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Abstract

In a strategic game, a curb set [Basu and Weibull, Econ. Letters 36 (1991) 141] is

a product set of pure strategies containing all best responses to every possible belief

restricted to this set. Prep sets [Voorneveld, Games Econ. Behav. 48 (2004) 403] relax

this condition by only requiring the presence of at least one best response to such a belief.

The purpose of this paper is to provide economically interesting classes of games in which

minimal prep sets give sharp predictions, whereas in relevant subclasses of these games,

minimal curb sets have no cutting power whatsoever and simply consist of the entire

strategy space. These classes include potential games, congestion games with player-

specific payoffs, and supermodular games.
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1. Introduction

Among the set-valued coarsenings of the Nash equilibrium concept, the minimal curb

sets of Basu and Weibull (1991) received a lot of attention. In a strategic game, a curb

set (‘curb’ is short for ‘closed under rational behavior’) is a product set of pure strategies

containing all best responses to every possible belief restricted to this set. A curb set is

minimal if it does not properly contain another curb set.

It is within these minimal curb sets that many intuitive models of strategic adjustment

settle down (Young, 1993, Hurkens, 1995, Kosfeld et al., 2002). Moreover, in several

classes of relevant games, minimal curb sets yield nice results. For instance: (i) in games

with costly pre-play communication, minimal curb sets lead to the most preferred outcome

for the players with the ability to communicate (Hurkens, 1996), (ii) in extensive form

games with perfect information and finite horizon, the minimal curb set is unique and

contains all subgame perfect Nash equilibria (Pruzhansky, 2003).

Voorneveld (2004, 2005) relaxes the constraint on curb sets by studying product sets of

pure strategies containing at least one best response to every belief restricted to this set.

This makes the players ‘prepared’ against such beliefs, in the sense that their component

of the product set always contains a best reply, without insisting on being exhaustive.

This excludes, as in curb sets, the possibility that a player may feel regret due to being

recommended a set of strategies that is too small. Sets with this property are called prep

sets (‘prep’ is short for preparation); again, a prep set is minimal if it does not properly

contain another prep set.

In addition to proving a very general existence result for minimal prep sets, Voorneveld

(2004, 2005) contains a detailed comparison with other game-theoretic solutions. In par-

ticular, it is established that minimal curb sets and minimal prep sets coincide in generic

finite games, regardless of whether one uses a topological or a measure-theoretic definition

of genericity. This result is of interest in its own right, but recall that many classes of

games have additional structure, making them nongeneric. Examples include zero-sum

games, the (reduced) normal form of extensive form games, or generally any class of finite

games where preferences are defined over an outcome space with a cardinality smaller

than that of the pure strategy space.
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The purpose of this paper is to provide economically interesting classes of games in

which minimal prep sets give sharp predictions, whereas in relevant subclasses of these

games, minimal curb sets have no cutting power whatsoever and simply consist of the

entire strategy space.

In particular, Proposition 3.1 provides sufficient conditions under which minimal prep

sets and pure Nash equilibria coincide. This result is illustrated by means of a classical

pure saddle-point theorem of Shapley (1964) for zero-sum games. Next, the result is

applied to three classes of games that together cover a large range of economic applications:

The first class consists of potential games, in particular the most general class of

potential games of Monderer and Shapley (1996) and the best-response potential games of

Voorneveld (2000). These potential games include applications to, for instance, congestion

games (Rosenthal, 1973), oligopoly models (Slade, 1994), coalition formation (Slikker,

2001), and the financing of public goods (Koster et al., 2003). On the other hand, in the

subclass of so-called minority games, minimal curb sets have no cutting power: they select

the entire pure strategy space. These minority games model situations where players strive

to be in the most exclusive of two groups, for one of many possible reasons: standing out

from the crowd might give status; one would prefer to choose the less crowded of two

roads to work; if demand for a good is larger than supply, one would rather be a supplier,

etc. See Moro (2003) for an introduction to minority games and Challet et al. (2004) for

a book containing many of the path-breaking papers and applications to phenomena in

financial markets.

The second class consists of the congestion games of Quint and Shubik (1994), which

typically are not potential games. Nevertheless, they include minority games, once again

providing a subclass where minimal curb sets have no cutting power.

The third and final class consists of supermodular games, games where the best-

response correspondences have certain monotonicity properties (Topkis, 1978). Milgrom

and Roberts (1990) and Topkis (1998) provide numerous applications, including search

models, facility location, arms races, and oligopoly models. Again, we provide a simple

example of a subclass of these supermodular games where minimal curb sets have no

cutting power.

This is by no means meant as a critique against minimal curb sets, nor do we think
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that minimal prep sets ‘dominate’ minimal curb sets. It is too much to hope for that a

single solution concept works well in all games. Our aim is simply to complement the

mainly theoretic study of minimal prep sets conducted so far with an illustration of its

appeal in classes of games that cover many economic situations.

The material is organized as follows. Section 2 contains preliminary definitions. In

Section 3 we provide sufficient conditions for the collection of minimal prep sets and the

collection of pure Nash equilibria to coincide and give a first illustration of the result

using a well-known result concerning pure saddle-points by Shapley (1964). Applications

to potential games, the congestion games of Quint and Shubik (1994), and supermodular

games follow in Sections 4 to 6.

2. Preliminaries

A strategic game is a tuple G = 〈N, (Ai)i∈N , (ui)i∈N〉, where N is a nonempty, finite

set of players, each player i ∈ N has a nonempty set of pure strategies (or actions) Ai

and a von Neumann-Morgenstern utility function ui : ×j∈N Aj → R. Write A = ×i∈N Ai

and for each i ∈ N , A−i = ×j∈N\{i} Aj.

Payoffs are extended to mixed strategies in the usual way. Assuming each Ai to be a

topological space, ∆(Ai) denotes the set of Borel probability measures over Ai. Using a

common, minor abuse of notation, α−i denotes both an element of ×j∈N\{i} ∆(Aj) speci-

fying a profile of mixed strategies of the opponents of player i ∈ N , and the probability

measure it induces over the set A−i of pure strategy profiles of his opponents. Beliefs of

player i take the form of such a mixed strategy profile. Similarly, if Bi ⊆ Ai is a Borel

set, then ∆(Bi) denotes the set of Borel probability measures with support in Bi:

∆(Bi) = {αi ∈ ∆(Ai) | αi(Bi) = 1}.

As usual, (ai, α−i) is the profile of strategies where player i ∈ N plays ai ∈ Ai and his op-

ponents play according to the mixed strategy profile α−i = (αj)j∈N\{i} ∈ ×j∈N\{i} ∆(Aj).

Let Γ denote the set of all games satisfying the following simple assumption on the

players’ utility functions: for each player i ∈ N , for each ai ∈ Ai and each α−i ∈
×j∈N\{i} ∆(Aj), the expected payoff ui(ai, α−i) =

∫
A−i

ui(ai, a−i) dα−i is well-defined and
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finite. The set Γ contains, in particular, all (mixed extensions of) finite strategic games.

Let i ∈ N and let α−i ∈ ×j∈N\{i} ∆(Aj) be a belief of player i. The set

BRi(α−i) = {ai ∈ Ai | ∀bi ∈ Ai : ui(ai, α−i) ≥ ui(bi, α−i)}

is the set of pure best responses of player i against α−i.

We recall the definitions of minimal curb sets (Basu and Weibull, 1991) and minimal

prep sets (Voorneveld, 2004, 2005).

Definition 2.1 Let G = 〈N, (Ai)i∈N , (ui)i∈N〉 ∈ Γ. A curb set is a product set X =

×i∈N Xi, where

• for each i ∈ N , Xi ⊆ Ai is a nonempty, compact set of pure strategies;

• for each i ∈ N and each belief α−i of player i with support in X−i, the set Xi

contains all best responses of player i against his belief:

∀i ∈ N, ∀α−i ∈ ×j∈N\{i} ∆(Xj) : BRi(α−i) ⊆ Xi.

A curb set X is minimal if no prep set is a proper subset of X. Similarly, a prep set is

a product set X = ×i∈N Xi, where

• for each i ∈ N , Xi ⊆ Ai is a nonempty, compact set of pure strategies;

• for each i ∈ N and each belief α−i of player i with support in X−i, the set Xi

contains at least one best response of player i against his belief:

∀i ∈ N,∀α−i ∈ ×j∈N\{i} ∆(Xj) : BRi(α−i) ∩Xi 6= ∅.

A prep set X is minimal if no prep set is a proper subset of X. /

3. Sufficient conditions for coincidence

In this section, we show that some simple conditions are sufficient for the collection

of minimal prep sets and the collection of pure Nash equilibria to coincide in a class

of games. This statement is intuitively clear, but since we are comparing set-valued
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solutions with point-valued solutions, let us define the coincidence formally: in a game

G = 〈N, (Ai)i∈N , (ui)i∈N〉 ∈ Γ, the collection of minimal prep sets and the collection of

pure Nash equilibria coincide if:

• for each minimal prep set X = ×i∈NXi of G and each player i ∈ N , there is a pure

strategy ai ∈ Ai such that Xi = {ai} and a = (ai)i∈N is a pure Nash equilibrium,

and conversely:

• for each pure Nash equilibrium a = (ai)i∈N ∈ A, the product set ×i∈N{ai} is a

minimal prep set.

If Γ′ ⊆ Γ is a class of games, we say that the collection of minimal prep sets and the

collection of pure Nash equilibria coincide on Γ′ if they coincide for every game G ∈ Γ′.

For a game G = 〈N, (Ai)i∈N , (ui)i∈N〉 ∈ Γ, we will sometimes wish to restrict players’

pure strategies to a product set B = ×i∈NBi ⊆ A. The game’s payoffs are trivially

obtained by restricting the payoff functions (ui)i∈N to B. With a slight abuse of notation

(letting the domain of payoffs be implicit), this game is denoted by 〈N, (Bi)i∈N , (ui)i∈N〉.
Let us formulate the conditions under which we will establish coincidence. A class of

games Γ′ ⊆ Γ:

• is closed w.r.t. subgames if for each game G = 〈N, (Ai)i∈N , (ui)i∈N〉 ∈ Γ′ and

every nonempty product set B = ×i∈NBi ⊆ A of compact action sets Bi ⊆ Ai, also

〈N, (Bi)i∈N , (ui)i∈N〉 ∈ Γ′;

• is closed w.r.t. minimal prep sets if for each game G = 〈N, (Ai)i∈N , (ui)i∈N〉 ∈ Γ′

and every minimal prep set B = ×i∈NBi ⊆ A, also 〈N, (Bi)i∈N , (ui)i∈N〉 ∈ Γ′;

• has the pure Nash property if every game G ∈ Γ′ has a pure Nash equilibrium.

Clearly, if Γ′ is closed w.r.t. subgames, it is closed w.r.t. minimal prep sets. Apart

from that, the properties are logically independent: the set of matrix games (i.e., finite,

two-player zero-sum games) is closed w.r.t. subgames and in particular w.r.t. minimal

prep sets, but does not have the pure Nash property. The set of best-response potential

games with a finite pure strategy space (see Section 4.1) has the pure Nash property and

is closed w.r.t. minimal prep sets, but is not closed w.r.t. subgames.
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Proposition 3.1 If Γ′ ⊆ Γ has the pure Nash property and is closed w.r.t. minimal prep

sets, or — more strongly — w.r.t. subgames, then the set of pure Nash equilibria and the

collection of minimal prep sets coincide on Γ′.

Proof. Let G = 〈N, (Ai)i∈N , (ui)i∈N〉 ∈ Γ′. By the pure Nash property, G has a pure

Nash equilibrium a ∈ A. By definition, ×i∈N{ai} is a minimal prep set. Conversely, let

B = ×i∈NBi be a minimal prep set of G. Since Γ′ is closed w.r.t. minimal prep sets,

also 〈N, (Bi)i∈N , (ui)i∈N〉 ∈ Γ′. By the pure Nash property, 〈N, (Bi)i∈N , (ui)i∈N〉 has a

pure Nash equilibrium b = (bi)i∈N ∈ B and hence minimal prep set ×i∈N{bi}. Since B

is a prep set of G, it follows that ×i∈N{bi} is a minimal prep set of the original game G.

Since ×i∈N{bi} ⊆ B and B is a minimal prep set of G, it follows that ×i∈N{bi} = B: the

minimal prep set B corresponds with a pure Nash equilibrium. �

Proposition 3.1 is intuitively most appealing if it applies to a class of games which is

closed w.r.t. subgames, which is regularly the case if the games are defined by common

types of strategic interactions: subgames of zero-sum games are zero-sum, subgames of

congestion games, where players choose among different roads/facilities, are congestion

games, etc. Some interesting classes of games with the pure Nash property, however,

are not closed w.r.t. subgames, even though they are closed w.r.t. minimal prep sets.

Specific examples include the best-response potential games in Section 4.1 and games with

strategic complementarities in Section 6.2.

A pure saddle-point theorem of Shapley (1964, pp. 6-7) serves as a first illustration of

the use of Proposition 3.1. Other economically relevant applications are provided in later

sections.

Proposition 3.2 Let Γ′ be the set of finite two-person zero-sum games

G = 〈{1, 2}, (A1, A2), (u1,−u1)〉

in which each 2 × 2 subgame (a subgame in which both players have exactly two pure

strategies) has a pure saddle point/Nash equilibrium2. For every game G ∈ Γ′, the set of

pure saddle points/Nash equilibria and the collection of minimal prep sets coincide.

2This assumption vacuously holds for finite two-person zero-sum games in which some player has only

one pure strategy: there are no 2× 2 subgames! Hence, such games are included in Γ′.

7



Proof. Let G ∈ Γ′ and let H be a subgame of G. Since every 2 × 2 subgame of H is a

2 × 2 subgame of G, it follows that all 2 × 2 subgames of H have a pure saddle point.

Conclude that Γ′ is closed w.r.t. subgames. Moreover, Γ′ has the pure Nash property by

Thm. 2.1 of Shapley (1964). The result now follows from Proposition 3.1. �

4. Potential games

4.1. Generalized ordinal and best-response potential games

Monderer and Shapley (1996) define four classes of potential games, in increasing

order of generality: exact, weighted, ordinal, and generalized ordinal potential games.

These games have applications to, for instance, congestion models (Rosenthal, 1973) and

oligopoly models (Slade, 1994). All finite potential games in Monderer and Shapley

(1996) have the finite improvement property: start with an arbitrary strategy profile.

Each time, let a player that can benefit from unilateral deviation switch to a better

strategy. Under the finite improvement property, this process eventually ends, obviously

in a Nash equilibrium. Voorneveld (2000) introduces best-response potential games that

allow infinite improvement paths by imposing restrictions only on paths in which players

that can improve actually deviate to a best response. These games include the best-

response potential games of Morris and Ui (2004, p. 264, after Def. 6). Formally, a game

G = 〈N, (Ai)i∈N , (ui)i∈N〉 is

• a generalized ordinal potential game if there is a function P : A → R such

that, for each player i ∈ N , each strategy profile a−i ∈ A−i of his fellow players, and

each pair of strategies ai, bi ∈ Ai:

ui(ai, a−i)− ui(bi, a−i) > 0 ⇒ P (ai, a−i)− P (bi, a−i) > 0. (1)

• a best-response potential game if there is a function P : A → R such that, for

each player i ∈ N and each strategy profile a−i ∈ A−i of his fellow players:

arg max
ai∈Ai

ui(ai, a−i) = arg max
ai∈Ai

P (ai, a−i). (2)
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The function P is called a (generalized ordinal or best-response) potential.

There is no logical dependence between (1) and (2): Examples 4.1 and 4.2 in Voor-

neveld (2000) indicate that there are generalized ordinal potential games which are not

best-response potential games, and conversely, that there are best-response potential

games which are not generalized ordinal potential games.

Recall that a function P : A → R on a topological space A is upper semicontinuous

(u.s.c.) if its upper contour sets are closed:

∀r ∈ R : {a ∈ A | P (a) ≥ r} is closed.

Proposition 4.1 Let Γ1 (Γ2) be the set of games with compact strategy spaces and an

upper semicontinuous generalized ordinal (best-response) potential. For any G ∈ Γ1 ∪ Γ2,

the set of pure Nash equilibria and the collection of minimal prep sets coincide.

Proof.

Γ1 is closed w.r.t. subgames: Simply restrict the domain of the potential function.

Γ2 is closed w.r.t. minimal prep sets: Let G = 〈N, (Ai)i∈N , (ui)i∈N〉 ∈ Γ2 have

u.s.c. best-response potential P and assume B = ×i∈NBi is a minimal prep set of G. For

each player i ∈ N and each strategy profile a−i ∈ ×j∈N\{i}Bj,

∅ 6= arg max
ai∈Ai

ui(ai, a−i) ∩Bi = arg max
ai∈Ai

P (ai, a−i) ∩Bi,

where the inequality follows by definition of a prep set and the equality follows from (2).

Hence, also the game H = 〈N, (Bi)i∈N , (ui)i∈N〉 is a best-response potential game, whose

best response potential is obtained from P by restricting its domain. Its strategy spaces

(Bi)i∈N are compact by definition of a prep set and P remains u.s.c. in the subspace

topology. Conclude that H ∈ Γ2.

Γ1 and Γ2 have the pure Nash property: Since A is compact in the product topology

and each G ∈ Γ1 ∪ Γ2 has a continuous potential P , the potential achieves a maximum.

By (1) or (2), such a maximum is a pure Nash equilibrium.

The result now follows from Proposition 3.1. �

Some remarks:
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L M R

T 2, 2 1, 0 0, 1

B 0, 0 0, 1 1, 0

L M R

T 4 3 0

B 0 2 1

Figure 1: Best-response potential games: not closed w.r.t. subgames.

(i) Endowing A with the discrete topology, the conclusion of Proposition 4.1 applies in

particular to finite generalized ordinal/best-response potential games.

(ii) As opposed to the set of generalized ordinal potential games, the set of best-response

potential games is not closed w.r.t. subgames: The two-player game to the left in Figure

1 has a best-response potential (to the right). The subgame with action space {T, B} ×
{M, R} is not a best-response potential game: such a potential would have to satisfy

P (T, M) < P (T,R) < P (B, R) < P (B, M) < P (T, M),

a contradiction.

(iii) The assumption that the game needs to have an u.s.c. potential is not an innocuous

one. Voorneveld (1997, p. 167-168) gives an example of an ordinal potential game with

compact strategy spaces and continuous payoff functions for which no potential achieves

a maximum and which, consequently, has no u.s.c. potential.

(iv) The conclusion of Proposition 4.1 does not hold for the pseudo-potential games re-

cently introduced by Dubey et al. (2004). Formally, a game G = 〈N, (Ai)i∈N , (ui)i∈N〉 is

a pseudo-potential game if there is a function P : A → R such that, for each player i ∈ N

and each strategy profile a−i ∈ A−i of his fellow players:

arg max
ai∈Ai

ui(ai, a−i) ⊇ arg max
ai∈Ai

P (ai, a−i).

The two-player game to the left in Figure 2 has a pseudo-potential (to the right). But

its pure Nash equilibria and minimal prep sets do not coincide, since {T,B} × {A, B}
is a minimal prep set. The game has neither a generalized ordinal nor a best-response

potential function P , which by definition would have to satisfy:

P (T, A) < P (T, B) < P (B, B) < P (B, A) < P (T,A),

a contradiction.
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A B C D

T 1,−1 −1, 1 1, 1 −2,−2

B −1, 1 1,−1 −2,−2 1, 1

A B C D

T 1 0 2 0

B 0 1 0 2

Figure 2: A pseudo-potential game

4.2. Minority games

Above, we saw that in large classes of potential games, minimal prep sets have substan-

tial cutting power, yielding equilibrium predictions. On the other hand, in economically

relevant subclasses of these games, minimal curb sets have no cutting power whatsoever.

As an example, this section considers so-called minority games, a type of congestion prob-

lems introduced by Challet and Zhang (1997) and inspired by the El Farol Bar problem

of Arthur (1994). See Moro (2003) for an introductory overview, Challet et al. (2004)

for a book containing many of the path-breaking papers within the physics literature

and applications to phenomena in financial markets, and Coolen (2005) for a thorough

mathematical treatment.

Minority games study congestion problems where players aim to avoid crowds and

prefer choosing the minority alternative. They have an odd number of players: N =

{1, . . . , 2k + 1} for some k ∈ N. Each player i ∈ N chooses among two actions: Ai =

{−1, +1} for all i ∈ N . Associated with each action s ∈ {−1, +1}, there is a function

fs : {1, . . . , 2k + 1} → R,

where for each m ∈ {1, . . . , 2k + 1}, fs(m) ∈ R indicates the utility/payoff to a player

choosing s if the total number of players choosing s equals m. The payoff/utility function

ui : ×j∈NAj → R of player i ∈ N is then naturally defined as follows:

∀a = (aj)j∈N ∈ ×j∈NAj : ui(a) = fai
(| {j ∈ N : aj = ai} |).

Characteristic for a minority game is that unilateral deviation from a majority to a mi-

nority pays off:

∀s, t ∈ {−1, +1}, s 6= t,∀m ∈ {k + 2, . . . , 2k + 1} : fs(m) < ft(2k + 2−m). (3)
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Example 4.2 Challett and Zhang (1997, p. 408), who introduce minority games, initially

assign payoff one to each member of the minority, and payoff zero to each member of a

majority:

f−1(m) = f+1(m) =

 1 if m ∈ {1, . . . , k},
0 if m ∈ {k + 1, . . . , 2k + 1}.

(4)

In a variant (Challet and Zhang, 1997, p. 411), they suggest payoffs giving zero reward

to majority members and positive payoffs to minorities, favoring small ones:

f−1(m) = f+1(m) =

 | N | /m− 2 if m ∈ {1, . . . , k},
0 if m ∈ {k + 1, . . . , 2k + 1}.

(5)

Given an action profile a = (ai)i∈N , the minority alternative is −1 if
∑

i∈N ai > 0 and +1

if
∑

i∈N ai < 0. Other frequently occurring payoff functions (Moro, 2003) assign to player

i a payoff given by −ai g(
∑

j∈N aj), where g is an odd function, i.e., g(x) = −g(−x), with

g(x) > 0 if x > 0. In particular, common examples include

g(x) = x/ | N | and g(x) = sgn(x), (6)

where the sign function is defined as:

sgn(x) =


−1 if x < 0,

0 if x = 0,

+1 if x > 0.

In our notation:

f−1(m) = f+1(m) = g(2(k −m) + 1). (7)

/

As is seen from the examples, the payoff functions to the two alternatives are traditionally

assumed to be identical: f−1 = f+1. We relax this assumption by only requiring

f−1(k + 1) = f+1(k + 1). (8)

Proposition 4.3 In a minority game G (in particular, under assumptions (3) and (8))

with 2k + 1 players, the following holds:
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(a) G is a potential game, so its pure Nash equilibria and minimal prep sets coincide;

(b) A pure strategy profile a = (ai)i∈N is a pure Nash equilibrium if and only if there is

an alternative s ∈ {−1, +1} such that exactly k players choose s;

(c) The unique minimal curb set of G is the entire pure strategy space.

Proof. (a) G is a congestion game as in Rosenthal (1973) and hence a (finite exact)

potential game (Monderer and Shapley, 1996, Thm. 3.1). By Proposition 4.1, its pure

Nash equilibria and minimal prep sets coincide.

(b) Fix a pure strategy profile. The number of players is odd, so some option s ∈ {−1, +1}
is chosen by a majority of at least k +1 players. If the majority has k +2 or more players,

(3) implies that a majority member can unilaterally deviate to the other option and

achieve a strictly higher payoff. Thus, the strategy profiles in Proposition 4.3(b) are the

only candidates for pure Nash equilibria. They are indeed equilibria: by (3), a minority

member never has an incentive to deviate and join a majority. Next, let s ∈ {−1, +1} be

the alternative chosen by the k + 1 majority members. If a majority member deviates to

t 6= s, his payoff changes from fs(k + 1) to ft(k + 1). By (8), these payoffs are the same.

Conclude: the profiles in Proposition 4.3(b) are indeed the game’s pure Nash equilibria.

(c) Let B = ×i∈NBi be a minimal curb set of G. There is a player i ∈ N with Bi =

{−1, +1}. Otherwise, all components of the minimal curb set would be singleton sets. By

definition of a curb set, the unique pure strategy profile in B would then have to be a pure

Nash equilibrium, as characterized in Proposition 4.3(b). But in a pure Nash equilibrium,

by (8), the minority members are indifferent between staying and switching: both −1 and

+1 are best replies to the action profile of the remaining players, which consequently must

be included in their component of the curb set. This contradicts that all components of

the minimal curb set are singletons. Conclude: there is an i ∈ N with Bi = {−1, +1}.
We proceed by showing that Bj = {−1, +1} for all j ∈ N . Suppose, to the contrary,

that there is a player j ∈ N with Bj being a singleton set, w.l.o.g. Bj = {−1}. By

definition of a curb set, there is no element of B−j against which +1 is a best reply. Since

+1 is a best reply to any profile in which at most k players choose +1, no such profiles

can be included in B−j: in every element of B−j, at least k + 1 players choose +1, in

particular in every profile where player i, who had Bi = {−1, +1}, chooses −1. Hence, in
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every element of ×`∈N\{i,j}B`, at least k + 1 players choose +1: there are at least k + 1

players in N \ {i, j} whose component of the minimal curb set B equals {+1}.
Let b−i ∈ B−i and let ` ≥ k + 1 be the number of players j ∈ N \ {i} with bj = +1.

Player i’s payoff is f+1(` + 1) or f−1(2k − ` + 1) for actions +1 and −1, respectively. By

(3) with m = ` + 1, player i’s unique best reply to any b−i ∈ B−i is to choose −1:

f+1(` + 1) < f−1(2k − ` + 1),

Hence, the same holds for every belief α−i ∈ ×j∈N\{i}∆(Bj): action +1 can be omitted

from his component Bi of the curb set, contradicting the assumption that B is a minimal

curb set. Conclude: there is no player j ∈ N with Bj being a singleton set, proving

Proposition 4.3(c). �

5. The Quint-Shubik congestion model

Monderer and Shapley (1996, Thm 3.2) show that every finite exact potential game is

isomorphic to a congestion game as defined in Rosenthal (1973). In these games, players

choose subsets of facilities from a common pool. The payoff associated with each facility

is a function only of the number of players using it. Quint and Shubik (1994) and — as a

special case — Milchtaich (1996) considered a different class of congestion games by also

allowing payoffs to be player-dependent. In general, these games do not admit a potential

function, but nevertheless have pure Nash equilibria. The notation in this section follows

the overview article on congestion models by Voorneveld et al. (2000).

Quint and Shubik (1994) consider finite games G = 〈N, (Ai)i∈N , (ui)i∈N〉 satisfying

the following three properties:

(QS1) There is a nonempty, finite set F of facilities such that Ai ⊆ F for all i ∈ N .

By (QS1), an action of a player is to choose a facility from a collection F , possibly subject

to feasibility constraints: players may not have access to all elements of F .

Let a ∈ A, f ∈ F . Denote by nf (a) the number of players choosing facility f in action

profile a, i.e., nf (a) =| {i ∈ N : ai = f} |.
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(QS2) For each player i ∈ N and all pure-strategy profiles a, b ∈ A with ai = bi = f : if

nf (a) = nf (b), then ui(a) = ui(b).

By (QS2), the utility of player i depends only on the number of users of the facility that

i has chosen.

(QS3) For each player i ∈ N , each pure strategy profile a ∈ A, each player j ∈ N \ {i}
with aj = ai, and each alternative action choice bj ∈ Aj \ {aj} of this player:

ui(aj, a−j) ≤ ui(bj, a−j).

Property (QS3) models the congestion: a player is not harmed if an other user of the same

facility switches to a different one. The benefit to each player from choosing a facility is

weakly decreasing in the total number of users.

Proposition 5.1 Let Γ′ denote the set of Quint-Shubik congestion games, i.e., the set of

strategic games satisfying (QS1) to (QS3). For each game G ∈ Γ′, the set of pure Nash

equilibria and the collection of minimal prep sets coincide.

Proof. Quint and Shubik (1994, Thm. 3) prove that Γ′ has the pure Nash property.

Property (QS1) allows us to restrict the set of facilities from which players make their

choices, so Γ′ is closed w.r.t. subgames and in particular w.r.t. minimal prep sets. The

result follows from Proposition 3.1. �

Remark 5.2 Milchtaich (1996) allows no restrictions on access to facilities: he assumes

(QS2), (QS3), and Ai = F instead of the weaker assumption (QS1). Hence, his class of

games is not closed w.r.t. subgames or minimal prep sets. Since they are special cases of

the Quint-Shubik congestion games, we can nevertheless conclude that minimal prep sets

and pure Nash equilibria coincide. /

The Quint-Shubik congestion games contain numerous minority games, including all our

explicit examples with payoffs as defined in (4), (5), and (7) with g as in (6). Conclude

that also here, there is a relevant subclass in which minimal curb sets have no cutting

power.
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6. Strategic complementarities

Well-known existence results for Nash equilibria in supermodular games or games with

strategic complementarities rely on monotonicity properties of the best-reply correspon-

dence. The theory was initiated by Topkis (1978) and has been successfully applied to

a wide range of economic models; the reader is referred to, for instance, Milgrom and

Roberts (1990) or the book of Topkis (1998). This section relies on a general existence

result by Zhou (1994).

6.1. Lattices and order

A partially ordered set (S,≤) is a set S with a binary relation ≤ which is reflexive,

antisymmetric, and transitive. Consider a subset T of S. An element x ∈ S is a lower

bound of T if x ≤ y for all y ∈ T and an upper bound of T if y ≤ x for all y ∈ T .

If it exists, the least upper bound of T is called the supremum sup(T ) of T in S and

the greatest lower bound of T is called the infimum inf(T ) of T in S. A lattice is a

partially ordered set (S,≤) that contains the infimum x ∧ y = inf{x, y} and supremum

x ∨ y = sup{x, y} of each pair of elements x, y ∈ S. The lattice is complete if, for all

nonempty subsets T ⊆ S: inf(T ) ∈ S and sup(T ) ∈ S.

(T,≤) is a sublattice of lattice (S,≤) if T ⊆ S is closed under ∧ and ∨, i.e., if it is a

lattice with the same join and meet relations as S. As above, this sublattice is complete

if, for all nonempty subsets U ⊆ T : inf(U) ∈ T and sup(U) ∈ T .

An interval [x, y] in (S,≤) is the set {z ∈ S | x ≤ z ≤ y}. For x ∈ S, we denote

(−∞, x] = {z ∈ S | z ≤ x} and [x,∞) = {z ∈ S | x ≤ z}. The interval topology on

a lattice (S,≤) is the topology for which all closed sets are intersections or finite unions

of intervals of the form S, (−∞, x], and [x,∞), where x ∈ S. By the Frink-Birkhoff

theorem, a lattice is complete if and only if it is compact in its interval topology. Hence,

any sublattice of a complete lattice is complete if and only if it is closed in its interval

topology.

A note of caution: a subset of (S,≤) that is a complete lattice in its own right may not

be a complete sublattice of (S,≤). Milgrom and Roberts (1990, p. 1260) give enlightening

examples. For instance, the set T = [0, 1) ∪ {2} is a complete lattice under its standard
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order. In this case sup[0, 1) = 2 ∈ T . It is not a complete sublattice of [0, 2], where

sup[0, 1) = 1 /∈ T .

Consider a lattice (S,≤). A correspondence ϕ : S � S is ascending if, for all x, y ∈ S

with x ≤ y, all s ∈ ϕ(s) and t ∈ ϕ(y), it is true that s ∧ t ∈ ϕ(x), s ∨ t ∈ ϕ(y).

6.2. Games with ascending best replies

As stated, well-known existence results for Nash equilibria rely on the best-response

correspondence being ascending. This can be derived from other assumptions under names

like supermodularity/strategic complementarity/increasing differences, but the key to the

result is always the monotonicity of best replies. Therefore, we state our result in terms of

ascending best replies and refer to for instance Zhou (1994, p. 299) for a readable account

on how to achieve it from other conditions.

We use a general existence result by Zhou (1994, Thm. 2) with the only modification

that we assume all action sets Ai to be linearly ordered, rather than just a lattice. In

most applications (see Milgrom and Roberts, 1990, or Topkis, 1998), this assumption is

satisfied. Often, for instance, Ai is a set of real numbers with its usual order.

Proposition 6.1 Consider the set Γ′ ⊆ Γ of all strategic games G = 〈N, (Ai)i∈N , (ui)i∈N〉
where for each player i ∈ N :

• there is a linear order ≤i on Ai such that Ai is compact in a topology τi equal to or

finer than the interval topology.

• ui is upper semicontinuous on Ai in the topology τi.

Moreover, let A = ×i∈NAi be the direct product compact lattice of all the Ai and assume

that the best response correspondence BR : A � A is ascending (w.r.t. the product order

on A). For every game G ∈ Γ′ the collection of minimal prep sets and pure Nash equilibria

coincide.

Proof.

Γ′ has the pure Nash property: All games in Γ′ satisfy the lattice and upper semi-

continuity properties of Zhou (1994, p. 298, lines 1-5 of Section 3) and the best-response
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correspondence is ascending. Hence, by Zhou (1994, p. 299, proof of Thm. 2), every

game in Γ′ has a pure Nash equilibrium.

Γ′ is closed w.r.t. minimal prep sets: Let G = 〈N, (Ai)i∈N , (ui)i∈N〉 ∈ Γ′ and let

B = ×i∈NBi ⊆ A be a minimal prep set of G. To show: H = 〈N, (Bi)i∈N , (ui)i∈N〉 ∈ Γ′.

(i) Restricting the linear order ≤i on Ai to Bi, we see that (Bi,≤i) is linearly ordered.

(ii) By definition of a minimal prep set, Bi is compact in τi, which is equal to or finer

than the interval topology on Ai. Hence, the same holds for the topology restricted to

Bi, the usual subspace topology.

(iii) Since ui is upper semicontinuous in the topology τi on Ai, it remains so on Bi.

(iv) Since B is a minimal prep set, the best-response correspondence BRi(· | H) of the

subgame H is given by

BRi(· | H) = Bi ∩BRi(· | G),

the — by definition of a minimal prep set — nonempty intersection of the best-response

correspondence of the original game and i’s component Bi of the minimal prep set. Since

BRi(· | G) is ascending and Bi is a lattice given its linear order ≤i, it follows that

BRi(· | H) is ascending.

Combining these observations, one concludes that 〈N, (Bi)i∈N , (ui)i∈N〉 ∈ Γ′, i.e., Γ′ is

closed w.r.t. minimal prep sets. The result now follows from Proposition 3.1. �

The set Γ′ in Theorem 6.1 is not closed w.r.t. subgames: in the two-player game in Figure

3, each player’s action 0 is strictly dominant. Hence, the best-response correspondences

0 1 2

0 2, 2 2, 0 2, 0

1 0, 2 1,−1 −1, 1

2 0, 2 −1, 1 1,−1

Figure 3: Supermodular games: not closed w.r.t. subgames

are constant and in particular ascending in the usual order on {0, 1, 2}: the game belongs

to Γ′. But the subgame on {1, 2} × {1, 2} is not in Γ′: it has no pure Nash equilibrium.
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Theorem 6.1 does not hold if the assumption that each action set Ai is linearly ordered

is relaxed to assuming that there is an order ≤i on Ai such that (Ai,≤i) is a complete

lattice: the associated class of games is not closed w.r.t. minimal prep sets. Consider

the two-player game in Figure 4. Define, for each player i = 1, 2 the partial order ≤i on

0 1 2 3

0 2, 2 0, 0 0, 0 0, 0

1 0, 0 1, 0 0, 1 0, 0

2 0, 0 0, 1 1, 0 0, 0

3 0, 0 0, 0 0, 0 2, 2

Figure 4: Supermodular games: non-linear orders

Ai = {0, 1, 2, 3} with 0 ≤i 1 ≤i 3 and 0 ≤i 2 ≤i 3, but which does not compare 1 and 2.

Then (Ai,≤i) is a complete lattice. The players’ best-response correspondences are:

BR1(a2) = {a2} for all a2 ∈ {0, 1, 2, 3} and BR2(a1) =


{0} if a1 = 0,

{2} if a1 = 1,

{1} if a1 = 2,

{3} if a1 = 3.

Hence, the best-response correspondence BR = BR1 × BR2 is ascending w.r.t. the

product order on A. The product set {1, 2} × {1, 2} is a minimal prep set of the game.

In the subgame restricted to these action profiles, we still have that the best response

correspondence is (trivially) ascending with respect to the product order induded by the

restriction of ≤i to {1, 2}. But ({1, 2},≤i) is not a lattice: 1 ∧ 2 and 1 ∨ 2 do not exist.

Notice, indeed, that this subgame does not have a pure Nash equilibrium.

6.3. A class of coordination games

By Proposition 6.1, minimal prep sets have substantial cutting power in a very general

class of supermodular games. Just as for potential games, however, one can easily con-

struct plausible subclasses of such games where minimal curb sets have no cutting power.

We give a simple example.
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Consider a two-player coordination game where the players find each other if they

choose close-by alternatives. Formally, consider the game G = 〈{1, 2}, (A1, A2), (u1, u2)〉
where

A1 = A2 = {0, 1, . . . , k} for some k ∈ N (9)

and for each pair of alternatives (a1, a2) ∈ A1 × A2:

u1(a1, a2) = u2(a1, a2) =

 1 if |a1 − a2| ≤ 1,

0 otherwise,
(10)

i.e., each player chooses one of the locations 0, . . . , k and they are rewarded (‘find each

other’) if they choose neighboring locations.

Proposition 6.2 In a two-player coordination game G = 〈{1, 2}, (A1, A2), (u1, u2)〉 as in

(9) and (10), the following hold:

(a) the collections of pure Nash equilibria and minimal prep sets coincide;

(b) the collection of pure Nash equilibria is

{(a1, a2) ∈ A1 × A2 : |a1 − a2| ≤ 1};

(c) the unique (hence minimal) curb set is A1 × A2.

Proof. (a) Endowing the action space Ai = {0, 1, . . . , k} of player i ∈ {1, 2} with its

standard order, the game is easily seen to belong to the class of games with ascending best

responses in Proposition 6.1, so that pure Nash equilibria and minimal prep sets indeed

coincide.

(b) Follows easily from (10).

(c) Let X = X1 ×X2 be a curb set of G. Fix a player i ∈ {1, 2}. By (10), it follows that

if ai ∈ Xi, then {ai − 1, ai, ai + 1} ∩ {0, 1, . . . , k} ⊆ Xj for j 6= i: player j’s component

of the curb set contains not only ai, but also the neighboring actions. The only set with

this property is A1 × A2, finishing the proof. �
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