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A generalization of the Shapley-Ichiishi result

Jeroen Kuipers ∗ Dries Vermeulen † Mark Voorneveld ‡§

March 3, 2009

Abstract

The Shapley-Ichiishi result states that a game is convex if and only if
the convex hull of marginal vectors equals the core. In this paper we
generalize this result by distinguishing equivalence classes of balanced
games that share the same core structure. We then associate a system
of linear inequalities with each equivalence class, and we show that the
system defines the class. Application of this general theorem to the
class of convex games yields an alternative proof of the Shapley-Ichiishi
result. Other applications range from computation of stable sets in
non-cooperative game theory to determination of classes of TU games
on which the core correspondence is additive (even linear). For the
case of convex games we prove that the theorem provides the minimal
defining system of linear inequalities. An example shows that this is
not necessarily true for other equivalence classes of balanced games.
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1 Introduction

In his study of convex games, Shapley (1971) proved that the core of a convex
game is the convex hull of the marginal vectors of that game. A decade later,
Ichiishi (1981) showed that the converse of this statement is also true: If the
core of a game is equal to the convex hull of marginal vectors, then the game
is convex. The combined Shapley-Ichiishi result thus relates the defining
system of linear inequalities of convex games to the core structure that all
convex games share. The interesting theoretical properties of convex games
has led to a vast literature in which convex games play a role. Examples are
unanimity games, bankruptcy games (O’Neill, 1982, Aumann and Maschler,
1985), sequencing games (Curiel et al., 1989), standard tree games (Megiddo,
1978, Granot et al., 1994), and extended tree games (Granot et al., 2002).
The Shapley-Ichiishi result is used freely in the analysis of such games.

In this paper, we generalize the Shapley-Ichiishi result to other classes of
balanced games. Specifically, we distinguish equivalence classes of balanced
games with the same core structure, and we provide a procedure which, given
such an equivalence class, generates a defining system of linear inequalities
that describes the closure of the class. One of the equivalence classes is the
class of strictly convex games, and its closure is the class of convex games.

The main motivation for this paper comes from the literature on strate-
gic stability for bimatrix games. Hillas (1990) defined quasi-stable sets. A
closely related notion, in fact quasi-stability minus the invariance and min-
imality requirements, is the notion of a Q-set, defined in Vermeulen et al.
(1996). For a bimatrix game (A,B), a Q-perturbed version of (A,B) is a
strategic form game in which the payoffs for the players are the same as in
the original game, but each player is only allowed to select strategies from
a–strict–subset of his strategy space. These subsets take the form of the core
of a TU-game, which gives the connection to the current paper. A closed
set S of strategy pairs is a Q-set if every Q-perturbed version of (A,B) has
an equilibrium close to S. Vermeulen et al. (1996) showed that for bimatrix
games, minimal Q-sets are finite.

Their approach also shows that, given a closed set S of strategy pairs for
a given bimatrix game, testing whether S is a Q-set is a finite task. The
reason for this is that many Q-perturbed versions of (A,B) in fact impose
the same conditions on S for it to be a Q-set. That way we can construct
an equivalence relation on Q-perturbed versions of (A,B), by saying that
two Q-perturbations are equivalent when they impose the same condition
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on S. It is shown in Vermeulen et al. (1996) that there are only finitely
many equivalence classes under this equivalence relation.

Now, the strategy spaces of two equivalent Q-perturbations, viewed as cores
of two TU-games, can be shown to have the same core structure. Thus,
when devising a finite test to check whether a closed set S is a Q-set, one
needs to determine all classes of TU-games having the same core structure.
The search for classes of TU-games having the same core structure becomes
manageable when these classes are given by linear (in)equalities. And the
task to describe all classes of TU-games having the same core structure by
means of linear (in)equalities is executed in this paper. In that sense the
current paper develops one of the tools needed to construct a finite test for
Q-sets.

A second application is analysis of the core correspondence. As is well
known, the core correspondence is superadditive. The equivalence classes
defined in this paper are exactly those sets of TU games on which the core
is precisely additive. These sets can be determined by computing the linear
inequalities that are presented in our main theorem.

A third application of the generalized Shapley-Ichiishi result is the analysis
of certain classes of games defined by linear inequalities, for example the class
of k-convex games. It is known that these games are balanced and that a
full characterization of the extreme core elements can be given (Driessen
(1986)). Indeed, this characterization implies that all k-convex games share
the same core structure, as we define it in Section 2 of this paper. Therefore,
the main theorem of our paper also applies to the class of k-convex games.

The setup of this paper is as follows. In Section 2, we define the core
structure of a game, which gives rise to equivalence classes of games with
the same core structure, and we describe the core structure of convex games.
In Section 3, we give a short review on polyhedra and their facial structure.
In Section 4, we provide a constructive method for generating a system of
linear inequalities associated with a given core structure, and we show that
the system defines the closure of the equivalence class. An example shows
that the system may contain redundant inequalities. From the description
with inequalities, it follows that the closure is a polyhedral cone. These
cones are of interest from a computational perspective, as it can be shown
that the core is an additive correspondence on each cone. In Section 5,
we apply our main theorem to the class of convex games, and this way,
we derive an alternative proof of the Shapley-Ichiishi result. In fact, we
obtain a somewhat sharper result, since the set of defining inequalities that
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we obtain turns out to be a strict subset of the set of inequalities that is
normally used to define convexity. We then prove that each inequality in
our system describes a facet of the cone of convex games. Hence, in the case
of convex games, we obtain the minimal system.

2 Games and their core structure

A transferable utility game, or game, is a pair (N, v) where N = {1, . . . , n}
is the set of players and v is a function that assigns to each coalition S ⊆ N
its worth v(S) ∈ IR. The worth v(φ) of the empty set is zero. Throughout
this paper we keep the player set N fixed. So we simplify notation and write
v instead of (N, v) to denote a game.

A vector x ∈ IRN is an allocation. The ith coordinate xi of the allocation x
represents the payoff to player i ∈ N . For coalition S ⊆ N , the aggregate
payoff

∑

i∈S xi is denoted by x(S). An allocation x is efficient for v if it
distributes the worth of the grand coalition among the players of the game
v, i.e., if x(N) = v(N). An efficient allocation x is a core allocation for v if

x(S) ≥ v(S) for all S ⊂ N .

The set of core allocations, denoted by C(v), is called the core of v. A game
whose core is not empty is balanced.

A nonempty coalition S with x(S) = v(S) is called tight at x in v. The
collection of coalitions that are tight at x in v is denoted by T (v, x). Define
the core structure of v by

T (v) := {T (v, x) | x is an extreme point of C(v)}.

We say that w is a limit game for v if for every extreme point x ∈ C(v)
there exists an extreme point y ∈ C(w) such that T (v, x) ⊆ T (w, y). The
collection of limit games for v is denoted by L(v).

In the remaining part of this section, we focus on convex games and their
core structure. A game v is convex if it satisfies the inequalities

v(S) + v(T ) ≤ v(S ∩ T ) + v(S ∪ T ) (∗)

for all coalitions S and T . If the inequality in (∗) is strict whenever S * T
and T * S, the game is strictly convex.
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Ichiishi (1981) showed that a game v is convex if and only if it satisfies the
increasing marginal contributions (imc) inequalities

v(T ∪ {i}) − v(T ) ≥ v(S ∪ {i}) − v(S) (∗∗)

for all S ⊆ T and i /∈ T . So, not all inequalities in (∗) are needed, and (∗∗)
suffices. However, also the system (∗∗) has redundant inequalities, as will
become apparent later on in this paper.

One of the main results on convex games is the Shapley-Ichiishi theorem. It
can be stated as follows. Let v be a game. Consider for a given permutation
σ of the player set N the corresponding marginal vector mσ(v) defined by

mσ(v)σ(k) := v(Sσ
k ) − v(Sσ

k−1)

for each player k ∈ N , where Sσ
0 := ∅ and

Sσ
k := {σ(j) | j ≤ k}

for each k ∈ {1, . . . n}. The result of Shapley (1971) and Ichiishi (1981) is

Theorem 1 The game v is convex if and only if mσ(v) ∈ C(v) for each
permutation σ.

For a convex game v, Theorem 1 implies that {Sσ
k | k ∈ N} ⊆ T (v,mσ) for

each permutation σ. For a strictly convex game v, Shapley (1971) proved
that T (v,mσ) = {Sσ

k | k ∈ N} for each permutation σ. Hence, the core
structure of a strictly convex game is given by

{{Sσ
k | k ∈ N} | σ is a permutation of N},

and every convex game is a limit game for a given strictly convex game.

3 The facial structure of polyhedra

Let A be an m × n matrix and let b ∈ IRm. The solution set

P = {x ∈ IRn | Ax ≥ b}

of the system of linear inequalities Ax ≥ b is a polyhedron. If b = 0, then
obviously P is a cone, and P is called a polyhedral cone. Evidently, every
polyhedron is a convex set. The system Ax ≥ b is a defining system for P .
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The dimension of a convex subset C of IRn is defined as the dimension of the
smallest affine subspace that contains C. It is denoted by dim(C). A closed
subset F of C is a face of C if x, y ∈ F if and only if 1

2x + 1
2y ∈ F . This

definition implies that a face is convex. Thus each face has a dimension and
a face with dimension dim(C)− 1 is called a facet. A zero-dimensional face
is called an extreme point.

For polyhedra, there is an alternative way to describe faces. Denote the i-th
row of A by ai, and let I denote an index set of rows of A. Define

FI = {x ∈ P | aix = bi for all i ∈ I}.

It is easy to prove that each FI is a face of P , and conversely (see e.g.
Schrijver (1986)) each face of P is of the type FI . The polyhedron P itself
is obtained when we adopt the convention P∅ = P . Every extreme point of
P can be obtained from an index set I, such that the rows ai for i ∈ I form
a basis of IRn. Two extreme points are neighbors if there exist bases for
them, such that the intersection of the linear subspaces spanned by the two
bases has dimension n−1. The definition implies that also the line-segment
between two neighboring extreme points is a face. Generically, this is a
face of dimension 1, called edge. In the degenerate case, the two extreme
points coincide, which happens if one extreme point is determined by two
neighboring bases. In case P is of full dimension, the facets are of dimension
n − 1, and each facet can be described by one inequality only. Therefore,
if P is of full dimension, the system where the inequalities correspond one-
to-one to the facets is the unique minimal defining system for P , up to
multiplication of the inequalities by positive scalars.

Notice that the system of inequalities (∗) that defines the class of convex
games is of the type Ax ≥ 0. Hence the class of convex games is a polyhedral
cone in the vector space of games. Any strictly convex game is obviously in
the interior of this cone, so this cone is of full dimension. (Existence of a
strictly convex game was demonstrated by Shapley (1971), and this paper
contains an example in Section 5.)

Also the core of a game v is obviously a polyhedron in IRN , as the expression
x(S) for S ⊆ N can be written as the linear expression 〈eS , x〉, where eS is
the vector with ones at the coordinates of S and zeros elsewhere. We will
abuse our terminology a bit, and say that a collection B of coalitions is a
basis if {eS | S ∈ B} is a basis for IRn.
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4 Generalization of the Shapley-Ichiishi result

From Theorem 1 it follows that the set of limit games L(v) for a strictly
convex game v is the polyhedral cone of all convex games. In this section,
we prove that the set L(v) is a polyhedral cone for every balanced game v.
In particular, we will describe how, given v, we can derive a system of linear
inequalities whose solution set equals the polyhedral cone L(v).

Let v be a balanced game. We say that a basis B of coalitions is feasible for
v if there is an extreme point x ∈ C(v) such that B ⊆ T (v, x). We say that
a coalition T ⊆ N is a neighbor of B if there exists a feasible basis C for v
such that T ∈ C and |B ∩C| = n− 1. We say that T is spanned by B if the
unique numbers λS for S ∈ B to write

eT =
∑

S∈B

λSeS

are nonnegative for all S ∈ B \ {N}.

To illustrate these concepts, consider the following example. Let v be the
3-player game defined by

v(S) =







































2 if S = {1}
2 if S = {2}
1 if S = {3}
2 if S = {1, 2}
5 if S = {1, 3}
4 if S = {2, 3}
10 if S = N

There are 5 extreme points of C(v). These are

a = (2, 2, 6)
b = (2, 5, 3)
c = (4, 5, 1)
d = (6, 3, 1)
e = (6, 2, 2).

For the 5 extreme core elements we see that

T (v, a) = {{1}, {2}, {1, 2, 3}}
T (v, b) = {{1}, {1, 3}, {1, 2, 3}}
T (v, c) = {{3}, {1, 3}, {1, 2, 3}}
T (v, d) = {{3}, {2, 3}, {1, 2, 3}}
T (v, e) = {{2}, {2, 3}, {1, 2, 3}}.
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Now, for example, coalition {1, 3} is a neighbor of T (v, a), since {1, 3} ∈
T (v, b), and a and b are neighboring extreme points. The coalition {1, 2} is
spanned by T (v, a), since e{1,2} = e{1} + e{2}. See also Figure 1.

(10, 0, 0) (0, 10, 0)

(0, 0, 10)

x1 = 2

x1 + x3 = 5

x3 = 1

x2 + x3 = 4

x2 = 2

x1 + x2 = 2

Fig. 1. Core of the game v

Now, given the balanced game v, we construct a system of linear inequalities
whose solution set equals the polyhedral cone L(v). Let B be a feasible basis
and let T ⊆ N be a neighbor of B or spanned by B. Let λ(S) for S ∈ B be
the unique real numbers such that

eT =
∑

S∈B

λ(S)eS .
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The linear inequality generated by the pair B,T is

w(T ) ≤
∑

S∈B

λ(S)w(S),

and we denote the set of all inequalities generated in this way by I(v). Our
claim is that I(v) is a defining set for L(v). In order to prove this claim we
establish some preliminary facts.

Lemma 2 Let v be a balanced game. If T ∈ T (v, x) \ B, where x is an
extreme point of C(v) and B ⊆ T (v, x) is a basis, then the inequalities in
I(v) imply

w(T ) =
∑

S∈B

λ(S)w(S).

Proof. Let x, B, and T be as above. Since T is a neighbor of B, I(v)
contains the inequality

w(T ) ≤
∑

S∈B

λ(S)w(S).

We show that the converse inequality is implied by the inequalities in I(v).
Consider the expression

eT =
∑

S∈B

λ(S)eS .

There is at least one coalition U ∈ B with λ(U) > 0. The collection D :=
(B \ {U})∪ {T} has exactly n elements and D is independent. Indeed, if D
were not independent, then either B could not be a basis, or we could write
eT as a linear combination of the elements eS with S ∈ B without using eU ,
which would violate the uniqueness of the coefficients. Consequently, D is a
basis and U is a neighbor of D. Since

eU =
1

λ(U)
eT −

∑

S∈B

S 6=U

λ(S)

λ(U)
eS ,

the inequality

w(U) ≤
1

λ(U)
w(T ) −

∑

S∈B

S 6=U

λ(S)

λ(U)
w(S)

is in I(v). And since λ(U) > 0, this can be rewritten to

w(T ) ≥
∑

S∈B

λ(S)w(S),
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which proves our claim. �

For a game w that satisfies the inequalities in I(v), we prove that w is a limit
game for v. If x is an extreme point of C(v) and B a basis for x, then the
solution z to the system y(S) = w(S) for all S ∈ B is the obvious candidate
for z ∈ C(w) such that T (v, x) ⊆ T (w, z). In the following lemma, we prove
first that z indeed satisfies the requirement T (v, x) ⊆ T (w, z), regardless
whether z ∈ C(w) or not.

Lemma 3 Let v be a balanced game and let w be a game that satisfies the
inequalities in I(v). Let x be an extreme point in C(v) and let B be a basis
in T (v, x). Let z be the unique solution to the system of equalities

y(S) = w(S) for all S ∈ B.

Then T (v, x) ⊆ T (w, z).

Proof. Let T ∈ T (v, x). We show that T ∈ T (w, z). This is trivial if T ∈ B,
so suppose that T /∈ B. Write

eT =
∑

S∈B

λ(S)eS .

By Lemma 2, the game w satisfies the equality

w(T ) =
∑

S∈B

λ(S)w(S),

hence
z(T ) =

∑

S∈B

λ(S)z(S) =
∑

S∈B

λ(S)w(S) = w(T ),

which proves our claim. �

A geometrical interpretation of the following lemma is that, if w satisfies
the system I(v), the edges of C(w) are parallel to those of C(v), assuming
that the candidate extreme points are indeed in C(w).

Lemma 4 Let v be a balanced game, and let w be a game that satisfies all
inequalities in I(v). Let x and x̄ be neighboring extreme points of C(v), with
feasible basis B and B̄ respectively, such that |B ∩ B̄| = n − 1. Let z, z̄ be
defined respectively as the unique solution of

y(S) = w(S) for all S ∈ B
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and
y(S) = w(S) for all S ∈ B̄.

Then there exists µ ≥ 0 such that

z̄ − z = µ(x̄ − x).

Proof. First assume that x̄ = x. Then z̄ = z by Lemma 3 and we can set
µ = 0. Now assume that x̄ 6= x. Write, for each α ∈ IR,

z(α) = z + α(x̄ − x).

Let T be the unique coalition in B̄ \ B and write

eT =
∑

S∈B

λ(S)eS .

Since w satisfies all inequalities in I(v) and T is a neighbor of B, in particular
it satisfies the inequality

w(T ) ≤
∑

S∈B

λ(S)w(S).

Thus,

z(T ) =
∑

S∈B

λ(S)z(S) =
∑

S∈B

λ(S)w(S) ≥ w(T ).

Furthermore, since x̄ 6= x, T is not tight at x and hence 〈eT , x̄ − x〉 < 0.
This observation and the fact that z(T ) ≥ w(T ) implies that

α̂ := max{α | z(α)(T ) ≥ w(T )}

exists and is not negative. From the definition of z(α) it is now clear that
we can set µ = α̂ if we can show z(α̂) = z̄.

To see why indeed z(α̂) = z̄, notice that all coalitions S ∈ B ∩ B̄ are tight
at all z(α) in the game w, because they are tight at z in w, and at both x
and x̄ in v. Moreover, T is tight at z(α̂) in w by the definition of α̂. So, all
coalitions in B̄ are tight at z(α̂) in w. Hence, z(α̂) = z̄. �

We have now developed enough equipment to prove the main theorem,
namely that the system of inequalities in I(v) precisely defines the set L(v),
which must therefore be a polyhedral cone.
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Theorem 5 Let v be a balanced game. Then a game w satisfies the inequal-
ities in I(v) if and only if w ∈ L(v).

Proof. A. Let w ∈ L(v). We show that w satisfies the inequalities in
I(v). To this end, let B be a feasible basis for v, let T ⊆ N , and let λ(S)
for S ∈ B be real numbers such that

eT =
∑

S∈B

λ(S)eS .

Since w is a limit game for v, we can choose an extreme point z ∈ C(w)
such that T (v, x) ⊆ T (w, z). Then

w(T ) ≤ z(T ) = 〈z, eT 〉 =
∑

S∈B

λ(S)z(S) =
∑

S∈B

λ(S)w(S).

This proves that w satisfies all inequalities in I(v). Since we did not use the
fact that T is a neighbor of B or spanned by B, in fact we proved that w
satisfies many more inequalities.

B. Now suppose that w satisfies all inequalities in I(v). Let x be an
extreme point of C(v). We need to prove that there exists a z ∈ C(w) such
that T (v, x) ⊆ T (w, z). To this end, let B ⊆ T (v, x) be a basis, and define
z as the unique solution of the system

y(S) = w(S) for all S ∈ B.

By Lemma 3, T (v, x) ⊆ T (w, z), so it remains to prove that z ∈ C(w).

First note that z(N) = w(N), since N ∈ T (v, x) ⊆ T (w, z). Now let T 6= N .
We need to show that z(T ) ≥ w(T ). Consider the program

P : min〈eT , y〉 s.t. y ∈ C(v).

Solving this linear program by means of the simplex algorithm using starting
point y1 = x and basis B1 = B for the initialization, yields a sequence

x = y1, . . . , yk =: x̄

of extreme points of C(v) together with a basis Bm for each point ym. From
the properties of the simplex algorithm we have

|Bm+1 ∩ Bm| = n − 1
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and 〈eT , ym+1 − ym〉 ≤ 0.

Now, for each Bm, let zm be the unique solution to the system

y(S) = w(S) for all S ∈ Bm

of linear equalities, and let z̄ = zk. We will prove that z(T ) ≥ z̄(T ) ≥ w(T ).

By Lemma 4, there exists nonnegative numbers µm, such that zm+1 − zm =
µm(ym+1 − ym) for m ∈ {1, . . . , k}. Hence,

z̄(T ) = zk(T ) = 〈eS , zk〉 = 〈eT , z1〉 +
∑k−1

m=1〈eT , zm+1 − zm〉

= z1(T ) +
∑k−1

m=1 µm〈eT , ym+1 − ym〉
≤ z1(T ) = z(T ).

It remains to prove that z̄(T ) ≥ w(T ). If T ∈ T (v, x̄), then also T (w, z̄),
hence z̄(T ) = w(T ). Otherwise, consider the dual of the linear program P,
given by

D :

min
∑

S 6=∅ αSv(S)

subject to
∑

S 6=∅ αSeS = eT

αS ≥ 0 for all S 6= ∅, N.

Let λS (S 6= ∅) be an extreme optimal solution of the dual, and let B be the
collection of coalitions S for which λS 6= 0. By the complementary slackness
relations of linear programming, we have ȳ(S) = v(S) for all S with λS 6= 0,
hence B ⊆ T (v, x̄). Since λ was chosen extreme, B is independent and
contains at most n coalitions. If B is not already a basis, then we extend it
to a basis with coalitions from T (v, x̄). Then

eT =
∑

S∈B

λSeS

with λS ≥ 0 for all S ∈ B \ {N}, since λ is feasible for D. We see that T
is spanned by B, and since w satisfies all inequalities in I(v), it satisfies in
particular the inequality

w(T ) ≤
∑

S∈B

λSw(S).

Then
w(T ) ≤

∑

S∈B

λSw(S) =
∑

S∈B

λS z̄(S) = z̄(T ).
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In the definition of I(v), we tried to economize on the number of inequalities
as much as possible. In case the polyhedral cone L(v) defined by I(v) is of full
dimension, one might hope that I(v) is the unique minimal defining system
for it. We conclude this section with an example to show that this is not
true in general. Consider the following game with player set N = {1, 2, 3, 4}.

v(S) =







































0 if S = {1} or S = {4}
2 if S = {2} or S = {3}
5 if S = {1, 2} or S = {1, 3} or S = {2, 3}
−1 if S = {1, 4} or S = {2, 4} or S = {3, 4}
−1 if |S| = 3 and 4 ∈ S
9 if S = {1, 2, 3}
11 if S = N.

With some effort, one can verify that C(v) has twelve extreme points. These
are

a = (3, 4, 2, 2)
b = (4, 3, 2, 2)
c = (4, 2, 3, 2)
d = (3, 2, 4, 2)
e = (1, 4, 4, 2)
f = (0, 5, 5, 1)

g = (0, 5, 6, 0)
h = (0, 6, 5, 0)
i = (3, 2, 6, 0)
j = (3, 6, 2, 0)
k = (6, 2, 3, 0)
l = (6, 3, 2, 0).

For the twelve extreme core elements above we can check that

T (v, a) = {{3}, {1, 3}, {1, 2, 3}, N}
T (v, b) = {{3}, {2, 3}, {1, 2, 3}, N}
T (v, c) = {{2}, {2, 3}, {1, 2, 3}, N}
T (v, d) = {{2}, {1, 2}, {1, 2, 3}, N}
T (v, e) = {{1, 2}, {1, 3}, {1, 2, 3}, N}
T (v, f) = {{1}, {1, 2}, {1, 3}, N}

T (v, g) = {{1}, {4}, {1, 2}, N}
T (v, h) = {{1}, {4}, {1, 3}, N}
T (v, i) = {{2}, {4}, {1, 2}, N}
T (v, j) = {{3}, {4}, {1, 3}, N}
T (v, k) = {{2}, {4}, {2, 3}, N}
T (v, l) = {{3}, {4}, {2, 3}, N}.

Notice that every collection of tight coalitions is a basis. It is then straight-
forward to prove that, for small perturbations of v, the core structure re-
mains the same. Hence, the cone L(v) is of full dimension, and has a unique
minimal defining system. The defining system I(v) however has redundant
inequalities in it. To see this, consider the graph of neighboring extreme
points, restricted to the six points a, b, c, d, e and f .
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da

b c

Fig. 2. Neighboring extreme points of Core(v).

Each edge in this graph induces an inequality. For example, the inequal-
ity (f → e) is generated by writing e{1,2,3} as a linear combination of the
characteristic vectors corresponding to the elements in T (v, f):

e{1,2,3} = e{1,2} + e{1,3} − e{1}.

The inequalities thus induced by the edges in this graph are

w({1, 2, 3}) ≤ w({1, 2}) + w({1, 3}) − w({1}) (f → e)
w({3}) ≤ w({1, 2, 3}) − w({1, 2}) (e → a)
w({2, 3}) ≤ w({1, 2, 3}) + w({3}) − w({1, 3}) (a → b)
w({2}) ≤ w({2, 3}) − w({3}) (b → c)
w({1, 2}) ≤ w({1, 2, 3}) − w({2, 3}) + w({2}) (c → d)
w({1, 3}) ≤ w({1, 2, 3}) − w({2}) (d → e).

Notice that the inequality (e → a) is implied by inequalities (b → c) and
(c → d). Symmetrically, (d → e) is implied by (a → b) and (b → c).

5 Application to convex games

In this section, we investigate the consequences of Theorem 5, when it is
applied to a strictly convex game. One could use Shapley’s (1971) charac-
terization of the core structure of these games, as described after Theorem 1,
and apply Theorem 5 directly. We do not wish to rely on Shapley’s result
however. We will specify a strictly convex game and go through the whole
process. Shapley’s result makes clear that the result will be independent of
our specific choice.
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Define v∗ by
v∗(S) := s2

for each coalition S, where s = |S|. Then it is straightforward to prove that

v(S ∪ T ) + v(S ∩ T ) = v(S) + v(T ) + 2ab,

where a = |S \ T | and b = |T \ S|. Since 2ab ≥ 0, it follows that v∗ satisfies
the system (∗). Indeed, v∗ is strictly convex, since equality in (∗) only occurs
if a = 0 or b = 0, i.e. if S ⊆ T or T ⊆ S.

We now establish the core structure of v∗.

Lemma 6 The convex hull of the marginal vectors of v∗ equals C(v∗).
Moreover, T (v∗,mσ(v∗)) = {Sσ

k | k ∈ N} for each marginal vector mσ(v∗).

Proof. Let mσ(v∗) be a marginal vector of v∗. Assume w.l.o.g. that σ is
the identity. Thus, the payoff to player i equals i2 − (i − 1)2 = 2i − 1, and
for a (non-empty) coalition S with |S| = s we get that

mσ(v∗)(S) =
∑

i∈S

(2i − 1) ≥
s

∑

i=1

(2i − 1) = 2 · 1
2s(s + 1) − s = s2 = v∗(S).

Let x be an extreme point of C(v∗). To see that T (v∗, x) = {Sσ
k | k ∈ N} for

a suitably chosen permutation σ, it suffices to show that for any S, T ⊆ N
that are both tight at x in v∗, either S ⊆ T or T ⊆ S. Note that

v∗(S ∩T )+v∗(S∪T ) ≤ x(S ∩T )+x(S∪T ) = x(S)+x(T ) = v∗(S)+v∗(T ).

So, by the convexity of v∗, v∗(S ∩T )+ v∗(S ∪T ) = v∗(S)+ v∗(T ). It follows
that S ⊆ T or T ⊆ S because v∗ is strictly convex. �

Theorem 7 The system I(v∗) is the system of inequalities

v(S ∪ {i, j}) − v(S ∪ {j}) ≥ v(S ∪ {i}) − v(S), (∗ ∗ ∗)

for all i, j ∈ N (i 6= j) and all S ⊆ N \ {i, j}.

Proof. Let S, i, j be such that S ⊆ N \ {i, j} and i 6= j. Let τ be a
permutation for which the elements of S come first, then i, then j, and then
the elements of N \ (S ∪ {i, j}). Let σ be the permutation for which the
elements of S are ordered as in τ , then j, then i, and then the elements of
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N \ (S ∪ {i, j}) as in τ . Note that S ∪ {j} is a neighbor of T (v∗,mτ (v∗))
and that S, S ∪ {j}, S ∪ {i, j} ∈ T (v∗,mτ (v∗)). Thus, since

eT = eS∪{j} = eS∪{i,j} − eS∪{i} + eS

(where eS denotes the zero vector when S is empty), the inequality in I(v∗)
generated by the choice of S, i, j is

w(S ∪ {j}) ≤ w(S ∪ {i, j}) − w(S ∪ {i}) + w(S),

which can be rewritten as

w(S ∪ {i, j}) − w(S ∪ {j}) ≥ w(S ∪ {i}) − w(S)

So indeed, all inequalities in (∗ ∗ ∗) are generated.

To see that no other inequalities are generated, associated with permutations
σ, τ , note that the requirement |T (v∗,mσ(v∗)) ∩ T (v∗,mτ (v∗))| = n − 1
implies that τ can be obtained from σ by a switch of two players i, j, with j
directly after i in σ. Then let S be the set of players that come before i in
σ, and it is evident that σ and τ generate the inequality corresponding to
S, i, j. �

We obtain the following variant of the Shapley-Ichiishi result as a corollary.

Corollary 8 A game v satisfies the inequalities in (∗ ∗ ∗) if and only if all
marginal vectors are elements of C(v).

Proof. Suppose that v satisfies the inequalities in (∗ ∗ ∗). Then v is a limit
game for v∗, by Theorem 5. Hence, mσ(v) is an extreme point of C(v) for
every σ.

Suppose that mσ(v) ∈ C(v) for every σ. Then note that every mσ(v) is
extreme in C(v), so it follows that v is a limit game for v∗. By Theorem 5,
v satisfies the inequalities in I(v∗), and by Theorem 7, this is the system
(∗ ∗ ∗). �

Note that the set of inequalities (∗∗∗) is the set I(v) for any strictly convex
game v. Hence, it also follows immediately that a game is convex precisely
when it is a limit game of any strictly convex game.

Corollary 8 characterizes the games for which all marginal vectors are in the
core with less inequalities than it is usually done. So, as a side result we
proved that the system (∗ ∗ ∗) implies the systems (∗∗) and (∗).
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System (∗ ∗ ∗), which we derived in Section 5, is in fact the unique minimal
representation for the polyhedral cone of convex games, up to multiplication
of the inequalities by positive scalars. To prove that each inequality in
(∗ ∗ ∗) indeed describes a facet of this cone, we will demonstrate that for
each inequality in I(v), there exist a game that violates the inequality, but
satisfies all other inequalities in I(v). In the proof, we make use of an
alternative characterization of convex games by means of unanimity games.

A convenient basis for the vector space of all games was introduced in Shap-
ley (1953). Let T be a non-empty coalition in the player set N . The corre-
sponding unanimity game uT is defined as follows.

uT (S) =

{

1 if T ⊆ S
0 otherwise.

Shapley (1953) proved that the collection of unanimity games forms a basis
of the vector space of all games. In other words, given a game v, there exist
unique coefficients (αT )T 6=φ such that

v =
∑

T 6=∅

αT uT .

Many classes of games, like airport games (Littlechild and Owen, 1973)
and sequencing games (Curiel et al., 1989), can be characterized through
restrictions on these coefficients. Also the class of convex games can be
characterized through those coefficients.

Theorem 9 The following two conditions are equivalent:

(a) The game v =
∑

T 6=∅ αT uT is convex.

(b) For all triplets (S, i, j) with i 6= j and i, j /∈ S:

∑

T⊆S

αT∪{i,j} ≥ 0,

where the numbers αT are the coefficients of the game v with respect
to the basis of unanimity games.

Proof. By Corollary 8 it suffices to prove the equivalence of (∗∗∗) and (b).
Write v =

∑

T 6=∅ αT uT . Let i, j ∈ N such that i 6= j, and let S ⊆ N \ {i, j}.
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Then

v(S ∪ {i, j}) − v(S ∪ {j}) ≥ v(S ∪ {i}) − v(S)
⇔

[v(S ∪ {i, j}) − v(S ∪ {j})] − [v(S ∪ {i}) − v(S)] ≥ 0
⇔

[

∑

T⊆S∪{i,j} αT −
∑

T⊆S∪{j} αT

]

−
[

∑

T⊆S∪{i} αT −
∑

T⊆S αT

]

≥ 0

⇔
∑

T⊆S∪{j} αT∪{i} −
∑

T⊆S αT∪{i} ≥ 0

⇔
∑

T⊆S αT∪{i,j} ≥ 0.

�

Lemma 10 Let i, j ∈ N with i 6= j and let S ⊆ N\{i, j}. Let v =
∑

T αT uT

with

αT =







−1 if T = S ∪ {i, j}
1 if T = S ∪ {i} or T = S ∪ {j} or T * S ∪ {i, j}
0 otherwise.

Then v violates the inequality

v(S ∪ {i, j}) − v(S ∪ {j}) ≥ v(S ∪ {i}) − v(S)

and satisfies all other inequalities in (∗ ∗ ∗).

Proof. Notice that
∑

T⊂S αT∪{i,j} = −1 < 0, so by Theorem 9, the con-
dition for (S, i, j) is indeed violated. To show that all other inequalities
are satisfied, let k, l ∈ N , k 6= l and V ⊆ N \ {k, l}, such that the triplet
(V, k, l) 6= (S, i, j). Consider the quantity

∑

T⊆V

αT∪{k,l}.

If αS∪{i,j} does not appear in the sum, then it is a sum of only nonnegative
terms, hence it is nonnegative. If αS∪{i,j} does appear in the summation,
discern two cases.

(a) V 6= S and {i, j} = {k, l}. The fact that αS∪{i,j} appears in the above
sum implies that the set S is a subset of V . So, since V 6= S, we can choose
m ∈ V \ S. Then α{m}∪{k,l} = 1 appears in the sum too, compensating for
αS∪{i,j} = −1 and consequently yielding a nonnegative outcome.
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(b) {i, j} 6= {k, l}. Assume without loss of generality that i /∈ {k, l}. Since
αS∪{i,j} = −1 appears in the sum, also αS∪{j} = 1 appears in it, compen-
sating the negative number and hence yielding a nonnegative outcome. �

Corollary 11 The system (∗∗∗) is a facet description for the class of convex
games.

Proof. Since L(v∗) is of full dimension, i.e., of dimension 2n − 1, we can
choose a full-dimensional ball B of strictly convex games. Let v be a game
that violates the inequality associated with (S, i, j) and none of the other
inequalities in (∗ ∗ ∗). Let K be the convex hull of v and the ball B. Let L
be the intersection of K and the hyperplane w(S ∪ {i, j}) − w(S ∪ {j}) =
w(S ∪{i})−w(S). It is obvious that L consists of convex games only, hence
it a subset of the face determined by (S, i, j). It is also obvious that L has
dimension 2n − 2, so it follows that (S, i, j) determines a face of dimension
2n − 2, hence a facet. �

We conclude with a brief remark on the complexity of a minimal test for
convexity. There are

(

n
2

)

ways to choose two different players i and j in N ,
and 2n−2 ways to choose a coalition S that does not contain players i and
j. Thus we have 2n−2

(

n
2

)

inequalities of the form

v(S ∪ {i, j}) − v(S ∪ {j}) ≥ v(S ∪ {i}) − v(S).

Since the input size of a game is x = 2n − 1 (i.e. the number of nonempty
coalitions), the complexity of testing all inequalities in (∗∗∗) is O(x(log2 x)2).
Testing the original system (∗) has complexity O(x2), and testing the system
(∗∗) of Ichiishi has complexity O(xlog

2
3 log2 x).
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