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EFFICIENCY, COMMUNICATION AND HONESTY

Stefano Demichelis∗ and Jörgen W. Weibull†
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No. 645
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Abstract. We here develop a model of pre-play communication that
generalizes the cheap-talk approach by allowing players to have a lexicographic
preference, second to the payoffs in the underlying game, for honesty. We for-
malize this by way of an honesty (or truth) correspondence between actions
and statements, and postulate two axioms met by natural languages. The
model is applied to finite and symmetric two-player games and we establish
that honest communication and play of the Pareto dominant Nash equilibrium
together characterize the unique evolutionarily stable set in generic and sym-
metric n × n-coordination games. In particular, this holds even in Aumann’s
(1990) example of a Pareto dominant equilibrium that is not self-enforcing.

Keywords: Efficiency, communication, coordination, honesty, evolutionary
stability.
JEL-codes: C72, C73, D01.

1. Introduction

Communication is crucial to most human interaction, and yet traditional economic
analyses either neglect communication or presume that it leads to play of an equilib-
rium that is not Pareto dominated by another equilibrium.1 An example of the latter
is renegotiation proofness, a criterion that is sometimes invoked in contract theory
and in analyses of repeated games (see Benoit and Krishna (1993) for a succinct

∗Department of Mathematics, University of Pavia, Italy. Demichelis thanks the Knut and Alice
Wallenberg Foundation for financial support and the Stockholm School of Economics for its hospi-
tality. Both authors thank Cedric Argenton, Milo Bianchi, Vince Crawford, Segismundo Izquierdo
and Robert Östling for comments.

†Department of Economics, Stockholm School of Economics.
1Laboratory experiments generally support the hypothesis that pre-play communication leads to

play of such equilibria in coordination games. A pioneering study of this phenomenon is Cooper et
al. (1989). See Crawford (1998) for a survey, Charness (2000), Clark, Kay and Sefton (2001) and
Blume and Ortmant (2005) for more recent contributions.
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EFFICIENCY, COMMUNICATION AND HONESTY 2

analysis). However, as pointed out by Aumann (1990), strategically interacting deci-
sion makers may agree to play a Pareto dominant equilibrium even if each decision
maker secretly plans to deviate. Aumann illustrated this possibility by means of the
following two-player game:

c d
c 9, 9 0, 8
d 8, 0 7, 7

. (1)

This game has three Nash equilibria, all symmetric: the Pareto dominant but risk
dominated strict equilibrium (c, c), the risk dominant but Pareto dominated strict
equilibrium (d, d), and a mixed equilibrium that results in an intermediate expected
payoff. Aumann points out that each player has an incentive to suggest play of (c, c),
even if the suggesting player actually plans to play d; it is advantageous to make the
other play c rather than d irrespective of what action the suggesting player takes. In
Aumann’s colorful words, with Alice and Bob in the two player roles:

‘Suppose that Alice is a careful, prudent person, and in the absence of an
agreement, would play d. Suppose now that the players agree on (c, c),
and each retires to his “corner” in order actually to make a choice. Alice
is about to choose c when she says to herself: ‘Wait; I have a few minutes;
let me think this over. Suppose that Bob doesn’t trust me, and so will
play d in spite of our agreement. Then he would still want me to play c,
because that way he will get 8 rather than 7. And of course, also if he
does play c, it is better for him that I play c. Thus he wants me to play c
no matter what. [...] Since he can reason in the same way as me, neither
one of us gets any information from the agreement; it is as if there were
no agreement. So I will choose now what I would have chosen without an
agreement, namely d.’” (op. cit. p. 202)

Aumann concludes that the strict and Pareto dominant Nash equilibrium (c, c) is
not self-enforcing. This line of reasoning abstracts away from the possibility that Alice
and Bob have a preference for honesty (here: for not deviating from an agreement).
In this abstraction, Aumann is not alone. Indeed, virtually all of modern economics
relies on the presumption that economic agents have no preference for honesty, or
more specifically against lying, per se. The standard assumption in all of information
economics (ranging frommechanism design to the market for lemons) is that economic
agents misreport their private information whenever they believe it is in their interest
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to do so.2

The purpose of the present study is to investigate the implications of a (weak)
preference for honesty in coordination games with a pre-play communication stage.
We show that a lexicographic preference for honesty (second to the payoffs in the
underlying game) rules out, in the long run, behaviors such as the one described in
the above example, and, more generally, implies honest communication and play of the
Pareto dominant equilibrium in all symmetric n×n-coordination games with a unique
Pareto dominant equilibrium. We achieve this by way of a generalization of the cheap-
talk approach to include what we call an honesty (or, somewhat more narrowly, truth)
correspondence, a correspondence that specifies what pre-play messages are honest
(true) when uttered in conjunction with a given action in the underlying game G.
For instance, the statement “I will play c” is honest (and true) if and only if the
player actually takes action c (in the absence of any risk that intentions cannot be
carried out) while “I will play c or d” is honest (true), irrespective of what action the
speaker takes. Statements such as “I suggest that we play (c, c)” or “Let us agree to
play (c, c)”, if followed by play of d, are neither true nor false, but would be deemed
dishonest, we believe, by most people.3

Most individuals presumably feel some guilt or shame when lying or being dishon-
est. Gneezy (2005) provides experimental evidence for a psychological cost associated
with the act of lying (see also Ellingsen and Johannesson (2004) and Hurkens and
Kartik (2006)). Gneezy’s main empirical finding is that “...people not only care about
their own gain from lying; they also are sensitive to the harm that lying may cause
the other side. The average person prefers not to lie, when doing so only increases
her payoff a little but reduces the other’s payoff a great deal.” (op. cit. p. 385). In
the context of the above example: for a sufficiently large psychological cost of lying,
neither Alice nor Bob would say that they will play c and then play d. What happens,
by contrast, if the preference for honesty is weak? This is exactly what we analyze
here. We go to the extreme and assume that players have a lexicographic preference
for honesty, that they avoid dishonest statements only if this comes at no loss of
material payoffs. This assumption may, at first sight, seem too weak to have any
interesting implication for behavior. However, this is not so. For example, suppose
that, in Aumann’s example, both Alice and Bob first say that they will play c and yet
they each then takes action d. Such behavior is compatible with Nash equilibrium

2Notable exceptions are Alger and Ma (2003) and Alger and Renault (2006a,b).
3Examples of lying that is usually not thought to be dishonest are “white lies” in social life and

policy makers’ denials of plans to devalue a currency.
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under cheap talk, since then messages have no exogenous meaning. By contrast, it
is incompatible with Nash equilibrium in our lexicographic communication game if
the language is rich enough. For if the language contains some message, m, that is
honest only if action c is taken and another message, m0, that is honest only when
followed by action d – two innocuous assumptions about any natural language –
then it it would be lexicographically better to say m0 instead of m, since there can
follow no payoff loss in G.4

This is not the end of the analysis, however. First, it is easily shown that there are
Nash equilibria in the lexicographic communication game in which both players are
dishonest. Secondly, there are Nash equilibria that are Pareto dominated by other
Nash equilibria. However, we establish that set-wise evolutionary stability implies
Pareto dominant Nash equilibrium play in finite and symmetric two-player n × n-
coordination games, granted the language satisfies two axioms–a precision axiom
and a null axiom–axioms that generalize the richness properties alluded to above.
We believe that set-valued evolutionary stability is relevant in the present context.
For if games are played over and over in a large population with a common language,
then drift may occur in continua of payoff-equivalent strategies. Thus, the population
state will eventually leave such a continuum, unless strategies in the continuum “de-
feat” strategies outside the set, which is, roughly, what set-wise evolutionary stability
requires. Drift in equilibrium components of games has been analyzed before, see in
particular Binmore and Samuelson (1994, 1997).
The mechanism that drives home our efficiency result is similar to that in Robson

(1990) in that it depends on the existence of messages that are not sent in equilibrium.
Robson noted that, in a population playing such an equilibrium, deviating players can
use such messages (as a “secret handshake”) to recognize each other and coordinate
their play. However, while the existence of such unused messages is presumed in
Robson (1990), and non-deviating players in his setting by assumption do not react
to such messages, the existence of unsent messages is here derived from primitives
and non-deviators may recognize, and hence also punish, senders of such messages.
We believe that our approach is original. It clearly differs from the cheap-talk

literature and it also differs from other models of pre-play communication in which
messages have a pre-existing meaning. Let us briefly comment on some contribu-
tions along the latter line. Farrell (1988,1993) analyzes cheap-talk pre-play com-
munication when messages have a pre-existing meaning. In the second paper, he

4Just as with Aumann’s informal reasoning, this hinges on the fact that the off-diagonal payoff
8 is no less than the on-diagonal payoff, 7.
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defines neologism-proofness, a refinement of perfect Bayesian equilibrium in cheap-
talk games.5 Unlike here, players have no preference for or against honesty per se.
Instead, Farrell imposes a credibility condition on unsent messages, roughly requiring
the listener to believe the speaker, unless the speaker has a “good reason” to mis-
lead the listener. Thus, our approach is quite distinct from that of Farrell. Myerson
(1989) focuses on the determination of a single negotiation statement made by one
individual, the negotiator, while we here focus on the determination of pairs of state-
ments, made by both players in two-player games. Rabin (1994) analyzes two-sided
pre-play communication in symmetric two-player games. He considers cheap talk
in a language with pre-existing meaning, and players make repeated simultaneous
statements before they play the underlying game. Repetition allows them to make
agreements to play particular equilibria of the underlying game: if the players pro-
pose the same equilibrium in a given pre-play communication round, then this defines
an agreement to play that equilibrium. Rabin’s modelling approach is clearly differ-
ent from the one taken here. In particular, we do not presume that “agreements”
will be followed but instead presume a lexicographic preference for “keeping one’s
word.” Blume (1998) analyzes stochastic population learning in pre-play communi-
cation games where some messages have a priori information content, modelled as
follows. For each strict equilibrium in the underlying game, each player has exactly
one message linked to that equilibrium. If such a linked message is sent, then the
receiver of the message obtains a small increase in his or her material payoff if playing
his or her strategy in that equilibrium, while the sender’s payoff is unaffected. By
contrast, we assume that a sender who sends a dishonest message will make a lexico-
graphic payoff loss, while there is no direct effect on the payoff to the receiver of such
a message. Crawford (2003) analyzes one-way pre-play communication in zero-sum
games in which the players send messages to each other about their intentions, in a
pre-existing language, as here. Players do not have a preference against lying per se,
however, but may be either sophisticated or mortal. The first category is essentially
the usual homo oeconomicus, as portrayed in game theory, while representatives of the
second category do not always have correct beliefs about their opponent’s behavior
(in particular, they expect their own attempts to deceive their opponent to always be
successful). The possibility of a mortal opponent fundamentally alters the game from
sophisticated players’ viewpoint, and makes deception possible in sequential equilib-

5Farrell (1988) investigates another solution concept for pre-play communication games. a con-
cept that combines elements of Nash equilibrium with elements of rationalizability.
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rium.6 Miettinen (2006), finally, develops a model of pre-play negotiations in which
players incur a psychological costs (of guilt) if they breach an agreement and thereby
harm the other party. The cost is weakly increasing in the agreed payoff and weakly
decreasing in the harm caused the other player. Hence, while addressing a related
question, the approach is quite distinct. In particular, it is not a generalization of
cheap talk.
The rest of the paper is organized as follows. The model is specified in Section

2, Nash equilibrium is analyzed in Section 3 and evolutionary stability in Section 4.
Section 5 concludes.

2. The model

Let G be a symmetric n×n two-player game with payoff matrix Π = (π (i, j)). Thus,
π (i, j) is the payoff to a player who uses pure strategy i when the other player uses
strategy j. We will refer to G as the underlying game. Let A denote the finite set of
pure strategies of G, to be called actions.
Let M be a non-empty finite set of messages, and let G =(S, v) be a symmetric

cheap-talk communication game, based on the game G, as follows: first, the players
simultaneously send a message to each other, then each player observes the other’s
message and takes an action in G. The pure-strategy set for each player in G is thus
the finite set

S = {(m, f) : m ∈M & f :M −→ A} , (2)

where m ∈ M is a message to send and f maps the other player’s message, m0, to
an own action a = f (m0). Given a mixed strategy σ ∈ ∆ (S), where ∆ (S) is the
unit simplex of probability distributions over S, let σ(m, f) denote the probability
assigned to the pure strategy s = (m, f), and let M(σ) ⊂ M be the set of messages
used with positive probability in σ. Let σm (m0) ∈ ∆ (A) denote the conditional
probability distribution induced by σ, conditional on having sent m and received m0.
Define v : S2 → R by

v [(m, f), (m0, g)] = π [f(m0), g(m)] . (3)

This is the payoff in G to a player who uses pure strategy (m, f) against (m0, g). The
payoff function v is linearly extended to mixed strategies in G as usual.
Let β : ∆ (S)⇒ ∆ (S) be the best-reply correspondence in G and let

∆NE = {σ ∈ ∆ (S) : σ ∈ β (σ)} (4)

6For other equilibrium analyses of deceit and lying, see Sobel (1985), Benabou and Laroque
(1992), Farrell and Gibbons (1989) and Conlisk (2001).
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be the set of strategies in symmetric Nash equilibria of G.
Let G̃ be a lexicographic communication game, derived from G as follows. The

messages, actions and strategies are defined as in G. Call the payoffs in G material
payoffs. We proceed to define G̃ as an ordinal game, that is, a game in which players
have complete and transitive preference orderings over mixed-strategy profiles (see
Chapter 2 in Osborne and Rubinstein (1994)).
All messages in G̃ have a pre-determined meaning in the sense that for each

message m ∈ M there is a non-empty subset H (m) ⊂ A of actions such that m is
honest if and only if the player who sends it subsequently takes an action a in H (m).
Hence, H is a correspondence fromM to A, which we call the honesty correspondence,
H : M ⇒ A. For any action a ∈ A, let Ma = {m ∈ M | a ∈ H(m)}, the set of
messages that are honest when a is played.7

Suppose that a player has sent a message m and then taken an action a ∈ A.
Whether or not a message is honest depends in part on the other player’s message,
since a = f (m0), where m0 is the other’s message. We say that a player’s pure
strategy (m, f) is strictly honest if f (m0) ∈ H (m) for all m0 ∈ M , that is, if the
message is honest irrespective of what message the other player sends. Likewise, a
mixed strategy σ ∈ ∆ (S) will be called strictly honest if all pure strategies in its
support are strictly honest.8

Players have a lexicographic preference for honesty, defined as follows.9 First, let
w [(m, f), (m0, g)] = 0 if the player’s own strategy is (m, f), the other’s is (m0, g)), and
f(m0) ∈ H (m). Otherwise, w [(m, f), (m0, g)] < 0. Hence, −w may be thought of as
the (psychological) “cost” of dishonesty. With some abuse of notation, let w(σ, σ0)
be the expected value of w for a player who uses the mixed strategy σ when the other
uses σ0. Secondly, let <L define the lexicographic order on Rn, for any integer n > 1,
defined as usual, that is, (x1, x2, ...xn) <L (y1, y2, ..yn) if x1 > y1 or x1 = y1 and

7In earlier versions of this paper, we called H the truth correspondence, a slightly more restrictive
interpretation. The requirement that each message m ∈ M be either honest (true) or dishonest
(untrue) clearly rules out, from the set M , messages such as “This message is dishonest” (“This
message is untrue”).

8People may have different views about what honesty is, in part depending on their culture.
While some may think that planning to lie only in case the other player would deviate from the
equilibrium path is not dishonest (this is essentially what we assume here), others may require
stricter moral standards and deem it dishonest even to plan to lie in situations that occur with
probability zero (this is essentially our definition of “strict honesty”). Our results hold for both
definitions, see section 5.

9For the case of a lexicographic preference for strict honesty, rather than for honesty, see discussion
in section 5.
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x2 > y2, etc. Third, define each player’s utility vector, when the own strategy is σ
and the other’s is σ0, as

ṽ(σ, σ0) = (v(σ, σ0), w(σ, σ0)) ∈ R2. (5)

Finally, the ordinal preferences of the players in G̃ are defined as the lexicographic
ordering of these utility vectors. In other words: each player (strictly) prefers one
strategy profile over another if the first profile’s utility vector is lexicographically
ranked (strictly) before the other’s:

(σ, σ0) < (τ , τ 0) ⇔ ṽ(σ, σ0) <L ṽ(τ , τ 0), (6)

where σ, τ ∈ ∆ (S) are the player’s own strategies and σ0,τ 0 ∈ ∆ (S) those of the
other player. This defines G̃ =(S,<) as an ordinal game.
We define the best-reply correspondence β̃ : ∆ (S)⇒ ∆ (S) in G̃ by

β̃ (σ0) = {σ ∈ ∆ (S) : (σ, σ0) < (τ , σ0) ∀τ ∈ ∆ (S)} . (7)

A Nash equilibrium of the ordinal game G̃ is a strategy profile (σ, σ0) such that
σ ∈ β̃ (σ0) and σ0 ∈ β̃ (σ). Such an equilibrium is symmetric if σ = σ0. The set of
strategies in symmetric Nash equilibria of G̃ will be denoted

∆̃NE =
n
σ ∈ ∆ (S) : σ ∈ β̃ (σ)

o
. (8)

The following two axioms turn out to be important and will be explicitly invoked
when assumed:

Axiom P (the precision axiom): For each action a ∈ A there exists at
least one message m ∈M such that H (m) = {a}.
Axiom N (the null axiom): There exists at least one message m ∈ M

such that H (m) = A.

In other words, Axiom P requires the language to be rich enough to contain at
least one message for each action of the underlying G such that the action is exactly
specified; to send such a message and then take another action is dishonest.10 Axiom
N requires the language to contain messages that do not say anything about what

10Likewise, Rabin (1994) defines completeness of a pre-play communication language to essentially
mean that in the pre-play negotiation stage in his model, players are able to specify any equilibrium
than they want to suggest (op. cit. Definition 2).
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action in G the speaker will use. Such messages will be called null messages. They
are always honest, irrespective of the action taken by the player.11 To send such a
message can thus be thought of as sending no message at all.

Remark 1. We obtain cheap talk as the special case when all messages are null
messages: then all messages are always honest.

3. Nash equilibrium

It follows from the definition of the best-reply correspondence β̃ that a mixed-strategy
profile (σ, σ) is a Nash equilibrium of G̃ if and only if (i) it is a Nash equilibrium of
G, (ii) all strategies in the support of σ have the same expected cost of dishonesty
against σ, and (iii) there is no other pure strategy that earns the same material payoff
against σ and has a lower expected cost of dishonesty against σ. Formally (and with
a slight abuse of notation):

Lemma 1. σ ∈ β̃ (σ) if and only if σ ∈ β (σ) and

v((m, f), σ) = v(σ, σ) ⇒ w((m, f), σ) ≤ w((m0, g), σ)

for all (m, f) ∈ S and all (m0, g) ∈ supp(σ).

As an immediate corollary we obtain that if (σ, σ) is a Nash equilibrium of G̃ in
which a null message is used with positive probability, then σ has in its support only
pure strategies that are honest against σ. We call such equilibria honesty equilibria.
By contrast, a symmetric Nash equilibrium (σ, σ) of G̃ is a dishonesty equilibrium if
σ assigns positive probability to a pair of pure strategies (m, f) and (m0, g) such that
f (m0) /∈ H (m). The following example exhibits a dishonesty equilibrium.

Example 1. Consider the game G defined by the payoff bi-matrix in (1). Let M =

{“c”, “d”}, where “c” is honest iff c is played, H (“c”) = {c}, and “d” is honest iff d

is played, H (“d”) = {d}. Consider the pure strategy s = (“d”, f), where f (“d”) = c

and f (“c”) = d. In other words: say “d” and take action c if you receive the message
“d”, otherwise take action d. Clearly (s, s) is a Nash equilibrium in the cheap-talk
game G, since no deviation can result in a higher payoff in G. A deviation to “c”
results in a payoff loss in G, so (s, s) is also a Nash equilibrium in the lexicographic
communication game G̃, a dishonesty equilibrium.
11Hurkens and Schlag (2002) analyze cheap talk pre-play communication in situations where each

player has the option of not showing up at the pre-play communcation stage, that is, to neither
senda message nor know if the other player has sent a message. (By contrast, our players cannot
commit not to hear or see the other’s message.) They show that the unique evolutionarily stable
set in n× n-coordination games is characterized by play of the Pareto dominant equilibrium.
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Next, we consider the opposite possibility, discussed in Aumann (1990), namely
that people may say “c” even when they intend to play d in the game G in (1). Such
behavior, while compatible with Nash equilibrium under cheap talk, is incompatible
with Nash equilibrium in a lexicographic communication games if saying “c” is dis-
honest when d is played, and if the language is rich enough to contain a message that
is honest when d is played.

Example 2. Let G be as in the preceding example, letM be any message set and H
an honesty correspondence such that d ∈ H

¡
md
¢
for some messagemd ∈M . Suppose

that (σ, σ) is a dishonest strategy profile resulting in play of (d, d) with probability
one, that is, σ assigns positive probability so some message that is dishonest when d

is played. A unilateral deviation to the pure strategy s =
¡
md, fd

¢
, where fd (m) = d

for all m ∈ M , incurs no loss of payoff in G, but results in a lexicographic gain due
to honesty. Hence, such a profile (σ, σ) is not a Nash equilibrium of the lexicographic
communication game G̃.

We now explore the implications of Axioms P and N. First, if the language contains
a null message, then any symmetric Nash equilibrium of G can be implemented in
Nash equilibrium in G̃ by simply having both players send a null message (“promise
nothing”) and play the symmetric Nash equilibrium of G irrespective of the message
received from the other player. In particular, the Pareto dominated equilibrium
(d, d) in the game G in (1) is consistent with Nash equilibrium in G̃. Denoting mixed
strategies in G by µ, with µ (a) for the probability assigned to action a ∈ A, we have:

Lemma 2. Let (µ, µ) ∈ ∆ (A) × ∆ (A) be a Nash equilibrium of G and assume
that the language in G̃ satisfies axiom N. Then there exists a symmetric honesty
equilibrium of G̃ in which each action a ∈ A is played with probability µ (a).

Second, if G is an coordination game with at least two actions then every symmet-
ric Nash equilibrium in the lexicographic communication game has a message that is
not sent in equilibrium. More precisely, a finite and symmetric n × n-game G is a
(pure) coordination game if the payoff matrix Π satisfies π (i, i) > π (j, i) ∀i, j 6= i. In
other words, each (pure) action then is its own unique best reply. A message m ∈M

is unsent under a mixed strategy σ ∈ ∆ (S) if no pure strategy in the support of σ
uses m with positive probability.

Proposition 1. Let G̃ be a lexicographic communication game that satisfies Axioms
P and N, and where G is an n× n−coordination game with n ≥ 2. Every σ ∈ ∆̃NE

has at least one unsent message.
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Proof: Consider a mixed strategy σ ∈ ∆ (S) such that every message m ∈ M is
sent with positive probability in σ. By AxiomN, the language contains a null message.
Let m0 be such a message. Since m0 is used in σ, no pure strategy (m, f) in the
support of σ is dishonest against σ, by Lemma 1. Moreover, since every message is sent
with positive probability, the support of σ contains only pure strategies s = (m, f)

such that f (m0) ∈ H(m) for all m0 ∈ M . By hypothesis, the game G contains at
least two actions, say c and d. By Axiom P there exist messages “c”,“d”∈ M such
that H(“c”) = {c} and H(“d”) = {d}. Under the strategy profile (σ, σ), the pair of
messages (“c”,“d”) is realized with positive probability. The player who sent “c” has
to play c, but this is not a best reply to the action of the other player, who plays d
(since she sent “d”). Hence, σ /∈ β̃(σ). End of proof.

The following example shows that there are dishonest equilibria in some games
even under the hypotheses of Proposition 1:

Example 3. Reconsider the game G in (1) and letM = {“c”, “d”,m0}, where “c” is
honest iff c is played, “d” iff d is played and m0 is always honest. Consider the pure
strategy s = (“d”, f), where f (“d”) = c and f (“c”) = f (m0) = d. In other words:
say “d”, and take action c if and only if you receive the message “d”. Messages “c”
and m0 are thus unsent in s. It is easily verified that (s, s) is a Nash equilibrium of
G̃ for the reasons given in Example 1.

The next example illustrates that if axiom N is met and there is more than one null
message, then Nash equilibrium in the lexicographic communication game permits
payoffs that are incompatible with Nash equilibrium in the underlying game G (for
reasons given more generally in Banerjee and Weibull (2000)).

Example 4. Reconsider the game G in (1) and let M = {“c”, “d”,m0,m1}, where
“c” is honest iff c is played, “d” iff d is played and m0 and m1 are always honest.
The expected material payoff 8 is then obtained in symmetric Nash equilibrium of G̃
as follows. Let σ randomize 50/50 between the two pure strategies s = (m0, f) and
s∗ = (m1, g), where f (m1) = c and f (m0) = d for all m0 6= m1, and g (m0) = c and
g (m0) = d for all m0 6= m0. The outcome under (σ, σ) is a randomization over (c, c)
and (d, d) with equal probability for each. Hence, the expected payoff in G is 8 and
there is no dishonesty. This is a Nash equilibrium in G̃, because sending messages
“c” or “d” only results in a payoff loss in G (meeting action d for sure). Moreover,
sending m0 with probability q and m1 with probability 1− q, for some q ∈ [0, 1], and
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best-responding to the message sent by σ, results in the following expected payoff in
G:

7
q

2
+ 9

q

2
+ 9

1− q

2
+ 7

1− q

2
= 8. (9)

Hence, σ ∈ ∆̃NE.

4. Set-wise evolutionary stability

The concept of neutral stability (Maynard Smith (1982)) is a weakening of evolution-
ary stability: instead of requiring that any mutant strategy does strictly worse in the
post-mutation population (granted its population share is small enough) it is required
that no mutant does strictly better in the post-mutation population (under the same
proviso). Neutral stability is thus similar in spirit to Nash equilibrium in the sense
that no small group of individuals in a large community can do better by deviating
to another strategy when the rest of the community plays the original strategy.12 In
the context of cheap-talk games, the definition runs as follows:

Definition 1. σ ∈ ∆NE is neutrally stable in G if ∀τ ∈ ∆ (S):
(i) v (τ , σ) < v (σ, σ) or
(ii) v (τ , σ) = v (σ, σ) ∧ v (τ , τ) ≤ v (σ, τ).

Nash equilibria in cheap-talk games are not isolated but form continua. Typically,
strategies in the same continuum set of Nash equilibria lead to the same outcome
(probability distribution over payoffs). More precisely, the cheap-talk game G being
finite, its non-empty set of mixed-strategy Nash equilibria consists of finitely many
disjoint, closed and connected semialgebraic sets, the Nash equilibrium components of
G.13 It follows that also the set ∆NE is non-empty and consists of finitely many dis-
joint, closed and connected semialgebraic subsets, which we will call the components
of ∆NE.14

In the evolutionary paradigm, drift may occur within each component of ∆NE.
In order to take account of this possibility, Thomas (1985) suggested a notion of set-
wise evolutionary stability, sets of neutrally stable strategies that are robust against
drift away from the set. One can show that each minimal evolutionarily stable set

12In the case of evolutionary, as opposed to neutral stability, such groups do strictly worse (hence
a parallel to strict Nash equilibrium).
13See e.g. Kohlberg and Mertens (1986).
14The set is a projection of the intersection between the set of Nash equilibria and the diagonal

of the space of mixed-strategy profiles. It is non-empty by Kakutani’s fixed-point theorem applied
to the correspondence β, see Weibull (1995).
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coincides with a component of ∆NE.15 Formally, a set of neutrally stable strategies is
called an evolutionarily stable set if the weak inequality in condition (ii) in the above
definition of neutral stability is strict whenever τ lies outside the set:

Definition 2. X ⊂ ∆NE is an evolutionarily stable set in G if ∀σ ∈ X, τ ∈ ∆ (S):
(i) v (τ , σ) < v (σ, σ) or
(ii) v (τ , σ) = v (σ, σ) ∧ v (τ , τ) < v (σ, τ) or
(iii) v (τ , σ) = v (σ, σ) ∧ v (τ , τ) = v (σ, τ) ∧ τ ∈ X.

4.1. Definitions for lexicographic communication games. In the game-theory
literature one finds a variety of distinct but related definitions of neutral stability in
lexicographic games, see Rubinstein (1986), Abreu and Rubinstein (1988), Fudenberg
and Maskin (1990), Binmore and Samuelson (1992), Rubinstein (2000) and Samuel-
son and Swinkels (2003). The following definition is close to that in Rubinstein
(2000).16 Before giving the definition, we note, by way of an example, that neutrally
stable strategies in cheap-talk games need not even be Nash equilibrium strategies in
lexicographic communication games.

Example 5. Reconsider the lexicographic game G̃ based on game G in equation (1)
and with message set M = {“c”, “d”,m0}, where “c” is honest iff c is played, “d”
iff d is played, and m0 is always honest (as in Example 3). As shown in Banerjee
and Weibull (2000), the strategy σ that sends all messages with equal probability
and replies to the same message with d and to a different message with c is neutrally
stable in the cheap-talk game G. However, σ /∈ ∆̃NE since a lexicographically better
reply to σ is to send m0 with probability one, reply to m0 with d and to the other
two messages with c.

Consider a lexicographic communication game G̃ defined as above:

Definition 3. σ ∈ ∆̃NE is neutrally stable in G̃ if ∀τ ∈ ∆ (S):
(i) v (τ , σ) < v (σ, σ) or
(ii) v (τ , σ) = v (σ, σ) ∧ v (τ , τ) < v (σ, τ) or
(iii) v (τ , σ) = v (σ, σ) ∧ v (τ , τ) = v (σ, τ) ∧ w (τ , σ) ≤ w (σ, σ).

15More generally, each evolutionarily stable set is the union of components of ∆NE . See section
2.4 in Weibull (1995).
16In comparison with Rubinstein’s definition 5 in chapter 2 (op.cit.), we note two differences.

First, Rubinstein considers lexicographic costs of complexity while we consider lexicographic costs
of dishonesty. Secondly, unlike Rubinstein, we restrict the definition to Nash equilibrium strategies.
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Had the cost of dishonesty been zero (w ≡ 0), then this definition would have
boiled down to that for cheap-talk games, while for positive costs of dishonesty the
criterion is more stringent in the lexicographic case. For if the first two equalities in
(iii) are met, then τ is required to incur a cost of dishonesty against σ not exceeding
that of σ against itself. Hence, neutral stability in G̃ is a refinement of neutral stability
in G. Let ∆̃NSS ⊂ ∆̃NE denote the (possibly empty) set of neutrally stable strategies
in G̃.
Neutral stability in G̃ does not imply Pareto efficiency in Aumann’s (1990) exam-

ple:

Example 6. The strategy σ in the Example 4 is neutrally stable in G̃. To see this,
recall that σ ∈ ∆̃NE. By Proposition 3 in Banerjee and Weibull (2000), σ is neutrally
stable in the cheap-talk game G. Hence, it remains to show that if (i) and (ii) are not
met, then (iii) is satisfied. By the proof of the same proposition: v (τ , σ) = v (σ, σ)

∧ v (τ , τ) = v (σ, τ) implies τ = σ. Hence, (iii) is trivially met. We conclude that
σ ∈ ∆̃NSS.

The following set-wise extension parallels that for cheap-talk games:

Definition 4. X ⊂ ∆̃NE is an evolutionarily stable set in G̃ if ∀σ ∈ X, τ ∈ ∆ (S):
(i) v (τ , σ) < v (σ, σ) or
(ii) v (τ , σ) = v (σ, σ) ∧ v (τ , τ) < v (σ, τ) or
(iii) v (τ , σ) = v (σ, σ) ∧ v (τ , τ) = v (σ, τ) ∧ w (τ , σ) < w (σ, σ) or
(iv) v (τ , σ) = v (σ, σ) ∧ v (τ , τ) = v (σ, τ) ∧ w (τ , σ) = w (σ, σ) ∧ τ ∈ X.

By definition, each strategy in an evolutionarily stable set in G̃ is neutrally stable
in G̃.

4.2. Coordination games. Let G be a finite and symmetric coordination game
with a unique Pareto dominant Nash equilibrium (c, c).17 Let α be the payoff to
each player in the Pareto dominant Nash equilibrium. Now consider a lexicographic
communication game G̃ based on G. The Pareto optimal outcome in such a game is
clearly that both players receive material payoff α and are honest. Let

X∗ = {σ ∈ ∆ (S) : v (σ, σ) = α and w (σ, σ) = 0} . (10)

17That is, (c, c) is a Nash equilibrium of G and both players obtain lower payoffs in all other Nash
equilibria of G.
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In general, this set is not a singleton. It may include messages expressing precise,
vague or no intentions as to actions in the underlying game, as well as strategies that
vary in their response to some messages.
By Pareto dominance, each σ ∈ X∗ is a best reply to itself, so X∗ ⊂ ∆̃NE.

We proceed to establish that if the language in the communication game G̃ satisfies
Axioms P and N, then X∗ is an evolutionarily stable set in G̃ and all other sets
X ⊂ ∆̃NE are evolutionarily unstable in G̃, granted the underlying game contains at
least two actions. Formally:

Proposition 2. LetG be a finite and symmetric coordination game with at least two
actions and with a unique Pareto dominant Nash equilibrium. If G̃ is a lexicographic
communication game based on G, satisfying Axioms P and N, then X∗ is the unique
evolutionarily stable set in G̃.

Proof: We prove first that X∗ is an evolutionary stable set. Suppose, thus, that
σ ∈ X∗, and let τ ∈ ∆ (S). We proceed to show that one of conditions (i)-(iv) in
definition 4 is met. Since X∗ ⊂ ∆̃NE: v(τ , σ) ≤ v(σ, σ). If the inequality is strict,
condition (i) is met. In case of equality, we have v(τ , σ) = v(σ, σ) = α. But, since α
is the Pareto efficient payoff, τ must send only messages that make σ react with c,
and τ must always reply to messages from σ by taking action c. Hence, v(σ, τ) = α,
and thus v(τ , τ) ≤ v(σ, τ) by Pareto dominance. If this inequality is strict, (ii) is
met. If equality holds, then v(τ , τ) = α, which implies, as before, that τ reacts with
c to itself. Now σ is honest against itself, so w(τ , σ) ≤ w(σ, σ). If this inequality is
strict, then (iii) is met. In case of equality, w(τ , σ) = w(σ, σ) implies that τ is honest
against σ. However, when τ meets σ, it takes action c with probability one, so τ

satisfies M(τ) ⊂ Mc. But since τ always plays c against itself, this means that it is
honest against itself; w(τ , τ) = 0. Hence, τ ∈ X∗, and thus condition (iv) is met.
Next, we prove that X∗ is the only evolutionarily stable set. Hence, suppose that

X ⊂ ∆̃NE is evolutionarily stable and, contrary to the claim, there exists a strategy
σ ∈ X such that v(σ, σ) < α or w(σ, σ) < 0 (or both). Suppose that v(σ, σ) < α.
Since σ ∈ ∆̃NE and axioms N and P hold, proposition 1 implies that there exists a
message, say m0, that is not sent in σ. We proceed in three steps to show that this
leads to a contradiction. First, we construct a strategy σ0 that does not send m0,
behaves like σ against strategies in X, and is “nice” to senders of m0. Secondly, we
show that σ0 ∈ X. Thirdly, we show that σ0 /∈ ∆̃NE, contradicting the hypothesis
X ⊂ ∆̃NE.
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Step 1 : For any pure strategy s = (m, f) ∈ supp(σ), let s0 be the associated
modified pure strategy (m, g), where g(m) = f(m) for all m 6= m0 and g(m0) = c. If
σ =

P
λisi for some pure strategies si, and probability weights λi > 0 summing to

1, denote by σ0 the associated sum
P

λis
0
i . In other words, σ

0 is the same convex
combination of the pure strategies s0i as σ is with respect to the si. Message m

0 is
never sent by σ nor by σ0, and σ and σ0 differ only in their reaction to m0, so their
payoffs when playing against each other are the same:

v(σ0, σ) = v(σ, σ) = v(σ0, σ0) = v(σ, σ0) (11)

and
w(σ0, σ) = w(σ, σ) = w(σ0, σ0) = w(σ, σ0). (12)

Step 2 : By condition (iv) in definition 4, σ0 ∈ X.
Step 3 : σ0 /∈ ∆̃NE since the pure strategy r = (m0, f0), where f0 (m) ≡ c is a

better reply to σ0: v(σ0, σ0) < α = v(r, σ0).
Finally, suppose that v(σ, σ) = α and w(σ, σ) < 0. By Lemma 1 and its corollary,

no null message is sent in σ. Now the proof runs as before: let σ0 be defined as in
step 1 above, this time applied to m0, when this is a null message. A repetition of
the arguments in steps 1 and 2 shows that σ0 ∈ X. Moreover σ0 plays c against
message m0. But then σ0 /∈ ∆̃NE since the pure strategy r defined in step 3 is
a lexicographically better reply to σ0: v(r, σ0) = v(σ0, σ0) and w(m0, σ0) = 0 >

w(σ, σ) = w(σ0, σ0), contradicting the hypothesis X ⊂ ∆̃NE. End of proof.

Remark 2. It is easily verified that the same conclusion holds under the weaker hy-
pothesis that the base game G need not be a coordination game, but has a symmetric
and strict Nash equilibrium that Pareto dominates all other outcomes in G.

Remark 3. We want to point out a form of non-robustness of the claim in Propo-
sition 2 with respect to players’ preferences. Suppose that, instead of a lexico-
graphic preference for honesty, players have additively separable payoffs of the form
u(σ, σ0) = v(σ, σ0) + εw(σ, σ0) for ε > 0, where w(σ, σ0) is the expected value of the
function w defined by w [(m, f), (m0, g)] ∈ {0,−1} with w [(m, f), (m0, g)] = 0 if and
only if f(m0) ∈ H (m) (here (m, f) is the player’s own strategy while (m0, g) is that
of the other player). For small ε, such non-cheap-talk games can be thought of as
approximations of lexicographic communication games. By way of proposition 3 in
Banerjee and Weibull (2000) and a straight-forward perturbation argument, it is not
difficult to show that for symmetric 2× 2-coordination game with strict equilibrium
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payoffs α and β < α, and for all ε > 0 sufficiently small, there exists exactly one more
evolutionarily stable set. Moreover, each strategy σ in that set earns an expected pay-
off close to α− (α− β) / |M | against itself (this is the limit payoff as ε→ 0). So for
small material costs for dishonesty, unlike lexicographic costs, communication does
not lead to full efficiency.18 However, this non-robustness is insignificant in terms of
outcomes when the message setM is large, an arguably relevant case for applications
to communication in natural language.

5. Concluding comments

While we defined honesty as a property of a message in relation to actual behavior,
a taken action, strict honesty was defined as a property of a message in relation
to an “intention,” a contingent plan for the action to take in different potential
circumstances (here, for all messages sent by the other player). More precisely, in
section 2 we defined a pure strategy (m, f) to be strictly honest if f (m0) ∈ H (m)

for all m0 ∈ M , and a mixed strategy σ ∈ ∆ (S) to be strictly honest if all pure
strategies in its support are strictly honest. In other words, while a preferences for
honesty can be thought of as a desire to avoid (own or others’) disapproval of one’s
actions (“shame”), a preference for strict honesty can be thought of as a desire to
avoid (own) disapproval of one’s plans or intentions (“guilt”). Indeed, existing moral
codes and religions, such as Catholicism and Protestantism, arguably take distinct
position on whether acts or intentions count.
Suppose now that players, rather than having a lexicographic preference for hon-

esty, have a lexicographic preference for strict honesty, defined as follows. First, let
w(m, f) = 0 if the player’s strategy is (m, f) is strictly honest, otherwise w(m, f) < 0.
Hence, w is now the cost of not being strictly honest. Proceeding as in the case of
honesty, this results in a lexicographic communication game, Ḡ, that is easier to ana-
lyze than G̃, since strict honesty is a property of a strategy while lying is a property
of a strategy in the context of a strategy pair . Indeed, it is not difficult to verify
that Proposition 2 is valid also for Ḡ. Roughly speaking, a lexicographic preference
for strict honesty provides a more direct and slightly more stringent selection against
dishonesty.
An interesting feature of evolutionary stability in pre-play communication games

is that ordinality–that is, invariance of the solution set under transformations that
leave the best-reply correspondence unchanged–turns out not to be robust to the

18See Binmore and Samuelson (1992), Rubinstein (2000) and Samuelson and Swinkels (2003) for
similar robustness analyses.
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introduction of a pre-play communication stage. For example, while the best-reply
correspondence of the game in (1) is identical with that in

c d
c 1, 1 0, 0
d 0, 0 7, 7

(13)

the unique evolutionarily stable set in a lexicographic pre-play communication game,
as modelled above, results in play of (c, c) when based on (1) but on (d, d) when based
on (13).19 When switching from (1) to (13), the best-reply correspondence of the
lexicographic communication game changes, and hence ordinality does not require
that the solution be unaffected. A more profound question is whether ordinality
should be viewed as a general desideratum for solution concepts – a question that
falls outside the scope of this study.
When applying our model to Aumann’s example, we came to the conclusion that

the outcome (c, c), which Aumann convincingly argues is not self-enforcing when
players have no preference for honesty per se, is the only robust outcome “in the
long run.” Expressed somewhat loosely: if such a game were played with pre-play
communication, over and over again in a large population with a common language
and where people have a lexicographic preference for honesty, then agreement to play
(c, c) and to honor that agreement would be the only mode of behavior that would
be sustainable in the long run. By the same token: while the Nash equilibrium (d, d)
is arguably self-enforcing in the absence of a preference for honesty, in the sense of
Aumann (1990) (though no such claim is explicitly made by Aumann), it is not a
robust long-run outcome, according to our analysis. When players have a lexico-
graphic preference for honesty, such a population, even if it were initially playing
(d, d), would eventually find its way to the Pareto efficient outcome (c, c). Our theo-
retical results are in good agreement with the empirical finding in Blume and Ortman
(2005). Based on laboratory experiments, the authors conclude that, in games with
payoff structures similar to that in Aumann’s example, costless communication with
a priori meaningful messages leads to the efficient outcome after some rounds of play.
In a follow-up on Gneezy (2005), Hurkens and Kartik (2006) find that Gneezy’s data
cannot reject the hypothesis that some people never lie while others lie whenever they
obtain a material benefit from that. In particular, an individual’s propensity to lie
may not depend on the individual’s material benefit nor on the harm done to others.

19Note, however, that evolutionary and neutral stability are ordinal solution concepts in the sense
of being invariant under transformations that keep the best-reply correspondence unchanged.
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To us, this seems to lend some empirical support to the here maintained hypothesis of
a (perhaps culturally conditioned) lexicographic preference against lying, as opposed
a trade-off between honesty and material payoffs.
We plan to extend our analysis in two directions. One extension is to study the

implications of the present approach for infinitely repeated games (cf. Fudenberg
and Maskin (1990)). The second is to enrich the language and the correspondence
H to allow for conditional statements, that is, statements the honesty (or truth) of
which may depend on the other player’s message. This extension, though potentially
difficult, appears particularly relevant for games with asymmetric equilibria that are
Pareto efficient, allowing players to correlate their play across such equilibria.
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