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Abstract

In this paper we study a fairly general Wiener driven model for the term structure of
forward prices.

The model, under a fixed martingale measure, Q, consists of two infinite dimensional
stochastic differential equations (SDEs). The first system is a standard HJM model for
(forward) interest rates, driven by a multidimensional Wiener process W . The second sys-
tem is an infinite SDE for the term structure of forward prices on some specified underlying
asset driven by the same W .

We are primarily interested in the forward prices. However, since for any fixed maturity
T , the forward price process is a martingale under the T -forward neutral measure, the zero
coupon bond volatilities will enter into the drift part of the SDE for these forward prices.
The interest rate system is, thus, needed as input into the forward price system.

Given this setup we use the Lie algebra methodology of Björk et al. to investigate under
what conditions on the volatility structure of the forward prices and/or interest rates, the
inherently (doubly) infinite dimensional SDE for forward prices can be realized by a finite
dimensional Markovian state space model.
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1 Introduction

In this paper we study forward price models and, in particular, we want to understand when
the inherently infinite forward price process can be realized by means of a (Markovian) finite
state space model.

From a theoretical point of view, forward prices’ term structures are a more complex object
than interest rates’ term structures or futures prices’ term structures. The extra complexity
results from the fact that forward prices, with maturity T , are martingales under the T -forward
measure, QT . Under such T -forward measures, zero-coupon bonds (with maturity T ) are nu-
meraires which implies that zero-coupon bond prices volatilities will enter into the dynamics of
forward prices. Consequently, in general, term structures of forward prices cannot be studied in
isolation, they must be studied under some interest rate setting and a needed input to forward
price term structures is the term structure of interest rates.

We model the dynamics directly under the risk-neutral measure Q and our forward price model
is described by using two infinite dimensional stochastic differential equations (SDEs), one
defining the interest rate setting, another defining the forward contract setting. For the interest
rate setting we consider a standard HJM model for (forward) interest rates, driven by a mul-
tidimensional Wiener process W . For the forward contract setting we use the QT -martingale
property of forward prices and the bond prices dynamics induced by the interest rate setting to
get a second infinite SDE for the term structure of forward prices, on some specified underlying
asset, under the risk-neutral measure Q. Without loss of generality we consider that the Wiener
process W is the same for both SDEs.

The theoretical literature on forward prices term structures is not big and has mainly focused
on understanding under what conditions, on the dynamics of the state space variables (which
are assumed to be finite), the term structure is of an a priori given specific functional form.
Included in this traditional approach are the studies on affine and quadratic term structures of
forward prices (see [11] for a recent study integrating these two types of term structures and
references).

In this paper we choose a fundamentally different approach. We do not assume that the state
space model is finite, nor that the term structure of forward prices is of a given specific function
form. Instead, we try to understand under what conditions, in terms of the volatility of forward
prices and interest rates, we can have a finite dimensional realization (FDR) of forward prices
term structure models.

This more systematic way of thinking about term structures was proposed by Björk and Chris-
tensen [4] and Björk and Svensson [6], and a more geometric way of thinking about FDR of
term structures, was then introduced. The main technical tool of these studies is the Frobenius
Theorem, and the main result is that there exists a FDR if and only if the Lie algebra generated
by the drift and diffusion terms, of the underlying infinite dimensional (Stratonovich) SDE, is
finite dimensional. Filipović and Teichman [10] and [9] increased the applicability of the geo-
metric approach by showing how the theory can be extended to much more general settings
than initially considered. Finally, Björk and Landén [5] addressed the question of the actual
construction of finite-dimensional realizations, making this geometrical analysis interesting also
from an application point of view.

The main area of application of these ideas has been (forward) interest rate term structures,
which was the object of study in all the above mentioned papers (for a review study on the
geometry of interest rate models see also [2]). More recently this geometric machinery has also
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been applied to study futures prices term structures (see [3]). As far as our knowledge goes, this
techniques have not yet been applied to study forward prices (or any other QT -martingales).
In the present paper we, thus, take this next natural step.

The main contributions of this paper are as follows.

• We adapt the geometrical analysis of term structures to the case of doubly infinite systems.

• We obtain necessary and sufficient conditions for the existence of a FDR of forward rate
term structure models.

• Given that such conditions are satisfied, we derive the dynamics of the underlying finite
state space variable.

The organization of the paper is the following.

In Section 2 we present the basic setup, derive the doubly infinite SDE that will be the object
of study and present the main questions to be answered. Section 3 briefly reviews the basic
geometrical concepts behind the method of analysis. Sections 4, 5 and 6 are devoted to the
actual study of forward price models answering the proposed questions. Section 7 resumes our
main conclusions and discusses the applicability of the results.

2 Setup

The main goal of this study is the study of forward prices in a general stochastic interest rate
setting.

We, thus, consider a financial market living on a filtered probability space
{

Ω, F , Q, {Ft}t≥0

}

carrying an m-dimensional Wiener process W . For reasons that will soon become clear, the
main assets we consider are forward contracts (written on some given underlying asset under
consideration) and zero-coupon bonds1.

Let f0(t, T ) denote the forward prices at time t of a forward contract maturing at time T , and
p0(t, T ) denote the price at time t of a zero-coupon bond maturing at time T .

Besides the trivial boundary conditions

f0(T, T ) = S(T )
p0(t, T ) = 1

where S is the price process of the underlying asset to the forward contract, arbitrage arguments
yields

p0(t, T ) = EQ
t

[
e−

∫ T
t

R(s)ds
]

(1)

f0(t, T ) = ET
t [f0(T, T )] (2)

where R is the short rate of interest and EQ
t [·], ET

t [·] denote, respectively, expectations, con-
ditional on Ft, under the martingale measure Q and under the forward martingale measure
QT .

1For a textbook discussion of forward contracts and zero-coupon bonds see for instance [1].
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It is also well-known that under deterministic interest rate settings, or complete orthogonality
between the underlying and the interest rate random sources, forward prices are the same as
futures prices (a similar but conceptually easier contract).2

In this study we focus on forward prices and, in particular, we are interested in analyzing the
settings where they are not equivalent to futures prices. Our analysis will, therefore, assume
stochastic interest rates and that there are at least some common radom sources driving both
the interest rates and the underlying to the forward contract.

Thus, in our context, a forward price model is only fully defined once we have specified both
forward prices dynamics and interest rates dynamics under a same measure (which we choose to
be Q) and assumed that these two dynamics are, at least partially, driven by common elements
of our multidimensional Wiener process.

Before we present in detail our setting, we start by reparameterizing our variables. A more
suitable parameterization for our purposes is the so called Musiela parameterization ([7] and
[13]). Under the Musiela parameterization, forward prices and bond prices are given in terms
of t and x, where x denotes time to maturity, in contrast to T which defined time of maturity.
Therefore, we will use

f(t, x) = f0(t, t + x) p(t, x) = p0(t, t + x) (3)

2.1 The interest rate curve

We consider a standard HJM model for the (forward) interest rates, driven by a multidimen-
sional Wiener process W . Using the Musiela parameterization the dynamics for the interest
rates, under Q, are given by3

dr(t, x) =
{

∂

∂x
r(t, x) + σ(t, x)

∫ x

0

σ∗(t, s)ds

}
dt + σ(t, x)dWt (4)

where σ(t, x) is a given adapted process in Rm and ∗ denotes transpose.

From the relation between (forward) interest rates and bond prices, we can derive the bond
price Q-dynamics.

Lemma 2.1 Assume the (forward) interest rates dynamics in (4). Then the dynamics of the
zero-coupon bond prices, using the Musiela parameterization, is given by

dp(t, x) = {R(t) − r(t, x)} p(t, x)dt + p(t, x)v(t, x)dWt

where R is the short interest rate4 and the bond prices’ volatility, v, is obtained from the
(forward) interest rate volatilities as

v(t, x) = −
∫ x

0

σ(t, s)ds (5)

and hence also adapted.
2For a futures price definition, see for instance [1] or [11].
3For a textbook treatment of HJM models and the Musiela parameterization for such models, see [1].
4Recall that in the Musiela parametrization the short rate of interest is R(t) = r(t, 0).
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Proof. Recall the standard relation between (forward) interest rates and bond prices

p(t, x) = e
−

∫ x

0

r(t, s)ds
.

Let us set y(t, x) = −
∫ x

0 r(t, s)ds. Applying the Itô lemma we get

dy(t, x) = −
∫ x

0

dr(t, s)ds

= −
∫ x

0

[(
∂

∂s
r(t, s) + σ(t, s)

∫ s

0

σ∗(t, u)du

)
dt + σ(t, s)dWt

]
ds

= −
∫ x

0

∂

∂s
r(t, s)dsdt −

∫

0

σ(t, s)
∫ s

0

σ∗(t, u)dudsdt−
∫ x

0

σ(t, s)ds

︸ ︷︷ ︸
v(t,x)

dWt

=


r(t, 0)︸ ︷︷ ︸

R(t)

−r(t, x) −
∫

0

σ(t, s)
∫ s

0

σ∗(t, u)duds


 dt + v(t, x)dWt

The result follows from dp(t, x) = p(t, x)dy(t, x) + 1
2p(t, x) [dy(t, x)]2 and by notting that

σ(t, x)
∫ x

0

σ∗(t, u)du =
1
2
2σ(t, x)

∫ x

0

σ∗(t, u)du

∫ x

0

σ(t, s)
∫ x

0

σ∗(t, u)duds =
1
2

(∫ x

0

σ∗(t, u)du

)2

2

2.2 The forward price curve

Since the forward prices are QT -martingales (recall (2)), we assume QT –dynamics of the form

df0(t, T ) = f0(t, T )γ0(t, T )dW T
t (6)

where we also take γ0 to be a given adapted process.

Here we use the fact that martingales have zero drift. Note however that, by choosing to model
the forward price dynamics as in (6), forward prices with different maturities T are modeled
under a different martingale measures QT .

Reparameterizing using f(t, x) = f0(t, t + x) give us

df(t, x) =
{

∂

∂x
f(t, x)

}
dt + f(t, x)γ(t, x)dW T

t .

where T = t + x and γ(t, x) = γ0(t, T ).

It will also simplify matters if we work with the logarithm of forward prices instead of the
forward prices themselves. Thus setting

q(t, x) = ln f(t, x) (7)
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we have

dq(t, x) =
{

∂

∂x
q(t, x) − 1

2
‖γ(t, x)‖2

}
dt + γ(t, x)dW T

t . (8)

Note that analyzing the logarithm of forward prices is equivalent to analyzing the forward prices
themselves, as we can always use (7) to transfer any results on the logarithm of forward prices
into results on forward prices.

Finally, to obtain the dynamics of (the logarithm) of forward prices, under the risk-neutral
martingale measure, Q, we use the change of numeraire technique (introduced in [12]). Denoting
by L the Radon-Nikodym derivative,

L(t) =
dQ

dQT
on Ft, 0 ≤ t ≤ T,

and recalling the money account B is the numeraire under Q, we have in Musiela parameteri-
zation

L(t) = p(0, T )
B(t)

p(t, x)

where x = T − t.

Thus, the dynamics of our likelihood process L are given by

dL(t) = L(t) {−v(t, x)} dW T
t

i.e., the Girsanov kernel, for the transition from QT to Q, is the symmetric of the volatility of
zero-coupon bond price with maturity T or, equivalently, with time to maturity x = T − t.

Using the above Girsanov kernel, we can easily obtain the (logarithm of) forward prices Q-
dynamics from (8), that is

dq(t, x) =
{

∂

∂x
q(t, x) − 1

2
‖γ(t, x)‖2 − γ(t, x)v∗(t, x)

}
dt + γ(t, x)dWt (9)

where ∗ denotes transpose and where, without loss of generality, we can take W to be multidi-
mensional and the same as in (4).

Taking a geometrically oriented interpretation of equations (4) and (9), we can see each of these
equations as infinite dimensional objects. The main infinite dimensional object under study in
this paper is (the logarithm) of the forward price curve, i.e., the curve x → q(t, x). This
object, however, for general adapted processed σ and γ may depend on, the interest rate
curve, i.e., the curve x → r(t, x), another infinite dimensional object.

In principle, both adapted processes σ and γ could depend on q and r. It seems, however,
unrealistic to assume that a forward price on a specific underlying (be it the price of a stock,
or any other asset) should influence the interest rate volatility.

The opposite is true for forward prices. As mentioned before, these prices are only interesting
to study in stochastic interest rate settings. This tell us that, maybe, it is realistic that the
forward price volatility depends on the interest rates’ curve.

With this basic intuition in mind we set some more structure on the volatility processes σ and
γ.
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Assumption 2.1 The adapted processes γ(t, x), and σ(t, x) have the following functional form
in terms of r and q

γ(t, x) = γ(qt, rt, x) (10)

σ(t, x) = σ(rt, x) (11)

where, with a slight abuse of notation, the r.h.s. occurrence of γ and σ denotes deterministic
mappings

γ : Hq ×Hr × R+ → Rm

σ : Hr × R+ → Rm.

where Hq and Hr are special Hilbert spaces of functions where forward price curves and interest
rate curves live, respectively. 5

Note that by imposing Assumption 2.1, σ does not depend on qt (the logarithm of the forward
price process) and that we restrict ourselves to the study of time homogenous models. Exten-
sions to non-homogeneous models have been considered in [3] and turn out to be straightforward
generalization of the homogeneous results.

From now on we will use the short-hand notation qt = q(t, x), rt = r(t, x) where we suppress
the x-dependence. This shorter notation will be helpful when the expressions get messy and is
more intuitive from a geometrical point of view.

Using the short-hand notation and Assumption 2.1, we can rewrite equations (4)-(9) as

dqt =
{
Fqt −

1
2
‖γ(qt, rt)‖2 − γ(qt, rt)v∗(rt)

}
dt + γ(qt, rt)dWt (12)

drt = {Frt − σ(rt)v∗(rt)} dt + σ(rt)dWt (13)

where F =
∂

∂x
and we can interpret the entire system as an object q̂ = (qt , rt)

∗ ∈ Hq ×Hr.

As we can see from equations (12)-(13), the interest rates equation (13) does not depend on
the forward prices equation (12), so the interest rates curve r exist and can be studied in
isolation. For a survey study on the geometry of interest rate models see [2]. In contrast to
this, the (logarithm of the) forward price equation (12), is linked to the interest rate equation
(13) through γ(q, r) and/or v(r) 6. This means, that in general, to study forward prices we will
have to study the entire system (12)-(13).

In the following analysis we will refer to forward price equation when referring only to (12),
to interest rate equation when referring only to (13), and to forward price system when
referring to the entire system (12)-(13).

We can now formulate our main problems.
5For details on the construction of the Hilbert spaces Hq and Hr we refer to [6], [10] and [9].
6Given the definition of the bond price volatility, v, in (5), if σ(t, x) = σ(rt, x) then also v(t, x) = v(rt, x).
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2.3 Main Problems

Problem 1 : Under what conditions we have Markovian forward prices?

Problem 2 : Is it possible to have a finite realization for the forward prices equation (12)
but not for interest rates equation (13)?

Problem 3 : When can the inherently infinite forward price system (12)-(13) be realized
by means of a finite dimensional state space model?

Problem 4 : In the cases when a finite dimensional realization (FDR) exists, can we
determine the finite dimensional state space model?

The next section introduces the method of analysis.

3 Method and Basic Geometric Concepts

In this section we describe the general method we will use to attack the presented problems.

The method relies on geometric results from differential geometry and was firstly applied to
finance in [4] and [6]. In this section, we adapt the framework of [4] and [6] to our doubly-infinite
system case.

To be able to apply the concepts and intuitions of ordinary differential geometry to (stochastic)
Itô calculus, we need to rewrite the analysis in terms of Stratonovich integrals instead of Itô
integrals.

Definition 3.1 For given semi martingales X and Y , the Stratonovich integral of X with
respect to Y ,

∫ t

0 Xs ◦ dYs, is defined as

∫ t

0

Xs ◦ dYs =
∫ t

0

XsdYs +
1
2
〈X, Y 〉t. (14)

where the first term on the r.h.s. is the Itô integral and we can define the quadratic variation
process 〈X, Y 〉 can be computed via

d〈X, Y 〉 = dXtdYt

with the usual multiplication rules: dW · dt = dt · dt = 0, dW · dW = dt.

The Stratonovich formulation is geometrically more convenient because the Itô formula, in
Stratonovich calculus, takes the form of the standard chain rule in ordinary calculus.

Lemma 3.1 Assume that a function F (t, y) is smooth. Then we have

dF (t, Yt) =
∂F

∂t
(t, Yt)dt +

∂F

∂y
(t, Yt) ◦ dYt. (15)

Let us begin by specifying exactly what we mean with a finite dimensional realization for the
forward prices generated by volatilities.
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Given the volatility mappings γ : Hq×Hr×R+ → Rm and σ : Hr×R+ → Rm from Assumption
2.1, the forward prices equation will, in general, depend on the interest rate curve. Thus, our
main object of study will be a Stratonovich forward price system of the following form:

dq̂t =
[
µq(qt, rt)
µr(rt)

]
dt +

[
γ(qt, rt)
σ(rt)

]
◦ dWt, (16)

where q̂ =
[
q
r

]
∈ Hq ×Hr.

In special cases, the forward price dynamics may be independent of the interest rate curve, then
our object of study is the Stratonovich forward price equation,

dqt = µq(qt)dt + γ(qt) ◦ dWt. (17)

where q ∈ Hq , and we say that the (logarithm of) forward prices is Markovian.

When referring to the forward price model we refer to either (16) or (17), depending on the
circumstances.

In this study, we will consider these two possibilities.

Definition 3.2 We say that the doubly-infinite SDE (16) has a (local) d-dimensional realiza-
tion at q̂0 =

(
q0 , r0

)∗, if there exists a point z0 ∈ Rd, smooth vector fields â, b̂1 · · · , b̂m on
some open subset Ẑ of Rd and a smooth (sub manifold) map Ĝ : Ẑ → Hq × Hr, such that
q̂ = (q , r)∗ has a local representation

q̂t = Ĝ(Zt) i.e.,
[
qt

rt

]
=

[
Ĝq(Zt)
Ĝr(Zt)

]
a.s.

where Z is the strong solution of the d-dimensional Stratonovich SDE
{

dZt = â(Zt) + b̂(Zt) ◦ dWt

Z0 = z0

(18)

and where W is the same as in (16).

Likewise, we say that the SDE (17) has a (local) n-dimensional realization at q0, if there exist
zo ∈ Rn, smooth vector fields a, b1 · · · , bm on some open subset Z of Rn and a smooth (sub
manifold) map G : Z → Hq, such that q has a local representation

qt = G(Zt) a.s.

where Z is the strong solution of the d-dimensional Stratonovich SDE
{

dZt = a(Zt) + b(Zt) ◦ dWt

Z0 = z0

. (19)

where W is the same as in (17).

If the SDE under analysis, (16) or (17), has a finite dimensional realization (FDR), we say that
our forward rate model admits a FDR.

The method of studying existence and construction of FDR for forward price models, relies on
some basic concepts from infinite dimensional differential geometry, which we now introduce.
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3.1 Basic Geometric Concepts

The presentation of the needed geometric concepts follows [6]. These basic concepts will be
presented for a general real Hilbert Space Y and we denote by y an element of Y . In practice,
the Hilbert space under analysis will be either Hq when studying Markovian forward prices or
Hq ×Hr when dealing with the entire forward price system.

Consider a real Hilbert space Y . By an n-dimensional distribution we mean a mapping F ,
which to each y ∈ Y associates an n-dimensional subspace F (y) ⊆ Y . A mapping (vector field)
f : Y → Y , is said to lie in F if f(y) ∈ F (y) for every y ∈ Y . A collection f1, . . . , fn of vector
fields lying in F generates (or spans) F if span {f1(y), . . . , fn(y)} = F (y) for every y ∈ Y ,
where “span” denotes the linear hull over the real field. The distribution is smooth if, for
every y ∈ Y , there exist smooth vector fields f1, . . . , fn spanning F . A vector field is smooth
if it belongs to C∞. If F and G are distributions and G(y) ⊆ F (y) for all y we say that F
contains G, and we write G ⊆ F . The dimension of a distribution F is defined pointwise as
dim F (y).

Let f and g be smooth vector fields on Y . Their Lie bracket is the vector field [f, g], defined
by

[f, g] = f ′g − g′f,

where f ′ denotes the Frechet derivative of f at y, and similarly for g′. We will sometimes write
f ′[g] instead of f ′g to emphasize that the Frechet derivative is operating on g. A distribution
F is called involutive if for all smooth vector fields f and g lying in F on Y , their lie bracket
also lies in F , i.e.

f, g ∈ F ⇒ [f, g] ∈ F

for all y ∈ Y .

We are now ready to define the concept of a Lie algebra which will play a central role in what
follows.

Definition 3.3 Let F be a smooth distribution on Y . The Lie algebra generated by F , denoted
by {F}LA or by L{F}, is defined as the minimal (under inclusion) involutive distribution
containing F .

If, for example, the distribution F is spanned by the vector fields f1, . . . , fn then, to construct
the Lie algebra {f1, . . . , fn}LA, you simply form all possible brackets, and brackets of brackets,
etc. of the fields f1, . . . , fn, and adjoin these to the original distribution until the dimension of
the distribution is no longer increased.

When one tries to compute a concrete Lie algebra the following observations are often very
useful. Taken together, they basically say that, when computing a Lie algebra, you are allowed
to perform Gaussian elimination.

Lemma 3.2 Take the vector fields f1, . . . , fk as given. It then holds that the Lie algebra
{f1, . . . , fk}LA remains unchanged under the following operations.

• The vector field fi may be replaced by αfi, where α is any smooth nonzero scalar field.

• The vector field fi may be replaced by

fi +
∑

j 6=i

αjfj ,

11



where α1, . . . , αk are any smooth scalar fields.

Let F be a distribution and let ϕ : Y → Y be a diffeomorphism on Y . Then we can define a
new distribution ϕ?F on Y by

(ϕ?F )(ϕ(y)) = ϕ′(y)F (y).

For any smooth vector field f on Y the field ϕ?f is defined analogously. It is straightforward
to verify that

ϕ?[f, g] = [ϕ?f, ϕ?g]. (20)

We now define an useful operator on our Hilbert space Y .

Definition 3.4 Let f be a smooth vector field on Y , and let y be a fixed point in Y . Consider
the ODE 




dyt

dt
= f(yt)

y0 = y

We denote the solution yt as efty.

Finally, and for future reference, we define a particular type of functions –the quasi-exponential
functions – that will turn out useful.

Definition 3.5 A quasi-exponential (or QE) function is by definition any function of the
form

f(x) =
∑

u

eλux +
∑

j

eαjx [pj(x) cos(wjx) + qj(x) sin(wjx)]

where λu,αj ,wj are real numbers, whereas pj and qj are real polynomials.

Important properties of QE functions are given in Lemma 3.3.

Lemma 3.3 The following holds for quasi-exponential functions

• A function is QE if and only if it is a component of the solution of a vector valued linear
ODE with constant coefficients.

• A function is QE if and only if it can be written as f(x) = ceAxb. Where c is a row
vector, A is a square matrix and b is a column vector.

• If f is QE, then f ′ is QE.

• If f is QE, then its primitive function is QE.

• If f and g are QE, then fg is QE.

12



3.2 Main results from the literature

We can now adapt two important theorems from [6] to our forward price problem. The first
theorem gives us the general necessary and sufficient conditions for existence of a FDR.

Theorem 3.4 (Björk and Svensson) Consider the SDE in (16) and denote γ1, · · · , γm and
σ1, · · · , σm the elements of γ and σ, respectively. Assume that the dimension of the Lie algebra

{[
µq

µr

]
,

[
γ1

σ1

]
, . . . ,

[
γm

σm

]}

LA

is constant near the initial point q̂0 =
(
q0 , r0

)∗ ∈ Hq ×Hr.

Then (16) possesses an FDR if and only if

dim
{[

µq

µr

]
,

[
γ1

σ1

]
, . . . ,

[
γm

σm

]}

LA

< ∞

in a neighborhood of q̂0.

Likewise, for Markovian forward prices we consider the SDE (17), and assume that the dimen-
sion of the lie algebra of {µ, γ1, . . . , γm}LA is constant near q0 ∈ Hq. Then (17) possesses and
FDR if and only if

dim {µ, γ1, . . . , γm}LA < ∞

Remark 3.1 To shorten notation we will sometimes use
{[

µq

µr

]
,

[
γ
σ

]}

LA

instead of
{[

µq

µr

]
,

[
γ1

σ1

]
, . . . ,

[
γm

σm

]}

LA

and {µ, γ}LA instead of {µ, γ1, . . . , γm}LA.

The second theorem gives us a parameterization of the curves produced by the forward price
model and is a crucial step to the understanding of the construction algorithm.

Theorem 3.5 (Björk and Svensson) Assume that the Lie algebra
{[

µq

µr

]
,

[
γ
σ

]}

LA

is spanned

by the smooth vector fields f̂1, . . . , f̂d in Hq ×Hr.
Then, for the initial point q̂0 =

(
q0 , r0

)∗, all forward price and interest rate curves produced
by the model will belong to the manifold Ĝ ∈ Hq×Hr, which can be parameterized as Ĝ = Im[Ĝ],
where

Ĝ(z1, . . . , zd) = ef̂dzd . . . ef̂1z1

[
q0

r0

]
, (21)

and where the operator ef̂izi is given in Definition 3.4.

Likewise, in the case of Markovian forward prices, and assuming that the Lie algebra {µ, γ}LA

is spanned by the smooth vector fields f1, . . . , fd in Hq. Then, for the initial point q0, all
forward price curves produced by the model will belong to the manifold G ∈ H, which can be
parameterized as G = Im[G], where

G(z1, . . . , zd) = efdzd . . . ef1z1q0 (22)

and where the operator efizi is given in Definition 3.4.
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The manifolds Ĝ and G in the above theorem are obviously invariant under the forward price
model dynamics. Therefore, they will be referred to as the invariant manifolds in the sequel.
Ĝ and G are, thus, local parameterizations of the invariant manifolds Ĝ and G, respectively.

The construction algorithm (Björk and Landén) introduced in [5] is based on idea that, if
we are in the case when the forward price system generated by the volatilities γ : Hq×Hr×R+ →
Rm and σ : Hr × R+ → Rm admits a FDR, we have

[
q
r

]
= Ĝ(Z)

and for
dZ = â(Z)dt + b̂(Z) ◦ dWt,

it must hold that

Ĝ?â =
[
µq

µr

]
Ĝ?b̂ =

[
γ
σ

]
. (23)

Equivalently for Markovian forward prices, if forward price model generated by γ : Hq ×R+ →
Rm admits a FDR, then we have

q = G(Z)

and or
dZ = a(Z)dt + b(Z) ◦ dWt,

it must hold that,
G?a = µ G?b = γ. (24)

Since we can compute Ĝ and G from (21) and (22), we can solve the system (23) for â and b̂,
or the system (24) for a and b. We note that the equations in (23) and (24) do not necessarily
have unique solutions, but it is enough to find one solution.

Note also that by solving (23) or (24), we obtain the Stratonovich dynamics of our FDR. The
Itô dynamics, (which, in general, looks nicer) can be easily obtained using (15).

3.3 Strategy of analysis

In the next few sections we will address our four main problems.

In Section 4, we answer our problem one characterizing the settings when forward prices are
Markovian. As it turns out, during this analysis, we will also be able to give a partial answer
to problem two.

In Section 5, we study existence and construction of FDR for Markovian forward prices.

In Section 6, we deal with the cases when forward prices are not Markovian, studying existence
and construction of FDR for the entire forward price system. Studying the entire system we
are able to give a complete answer to question two.

In sections 5 and 6, problems three and four we will be answered following the scheme.

• Choose a number of vector fields f0, f1, · · · that spans the Lie-algebra we are interested
on. For that purpose Lemma 3.2 is useful to help simplifying the vector fields.

14



• Conclude under what conditions our Lie-algebra is of finite dimension in view of Theorem
3.4.

• Assuming that those conditions hold, compute a local parameterization of the invariant
manifold using Theorem 3.5.

• Given that parameterization, solve a system of equations of the type (23) or (24) to obtain
the finite state variables dynamics.

4 On the Existence of Markovian Forward Prices

Having described the setup and the general method, we now start our analysis.

Recall that our main object of study is the forward price system




dqt =
{
Fqt −

1
2
‖γ(qt, rt)‖2 − γ(qt, rt)v∗(rt)

}
dt + γ(qt, rt)dWt

drt = {Frt − σ(rt)v∗(rt)} dt + σ(rt)dWt

(25)

where F =
∂

∂x
and v(x, r) = −

∫ x

0

σ(s, r)ds.

Before we go on, and to exclude patholigical cases from the analysis, we need to impose a
regularity condition on forward price models.

Assumption 4.1 If γi(qt, rt) 6= 0 and vi(rt) 6= 0 for some i ∈ {1, · · · , m}, then the following
regularity condition holds:

1
2
‖γ(qt, rt)‖2 + γ(qt, rt)v∗(rt) 6= 0.

Given Assumption 4.1 and by mere inspection of (25), we see that the answer to our first problem
– on whether forward prices can be studied without considering the interest rate equation – is
yes if and only if the terms γ(qt, rt) and γ(qt, rt)v∗(rt) do not depend on rt.

Remark 4.1 The (logarithm of the) forward price equation is Markovian if and only if the
mappings γ : Hq ×Hr × R+ → Rm and γv∗ : Hq ×Hr × R+ → Rm are constant w.r.t. r.

The first condition – that γ cannot depend on r – is quite straightforward, but let us take a
moment to understand what “γv∗ constant w.r.t. to r” really means.

Given that γ is not dependent on r, does this mean that v must also be independent of r? The
answer to this question is trivially no, when we take into consideration the fact that both γ
and v are multidimensional. The exercise of explaining this answer, however, helps to establish
crucial notation.

Recall that our m- dimensional Wiener process W drives both forward prices and interest rates,
and that a multidimensional Wiener process can be seen as a vector of scalar independent
Wiener processes. With this in mind, it is possible to understand that, depending on the
applications, we may face all the following situations.
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• The scalar Wiener processes driving interest rates are orthogonal to the scalar Wiener
processes driving the forward prices;

• The scalar Wiener processes driving interest rates and forward prices are the same;

• A part of the scalar Wiener processes driving the interest rates also drives the forward
prices (or vice versa);

• Interest rates and forward prices are partially driven by orthogonal scalar Wiener processes
and partial driven by the same Wiener processes.

Without loss of generality, we can reorder the scalar Wiener processes inside a multidimen-
sional Wiener process. Assumption 4.2 bellow, give us the reordering we will assume for our
multidimensional Wiener process W .

Assumption 4.2 The Q-Wiener process, W , driving both the forward prices and the interest
rates is m-dimensional, and the same for both processes. Furthermore, we suppose that W has
been reordered as

W =




W A

W B

W C




where W A, W B and W C are, possibly multidimensional, Wiener process such that

• W A drives only the forward prices q,

• W B drives only the interest rates r,

• W C drives both forward prices q and interest rates r.

Finally we establish that i ∈ A means “ Wi is a element of W A ”, and similarly for i ∈ B and
i ∈ C.

Assumption 4.2 has obvious implications for the matrices γ and σ which become then of the
following form.

γ =
[
γA 0 γC

]

σ =
[
0 σB σC

]

thus, using v(x, r) = −
∫ x

0

σ(s, r)ds, we have

v =
[
0 vB vC

]
,

and

γv∗ =
[
γA 0 γC

]



0
v∗B
v∗C


 = γCv∗C .

From this we see that requiring γ and γv∗ independent of r, is nothing but requiring that, γA,
γC and vC do not depend on r.

The important point here is that no condition is imposed on σB .

We can now restate Remark 4.1, using the notation introduced by Assumption 4.2.
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Lemma 4.1 Suppose that Assumptions 4.1 and 4.2 holds. The (logarithm of) forward prices
will be Markovian if and only if the volatility mappings γA, γC and σC are constant w.r.t. r.
No condition is imposed on σB.

Proof. If γA, γC and σC are constant w.r.t. r, so are ‖γA‖, ‖γC‖, vC and γCvC . The dynamics
in of q in (25) does not depend on r and forward prices are, thus, Markovian.

To prove the “only if” part we show that dependence of r by γA, γC or σC suffices, under the
regularity conditions of Assumption 4.1, to guarantee non-Markovian forward prices. Suppose,
first, that γA depends on r. Then ‖γA‖2 also depends on r making the forward prices non-
Markovian. Suppose now that γC depends on r, then ‖γC‖2 and γCv∗c also depend on r.
Assumption 4.1 guarantees that there is no full cancelation and the forward prices are non-
Markovian. Finally suppose that σC depends on r, then vc depends on r (since the integral
is w.r.t. the variable s and we know σC 6= 0). Since vc depends on r so does γCv∗c and the
forward prices are non-Markovian. 2

Having established conditions for the forward prices being Markovian, we can go on and try to
answer our second problem – on whether there exist models which admit a FDR for forward
prices but not for interest rates. It turns out that, our unrestricted σB for Markovian forward
prices, together with general results from the previous literature on interest rates FDR, allows
us to give a partial answer already now.

From the previous literature on FDR of interest rates we know that only some particular
functions σ : Hr ×R+ → Rm will generate interest rate models that admit a FDR. Concretely,
it is shown in [10] that every component σi must be a weighted sum of quasi-exponential
deterministic functions of x, weighted by scalar fields in Hr.

Hence, the fact that σB is not driving the forward price equation and can be of any form for
Markovian forward price models, tell us that, existence of FDR for Markovian forward prices
is, in some sense, independent from existence of FDR for interest rates. This leads us to an
early answer to our second question.

Remark 4.2 As long as there are FDR for Markovian forward prices, there exist forward price
models that allow for a FDR for forward prices but not for interest rates.

5 Markovian Forward Prices

We now focus on the task of studying FDR for the forward price equation, in the special case
where we have Markovian forward prices. Thus, in this section the following assumption holds
(recall Lemma 4.1).

Assumption 5.1 Consider Assumption 2.1 and 4.2 We, assume that the mappings γA, γC

and σC are of the following special forms,

γA(q, r, x) = γA(q, x) γC(q, r, x) = γC(q, x) σC(r, x) = σC(x).

Note that the specific functional form of σC implies we have deterministic σC–volatilities and
we can interpret σi for i ∈ C as constant vector fields in Hq .
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Given Assumption 5.1, the Q-dynamics of (the logarithm) of forward prices can be written as

dqt =
{
Fqt −

1
2

[
‖γA(qt)‖2 + ‖γC(qt)‖2

]
− γC(qt)vC

∗
}

dt +
[
γA(qt) 0 γC(qt)

]
dWt. (26)

Now, we rewrite equation (26) in Stratonovich form and obtain

dqt =
{
Fqt −

1
2

[
‖γA(qt)‖2 + ‖γC(qt)‖2

]
− γC(qt)vC

∗
}

dt − 1
2

∑

i∈A,C

d〈γi(qt), W i
t 〉

+
[
γA(qt), 0, γC(qt)

]
◦ dWt.

To compute the Stratonovich correction we use the infinite dimensional Itô formula (see [8]) to
obtain

dγi(qt) = (· · ·) dt + γ′
i(qt)γi(qt)dW i

t i ∈ A, C

and, thus
d〈γi(qt), W i

t 〉 = γ′
i(qt)γi(qt)dt i ∈ A, C.

Given the above computations we can write the Stratonovich dynamics of q as

dqt =
{
Fqt −

1
2

[
‖γA(qt)‖2 + ‖γC(qt)‖2

]
− γCvC

∗ − 1
2

[γ′
A(qt)γA(qt) + γ′

C(qt)γC(qt)]
}

dt

+
[
γA(qt) 0 γC(qt)

]
◦ dWt (27)

where γ′
A and γ′

B denotes the Frechet derivative. The terms γ′
A(qt)γA(qt) and γ′

C(qt)γC(qt)
should be interpreted as follows,

γ′
A(qt)γA(qt) =

∑

i∈A

γ′
i(qt)γi(qt) γ′

C(qt)γC(qt) =
∑

i∈C

γ′
i(qt)γi(qt) .

We start by studying the two easier cases:

(i) the case when γ (i.e, γA and γC) is also deterministic (σC is deterministic by Assumption
5.1), and

(ii) the case when γ is not deterministic, but has deterministic direction.

5.1 Deterministic Volatility

We first consider the case when the functions γA and γC do not depend on q, so they have the
special form

γi(q, x) = γi(x) i ∈ A, C. (28)

γi for i ∈ A, C are, thus, constant vector fields in Hq.

Recall from Assumption 5.1 that σC(r, x) = σC(x).

In this case, the Stratonovich correction term is zero, and equation (27) becomes

dqt(x) = µ(qt, x)dt + γ(x) ◦ dWt (29)
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where

µ(q, x) = Fq − 1
2

[
‖γA(x)‖2 + ‖γC(x)‖2

]
− γC(x)vC

∗(x) (30)

γ(x) =
[
γA(x) 0 γC(x)

]
. (31)

Since this is a simple case, we choose to include all computations behind the results in the main
text to exemplify the technique. In the next sections, when dealing with more complex cases,
most of the computations will instead be presented in the appendix, leaving to the main text
the intuition behind the results and their discussion.

5.1.1 Existence of a FDR

From Theorem 3.4 we know that a FDR exists if and only if

dim {µ, γi; i ∈ A, C}LA < ∞.

We, thus, need to compute the Lie-algebra, {µ, γ}LA. Computing the Lie brackets we have, for
each i

[µ, γi] = Fγi =: f1i

[γi, f1i] = 0

[µ, f1i] = Ff1i = F2γi =: f2i

...

It follows that
{µ, γ}LA = span

{
µ, Fkγi ; k = 0, 1 · · · i ∈ A, C

}
. (32)

Obviously, if a FDR exists, there must exist an ni for each i, such that

Fni+1γi =
ni∑

k=0

ci,kFkγi (33)

where the ci,k are real numbers.

Proposition 5.1 tell us under what conditions we will have dim {µ, γ}LA < ∞.

Proposition 5.1 The (logarithm of the) forward price equation (29) admits a finite dimen-
sional realization (FDR) if and only if each component of γ is quasi-exponential (QE). No
functional restriction is imposed on the deterministic function σC , so in particular, σC does
not have to be a QE function, it can be any deterministic function.

Proof. Recall from Lemma 3.3 that γi solves the ODE (33) if and only if it is a QE function.
2
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Note that, for Markovian forward prices, the interest rate volatility plays no role in determining
existence of FDR. The only restriction on interest rate volatility is that σC is deterministic,
but that is a result of the Markovian property, not an added requirement imposed to guarantee
existence. One other way to see this is to note that only γ shows up in (32). As we will soon
see, this is specific to the totally deterministic setting.

Remark 5.1 In the simple deterministic setting, where γ : R+ → Rm, Markovian realizations
of forward prices are generated only by the volatility of forward prices γ.

In the next example, and to stress this point, we check existence of FDR in a simple model
without even specifying the deterministic function σC .

Example 1 Assume that forward prices are driven by a one-dimensional Wiener-process W
which also drives the interest rates7. Furthermore, assume that the interest rate volatility asso-
ciated to W is deterministic and that we have for the forward price volatility,

γ(x) = γC(x) = αe−ax

where α, a ∈ R.

In this case, we have A ∪ B = ∅, C = {1} and

Fγ(x) = −aαe−ax ⇒ n1 = 0 c1,0 = −a.

Hence,
{µ, γ}LA = span {µ, γ} ,

and the Lie-algebra {µ, γ}LA has dimension two. Consequently, there exist a FDR for forward
prices in this case. We will get back to this example in the construction part.

Finally, we want to make a remark on the exact dimension of the lie-algebra.

Remark 5.2 It follows from (33) that

dim {µ, γ}LA = dim
{
µ,Fkγi ; k = 0, · · · , ni i ∈ A, C

}
≤ 1 +

m∑

i=1

ni. (34)

The “≤” in (34) just reminds us that, given the possibility of Gaussian elimination, there may
exist some cancelation effects.

To a better understanding of the above remark, we take the following example.

Example 2 Suppose that
γ1(x) = e−bx γ2(x) = xe−bx.

Thus, n1 = 0, n2 = 1, and dim {µ, γ1, γ2,Fγ2} ≤ 4.

However since Fγ2 = γ1 − bγ2,

span {µ, γ1, γ2,Fγ2} = span {µ, γ1, γ2} .

Hence, in this case, we actually have dim {µ, γ}LA = 3.
7This does not exclude the possibility of more Wiener-processes driving only the interest rates.
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5.1.2 Construction of FDR

We now go on to the construction of FDR, in the totally deterministic volatility setup.

First, we obtain a parameterization G of the invariant manifold G. In this case we have that

{µ, γ}LA = span
{
µ,Fkγi ; k = 0, 1 · · · , ni i ∈ A, C

}
,

and we recall γi solves the ODE (33).

Using Theorem 3.5 we obtain G by computing the operators exp {µz0} and exp
{
Fkγizi,k

}
. In

order to get exp {µz0} q0 we solve




dyt

dt
= µ(yt, x)

= Fyt + D(x)

y0 = q0

for
D(x) = −1

2

∑

i∈A,C

γ2
i (x) −

∑

i∈C

γi(x)vi(x). (35)

Hence by Definition 3.4, we have 8

eµtq0(x) = eFtq0(x) +
∫ t

0

eF(t−s)D(x)ds

= q0(x + t) +
∫ t

0

D(x + t − s)ds.

To obtain the remaining operators we solve




dyt

dt
= Fkγi

y0 = y

.

Because γ does not depend on t, the solution is

eFkγi(x)ty = y + Fkγi(x)t.

It follows that

G(z0, zi,k ; i ∈ A, C k = 0, 1, · · · , ni) (36)

=
∏

i∈A,C;k=0,...,ni

(
eFkγi(x)zi,k

)
eµ(q,x)z0q0

= q0(x + z0) +
∫ z0

0

D(x + z0 − s)ds +
∑

i∈A,C

ni∑

k=0

Fkγi(x)zi,k. (37)

8From the context, it is clear that eFt : Hq → Hq . From the usual series expansion of the exponential

function we have, eFtf =
∞∑

n=0

tn

n!
Fnf. In our case, Fn =

∂n

∂xn
, so we have

[
eFtf

]
(x) =

∞∑
n=0

tn

n!

∂nf

∂xn
(x), which

is a Taylor expansion of f around the point x, so for analytic f we have
[
eFtf

]
(x) = f(x + t).
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Note that the volatility of interest rates show up (through the terms vi for i ∈ C) only in the
deterministic term D defined in (35).

We are now interested in finding a set of factors Z such that

qt = G(Zt)

while Z is given by a strong solution to the SDE
{

dZt = a(Zt)dt + b(Zt) ◦ dWt

Z0 = z0

.

For that we need to find a solution to

G?a = µ G?b
i = γi i ∈ A, C.

Simple computations yields

G′(z0, zj,k ; j ∈ A, C k = 0, 1, · · · , nj)




h0

h1,0

h1,1

...
hm,nm




(x)

=
[
∂q0

∂z0
(x + z0) + D(x) +

∫ z0

0

∂D
∂z0

(x + z0 − s)ds

]
h0 +

∑

i∈A,C

nj∑

k=0

Fkγi(x)hi,k .

We can now use the fact that q = G(Z) and that γ satisfies the ODE (33) to get

µ(qt, x) = Fqt + D(x)

=
∂

∂x
q0(x + z0) +

∫ z0

0

∂

∂x
D(x + z0 − s)ds +

∑

j∈A,C

nj∑

k=0

Fk+1γj(x)zj,k + D(x)

=
∂

∂x
q0(x + z0) +

∫ z0

0

∂

∂x
D(x + z0 − s)ds + D(x) +

∑

j∈A,C

nj∑

k=1

Fkγj(x)zj,k−1

+
∑

j∈A,C

Fnj+1γj(x)zj,nj

=
∂

∂x
q0(x + z0) +

∫ z0

0

∂

∂x
D(x + z0 − s)ds + D(x) +

∑

j∈A,C

nj∑

k=1

Fkγj(x)zj,k−1

+
∑

j∈A,C

nj∑

k=0

cj,kFkγj(x)zj,nj .
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Thus, from G?a = µ, we get

[
∂q0

∂z0
(x + z0) + D(x) +

∫ z0

0

∂D
∂z0

(x + z0 − s)ds

]
a0 +

∑

j∈A,C

nj∑

k=0

Fkγj(x)aj,k

=
∂

∂x
q0(x + z0) +

∫ z0

0

∂

∂x
D(x + z0 − s)ds + D(x) +

∑

j∈A,C

nj∑

k=1

Fkγj(x)zj,k−1

+
∑

j∈A,C

nj∑

k=0

cj,kFkγj(x)zj,nj

and, since the above expression should hold for all x, while a is not allowed to depend on x, it
is possible to identify the following expressions for a

a0 = 1
aj,0 = cj,0zj,nj , j ∈ A, C
aj,k = cj,kzj,nj + zj,k−1 j ∈ A, C k = 1, · · · , nj .

Likewise, from G?b
i = γi for each i ∈ A, C we get

[
∂q0

∂z0
(x + z0) + D(x) +

∫ z0

0

∂D
∂z0

(x + z0 − s)ds

]
b0 +

∑

i∈A,C

nj∑

k=0

Fkγj(x)bi
j,k = γi(x)

and by simple identification of terms

bi
0 = 0 i ∈ A, C

bi
j,0 = 1 i = j i, j ∈ A, C

bi
j,k = 0 for all other j and k.

In this totally deterministic setting, the Stratonovich and the Itô dynamics are equivalent, so
we have proved the following result.

Proposition 5.2 Given the initial forward price curve q0, the forward prices system generated
by γA, γC and σC has a finite dimensional realization given by

qt = G(Zt)

where G is defined as in (37) and the dynamics of the state space variables Z are given by




dZ0 = dt

dZj,0 = cj,0Zj,nj dt + dW j
t j ∈ A, C

dZj,k =
(
cj,kZj,nj + Zj,k−1

)
dt j ∈ A, C k = 1, · · · , nj

We first take the easiest example: the one-dimensional deterministic constant volatility.

Example 3 Assume that forward prices q are driven by a one-dimensional Wiener process that
also drive the interest rates r (C = {1}). Furthermore, assume that the forward price volatility
γ is of the following form

γ(x) = γC(x) = α
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where α ∈ R.

We leave the (scalar) function σC(x) (thus vC(x)) unspecified to stress the point that it plays
no role determining the dimension of the Lie-algebra or constructing the realization.

Then we know Fγ = 0, thus n = 1, c1,0 = 0 and the dimension of the {µ, γ}LA is two.

The invariant manifold is given by

G(z0, z1,0) = q0(x + z0) −
1
2
α2z0 − α

∫ z0

0

vC(x + z0 − s)ds + αz1,0

for some deterministic function vC .

Using Proposition 5.2, we have qt = G(Zt) for the state variable Z =
[

Z0

Z1,0

]
with dynamics

given by {
dZ0 = dt

dZ1,0 = dWt

We now recover again Example 1.

Example 1 (Cont.) Recall that we assumed

γ(x) = γC(x) = αe−ax

which implies n1 = 0, c1,0 = −a.

Once again we leave σC (thus vC) as an unspecified deterministic function.

In the previous comments it was explained that the Lie-algebra is of dimension 2, so the invariant
manifold can be obtained from (37),

G(z0, z1,0) = q0(x + z0) +
∫ z0

0

D(x + z0 − s)ds + γ(x)z1,0.

In this case

D(x) = −
1
2
γ2

C(x) − γC(x)vC(x)

= −1
2
α2e−2ax − αe−axvC(x).

Thus,

G(z0, z1,0) = q0(x + z0) −
∫ z0

0

(
1
2
α2e−2a(x+z0−s) + αe−a(x+z0−s)vC(x + z0 − s)

)
ds + αe−axz1,0

= q0(x + z0) +
1
2

α2

2a

[
e−2ax − e−2a(x+z0)

]
− α

∫ z0

0

(
e−a(x+z0−s)vC(x + z0 − s)

)
ds

+αe−axz1,0

and from Proposition 5.2 it follows that the FDR is given by
{

dZ0 = dt

dZ1,0 = −aZ1,0dt + dWt

.
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5.2 Deterministic Direction Volatility

We now deal with the second simplest case, that of having deterministic direction forward prices
volatilities.

Then, we have the following special functional forms for γA and γC in Assumption 5.1.

γi(q, x) = λi(x)ϕi(q) i ∈ A, C

where λi is a deterministic function of x (constant vector field in Hq) and ϕi is a scalar vector
field in Hq (i.e., it does not depend on x and depends only on the current forward price curve).

Omitting the x-dependence,
γi(q) = λiϕi(q) i ∈ A, C (38)

and for future reference we also define

λ =
[
λA, 0, λC

]
. (39)

On what concerns interest rate volatilities, we maintain the requirement that σC is deterministic
(since we are still dealing with Markovian forward prices).

In this particular case, the forward price equation can be rewritten as

dqt = µ(qt)dt + γ(qt) ◦ dWt (40)

for

µ(qt) = Fqt −
1
2

[
‖γA(qt)‖2 + ‖γC(qt)‖2

]
− γC(qt)vC

∗ − 1
2

[γ′
A(qt)γA(qt) + γ′

C(qt)γC(qt)] (41)

γ(qt) =
[
γA(qt) 0 γC(qt)

]
,

and given the functional form for γA and γC in (38) we have the following Frechet derivatives

γ′
A(qt)γA(qt) =

∑

i∈A

λiϕ
′
i(qt) [λiϕi(qt)] γ′

C(qt, x)γC(qt, x) =
∑

i∈C

λi(x)ϕ′
i(qt) [λiϕi(qt)] .

We see that µ in (41) is much more complex than the one previously studied (compare to (30)),
so, the task of actually computing the Lie algebra L = {µ, γ}LA will not be as straightforward
as before.

Using the specific functional forms of γA and γC in (38) we have

µ(q) = Fq − 1
2

∑

i∈A,C

λ2
i︸︷︷︸

Di

ϕ2
i (q)︸ ︷︷ ︸

φi(q)

−
∑

i∈C

scalar field︷ ︸︸ ︷
ϕi(q) λivi︸︷︷︸

Vi

−1
2

∑

i∈A,C

scalar field︷ ︸︸ ︷
ϕ′

i(q) [λi] ϕi(q) λi

γi(q) = λi

scalar field︷ ︸︸ ︷
ϕi(q)

and, given the possibility of Gaussian elimination (Lemma 3.2), we see that the Lie algebra is
in fact generated by the simpler system of vector fields,

f0(q) = Fq − 1
2

∑

k∈A,C

Dkφk(q) −
∑

k∈C

ϕk(q)Vk

f1i(q) = λi i ∈ A, C.
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where
Dk = λ2

k Vk = λkvk.

We now start computing Lie brackets and simplifying. For all i ∈ A, C we have

[f0, f1i] = f ′
0f1i − f1

′
if0

= Fλi −
1
2

∑

k∈A,C

Dk φ′
k[λi]︸ ︷︷ ︸

scalar field

−
∑

k∈C

Vk ϕ′
k[λi]︸ ︷︷ ︸

scalar field

= f2i

and using this new field we have for all i, j ∈ A, C

[
f1i, f2j

]
= f1

′
if2j − f2

′
jf1i

= +
1
2

∑

k∈A,C

Dk φ′′
k [λj ; λi]︸ ︷︷ ︸

scalar field

+
∑

k∈C

Vk ϕ′′
k [λj ; λi]︸ ︷︷ ︸

scalar field

= f3ij .

We know realize that the our lie algebra is hard to handle (even in the one-dimensional Wiener
process case9). At this point it seems a good idea to note the following.

Remark 5.3 The Lie-algebra
L = {µ, γ}LA (42)

is included in the larger Lie-algebra

L̄ = {F, λi, Di, Vj ; i ∈ A, C j ∈ C}LA . (43)

That is

{µ, γ}LA = {f0, f1i ; i ∈ A, C}LA ⊆ {F, λi, Di, Vj ; i ∈ A, C j ∈ C}LA .

There are three important points to make here.

• The fields in the larger Lie-algebra, L̄, are simpler than those in L. That is, none of the
field contains sums.

• From the inclusion L ⊆ L̄ it is obvious that if L̄ has finite dimension also L does. So,
studying the conditions that guarantee L̄ to have finite dimension, give us, at least,
sufficient conditions for L to have also finite dimension.

• We conjecture that conditions that guarantee L̄ to have finite dimension are also necessary
conditions for L to have also finite dimension. The intuition is that since the fields in L̄
are all contained in the fields of L (as parcels of various sums), if they are “nasty” enough
to make the dimension of L̄ infinite, they should make the fields that contain them in L
even “nastier”. We will formalize this intuition below.

9We note once again, that if we consider the Wiener process to be one-dimensional, the only interesting case
to consider is when that Wiener process drives both forward prices and interest rates, i.e. it belongs to the W C

set. Otherwise, we fall into the futures case already studied in [3]. So, even in that case, we cannot avoid having
two parcels not easy to simplify.
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• Finally, even if the analysis of L̄ is, in the above sense, equivalent to the analysis of L, in
the construction sense, studying L̄ will, in principle, generate finite realizations with state
variables of higher dimension. This is obviously the price one has to pay for dealing with
easier fields. We call these realizations non-minimal realizations. An advantage of non-
minimal realizations is that they are always possible to obtain (as long as the dimension
of L̄ is finite).

The following conjecture formally states the idea behind our third point above (and the sketch
of the proof, for the one–dimensional case, can be found in the appendix).

Conjecture 5.1 Consider L in (42) and L̄ in (43). Then the following holds

dim(L) < ∞ ⇔ dim(L̄) < ∞ .

These ideas can be applied in a more complex setting. They will be used extensively in Section
6, when dealing with the entire forward price system.

We now continue our analysis studying the larger Lie-algebra L̄.

5.2.1 Existence of FDR

As mentioned before, in the current deterministic direction setting, the larger Lie-algebra, L̄,
is given by

L̄ = {F, λi, Di, Vj ; i ∈ A, C j ∈ C}LA .

thus, the basic fields of the enlarged Lie-algebra are

g0(q) := Fq

g1i(q) := λi i ∈ A, C

g2i(q) := Di i ∈ A, C = 1, · · · , m

g3j(q) := Vj j ∈ C

Computing the Lie-brackets we have, in the first step,

[g0, g1i] = Fλi =: g4i

[g0, g2i] = FDi =: g5i

[g0, g3j ] = FVj =: g6j

all remaining combinations of lie-brackets from the fields in (43) are zero. Using the new vector
fields, we easily see that

[g0, g4i] = F2λi

[g0, g2i] = F2Di

[g0, g3j ] = F2Vj

and again all others lie-brackets are zero.
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Continuing with similar iterations, it is easy to check that

L̄ = span
{
F, Fkλi, FkDi, FkVj ; i ∈ A, C j ∈ C k = 0, 1, · · ·

}
.

Thus, for dim(L̄) < ∞ there must exist orders n1
j , n2

j and n3
j for which

Fn1
j+1λj =

n1
j∑

k=0

c1
j,kF

kλj Fn2
j+1Dj =

n2
j∑

k=0

c2
j,kF

kDj j ∈ A, C

Fn3
j+1Vj =

n3
j∑

k=0

c3
j,kF

kVj j ∈ C

where cI
j,k are real constants, k = 0, · · · , nI

j , j ∈ A, C, and I = 1, 2, 3.

Indeed, if (44) holds,

dim(L̄) ≤ 1 +
∑

j∈A,C

(n1
j + 1) + (n2

j + 1) +
∑

j∈C

(n3
j + 1) < ∞. (44)

We now start a brief side discussion on the exact dimension of L̄. As before, we note that the sign
“≤” above results from the possibility of Gaussian elimination across the various derivatives of
various different fields. This is particularly relevant for the concrete fields of L̄ since Vj = λjvj

and thus derivatives of λj may help to Gaussian simplify the derivatives of Vj . This point will
be made clear in Example 4 bellow.

Unfortunately, these simplifications are instance dependent and, thus, in an abstract way it is
impossible to be more exact about the dimension of L̄ than in (44). The consequence is that
when doing the abstract construction of realizations we cannot take into account case-specific
Gaussian eliminations. Therefore, when applying the abstract results to concrete models, we
may get unnecessarily large realizations. However, since we are considering non-minimal realiza-
tions anyway (because we analyze L̄ instead of L), this does not seem a major disadvantage10.
With this we conclude the side discussion and go on with the abstract analysis.

Proposition 5.3 give us the necessary and sufficient conditions that guarantee dim(L̄) < ∞.

Proposition 5.3 The dimension of the Lie-algebra L̄ in (43) is finite if and only if each com-
ponent of λ and σC is QE.

Proof. It follows from Lemma 3.3 that (44) holds if and only if λi, Di for i ∈ A, C and Vj for
j ∈ C are QE functions. It also follows from the properties of QE functions that, λi for i ∈ A, C
and σj for j ∈ C QE, suffices to guarantee this requirement. To check the last statement note
that λi QE ⇒ Di = λ2

i QE; σj QE, ⇒ vj(x) = −
∫ x

0
σj(s)ds QE; and finally λj and vj QE ⇒

Vj = λjvj QE. 2

Taking together Propositions 5.3 and Conjecture 5.1 we have the following general result for
forward prices with deterministic direction volatilities.

10The unsatisfied reader can always, when faced with a concrete situation, use the techniques presented and,
whenever possible, derive a smaller realization instead of using the abstract results. In Example 4 below, we use
both approaches to exemplify the kind of difference one can expect.
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Proposition 5.4 Assume that Conjecture 5.1 holds. The (logarithm of) forward price equation
(40) admits a finite dimensional realization if and only if each component of λ and σC are quasi-
exponential.

We note that, in contrast to the deterministic forward price volatilities case, in our present set-
ting of deterministic direction forward price volatilities, existence of FDR imposes requirements
on the concrete functional form of the deterministic function σC : it must be a QE function.
This was to be expected, since this time, σC actually drives the forward price equation indirectly
trough the fields Vj = λjvj for j ∈ C.

The following example gives us one, very simple instance where we have a finite dimensional
realization for forward prices, considering deterministic direction volatilities.

Example 4 Suppose that forward prices are driven by a one-dimensional Wiener process (i =
1) that also drives interest rates (i ∈ C) and that

γ(q, x) = γC(q, x) = αe−bx
︸ ︷︷ ︸

λ(x)

q︸︷︷︸
ϕ(q)

σC(x) = δe−ax.

for α, β, a, b ∈ R.

Then we have

v(x) = −δ

∫ x

0

e−asds =
δ

a

(
e−ax − 1

)

λ(x) = αe−bx

D(x) = λ2(x) = α2e−2bx

V (x) = λ(x)v(x) = αe−bx δ

a

(
e−ax − 1

)
=

αδ

a

[
e−(a+b)x − e−bx

]

and

Fλ(x) = −bαe−bx = −bλ(x) ⇒ n1
1 = 0 c1

1,0 = −b
FD(x) = −2bα2e−2bx = −2bD(x) ⇒ n2

1 = 0 c2
1,0 = −2b

FV (x) = αδ
a

[
−(a + b)e−(a+b)x − (−b)ke−bx

]

= −bV (x) − αδe−(a+b)x

F2V (x) = −bFV (x) + (a + b)αδe−(a+b)x

= −bFV (x) + (a + b)αδ [−bV (x) −FV (x)]
= −(a + 2b)FV (x) − (a + b)bV (x) ⇒ n3

1 = 1 c3
1,0 = −(a + b)b

c3
1,1 = −(a + 2b)

so we have
{µ, γ}LA ⊆ {F, λ, D, V,FV }LA .

Thus, dim {µ, γ}LA ≤ dim {F, λ, D, V }LA ≤ 5.

Alternatively, we may note that

V (x) =
αδ

a

[
e−(a+b)x − e−bx

]
=

αδ

a
e−(a+b)x − δ

a
αe−bx
︸ ︷︷ ︸

λ(x)
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thus, using Gaussian elimination we can substitute V by Ṽ (x) = e−(a+b)x. And since

FṼ (x) = −(a + b)e−(a+b)x = −(a + b)Ṽ (x) ⇒ ñ3
1 = 0 c̃3

1,0 = −(a + b)

and we can compute the exact dimension of {F, λ, D, V,FV }LA,

dim {F, λ, D, V,FV }LA = dim
{
F, λ, D, Ṽ

}
LA

= 4.

Obviously, in either way we are able to conclude that the forward prices admit a FDR.

5.2.2 Construction of FDR

We would now like to construct a FDR for forward prices, whenever we know that it exists.
Since we are using the larger Lie-algebra L̄ and we cannot use case-specific Gaussian elimination
in the general case, we are aiming to get non-minimal finite realizations.

As before we would like the derive a parameterization Ḡ of the invariant manifold Ḡ and infer,
from the functional form of that parameterization, the dynamics of the state variables.

Given the simplicity of the fields spanning L̄, it is straightforward to compute the operators:

eFz0q0 = q0(x + z0),

eFkλjz1
j,kq = q + Fkλjz

1
j,k, eFkDjz2

j,kq = q + FkDjz
2
j,k j ∈ A, C; k = 0, 1, · · · , nj

eFkVjz3
j,kq = q + FkVjz

3
j,k j ∈ C; k = 0, 1, · · · , nj .

Thus,

Ḡ(z0, z
1
j,k, z2

j,k, z3
j,k) =

∏

j∈A,C

eFkλj (x)z1
j,k ·

∏

j∈A,C

eFkDj(x)z2
j,k ·

∏

j∈C

eFkVj(x)z3
j,k

= q0(x + z0) +
∑

j∈A,C

n1
j∑

k=0

Fkλjz
1
j,k +

∑

j∈A,C

n2
j∑

k=0

FkDjz
2
j,k

+
∑

j∈C

n3
j∑

k=0

FkVjz
3
j,k. (45)

Hence, in order to find the dynamics of the state variable Z such that q = Ḡ(Z), and as in the
previous section, we take the Stratonovich Q-dynamics to be given by

{
dZt = ā(Zt)dt + b̄(Zt) ◦ dWt

Z0 = z0

, (46)

and we solve
Ḡ?ā = µ Ḡ?b̄ = γ (47)

with µ and γ given in (38)-(41), and Ḡ from (45), to get a strong solution to the SDE (46).

The steps are then the usual ones, but with much more messy computations. Using the func-
tional form of Ḡ in (45), it is possible to compute the Frechet derivatives. Then, from the
expression for q = Ḡ(Z) and equations (44), we can find an concrete expression to the term Fq

30



in our µ (equation (41)). Identification of term in equations (47) allows us to determine the
Stratonovich drift and diffusion terms. And finally, to obtain the Itô dynamics we calculate the
Stratonovich correction term. Following these steps gives us the result in Proposition 5.5 (the
actual computations of can be found in the appendix).

Proposition 5.5 Given the initial forward price curve q0, the forward prices system generated
by γA, γC as in (38) and σC deterministic, has a finite dimensional realization given by

qt = Ḡ(Zt)

where Ḡ is defined as in (45) and the dynamics of the state space variables Z are given by





dZ0 = dt

dZ1
j,0 = c1

j,0Z
1
j,n1

j
dt + ϕ(Ḡ(Z))dW j

t j ∈ A, C

dZ1
j,k =

(
Z1

j,k−1 + c1
j,kZ1

j,n1
j

)
dt j ∈ A, C k = 1, · · · , n1

j

dZ2
j,0 =

(
c2
j,0Z

2
j,n2

j
− 1

2ϕ2
j (Ḡ(Z))

)
dt j ∈ A, C

dZ2
j,k =

(
Z2

j,k−1 + c2
j,kZ2

j,n2
j

)
dt j ∈ A, C k = 1, · · · , n2

j

dZ3
j,0 =

(
c3
j,0Z

3
j,n3

j
+ ϕ(Ḡ(zZ))

)
dt j ∈ C

dZ3
j,k =

(
Z3

j,k−1 + c3
j,kZ3

j,n3
j

)
dt j ∈ C k = 1, · · · , n3

j

Example 4 (cont.) Recall that we studied an one-dimensional model where A ∩ B = ∅,
C = {1} and

γ(q, x) = γC(q, x) = αe−bx
︸ ︷︷ ︸

λ(x)

q︸︷︷︸
ϕ(q)

σC(x) = δe−ax.

As in the first part of the example, we will first directly apply the abstract results (in the con-
struction part, that is Proposition 5.5). Then we derive a smaller realization that can be obtained
from the case-specific simpler fields.

We start by directly applying Proposition 5.5. Recall from previous computations that we had
n1

1 = 0, c1
1,0 = −b, n2

1 = 0, c2
1,0 = −2b, n3

1 = 1, c3
1,0 = −(a + b)b and c3

1,1 = −(a + 2b) and

V (x) =
αδ

a

[
e−(a+b)x − e−bx

]
FV (x) =

αδ

a

[
−(a + b)e−(a+b)x − (−b)ke−bx

]
.

Using this we get from (45) the parameterization of the realization to be

Ḡ(z0, z
1
1,0, z

2
1,0, z

3
1,0, z

3
1,1) = q0(x + z0) + λ(x)z1

1,0 + D(x)z2
1,0 + V (x)z3

1,0 + FV (x)z3
1,1

= q0(x + z0) + αe−bxz1
1,0 + α2e−2bxz2

1,0 +
αδ

a

[
e−(a+b)x − e−bx

]
z3
1,0

+
αδ

a

[
−(a + b)e−(a+b)x − (−b)ke−bx

]
z3
1,1.
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We now note that in our case ϕ(q) = q and by Proposition 5.5 it follows that the realization is




dZ0 = dt

dZ1
1,0 = −bZ1

1,0dt + Ḡ(Z)dWt

dZ2
1,0 =

(
−2bZ2

1,0 − 1
2 (Ḡ(Z))2

)
dt

dZ3
1,0 =

(
−b(a + b)Z3

1,1 + Ḡ(Z)
)
dt

dZ3
1,1 =

(
Z3

1,0 − (a + 2b)Z3
1,1

)
dt

Now recall that for this particular model we have L̄ =
{
F, λ, D, Ṽ

}
LA

with Ṽ (x) = e−(a+b)x.

Thus another (smaller) parameterization, G̃ is given by

G̃(z̃0, z̃
1
1,0, z̃

2
1,0, z̃

3
1,0) = q0(x + z̃0) + λ(x)z̃1

1,0 + D(x)z̃2
1,0 + Ṽ (x)z̃3

1,0

= q0(x + z̃0) + αe−bxz̃1
1,0 + α2e−2bxz̃2

1,0 + e−(a+b)xz̃3
1,0.

Proposition 5.5 cannot be used directly, but we can compare the two parameterizations Ḡ and
G̃ (of the same invariant manifold) above, to get

z̃0 = z0 z̃1
1,0 = z1

1,0 −
δ

a
z3
1,0 + b

δ

a
z3
1,1 z̃2

1,0 = z2
1,0 z̃3

1,0 =
αδ

a
z3
1,0 −

αδ

a
(a + b)z3

1,1.

Finally using Itô and simplifying we have




dZ̃0 = dt

dZ̃1
1,0 =

(
−bZ̃1

1,0 − δ
a G̃(Z)

)
dt + G̃(Z)dWt

dZ̃2
1,0 =

(
−2bZ̃2

1,0 − 1
2 (G̃(Z))2

)
dt

dZ̃3
1,0 =

(
−(a + b)Z̃3

1,0 + αδ
a G̃(Z)

)
dt

The two realizations are equivalent.

5.3 The General Case

In the sections 5.1 and 5.2, we analyzed existence and construction of FDR of Markovian
forward prices, under the specific setting of deterministic and deterministic direction forward
price volatility.

A natural question at this point is: what is the most general functional form, for the volatilities
γ and σ, consistent with FDR of Markovian forward prices? The answer follows from previous
results in [10] and from . In the following proposition we adapt it to the Markovian forward
prices case. We state it in the form of a proposition.

Proposition 5.6 Suppose Assumption 2.1 holds. There exist a FDR of Markovian forward
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prices if and only if

γj(q, r, x) =
Nj

γ∑

k=0

ϕj
k(q)λj

k(x) j ∈ A, C

σj(r, x) =





βj(x) if γj(q, r, x) = γj(x)

δj(x) if γj(q, r, x) = γj(q, x)
j ∈ C

where βj are unrestricted deterministic functions, δj ,λ
j
k are QE deterministic functions, and

ϕj
k are scalar vector fields in Hq.

From Proposition 5.6, we see the most general situation can be attained by extending determin-
istic direction forward price volatilities to finite sums of deterministic direction parcels. This
represents, of course, a relevant extension in terms of model flexibility, but not in terms of
complexity of analysis.

The results from section 5.2 extend naturally to this most general case, the computations are
exactly the same and, in concrete applications, easy to derive. In abstract terms, however,
computation get much messier given the additional indices one must keep track of11.

We now will consider the case when forward prices are not Markovian.

6 Non-Markovian Forward Prices

Recall that under Assumption 2.1 – our basic assumption on the volatility processes for forward
prices and interest rates γ and σ, respectively – the (logarithm of the) forward price curve q
cannot, in general, be studied without incorporating in the analysis the interest rate curve r
(recall (12)-(13)).

In this section, we want to study the circumstances which were not covered by Section 5. In
that case our forward price model is a doubly infinite system and we set

q̂ =
[
q
r

]
.

and q̂ belongs to Hq ×Hr.

The Itô dynamics of q̂ can, thus, also be written in block matrix notation as

d

[
qt

rt

]
=

{
F

[
qt

rt

]
− 1

2

[
‖γ(qt, rt)‖2

0

]
−

[
γ(qt, rt)
σ(rt)

]
v∗(rt)

}
dt +

[
γ(qt, rt)
σ(rt)

]
dWt.

where, as before, we take W to be an m-dimensional Wiener process, and

F =
∂

∂x
v(r, x) = −

∫ x

0

σ(r, s)ds.

11We do not present the abstract results and derivations, as we believe the reader would spend more time
understanding the notation, than extending the results of section 5.2 to concrete, slightly more general, appli-
cations.
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In this case the Stratonovich correction term is given by

−1
2
d〈

[
γ(qt, rt)
σ(rt)

]
, Wt〉 = −1

2

m∑

i=1

d〈
[
γi(qt, rt)
σi(rt)

]
, W i

t 〉

Since we have (from the infinite Itô formula)

d

[
γi(qt, rt)
σi(rt)

]
= (· · · )dt +

[
γ′

iq(q, r) γ′
ir(q, r)

0 σ′
ir(r)

] [
γi(qt, rt)
σi(rt)

]
dWt

with γ′
q , γ′

r and σ′
r the partial Frechet derivatives.

Then for i = 1, · · · , m we have

d〈
[
γi(qt, rt)
σi(rt)

]
, W i

t 〉 =
[
γ′

iq(qt, rt) γ′
ir(qt, rt)

0 σ′
ir(rt)

] [
γi(qt, rt)
σi(rt)

]
dt

and the Stratonovich dynamics for q̂,

dq̂t = µ(qt, rt)dt +
[
γ(qt, rt)
σ(rt)

]
◦ dWt

µ(q, r) = F
[
q
r

]
− 1

2

[
‖γ(q, r)‖2

0

]
−

[
γ(q, r)
σ(r)

]
v∗(r) − 1

2

[
γ′

q(q, r) γ′
r(q, r)

0 σ′
r(r)

] [
γ(q, r)
σ(r)

]
.

Given that

γ(q, r) =
[
γA(q, r) 0 γC(q, r)

]
σ(r) =

[
0 σB(r) σC(r)

]

we note that
[
γ(q, r)
σ(r)

]
v(r)∗ =

[
γA(q, r) 0 γC(q, r)

0 σB(r) σC(r)

]


0
vB(r)∗

vC(r)∗




=
[

γC(q, r)v∗c (r)
σB(r)v∗c (r) + σC(r)v∗c (r)

]

[
γ′

q(q, r) γ′
r(q, r)

0 σ′
r(r)

][
γ(q, r)
σ(r)

]
=

[
γ′

Aq(q, r) γ′
Ar(q, r)

0 0

] [
γA(q, r)

0

]
+

[
0 0
0 σ′

Br

] [
0

σB(r)

]

+
[
γC

′
q(q, r) γC

′
r(q, r)

0 σC
′
r(r)

] [
γC(q, r)
σC(r)

]

=




γA
′
q(q, r)γA(q, r) + γC

′
q(q, r)γC(q, r) + γC

′
r(q, r)σC(r)

σB
′
r(r)σB(r) + σC

′
r(r)σC(r)




where

γA
′
q(q, r)γA(q, r) =

∑

i∈A

γAi
′
q(q, r)γAi(q, r),

γ′
Cr(q, r)σC (r) =

∑

i∈C

γC
′
ir(q, r)σCi(r), γ′

Cq(q, r)γC(q, r) =
∑

i∈C

γC
′
iq(q, r)γCi(q, r),

σ′
Br(r)σB(r) =

∑

i∈B

σB
′
ir(r)σBi(r), σ′

Cr(r)σC (r) =
∑

i∈C

σC
′
ir(r)σC i(r).
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We can, finally, identify our main object of study as the following doubly infinite Stratonovich
SDE

dq̂t = µ(qt, rt)dt +
[
γ(qt, rt)
σ(rt)

]
◦ dWt

where

µ(q, r) = F
[
q
r

]
− 1

2

[
‖γA(q, r)‖2 + ‖γC(q, r)‖2

0

]
−

[
γC(q, r)v∗C(r)

σB(r)v∗B(r) + σB(r)v∗B(r)

]

−1
2



γA

′
q(q, r)γA(q, r) + γC

′
q(q, r)γC(q, r) + γC

′
r(q, r)σC (r)

σB
′
r(r)σB(r) + σC

′
r(r)σC (r)




(48)[
γ(q, r)
σ(r)

]
=

[
γA(q, r) 0 γC(q, r)

0 σB(r) σC(r)

]

Given the general functional forms of γA, γC , σB and σC the study of all possible special cases12

would be exhausting.

In this section, we take, therefore a more agressive strategy: we consider immediately the
scenario where each element in γ and σ have deterministic direction volatility.

As before, the situation of deterministic direction volatilities can be extended to the case where
each element of γ and σ is a finite sum of deterministic direction parcels, and that is the
most general possible scenario consistent with existence of FDR13. We omit the analysis of this
most general scenario because the results can be easily derived from the ones on deterministic
direction volatilities, and, in abstract terms, notation becomes almost untractable.

The deterministic direction setting we will work with is formally stated by the next assumption.

Assumption 6.1 The mappings γi : Hq ×Hr × R+ → Rm and σi : ×Hr × R+ → Rm are of
the following functional form.

γi(x, q, r) = λi(x)ϕi(q, r) i ∈ A, C

σi(x, r) = βi(x)φi(r) i ∈ B, C (49)

where λi, βi are deterministic functions of x and ϕi, φi are scalar vector fields in Hq × Hr

(i.e., they do not depend on x and depend only on the current forward price and interest rate
curves).

We note that under Assumption 6.1

vi(x, r) = −
∫ x

0

σi(r, s)ds = −
∫ x

0

βi(s)φi(r)ds = −φi(r)
∫ x

0

βi(s)ds i ∈ B, C.

Defining

Bi(x) =
∫ x

0

βi(s)ds (50)

12One particular special case would be to take, say, γA an σB to have deterministic direction and γC , σC to
be deterministic.

13For details on why this is the most general scenario we refer to [10].
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we, thus, have
vi(x) = −φi(r)Bi(x) i ∈ B, C.

To check if our forward prices model admits a finite dimensional realization, we need to see if

dim
{

µ,

[
γ(q, r)
σ(r)

]}

LA

< ∞.

Considering (48), under Assumption 6.1, our basic vector fields can be written as

µ(q, r) = F
[
q
r

]
−

1
2

∑

i∈A,C

ϕ2
i (q, r)

[
λ2

i

0

]
+

∑

i∈C

ϕi(q, r)φi(r)
[
λiBi

0

]
+

∑

i∈B,C

φ2
i (r)

[
0

βiBi

]

−
1
2





∑

i∈A,C

ϕ′
iq(q, r) [λi] ϕi(q, r)

[
λi

0

]

+
∑

i∈C

ϕ′
ir(q, r) [βi] φi(r)

[
λi

0

]
+

∑

i∈B,C

φ′
ir(r) [βi] φi(r)

[
0
βi

]

,

[
γi(q, r)
σi(r)

]
=





ϕi(q, r)

[
λi

0

]
i ∈ A

φi(r)

[
0
βi

]
i ∈ B

ϕi(q, r)

[
λi

0

]
+ φi(r)

[
0
βi

]
i ∈ C.

Following the strategy described in Section 3.3, we would now start computing Lie brackets
of all possible combinations of these fields and, through Gaussian elimination, hopefully, get
to a simple set of generators of our Lie-algebra L = {µ, δ}LA. Based on properties of these
generators we would, also hopefully, be able to understand which γ and σ would guarantee a
FDR for forward prices.

The particular complex expression for µ above, and the almost impossibility of Gaussian elim-
ination that results from having to handle two infinite SDE at the same time14, leads to the
conclusion that our best hope is again to study a larger Lie-algebra, L̄, and to choose such a
Lie-algebra so that the basic fields would be simple.

The following Lemma give us the desired (simple enough) Lie-algebra L̄.

14To the usual complexity of dealing with multidimensional cases, there is an additional complexity specific
of forward price models that results from the fact that ϕi(q, r) 6= φi(r). However even under the unrealistic
assumption (since the forward price volatility could not depend on the forward prices) where we would assume
ϕi(r) = φi(r), the complexity of the Stratonovich correction term would not allow us to obtain simple generators
for L.
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Lemma 6.1 Consider the following set of fields in H.

f0 =
[
Fq
Fr

]
,

f1
i =

[
λi

0

]
, f2

i =
[
Di

0

]
, i ∈ A, C

f3
i =

[
Vi

0

]
, i ∈ C

f4
i =

[
0
βi

]
, f5

i =
[

0
Hi

]
i ∈ B, C

(51)

where λi, βi and Bi are deterministic functions of x and defined as in (49) and (50) and we
further define

Di(x) = λ2
i (x) Vi(x) = λi(x)Bi(x) Hi(x) = βi(x)Bi(x). (52)

Then the following holds

L = {µ, δ}LA ⊆ L̄ =
{
F,

[
λi

0

]
,

[
Di

0

]
,

[
Vj

0

]
,

[
0
βn

]
,

[
0

Hn

]
; i ∈ A, C, j ∈ C, n ∈ B, C

}

LA

Proof. First, note that

ϕi(q, r), ϕ2
i (q, r), ϕ′

iq(q, r) [λi] ϕi(q, r) i ∈ A, B

φi(r), φ2
i (r), φ′

ir(r) [βi] φi(r) i ∈ B, C

ϕi(q, r)φi(r) i ∈ C

are scalar fields in Hq ×Hr. The conclusion now follows using Gaussian Elimination (Lemma
3.2). 2

6.1 Existence of FDR

Computing Lie-brackets on the basic fields of L̄ is not hard, and the conclusion on the existence
of a FDR becomes a straightforward generalization of the easier setups studied in previous
sections. Proposition 6.2 give us the needed conditions.

Proposition 6.2 The lie-algebra L̄ is spanned by

span
{
F,Fk

[
λi

0

]
,Fk

[
Di

0

]
,Fk

[
Vj

0

]
,Fk

[
0
βn

]
,Fk

[
0

Hn

]
; i ∈ A,C; j ∈ C; n ∈ B, C; k = 0, 1, · · ·

}

and will have a finite dimension if and only if each component of λ and β is QE.

Moreover, under those conditions also each component of D, V , W in (52) are QE and

dim
{
L̄

}
≤ 1 +

∑

j∈A,C

(
n1

j + n2
j

)
+

∑

j∈C

n3
j +

∑

j∈B,C

(
n4

j + n5
j

)
(53)
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for ni
j ∈ N, such that,

Fn1
j+1λj =

∑n1
j

k=1 c1
j,kF

kλj Fn2
j+1Dj =

∑n2
j

k=1 c2
j,kF

kDj j ∈ A, C

Fn3
j+1Vj =

∑n3
j

k=1 c3
j,kF

kVj j ∈ C

Fn4
j+1βj =

∑n4
j

k=1 c4
j,kF

kβj Fn5
j+1Hj =

∑n5
j

k=1 c5
j,kF

kHj j ∈ B, C

(54)

hold for some cI
j,k ∈ R with k = 0, 1, · · · , nI

j , j = 1, · · · , m, and I = 1, · · · , 5.

Proof. Given the fields of L̄, we have a FDR if and only if (54) hold and it follows that (53)
holds (the “≤” in (53) accounts for possible case-specific Gaussian elimination across terms).
Finally, (54) can be interpreted as ODEs whose solution are QE functions, thus λi, for i ∈ A, C;
Dj , Vj , for j ∈ C and Hk for k ∈ B, C solve (54) if and only if they are QE. It remains to show
that requiring λi and βj for i ∈ A, C, j ∈ B, C is sufficient to guarantee that. Given that

Di(x) = λ2
i (x) Vj(x) = λj(x)

∫ b

0

βj(s)ds Hj(x) = βj(x)
∫ b

0

βj(s)ds,

the result follows from Lemma 3.3. 2

6.2 Construction of FDR

Knowing the conditions for existence of a FDR for forward prices, we can now construct the
finite dimensional realization. Proposition 6.3 gives us a non-minimal (since it is based on
L̄ and cannot take into account case-specific Gaussian elimination) parameterization Ĝ of the
invariant manifold Ĝ.

Note that our parameterization, q̂ = Ĝ(Z), will be of the following block matrix form
[
q
r

]
=

[
Ĝq(Z)
Ĝr(Z)

]
.

Furthermore, by close inspection of (51) we realize that the operator generated by f0,

eFz0

[
q0

r0

]
=

[
q̃0

r̃0

]
,

is the only that will affect both Ĝq and Ĝr. The remaining operators will only affect one
component at the time.

The operators generated by f1
i ,f2

i for i ∈ A, C and f3
j for j ∈ C, will only affect Ĝq . So,

eFkλjz1
j,kq = q + λjz

1
j,k eFkDjz2

j,kq = q + D1
j z

2
j,k j ∈ A, C

eFkVjz3
j,kq = q + Vjz

3
j,k j ∈ C .

On the other hand, Ĝr will be affected by the operators generated by f4
j ,f5

j for j ∈ B, C and
we have

eFkβjz4
j,kr = r + βjz

4
j,k eFkHjz5

j,kr = r + Hjz
5
j,k j ∈ B, C
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Once the parameterization has been derived, we can infer the dynamics of the finite dimensional
realization, exactly as before. The actual construction of the realization, though cumbersome
(and thus presented in the appendix), follow the same ideas of the constructions in previous
sections.

Proposition 6.3 Suppose Assumption 6.1 holds. Given the initial forward price curve q0 and
the initial interest rate curve r0, the system generated by forward price and interest rate volatil-
ities defined as in (49) has a finite dimensional realization, given by

[
qt

rt

]
= Ĝ(Z)

where Ĝ is defined by

Ĝ(z0, z
1
j,k, z2

j,k, z3
j,k, z4

j,k, z5
j,k) =




q̃0 +
∑

j∈A,C

n1
j∑

k=0

Fkλjz
1
j,k +

∑

j∈A,C

n2
j∑

k=0

FkDjz
2
j,k +

∑

j∈C

n3
j∑

k=0

FkVjz
3
j,k

r̃0 +
∑

j∈B,C

n4
j∑

k=0

Fkβjz
4
j,k +

∑

j∈B,C

n5
j∑

k=0

FkHjz
5
j,k




(55)
for q̃0(x) = q0(x + z0) and q̃0(x) = q0(x + z0).

Moreover, the dynamics of the state space variables Z are given by




dZ0 = dt

dZ1
j,0 = c1

j,0Z
1
j,n1

j
dt + ϕj(Ĝq(Z), Ĝr(Z))dW j

t j ∈ A, C

dZ1
j,k =

{
Z1

j,k−1 + c1
j,kZ1

j,n1
j

}
dt j ∈ A, C k = 1, · · · , n1

j

dZ2
j,0 =

{
c2
j,0Z

2j, n2
j − 1

2ϕ2
j (Ĝ

q(Z), Ĝr(Z))
}

dt j ∈ A, C

dZ2
j,k =

{
Z2

j,k−1 + c2
j,kZ2

jn2
j

}
dt j ∈ A, C k = 1, · · · , n2

j

dZ3
j,0 =

{
c3
j,0z

3
j,n3

j
+ ϕ(Ĝq(Z), Ĝr(Z))φ(Ĝr(Z))

}
dt j ∈ C

dZ3
j,k =

{
Z3

j,k−1 + c3
j,kZ3

j,n3
j

}
dt j ∈ C k = 1, · · · , n3

j

dZ4
j,0 = c4

j,0Z
4
j,n4

j
dt + φj((Ĝr(Z))dW j j ∈ B, C

dZ4
j,k =

{
c4
j,0Z

4
j,n4

j

}
dt j ∈ B, C k = 1, · · · , n4

j

dZ5
j,0 =

{
c5
j,0Z

5
j,n5

j
+ φ2

j (Ĝ
r(Z))

}
dt j ∈ B, C

dZ5
j,k =

{
Z5

j,k−1 + c5
j,kZ5

j,n5
j

}
dt j ∈ B, C k = 1, · · · , n5

j

The next example may help to understand Proposition 6.3.
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6.3 Example

Consider a model with the following volatility matrix
[
γ(q, r)
σ(r)

]
=

[
αe−bxq ρ

0 δe−ax√r

]
.

Using the usual notation we have two Wiener processes, one of them of type W A and another
of type W C . So A = {1} and C = {2}. Since the is only element of each type, we set j = A, C
(instead of j=1,2) all over.

We also have

γA(q, r, x) = λA(x)ϕA(q, r) ⇒ λA(x) = αe−bx ϕA(q, r) = q
γC(q, r, x) = λC(x)ϕC(q, r) ⇒ λC(x) = ρ ϕC(q, r) = 0
σC(r, x) = βC(x)φC (x) ⇒ βC(x) = δe−ax φC(q) =

√
r

⇒ vC(r, x) = −BC(x)φ(r) BC(x) = − 1
a [e−ax − 1]

Moreover, we have

DA(x) = λ2
A(x) = α2e−2bx

VC(x) = λC(x)BC(x) = −ρ

a

[
e−ax − 1

]

HC(x) = βC(x)BC(x) = − δ

a

[
e−2ax − e−ax

]
.

Taking all this into account we easily get

FλA = −bλA ⇒ n1
A = 0 c1

A,0 = −b

FλC = 0 ⇒ n1
C = 0 c1

C,0 = 0
FDA = −2bDA ⇒ n2

A = 0 c2
A,0 = −2b

FDC = 0 ⇒ n2
C = 0 c2

C,0 = 0
FVC = ρe−ax F2VC = −aFVC ⇒ n3

C = 1 c3
C,0 = 0

c3
C,1 = −a

FβC = −aβC ⇒ n4
C = 0 c4

C,0 = −a

FHC = −aHC + δe−2ax F2HC = −3aFHC − 2a2HC ⇒ n5
C = 2 c5

C,0 = −2a2

c5
C,1 = −3a.

Given this computations, we see the following fields span L̄
{
F,

[
λA

0

]
,

[
λC

0

]
,

[
DA

0

]
,

[
DC

0

]
,

[
VC

0

]
,

[
FVC

0

]
,

[
0

βC

]
,

[
0

HC

]
,

[
0

FHC

]}
(56)

thus we know that our forward price model admits a FDR since

dim(L̄) ≤ 10.

From (55) we get the parameterization



Ĝq(x, z0, z
1
A,0, z

1
C,0, z

2
A,0, z

2
C,0, z

3
C,0, z

3
C,1)

Ĝr(x, z0, z
4
C,0, z

5
C,0, z

5
C,1)




(57)

=



q0(x + z0) + αe−bxz1

A,0 + ρz1
C,0 + α2e−2bxz2

A,0 + ρ2z2
C,0 −

ρ

a

[
e−ax − 1

]
z3

C,0 + ρe−axz3
C,1

r0(x + z0) + δe−axz4
C,0 −

δ

a

[
e−2ax − e−ax

]
z5

C,0 −
δ

a

[
−2ae−2ax + ae−ax

]
z5

C,1



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and from Proposition 6.3 we get the Z dynamics




dZ0 = dt

dZ1
A,0 = −bZ1

A,0dt + Ĝq(Z)dW j
t dZ1

C,0 = Ĝq(Z)dW j
t

dZ2
A,0 =

(
−2bZ2

A,1 − 1
2

(
Ĝq(Z)

)2
)

dt dZ2
C,0 = −1

2

(
Ĝq(Z)

)2

dt

dZ3
C,0 = Ĝq(z)

√
Ĝr(Z))dt dZ3

C,1 =
(
Z3

C,0 − aZ3
C,1

)
dt

dZ4
C,0 = −aZ4

C,0dt +
√

Ĝr(Z)dW j

dZ5
C,0 =

(
−2a2Z5

C,1 + Ĝr(Z)
)

dt dZ5
C,1 =

(
Z5

C,0 − 3aZ5
C,1

)
dt

(58)

where Ĝq and Ĝr are as in (57).

It is obvious however, from both (57) and (58), that this realization is unnecessarily larger.
Using the following change of variables we can find a realization of dimension 7 (which is the
minimal possible with the fields in (56)),

Z̃0 = Z0

Z̃1
A,0 = Z1

A,0

Z̃2
A,0 = Z2

A,0

Z̃3
A,0 = −ρ

a
Z3

C,0 + ρZ3
C,1

Z̃1
C,0 = ρZ1

C,0 + ρ2Z2
C,0 +

ρ

a
Z3

C,0

Z̃4
C,0 = δZ4

C,0 +
δ

a
Z5

C,0 − δZ5
C,1

Z̃5
C,0 = − δ

a
Z5

C,0 + 2δZ5
C,1.

We can then use Itô and (58) to derive the dynamics of the new state variables.

6.4 FDR of forward prices versus FDR of interest rates

We finish this study giving a complete answer to our problem four – on whether there it is
possible to have forward price model which allows for a FDR for forward prices but not for
interest rates15.

We recall a forward price term structure model consists of the following two infinite SDEs.

dqt =
{
Fqt −

1
2
‖γ(qt, rt)‖2 − γ(qt, rt)v∗(rt)

}
dt + γ(qt, rt)dWt (59)

drt = {Frt − σ(rt)v∗(rt)} dt + σ(rt)dWt (60)

Proposition 6.4 In forward price term structure models, inexistence of a FDR for the interest
rate equation (59) and existence of a FDR for the forward price equation (60), is possible only

15Recall the partial answer given in Remark 4.2.
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if forward prices are Markovian and the conditions of Proposition 5.6 hold i.e.,

γj(q, r, x) =
Nj

γ∑

k=0

ϕj
k(q)λj

k(x) j ∈ A, C

σj(r, x) = βj(x) j ∈ B

σj(r, x) =





βj(x) if γj(q, r, x) = γj(x)

Nj
σ∑

k=0

ωj
kδj

k(x) if γj(q, r, x) = γj(q, x)

j ∈ C

(61)

where ωj
k are deterministic constants, βj are unrestricted deterministic functions, δk

j ,λj
k are QE

deterministic functions, and ϕj
k are scalar vector fields in Hq.

Proof. If forward prices are not Markovian, than either γ or γv∗ depend on r. If that is the
case, we know from Proposition 6.3 that the dynamics of the state variables of type Z1, Z2, Z3

(the ones showing up directly on the parameterization Ĝq) depend on Ĝr. That is, the forward
price realization depend on the interest rate realization, indirectly, through the dynamics of the
factors showing up in Ĝq. Thus, if r = Ĝr(Z) only holds for infinite Z, the forward prices will
also be a function on an infinite state variable and, by definition, do not admit a FDR.

If forward prices are Markovian, we know, from Proposition 5.6, that forward prices admit a
FDR if and only if (61) hold. On the other hand, we see (61) imposes no restriction on σB , so
we can choose σB not to be a weighted finite sum of quasi-exponential functions, weighted by
scalar fields in Hr, making existence of FDR for interest rates impossible (for further details on
this result from the previous literature see [10]). 2

7 Conclusions and Applicability

Forward prices are only interesting objects of study in settings where the forward measures QT

differ from the risk-neutral measure Q. In these settings, the study of forward prices depends
on zero-coupon bond price volatilities. Using the Lie-algebraic approach of Björk et al., we have
shown that forward prices term structure models consist of a system of two infinite dimensional
SDEs, one describing the dynamics of the forward prices themselves and another characterizing
the interest rate setting and where the interest rate equation is an input to the forward price
equation.

Despite the apparent non-Markovian nature of forward prices, we were able to show that there
exist models for which forward prices are, actually, Markovian and identified necessary and
sufficient conditions for this Markovian property to hold. Studying Markovian forward prices
we concluded that existence of finite dimensional realization (FDR) for Markovian forward
prices is, in some sense, independent of existence of FDR for interest rates.
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We studied existence and construction of FDR for Markovian forward prices and derived general
conditions for existence of FDR. We considered with special detail the pure deterministic and
the deterministic direction volatility special cases. From this analysis, we concluded that some
results from previous literature can be extended to the forward price term structure case, but
also that forward price term structure models are particularly complex.

The dynamics of forward prices has a specially complex drift under the risk-neutral measure
Q. A direct consequence of this complexity is that, as soon as we leave the pure deterministic
volatility setting, the best we can hope for is to study non-minimal Lie-algebras and to find non-
minimal FDR. Existence of non-minimal realizations is, of course, sufficient to prove existence
of FDR, but is in general not necessary. We showed, however, that given the specificity of
the forward price equation drift, and for a specific enlargement of the Lie-algebra, existence
of FDR for non-minimal realizations is also necessary for existence of FDR, at least for the
one-dimensional case. Then we conjectured that this hold for the higher dimension case.

Even if non-minimal Lie-algebras are, in the above sense, satisfactory for existence results, they
are not as satisfactory for construction results, since we are bound to find realizations with too
many variables. Despite this fact, we exemplified how, given a concrete application, we can
use the abstract results to obtain a smaller realization (sometimes the minimal one) simply by
using a smart change of variables and Itô’s lemma.

For non-Markovian forward prices, we showed that whenever there exist FDR for the forward
price equation, the dynamics of the state variable depend on the interest rates. Consequently,
term structures of forward prices will always (indirectly) depend on interest rates, and existence
of a FDR for the interest rate equation is necessary for existence of a FDR for the forward price
equation. In order to study non-Markovian forward price term structure models, we handle a
system of two infinite dimensional SDEs, thus, computations get quite cumbersome. Still, most
results are the expected ones, given the previous literature on FDR of interest rates and the
study of the forward price equation in the easier Markovian setting.

In terms of the applicability of the results presented here, it is, first of all, important to stress
that the characterization of the conditions that guarantee existence of a FDR for forward price
term structure models is crucial, in distinguishing the “good” forward price models from the
“bad” forward price models. After all, a term structure model that do not allow for a FDR
realization cannot be useful for any practical application. For instance, it is impossible to
estimate the dynamics of an infinite state variable.

In addition to this selection applicability, perhaps, the most important application results from
the actual local parameterization of the term structure. This parameterization can help in
understanding what are the needed conditions, on the driving volatility vector fields, that will
produce term structures consistent with case-specific realities, helping to design good models.
In the present study this design applicability of the Lie-algebraic approach was left untouched
because it is case dependent, and we have focused on general results.

Finally, let alone forward prices, the results derived here are applicable to study term struc-
tures of any QT -martingale. Examples financial instruments, with strong connections to QT -
martingales, are swap rates and credit spreads.

43



References

[1] T. Björk. Arbitrage Theory in Continuous Time. Oxford University Press, 1998.

[2] T. Björk. On the geometry of interest rate models. In Paris-Princeton Lectures on Mathe-
matical Finance 2003, volume 1847, pages 133–215. Springer Lecture Notes in Mathemat-
ics, 2004.

[3] T. Björk, M. Blix, and C. Landén. A note on the existence of finite dimensional realizations
for futures prices. Work in Progress, 2004.

[4] T. Björk and B. Christensen. Interest rate dynamics and consistent forward rate curves.
Mathematical Finance, 9(4):323–348, 1999.

[5] T. Björk and C. Landén. On the construction of finite dimensional realizations for nonlinear
forward rate models. Finance and Stochastics, 6(3):303–331, 2002.

[6] T. Björk and L. Svensson. On the existence of finite dimensional realizations for nonlinear
forward rate models. Mathematical Finance, 11(2):205–243, 2001.

[7] A. Brace and M. Musiela. A multifactor Gauss Markov implementation of Heath, Jarrow,
and Morton. Mathematical Finance, 4:259–283, 1994.

[8] G. Da Prato and J. Zabzcyk. Stochastic Equations in Infinite Dimensions. Cambridge
University Press, 1992.
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Appendix: Technical details and Proofs

Conjecture 5.1 Proof. (sketch) The implication ⇐ follows immediately from L ⊆ L̄.

The implication ⇒ is much harder to prove. Here, as an illustration, we consider the one-
dimensional Wiener process case. We will show the equivalent result that if dim(L̄) = ∞ then
we must also have dim(L) = ∞.

In this case

L = {µ, γ}LA = {f0, f1}LA

L̄ = {F, λ, D, V } .

for

f0(q) = Fq − 1
2
Dφ(q) + ϕ(q)V

f1(q) = λ

D = λ2

V = λv

and as usual we take v(x) = −
∫ x

0 σ(s)ds.

From Lemma 5.3 we know that dim(L̄) = ∞ if and only if at least one of the functions γ and
σ is not QE. So, assume that γ and σ are not QE functions. Then, also D and V are not QE
functions.

Let us now, have a look at the original (smaller) Lie-algebra, L. We will try to see if

L = {µ, γ}LA = {f0, f1}LA < ∞.

Computing lie-brackets and simplifying

[f0, f1] (q) = f ′
0(q)f1(q) − f1

′(q)f0(q)

= Fλ − 1
2
D φ′(q)[λ]︸ ︷︷ ︸

scalar field

−V ϕ′(q)[λ]︸ ︷︷ ︸
scalar field

= f2(q).

Continuing this way we need to compute [f0, f2] = f ′
0(q)f2 −f2

′f0(q). The first parcel, however
give us

f ′
0(q)f2(q) = F2λ − 1

2
(FD) φ′(q)[λ] + (FV ) ϕ′(q)[λ]

= F2λ + FD.(scalar field) + FV.(scalar field)

and the second parcel (though involving more messy computations) is of the form

f ′
2(q)f0(q) = D.(scalar filed) + V.(scalar field).
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So,

[f0, f2] = F2λ + FD(scalar field) + FV.(scalar field) + D.(scalar field) + V.(scalar field) =: f3

[f0, f3] = F3λ + F2D(scalar field) + F2V.(scalar field) + D.(scalar field) + V.(scalar field)
...

It is now easy to see why the dimension of our L will also be infinite, in this case. It would only
be finite if λ, D and V were QE functions, but this hypothesis is excluded by assumption. 2

Proposition 5.5 Proof. Using Ḡ from (45) we have

Ḡ′(z0, z
1
j,k, z2

j,k, z3
j,k)




h0

h1
1,0
...

h2
1,0
...

h3
1,0
...

h3
m,nj




=
∂

∂z0
q(x + z0)h0 +

∑

j∈A,C

n1
j∑

k=0

Fkλjh
1
j,k +

∑

j∈A,C

n2
j∑

k=0

FkDjh
2
j,k

+
∑

j∈C

n3
j∑

k=0

FkVjh
3
j,k.

From q = Ḡ(Z) and once again the functional form of Ḡ in (45) we get

Fq = Fq̃0 +
∑

j∈A,C

n1
j∑

k=0

Fk+1λjz
1
j,k +

∑

j∈A,C

n2
j∑

k=0

Fk+1Djz
2
j,k +

∑

j∈C

n3
j∑

k=0

Fk+1Vjz
3
j,k

=
∂

∂x
q̃0 +

∑

j∈A,C




n1
j∑

k=1

Fkλjz
1
j,k−1 + Fn1

j+1λnj z
1
j,n1

j




+
∑

j∈A,C




n2
j∑

k=1

FkDjz
2
j,k−1F

n2
j+1Dnj z

2
j,nj


 +

∑

j∈C




n3
j∑

k=1

FkVjz
3
j,k−1 + Fn3

j+1Vnj z
3
j,n3

j




=
∂

∂x
q̃0 +

∑

j∈A,C




n1
j∑

k=1

Fkλjz
1
j,k−1 +

n1
j∑

k=0

c1
j,kλkz1

j,nj




+
∑

j∈A,C




n2
j∑

k=1

FkDjz
2
j,k−1 +

n2
j∑

k=0

c2
j,kDkz2

j,nj


 +

∑

j∈C




n3
j∑

k=1

FkVjz
3
j,k−1 +

n3
j∑

k=0

c3
j,kVkz3

j,nj




where we omitted the x-dependence and used q̃0(x) = q0(x + z0).
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We can now use the above expression to substitute into our µ (recall (41)). Thus, Ḡ?ā = µ
becomes

∂

∂z0
q̃0ā0 +

∑

j∈A,C

n1
j∑

k=0

Fkλj ā
1
j,k +

∑

j∈A,C

n2
j∑

k=0

FkDj ā
2
j,k +

∑

j∈C

n3
j∑

k=0

FkVj ā
3
j,k

=
∂

∂x
q̃0 +

∑

j∈A,C




n1
j∑

k=1

Fkλjz
1
j,k−1 +

n1
j∑

k=0

c1
j,kλkz1

j,nj




+
∑

j∈A,C




n2
j∑

k=1

FkDjz
2
j,k−1 +

n2
j∑

k=0

c2
j,kDkz2

j,nj


 +

∑

j∈C




n3
j∑

k=1

FkVjz
3
j,k−1 +

n3
j∑

k=0

c3
j,kVkz3

j,nj




−1
2

∑

j∈A,C

Djϕ
2
j (q) −

1
2

∑

j∈A,C

ϕ′
j(q) [λj ] ϕj(q)λj

and Ḡ?b̄
i = γi for all i ∈ A, C

∂

∂z0
q̃0b̄

i
0 +

∑

j∈A,C

n1
j∑

k=0

Fkλj b̄
1i
j,k +

∑

j∈A,C

n2
j∑

k=0

FkDj b̄
2i
j,k +

∑

j∈C

n3
j∑

k=0

FkVj b̄
3i
j,k

= ϕi(q)λi

Identification of terms, and again use of q = Ḡ(Z) yields

ā0 = 1
ā1

j,0 = c1
j,0z

1
j,n1

j
− 1

2ϕ′
j(Ḡ(z)) [λj ] ϕj(Ḡ(z)) j ∈ A, C

ā1
j,k = z1

j,k−1 + c1
j,kz1

j,n1
j

j ∈ A, C k = 1, 2, · · ·n1
j

ā2
j,0 = c2

j,0z
2j, n2

j − 1
2ϕ2

j (Ḡ(z)) j ∈ A, C

ā2
j,k = z2

j,k−1 + c2
j,kz2

jn2
j

j ∈ A, C k = 1, 2, · · ·n2
j

ā3
j,0 = c3

j,0z
3j, n3

j + ϕ(Ḡ(z)) j ∈ C

ā3
j,k = z3

j,k−1 + c3
j,kz3

j,n3
j

j ∈ C k = 1, 2, · · ·n3
j

b̄i
0 = 0

b̄1i
j,k =

{
ϕj(Ḡ(z)) if i = j and k = 0
0 if i 6= j or k = 1, 2, · · ·n1

j

j ∈ A, C

b̄2i
j,k = 0 j ∈ A, C k = 1, 2, · · ·n2

j

b̄3i
j,k = 0 j ∈ A, C k = 1, 2, · · ·n3

j .

Note that the factors z1
j,0 are driven by the scalar wiener process W j and that all remaining

factors have diffusion terms equal to zero. Thus only for z1
j,0 the Itô dynamics differ from the

Stratonovich dynamics. The above ā1
j,0 is the Stratonovich drift. Given the form of ā1

j,0, the
diffusion for z1

j,0. We easily get the Itô drift to be simply ā1 Itô
j,0 = c1

j,0z
1
j,n1

j
. 2
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Proposition 6.3 Proof. We first compute the parameterization Ĝ. From Theorem 3.5 and

the special shape of the basic fields in (51), we have

[
Ĝq(Z)
Ĝr(Z)

]
=




∏

j∈A,C

(
eFkλjz1

j,keFkDjz2
j,k

) ∏

j∈C

(
eFkVjz3

j,k

)
eFz0q0

∏

j∈B,C

(
eFkβjz4

j,keFkHjz5
j,k

)
eFz0r0




=




q̃0 +
∑

j∈A,C

n1
j∑

k=0

Fkλjz
1
j,k +

∑

j∈A,C

n2
j∑

k=0

FkDjz
2
j,k +

∑

j∈C

n3
j∑

k=0

FkVjz
3
j,k

r̃0 +
∑

j∈B,C

n4
j∑

k=0

Fkβjz
4
j,k +

∑

j∈B,C

n5
j∑

k=0

FkHjz
5
j,k




(62)

Using Ĝ from (62) we have

Ĝq′
(z0, z

1
j,k, z2

j,k, z3
j,k)




h0

h1
1,0
...

h2
1,0
...

h3
m,n3

j




=
∂

∂z0
q̃0h0 +

∑

j∈A,C

n1
j∑

k=0

Fkλjh
1
j,k +

∑

j∈A,C

n2
j∑

k=0

FkDjh
2
j,k

+
∑

j∈C

n3
j∑

k=0

FkVjh
3
j,k.

and

Ĝr′
(z0, z

4
j,k, z5

j,k)




h0

h4
1,0
...

h5
m,n3

j


 =

∂

∂z0
r̃0h0 +

∑

j∈B,C

n4
j∑

k=0

Fkβjh
4
j,k +

∑

j∈A,C

n5
j∑

k=0

FkHjh
2
j,k

where we omitted the x-dependence and used q̃0(x) = q0(x + z0), r̃0(x) = r0(x + z0).
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From q = Ĝq(Z), r = Ĝr(Z) and once again the functional form of Ĝ in (62) we get

Fq = Fq̃0 +
∑

j∈A,C

n1
j∑

k=0

Fk+1λjz
1
j,k +

∑

j∈A,C

n2
j∑

k=0

Fk+1Djz
2
j,k +

∑

j∈C

n3
j∑

k=0

Fk+1Vjz
3
j,k

=
∂

∂x
q̃0 +

∑

j∈A,C




n1
j∑

k=1

Fkλjz
1
j,k−1 + Fn1

j+1λn1
j
z1

j,n1
j


 +

∑

j∈A,C




n2
j∑

k=1

FkDjz
2
j,k−1F

n2
j+1Dn2

j
z2

j,n2
j




+
∑

j∈C




n3
j∑

k=1

FkVjz
3
j,k−1 + Fn3

j+1Vn3
j
z3

j,nj




=
∂

∂x
q̃0 +

∑

j∈A,C




n1
j∑

k=1

Fkλjz
1
j,k−1 +

n1
j∑

k=0

c1
j,kλkz1

j,nj


 +

∑

j∈A,C




n2
j∑

k=1

FkDjz
2
j,k−1 +

n2
j∑

k=0

c2
j,kDkz2

j,n2
j




+
∑

j∈C




n3
j∑

k=1

FkVjz
3
j,k−1 +

n3
j∑

k=0

c3
j,kVkz3

j,n3
j




Fr = Fr̃0 +
∑

j∈b,C

n4
j∑

k=0

Fk+1βjz
4
j,k +

∑

j∈B,C

n5
j∑

k=0

Fk+1Hjz
5
j,k

=
∂

∂x
r̃0 +

∑

j∈B,C




n4
j∑

k=1

Fkβjz
4
j,k−1 + Fn4

j+1βn4
j
z4

j,n4
j


 +

∑

j∈B,C




n5
j∑

k=1

FkHjz
5
j,k−1F

n5
j+1Hn5

j
z5

j,n5
j




=
∂

∂x
r̃0 +

∑

j∈B,C




n4
j∑

k=1

Fkβjz
4
j,k−1 +

n4
j∑

k=0

c4
j,kβkz4

j,n4
j


 +

∑

j∈B,C




n5
j∑

k=1

FkHjz
5
j,k−1 +

n5
j∑

k=0

c5
j,kHkz5

j,n5
j




We can now use the above expressions to substitute into our µ, recall we have

µ(q, r) = F
[
q
r

]
− 1

2

∑

i∈A,C

ϕ2
i (q, r)

[
λ2

i

0

]
+

∑

i∈C

ϕi(q, r)φi(r)
[
λiBi

0

]
+

∑

i∈B,C

φ2
i (r)

[
0

βiBi

]

−1
2





∑

i∈A,C

ϕ′
iq(q, r) [λi] ϕi(q, r)

[
λi

0

]

+
∑

i∈C

ϕ′
ir(q, r) [βi] φi(r)

[
λi

0

]
+

∑

i∈B,C

φ′
ir(r) [βi] φi(r)

[
0
βi

]

,

[
γi(q, r)
σi(r)

]
=





ϕi(q, r)

[
λi

0

]
i ∈ A

φi(r)

[
0
βi

]
i ∈ B

ϕi(q, r)

[
λi

0

]
+ φi(r)

[
0
βi

]
i ∈ C.
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Defining

µ(q, r) =
[
µq(q, r)
µr(r)

]

identification of terms in Ĝq
?â

q = µq , Ĝr
?â

r = µr, gives us

â0 = 1

â1
j,0 =





c1
j,0z

1
j,n1

j
− 1

2ϕ′
j(Ĝ

q(z), Ĝr(z)) [λj ] ϕj(Ĝq(z), Ĝr(z)) j ∈ A

c1
j,0z

1
j,n1

j
− 1

2ϕ′
j(Ĝ

q(z), Ĝr(z)) [λj ] ϕj(Ĝq(z), Ĝr(z))

− 1
2ϕ′

j(Ĝ
q(z), Ĝr(z)) [βj ] φj(Ĝr(z)) j ∈ C

â1
j,k = z1

j,k−1 + c1
j,kz1

j,n1
j

j ∈ A, C k = 1, 2, · · ·n1
j

â2
j,0 = c2

j,0z
2
j,n2

j
− 1

2
ϕ2

j (Ĝ
q(z), Ĝr(z)) j ∈ A, C

â2
j,k = z2

j,k−1 + c2
j,kz2

jn2
j

j ∈ A, C k = 1, 2, · · ·n2
j

â3
j,0 = c3

j,0z
3
j,n3

j
+ ϕ(Ĝq(z), Ĝr(z))φ(Ĝr(z)) j ∈ C

â3
j,k = z3

j,k−1 + c3
j,kz3

j,n3
j

j ∈ C k = 1, 2, · · ·n3
j

â4
j,0 = c4

j,0z
4
j,n4

j
− 1

2
φ′

j(Ĝ
r(z)) [βj ] φj(Ĝr(z)) j ∈ B, C

â4
j,k = z4

j,k−1 + c4
j,kz4

j,n4
j

j ∈ B, C k = 1, 2, · · ·n4
j

â5
j,0 = c5

j,0z
5
j,n5

j
+ φ2(Ĝr(z)) j ∈ B, C

â5
j,k = z5

j,k−1 + c5
j,kz5

j,n5
j

j ∈ B, C k = 1, 2, · · ·n5
j

To get the diffusion terms we identify terms in Ĝq
?b̂qi = γi for i ∈ A, C and Ĝr

?b̂
ri = σi for

i ∈ B, C.

b̂i
0 = 0

b̂1i
j,k =





ϕj(Ĝq(z), Ĝr(z)) if i = j, and k = 0

0 otherwise
j ∈ A, C

b̂2i
j,k = 0 j ∈ A, C k = 1, 2, · · ·n2

j

b̂3i
j,k = 0 j ∈ A, C k = 1, 2, · · ·n3

j

b̂4i
j,k =





φj(Ĝr(z)) if i = j and k = 0

0 if i 6= j or k = 1, 2, · · ·n4
j

j ∈ B, C

b̂5i
j,k = 0 j ∈ B, C k = 1, 2, · · ·n5

j
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Note that this implies that the factors Z1
j,0, Z4

j,0 are driven by the scalar wiener process W j so,
in particular for j ∈ C the same Wiener process drives the two variables. All remaining factors
have diffusion terms equal to zero. Thus only for z1

j,0 and z4
j,0, the Itô dynamics differ from the

Stratonovich dynamics. We easily get the Itô drifts to be simply

â1 Itô
j,0 = c1

j,0z
1
j,n1

j

â4 Itô
j,0 = c4

j,0z
4
j,n4

j

2
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