

3.2 Results

Table 2 reports the results of our panel regressions. Recall that the unit of observation

is the hospital-by-quarter. The top panel shows the results pertaining to the treatment

of “old” patients (73 and older). The first (left-most) column of numbers shows the

regression coefficients when the dependent variable is the angioplasty rate, while in the

second column the dependent variable is just the surgery rate (either angioplasty or

bypass). Standard errors are in parentheses below each estimate, and significance is

indicated with asterisks, as noted in the table. The bottom panel shows the analogous

results for the treatment of “young” patients (62 and under). In three out of four cases,

we observe the predicted effects of local demographics on treatment patterns: old patients

are more likely to receive angioplasty the greater is the share of young patients treated

at the same hospital in the same period, and young patients are less likely to receive

angioplasty and less likely to receive surgery in general, the greater the share of old

patients at the hospital. While the share of young patients does not have a significant

impact on the combined surgery rate for older patients, the coefficient takes the predicted
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sign.23

The results can be interpreted quantitatively as follows: a one standard deviation

change in the proportion of younger heart patients (from 0.35 to 0.45) would raise the

expected number of angioplasties given to older patients by about 18 (from 330 per

thousand to 348 per thousand.) For surgeries, a one standard deviation increase in

the proportion of young patients is predicted to add six surgeries for older patients.

Similarly, at the mean number of angioplasties for young patients (450 per thousand), a

one standard deviation change in the proportion of older heart patients at the hospital

(from 0.46 to 0.56) would reduce the expected number of angioplasties performed on

younger patients by about 17 (from 450 to 433 per thousand.) For the surgery treatments

given younger patients, a one standard deviation increase in the proportion of older

patients decreases by 21 the expected number of surgeries for younger patients.

We also observe (Table 2) that the angioplasty rate (total surgery rate) increases, for

either young or old patients, with the hospital’s total volume of angioplasties (volume of

surgeries) during the quarter. This result most likely reflects specialization—for example,

it has been observed that hospitals that perform relatively few invasive procedures have

lower success rates for them.24 To the extent that this volume variable captures (time-

varying) specialization at the hospital level, including this control helps to ensure that

the effects of patient age composition are not merely proxying for the effects of special-

ization.25 We find that the racial composition of the patient base also affects treatment

systematically: surgery (or angioplasty alone) is less likely to be selected, for either old or

young patients, the greater the proportion of black patients treated at the hospital. Sim-

ilar effects are observed for the share of Hispanic patients, but the significance is weaker

on average. Hospitals with higher patient income (as of 1999) have a higher angioplasty

rate for old patients, but income effects are otherwise only weakly significant. The share

of insured patients exerts no significant effect on treatment tendencies.

We test multiple hypotheses using overlapping data and therefore run an elevated risk

of spuriously producing statistically significant results. Several options exist for adjusting

23Together with the significant result for angioplasty alone, this result suggests that old patients are
not significantly more likely to receive bypass surgery when there is a large share of young patients in
the region.

24See, for example, Birkmeyer (2000).
25With hospital fixed effects in the model, fixed specialization is already accounted for. However,

specialization could vary over time in a manner that would be proxied by changes in procedure volume.
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p-values to obtain robust inference under these conditions.26 In Table 3, we consider two

different corrections. First, the Bonferroni adjustment multiplies the regression p-values

by the number of tests used. This correction is a conservative measure which may

overcompensate for the multiple comparisons problem (Legendre and Legendre 1998).

The second adjustment, a more powerful test attributed to Holm, involves a modified

correction to the p-values (Holm 1979).27 Under either method, the corrected p-values

are compared to the chosen α significance level. Table 3 shows the three different p-

values associated with each coefficient estimate for each model: the unadjusted value, the

Bonferroni-corrected value, and the Holm-corrected value. While some control variables

lose significance under the corrected p-values, the significance levels of the key variables

of interest—for example, the proportion of young patients at the hospital—are robust to

either correction method.

26For discussion and critique of these adjustments, see Legendre and Legendre (1998), Pereneger
(1998), and Nakagawa (2004).

27With the Holm correction for k multiple tests, individual p-values are ordered from smallest to
largest, that is, p1 ≤ p2 . . . ≤ pk. Probability values are first adjusted according to p′

i
= (k − i + 1)pi.

Next, proceeding from left to right, if an adjusted p-value is smaller than the one to its left, the smaller
one is set equal to the larger one. Corrected p-values may be greater than one.
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4 Conclusion

This paper addresses the puzzle of robust geographic variations in medical treatment.

We provide a theoretical explanation for the puzzle, using a model that involves local

social influence among doctors and regional variation in patient characteristics. Start-

ing from almost any initial conditions, simple adaptive behavior leads to region-specific

treatment norms. In equilibrium, the variation in treatment rates far exceeds the un-

derlying variation in patient characteristics, consistent with previous empirical findings.

The theory makes sharp predictions about the relationship between average patient char-

acteristics within a region and treatment use, predictions largely confirmed in our data.

In particular, we find that old (young) patients tend to be treated more invasively (less

invasively) for heart disease the greater the share of young (old) patients treated at the

same hospital in the same period. In each case, treatment choices for all patients are

skewed toward the choice that is medically optimal for the dominant demographic group

in the region.

Our model makes significant contributions to the theoretical understanding of treat-

ment variations. First, we provide an explanation for how regional norms emerge rather

than just why norms might persist once in place. Second, the model shows that either

productivity spillovers or conformity pressure can result in the emergence of treatment

variations and demonstrates an important difference in welfare implications between the

two mechanisms. In addition, the model implies that regional norms are grounded in rela-

tively stable underlying fundamentals (in our case, patient characteristics), a result that

contrasts with the multiple equilibria that often arise in settings involving conformity

effects and other spillovers.

For simplicity, we assumed that patients do not respond to the emergence of treatment

norms by choosing hospitals that best match their preferences and characteristics. In

practice, patients (and their health care providers) exert some choice over the hospitals

in which they are treated, and may even select residential locations based in part on

proximity to a particular hospital. While such sorting would mitigate the welfare losses

experienced by minority-type patients in a region, there are likely to be considerable

constraints on optimal hospital-patient matching and hence our results should be largely

robust.

Our welfare analysis holds important policy implications. Under conformity pressure,

a tendency to overutilize invasive treatments may arise in some regions (and to under-
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utilize them in other places), contributing to inefficient care and elevated costs. On the

other hand, we show that legislating strict treatment guidelines may be harmful in the

presence of knowledge spillovers, because some patients will be deprived of gains from

specialization. Regional treatment variations are not necessarily welfare-reducing, but

further research along these lines is clearly warranted before policy recommendations can

be made.
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Appendix

Proof of Proposition 1

Proof. Since the process restricted to S is irreducible and aperiodic, it has a unique

invariant distribution. Each state can be specified in terms of m, the location of the

first zero. First, we define the probabilities b(m) and d(m) of transition m → m + 1 and

m → m − 1, respectively. Recalling that the rate of arrival of patients is one, these are

given by:

b(m) =











pW if m < 0

pE otherwise.

In other words, m moves to the right if an α-patient arrives at m, which happens with

probability pW in the West, and pE in the East.

d(m) =











1 − pW if m ≤ 0

1 − pE otherwise.

In other words, m moves to the left if a β-patient arrives at m − 1, which happens with

probability 1− pW in the West, and 1− pE in the East. The process is reversible, so that

invariant distributions can be obtained from the detailed balance conditions:

b(m − 1)ρ(m − 1) = d(m)ρ(m).

We can confirm that these are satisfied. The conditions pW > 1/2 and pE < 1/2 ensure

that K is finite in the definition of ρ, and the balance equations are satisfied for non-zero

ρ(·). In case m ≤ 0, we can substitute for ρ and confirm that

b(m − 1)

d(m)
=

pW

1 − pW

=
ρ(m)

ρ(m − 1)
.

When m > 0,
b(m − 1)

d(m)
=

pE

1 − pE

=
ρ(m)

ρ(m − 1)
.
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So ρ(·) is an invariant distribution. It is not a mixture of δ0 and δ1; hence the process

coexists.
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Proof of Proposition 2.

Proof. Let ξx
t denote the process at time t when the initial configuration has A at site

x, and B elsewhere. In this case, the A-region will always constitute an interval, unless

ξx
t has no A’s at all. Let Lt ≡ mini{i|ξ

x
t (i) = A} and Rt ≡ maxi{i|ξ

x
t (i) = A}, so that

[Lt, Rt] denotes the A-region (initially, L0 = R0 = x). We first show that for x ∈ West,

and conditioning on the event

Ω = {Rt ≥ Lt for all t > 0},

ξx
t , grows linearly in time until Rt reaches the East/West boundary (specifically, until

Rt = −1). Thereafter, only Lt extends westwards. Given pW > 1/2, pE < 1/2, and if

0 > Rt > Lt, Rt and Lt perform independent random walks according to:

Rt →











Rt + 1 at rate λ

Rt − 1 at rate 1

(3)

Lt →











Lt − 1 at rate λ

Lt + 1 at rate 1,

(4)

where λ = pW /(1 − pW ) > 1. Then, following Durrett (p. 38), and conditioning on Ω,

Rt − x

t
→ (λ − 1) and

Lt − x

t
→ −(λ − 1) a.s.

Once Rt = −1, conditional on Ω, Rt evolves like the boundary in Proposition 1. An

analogous statement holds for the evolution of B regions in the East.

Next, we consider an arbitrary configuration ξ and index the A and B regions as

follows. Let A0 denote the easternmost A-region that still occupies sites in the West: that

is, A0 is a set of contiguous sites with (1) x ∈ A0 ⇒ ξ(x) = A, (2) A0 ∩ (West∪ {0}) 6= ∅

and (3) [i > max A0 & i < 0] ⇒ ξ(i) = B. Similarly, B0 denotes the set of contiguous sites

with (1) x ∈ B0 ⇒ ξ(x) = B, (2) B0∩ East 6= ∅, and (3) [i < min B0 & i ≥ 0] ⇒ ξ(i) = A.

If ξ is chosen according to νθ, then, with probability one, both A0 and B0 will exist and
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share a common boundary (defined as in Proposition 1, as the location of the first B in

B0). Label the A-region immediately to the west of A0 by A−1, and the nearest eastern

region by A+1, and so on. We do the same for B-regions, with eastern regions having

positive indices and western regions having negative ones. Now A regions grow in the

West, B-regions grow in the East, and the A0/B0 boundary evolves in the same manner

as the boundary of states in the sub-chain on S in Proposition 1, unless one of A0 or B0

becomes extinct (the right boundary becomes smaller than its left boundary). In case

A0 or B0 becomes extinct, we relabel indices according to the scheme above and get a

new A0/B0 boundary.

Since, with probability one, there are initially an infinite number of A and B regions,

there are always A and B regions available to be relabeled. As t → ∞, |A0| → ∞

and |B0| → ∞, and their extinction probabilities become zero. B-regions in the West

and A-regions in the East tend to become extinct. As t → ∞ the probability, for some

location x ∈ West, that ξt(x) = B approaches the probability that the A0/B0 boundary

is at y ≤ x, which converges to ρ(x):

Prob {ξt(x) = B} =
∑

i≤x

ρ(i).

So, observing that Ω = {A,B}Z carries the product topology, all the finite dimensional

distributions converge as well, implying weak convergence of πt to ρ.

Proof of Proposition 3

Proof. Since a physician’s expected utility at a location has been defined as the likelihood

of success for the population profile at that location, we can speak of patient welfare in

terms of these same payoffs. First, we describe the expected utility at location x in the

long-run co-existent outcome ρ. Suppose x < 0 (x is in the West). Expected utility at x

is a weighted sum of three terms:

U1 ≡ pW πA(α,A,A) + (1 − pW )πA(β,A,A)

U2 ≡ pW πB(α,B,B) + (1 − pW )πB(β,B,B)

U3 ≡ pW πA(α,A,B) + (1 − pW )πB(β,A,B),

with corresponding weights (1) the probability that x is in the interior of a region of A’s,
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(2) the probability that x is in the interior of a region of B’s, and (3) the probability that

x is at a boundary. These probabilities can be explicitly computed from Proposition 1.

The expected utility for a location in the East can be obtained in a similar manner.

With enforced treatment guidelines the expected utility at x < −1 (interior West) is a

weighted sum of

V1 ≡ pW πA(α,A,A) + (1 − pW )πB(β,A,A)

V2 ≡ pW πA(α,B,B) + (1 − pW )πB(β,B,B)

V3 ≡ pW πA(α,A,B) + (1 − pW )πB(β,A,B),

with weights (1) p2
W , (2) (1−pW )2, and (3) 2pW (1−pW ), respectively. In the interior East

the weights are p2
E, (1−pE)2, and 2pE(1−pE), respectively. At x ∈ {−1, 0}, one neighbor

is in the East and one is in the West so that the weights are pEpW , (1 − pE)(1 − pW ),

and pE(1 − pW ) + pW (1 − pE), respectively. In the interior West, from the returns to

scale assumption, U1 > V1, U2 > V2, and U3 = V3. Treatment guidelines can do better

if U1 − V1 and U2 − V2 are small and U3 = V3 is larger than both U1 and U2 and has

much greater weight under treatment guidelines than at the long-run outcome. These

conditions can be satisfied by non-pathological technologies, such as:

πA(α,B,B) = 0.1 πA(β,B,B) = 0

πA(α,A,B) = 0.4 πA(β,A,B) = 0.1

πA(α,A,A) = 0.5 πA(β,A,A) = 0.11,

and similarly, for B,

πB(α,B,B) = 0.11 πB(β,B,B) = 0.5

πB(α,A,B) = 0.1 πB(β,A,B) = 0.4

πB(α,A,A) = 0 πB(β,A,A) = 0.1,

when pE and pW are close to 1/2.28 For expected utility at the long-run outcome, the

28In contrast, for the technology given in Section 2.1, the long-run outcome is always superior to
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weight of the term U3 becomes small as pE and pW become close to 1/2 (specifically,

ρ(m) → 0 as pE, pW → 1/2). For treatment guidelines the weight of V3 becomes close

to 1/2, and so guidelines do better. This argument applies to the interior East with

appropriate change of notation. For the case of x ∈ {−1, 0}, assuming pW and pE are both

close to 1/2, expected utility under the guidelines is approximately equal to the expected

utility in either the interior East or the interior West under guidelines. Therefore, the

long-run outcome ρ is dominated by the policy of treatment guidelines.

enforced treatment guidelines.
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Table 1: Summary statistics on the panel data set from Florida, 1995 to 2001

Variable Mean Std. Dev.

Dependent variables

Angioplasty Rate per thousand, younger patients 450.25 109.41
Angioplasty Rate per thousand, older patients 330.27 124.42
Surgery Rate per thousand, younger patients 671.48 134.39
Surgery Rate per thousand, older patients 555.25 150.14

Explanatory Variables

Hospital Volume in quarter
Total number of heart patients in quarter 395.25 227.12
Total volume of angioplasties in quarter 161.10 113.16
Total volume of surgeries in quarter 258.90 175.38
Hospital Demographics
Proportion of Heart Patients in younger group 0.35 0.10
Proportion of Heart Patients in older group 0.46 0.10
Proportions of patients by Patient Race
Black 0.07 0.06
Hispanic 0.09 0.19
Other 0.01 0.04
Income, 1999 38615 4423
Proportion of Patients with managed care plan 0.36 0.16

Pearson Correlation Coefficients Patient Age
Angioplasty, (Patient Receives Angioplasty) -0.11222
p-value under H0 : ρ = 0 < .0001

Surgery, (Patient Receives Surgery) -0.11435
p-value under H0 : ρ = 0 < .0001

Note: There are 1488 hospital-quarter observations, based on 572,316 patient records. Younger
patients are defined as the group including the youngest one-third of the sample, patients with
age<63, while older patients are the oldest one-third of the sample, patients with age >72.
Proportions are calculated relative to the full sample of all patients admitted to the hospital
for coronary care.
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Table 2: Treatment rates by patient age and the effect of hospital demographics; panel

regressions

Dep Var: Treatment rates, Older Patients
Angioplasty Surgery

coef. st. error p value coef. st. error p value
Hospital Volume, number of angioplasties 0.775 ** 0.036 0.000 0.721 ** 0.038 0.000

Hospital Demographics
Proportion of all Patients Aged 62 or younger 179.587 ** 69.469 0.010 61.318 59.429 0.302
Proportion of all Patients Aged 73 or older
Proportion Patient Race
Black -226.590 ** 111.540 0.042 -530.797 ** 120.448 0.000
Hispanic -88.335 * 48.548 0.069 -95.639 * 56.477 0.090
Other 31.918 64.534 0.621 25.764 64.371 0.689
Income, 1999 0.005 ** 0.002 0.035 0.005 * 0.003 0.052
Proportion Patients with HMO or PPO insurance 48.223 30.871 0.118 38.588 32.512 0.235

Intercept 85.983 99.763 0.389 345.795 ** 104.882 0.001

Dep Var: Treatment Rates, Younger Patients
Angioplasty Surgery

coef. st. error p value coef. st. error p value
Hospital Volume, number of surgeries 0.829 ** 0.037 0.000 0.584 ** 0.038 0.000

Hospital Demographics
Proportion of all Patients Aged 62 or younger
Proportion of all Patients Aged 73 or older -170.349 ** 51.927 0.001 -216.112 ** 55.422 0.000
Proportion Patient Race
Black -302.083 ** 86.240 0.000 -500.674 ** 97.595 0.000
Hispanic -105.609 ** 52.578 0.045 28.369 53.322 0.595
Other 45.419 38.978 0.244 47.005 36.091 0.193
Income, 1999 0.003 * 0.002 0.097 0.003 0.002 0.219
Proportion Patients with HMO or PPO insurance 22.634 26.155 0.387 -3.901 28.838 0.892

Intercept 311.441 ** 84.136 0.000 565.340 ** 90.046 0.000

Note: **Significant at α = 0.05 level. *Significant at α = 0.10. Standard errors are robust.
Dependent variables are expressed as treatment rates per thousand patients. The model
includes fixed effects for hospitals and time, not reported here.
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Table 3: P-value adjustments for Multiple Comparisons

Dependent Variable: Angioplasty
unadjusted Bonferroni Holm

p-value p-value p-value
Treatment rates, Older patients
Hospital Volume, number of angioplasties 0.000 ** 0.000 ** 0.000 **
Hospital Demographics:
Proportion of all Patients Aged 62 or younger 0.010 ** 0.020 ** 0.020 **
Proportion of all Patients Aged 73 or older
Proportion Patient Race
Black 0.042 ** 0.084 * 0.042 **
Hispanic 0.069 * 0.138 0.138
Other 0.621 1.242 1.242
Income, 1999 0.035 ** 0.070 * 0.070 *
Proportion Patients with HMO or PPO insurance 0.118 0.236 0.236
Intercept 0.389 0.778 0.389

Treatment rates, Younger patients
Hospital Volume, number of surgeries 0.000 ** 0.000 ** 0.000 **
Hospital Demographics:
Proportion of all Patients Aged 62 or younger
Proportion of all Patients Aged 73 or older 0.001 ** 0.002 ** 0.001 **
Proportion Patient Race
Black 0.000 ** 0.000 ** 0.000 **
Hispanic 0.045 ** 0.090 * 0.090 *
Other 0.244 0.488 0.386
Income, 1999 0.097 * 0.194 0.194
Proportion Patients with HMO or PPO insurance 0.387 0.774 0.774
Intercept 0.000 ** 0.000 ** 0.000 **

Dependent Variable: Surgery
unadjusted Bonferroni Holm

p-value p-value p-value
Treatment rates, Older patients
Hospital Volume, number of angioplasties 0.000 ** 0.000 ** 0.000 **
Hospital Demographics:
Proportion of all Patients Aged 62 or younger 0.302 0.604 0.302
Proportion of all Patients Aged 73 or older
Proportion Patient Race
Black 0.000 ** 0.000 ** 0.000 **
Hispanic 0.090 * 0.180 0.138
Other 0.689 1.378 1.242
Income, 1999 0.052 * 0.104 0.070 *
Proportion Patients with HMO or PPO insurance 0.235 0.470 0.236
Intercept 0.001 ** 0.002 ** 0.002 **

Treatment Rates, Younger patients
Hospital Volume, number of surgeries 0.000 ** 0.000 ** 0.000 **
Hospital Demographics:
Proportion of all Patients Aged 62 or younger
Proportion of all Patients Aged 73 or older 0.000 ** 0.000 ** 0.000 **
Proportion Patient Race
Black 0.000 ** 0.000 ** 0.000 **
Hispanic 0.595 1.190 0.595
Other 0.193 0.386 0.386
Income, 1999 0.219 0.438 0.219
Proportion Patients with HMO or PPO insurance 0.892 1.784 0.892
Intercept 0.000 ** 0.000 ** 0.000 **
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