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Abstract

In this paper, I analyze stochastic adaptation in finite n-player
games played by heterogeneous populations of myopic best repli-
ers, better repliers and imitators. In each period, one individual
from each of n populations, one for each player role, is drawn to
play and chooses a pure strategy according to her personal learning
rule after observing a sample from a finite history. With a small
probability individuals also make a mistake and play a pure strat-
egy at random. I prove that, for a sufficiently low ratio between
the sample and history size, only pure-strategy profiles in certain
minimal closed sets under better replies will be played with posi-
tive probability in the limit, as the probability of mistakes tends
to zero. If, in addition, the strategy profiles in one such set have
strictly higher payoffs than all other strategy profiles and the sam-
ple size is sufficiently large, then the strategies in this set will be
played with probability one in the limit. Applied to 2x2 Coor-
dination Games, the Pareto dominant equilibrium is selected for
a sufficiently large sample size, but in all symmetric and many
asymmetric games, the risk dominant equilibrium is selected for a
sufficiently small sample size.
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1 Introduction

There is an extensive literature on learning in games, which investigates the
long-run outcomes when boundedly rational individuals use simple rules of
adaptation, or learning rules, to play games.! A common assumption in this
literature is that all individuals employ the same learning rule. In this paper,
I depart from this, in many cases unrealistic, assumption and allow for several
different learning rules in each population.

More specifically, I analyze stochastic learning in finite n-player games
with heterogeneous populations of myopic best repliers, better repliers and
imitators. The best repliers observe a sample from a finite history of their
opponents’ past play, calculate an empirical distribution, and choose a best
reply to this distribution. The better repliers observe a sample from a finite
history of their opponents’ and their own population’s past play, and choose
any pure strategy which gives at least as high expected payoff against the
empirical distribution of the opponents’ play. This behavior can be seen as a
special case of Simon’s (1955) satisfying behavior. Imitators, finally, observe
a sample of their own population’s past play and payoffs and either choose a
pure strategy with maximum average payoff, or a pure strategy with maximum
payoff.?

I prove that for any finite game, if the ratio between the sample and history
size is sufficiently small, the resulting unperturbed Markov chain converges
with probability one to a minimal closed set under better replies of the game.
This result is independent of population shares, as long as the share of better
repliers is positive, and implies convergence to a strict Nash equilibrium in
weakly acyclical games. It is also consistent with previous results in a different

framework. Ritzberger and Weibull (1995) show that for a large class of

!See Fudenberg and Levine (1998) for an introduction.

2For an analysis of stochastic adaptation by homogeneous populations of better repliers,
see Josephson (2000), and by homogeneous populations of imitators, see Josephson and

Matros (2000).



deterministic selection dynamics in continuous time, including the replicator
dynamics, a product set is asymptotically stable if and only if it is a minimal
closed set under better replies.

I then perturb the stochastic process by assuming that with a small prob-
ability, the individuals make mistakes or experiment and play a pure strategy
at random according to some fixed probability distribution with full support.
A mathematically equivalent interpretation is that each population contains
a small share of noise players who always choose a pure strategy at random.
This assumption makes the process irreducible and aperiodic, and thus implies
a unique stationary distribution. I calculate the support of this distribution as
the probability of mistakes tends to zero. If the sample size, and the informa-
tion incompleteness is sufficiently large, and if one minimal closed set under
better replies strictly Pareto dominates all strategy-tuples outside the set,
then the perturbed Markov chain puts probability one on this set as the level
of noise tends to zero. A corollary of this is that the strictly Pareto-dominant
equilibrium is selected in games of common interest and 2x2 Coordination
Games. However, the minimum sample size required for this result depends
on the payoffs of the game. In fact, for sample sizes below a certain criti-
cal level, the risk-dominant equilibrium is always selected in all symmetric
Coordination Games, and also in many asymmetric Coordination Games, a
finding which seems to be consistent with experimental evidence (see Van
Huyck, 1997).

The basic setting in this paper is similar to that in Young (1993a,1998),
who analyzes the dynamics of a homogenous population of myopic best repli-
ers. The present paper is also related to earlier papers on stochastic learning
with heterogeneous populations, but it differs in that the analysis is applied to
general finite games, and not only special classes of such games. Kaniovski,
Kryazhimiskii, and Young (2000) study adaptive dynamics in 2x2 Coordi-
nation Games played by heterogeneous populations of myopic best repliers,

conformists (who do what the majority does), and nonconformists (who do



the opposite of what the majority does). They show that the resulting process
may have limit cycles even when the proportion of non-best repliers is arbi-
trary small. Kaarbge and Tieman (1999) use the Kandori, Mailath, and Rob
(1993) framework to study strictly supermodular games played by best repli-
ers and imitators. In their model, the Pareto efficient equilibrium is selected.
In Weibull and Sdez Marti (1998), Young’s (1993b) evolutionary version of
Nash’s demand game is played by one population of myopic best repliers only,
and another population of best repliers and clever agents who play a best re-
ply to the best reply. The authors show that Young’s predictions are still
valid in the presence of such clever agents. Matros (2000) extends this result
to finite two-player games.

This paper is organized as follows. I start by describing the model in
Section 2. In Section 3, I present the general results and in Section 4, the
results for 2x2 Coordination Games. Section 5 concludes. Omitted proofs

can be found in the Appendix.

2 Model

The basic setting is similar to that of Young (1993a, 1998), although my
notation is slightly different. Let I" be a finite n-player game in strategic form.
Let X; be the finite set of pure strategies x; available to player i € {1,...,n} =
N and let A(X;) be the set of probability distributions p; over these pure

strategies. Define the product sets X = [[X; and O(X) = [[, A(X;) with

i
typical elements = and p, respectively. Let p;(x;) denote the probability mass
on pure strategy z; and let p(z) = [[;en pi(s). 1 write 25 € []; ., X; =
X_;and p; € [[;; A(X;) = O(X_;) to represent the pure strategies and
distributions of the pure strategies of player #'s opponents.

Let (1, ...,Cy, be n finite and non-empty populations, each consisting of a
share 63 > 0 of imitators, a share 65 > 0 of best repliers, and a share §] > 0

of better repliers (all to be defined below). The populations need not be of

equal size, nor do they necessarily have equal shares of learning rules. Each



member of population Cj is a candidate to play role ¢ in the game & and has
payoffs represented by the utility function 7; : X — R, and expected payoffs
represented by the function u; : J(X) — R. In slight abuse of notation, I
write u;(x;, p—;) instead of w;(p;, p—;) if pi(x;) = 1.

Let t = 1,2,... denote successive time periods. The stage game I is
played once in each period. In period ¢, one individual is drawn at random
from each of the n populations and assigned to play the corresponding role.
The individual in role i chooses a pure strategy z! from her strategy space
X;, according to her personal decision rule (to be defined below). The pure-
strategy profile 2! = (7, ..., 2!) is recorded and referred to as play at time
t. The history or state at time ¢ > m is the sequence ht = (zt"™+1 . 2t),
where m is the memory size of all individuals. Let H = X™ be the finite set
histories of length m and let h be an arbitrary element of this set. Assume
an arbitrary initial history 2™ = (z!,...,2™) at time m.

Strategies are chosen as follows. In every period t > m, each individual
drawn to play the game inspects a sample of size s drawn without replacement
from the most recent m periods.? The draws are independent for the various
individuals and across time. If an imitator is drawn, she observes a sample
of size s of population-specific strategy and payoff realizations and chooses
a pure strategy which is included in the sample, and has maximum average
payoff or, alternatively, maximum empirical payoff. If a best replier is drawn,
she inspects a sample of size s, consisting of n — 1 independent draws of her
opponents’ strategy realizations and calculates an empirical distribution, p_;.
she then chooses a pure strategy which is a best reply to this distribution. If
a better replier is drawn, she inspects a sample of size s, consisting of n inde-
pendent draws, of all players’ strategy realizations and calculates an empirical
distribution, p. Thereafter, she chooses a pure strategy which gives at least

as high expected payoff against the empirical distribution of the opponents’

3In fact, the sample size may differ among individuals, as long as the minimum sample

size in each share of the population is equal to s.



strategies p_; as p;. Formally, she chooses a pure strategy x; € ~,(p), where

v, is the better-reply correspondence, defined by

Vi(p) = {mi € Xi | wiws, p-i) = wilp)}- (1)

For each z; € X;, let p;(z; | h) be the conditional probability that the
individual in role ¢ chooses pure strategy x;, given history h. I assume that
pi(x; | k) is independent of ¢, and that p;(z; | k) > 0 if and only if at least
one of the following conditions hold:
i) There exists a sample of size s from player i’s m most recent strategy and
payoff realizations, which includes x;, and where z; has the maximum average
realized payoff.
ii) There exists a sample of size s from player ¢’s m most recent strategy and
payoff realizations, which includes x;, and where x; has the maximum realized
payoff.
iii) There exists a sample of size s from history h, consisting of n — 1 inde-
pendent draws and with a sample distribution of p_; € O(X_;), such that
x; € B;(p—;), where (3, is the best-reply correspondence.
iv) There exists a sample of size s from the history h, consisting of n indepen-
dent draws and with a sample distribution of p € O(X), such that x; € ~,(p),
where =, is the better-reply correspondence defined above.

xt’mﬂ, ‘_.7gct) at time ¢, the process moves to a

Given a history h! = (
state of the form AT = (x!"™%2 2t z't1) in the next period. Such a
state is called a successor of ht. My behavioral assumptions imply that the
process moves from a current state i to a successor state i’ in each period,
according to the following transition rule. If z is the rightmost element of
h, the probability of moving from h to 1 is P;,’[,n’s’o = [y pi(xs | B) if W
is a successor of h and 0 if A’ is not a successor of h. This defines a finite
Markov chain on the finite state space of histories H. I denote the process
P»m30 heterogeneous adaptive play with memory m and sample size s, but

often refer to it as the unperturbed process.

Several concepts from Markov chain theory are used below. A recurrent



class I, of the process P*™%0 is a set of states such that there is zero
probability of moving from any state in the class to any state outside, and a
positive probability of moving from any state in the class to any other state in
the class in a finite number of periods. A state h is absorbing if it constitutes
a singleton recurrent class. The basin of attraction of a state I’ is the set of
states h such that there is a positive probability of moving from h to 1’ in a
finite number of periods under the unperturbed process P*™0,

I also define a perturbed process in a manner completely analogous to
Young (1993a, 1998). Formally, in each period there is some small prob-
ability ¢ that the individual in role ¢ experiments or makes a mistake and
chooses a pure strategy at random from Xj;, instead of according to her de-
cision rule. The event that the individual in role ¢ experiments is assumed
to be independent of the event that the individual in role j experiments for
every j # i. For every role %, let g;(z; | h) be the conditional probability that
the individual in role 7 chooses x; € X;, given that she experiments and the
process is in state h. I assume that ¢;(x; | h) is independent of ¢ and deci-
sion rules, and that g;(xz; | h) > 0 for all z; € X;. Suppose that the process
is in state h at time £. Let J be a subset of j players. The probability is
gl (1-— 5)"73‘ that exactly the players in J experiment and the others do not.
Conditional on this event, the transition probability of moving from 7 to A’
is Q7 = [ies (i | h) [Ligspi(zi | h) if I’ is a successor of 1 and x is the
rightmost element of A" and 0 if &' is not a successor of h. This gives the
following transition probability of the perturbed Markov process:

Pt = (@ —e) P+ Y =) Q).
JCN,J#0
I call the process P*™%¢ heterogeneous adaptive play with memory m, sample
size s, experimentation probability ¢ and experimentation distributions g;.
This process is irreducible and aperiodic and thus, has a unique stationary

distribution p®. I study this distribution as ¢ tends to zero. In my analysis,

I use the following standard definitions, due to Freidlin and Wentzell (1984)



and Foster and Young (1990). A state h is stochastically stable if lim. o p°(h)
exists and is positive. For each pair of distinct recurrent classes, £} and
E), a kl-path is a sequence of states ¢ = (h', h2...,h9) beginning in Fj and
ending in F;. The resistance of this path is the sum of the resistances on
the edges that compose it. Let r; be the least resistance over all kl-paths.
Construct a complete directed graph with one vertex for each recurrent class.
The weight on the directed edge Fy — [ is ;. A tree rooted at [ is a set
of directed edges such that, from every vertex different from £, there is a
unique directed path in the tree to E;. The resistance of a rooted tree is the
sum of the resistances on the edges that compose it. The stochastic potential

p(E;) of a recurrent class Fj is the minimum resistance over all trees rooted

at El.

3 General Results

In this section, I will present two general results on the asymptotic distribution
of heterogeneous adaptive play: one theorem for all finite n-player games, and
one theorem for finite n-player games that can be Pareto ranked in a special
sense. In order to state these theorems, some further definitions are needed.
Let X be the collection of all non-empty product sets Y C X. Let A(Y;) be the
set of probability distribution with support in Y; and let O(Y) = [[,c y A(Y3)

be the corresponding product set.

Definition 1 (Ritzberger and Weibull, 1995) A set Y € X is closed under
better replies (CUBR) if v(O(Y)) CY. AsetY € X is a minimal closed
set under better replies (MCUBR) if it is closed under better replies and

contains no proper subset with this property.

Let H' C H be an arbitrary set of histories. Define the span of H', S(H'),
as the product set of all pure strategies appearing in some history of H’ and
let HY be the set of all histories i such that S({h}) C Y. I say that a set of

histories H’ is forward invariant if the Markov chain remains forever in H',



once it has reached a state in this set.
Lemma 1 For any MCUBR set Y, HY is forward invariant under P*™0,

PRrROOF: It is evident that imitation of the best pure strategy in a sample
containing only pure strategies in an MCUBR set cannot result in the play
of a pure strategy outside the MCUBR, set. Moreover, by definition, a best
or better reply to a probability distribution on an MCUBR set is always con-
tained in the MCUBR set. Hence, if the unperturbed Markov chain P*™*0
is in a state consisting only of pure-strategy profiles in a particular MCUBR
set, then a pure strategy outside the MCUBR set will thereafter never be

played by any of the individuals drawn to play. Q.E.D.

In order to state the main theorem, one more definition is needed. I say
that a set of states H' is a minimal ~-configuration if S(H') is an MCUBR
set. In other words, H' is a minimal ~-configuration if all the strategies in

some MCUBR set Y, and no other strategies, appear in the histories of H'.

Theorem 1 Let I be a finite n-player game.
i) If s/m is sufficiently small, the unperturbed process P*™ %0 converges with
probability one to a minimal ~-configuration.
i) If, in addition, € is sufficiently small, the perturbed process P*™%¢ puts an
arbitrarily high probability on the minimal ~-configuration(s) with minimum

stochastic potential.
PrOOF: See the Appendix.

This theorem is analogous to Theorem 1 in Josephson (2000), which states
that in a homogeneous setting, where the share of better repliers in each pop-

ulation is one, for a sufficiently large sample size and sufficiently incomplete

L

X] ), the unperturbed process converges with probability

information (s/m <
one to a minimal y-configuration. The proof of Theorem 1 is based on this

result combined with Lemma 1, and the observation that in each period, there



is a positive probability that only better repliers will be drawn to play from
the heterogeneous populations.

Theorem 1 is also consistent with previous results for deterministic con-
tinuous time selection dynamics. Ritzberger and Weibull (1995) show that a
set is MCURRB if and only if it is asymptotically stable for regular selection
dynamics that are sign preserving. This is a large class of selection dynamics,
which contain several well know dynamics, such as the replicator dynamics.

It is worth noting that Theorem 1 makes no reference to population mix-
tures. As long as the share of better repliers is positive in all populations,
the span of the recurrent sets of the unperturbed process is independent of
the shares of different learning rules in the populations. However, it is clear
that this does not imply that the exact shape of the asymptotic distribution
is independent of the population mixtures.

One may also note that in the class of games where all minimal closed
sets under best replies and MCUBR sets coincide, it is sufficient if one of
the population shares of better and best repliers is positive in each of the
populations. This class of games contains, for instance, 2x2 Coordination
Games.

In the special class of games where all MCUBR sets are singleton, and
hence also strict Nash equilibria, Theorem 1 implies convergence to a conven-
tion, a monomorphic state which is a repetition of a strict Nash equilibrium.
Weakly acyclical games (Young, 1993a, 1998), and games that are weakly
acyclical in v (Josephson, 2000) belong to this class.

The second result of this paper characterizes the stochastically stable
states of heterogeneous play in finite n-player games with a Pareto optimal

outcome.

Definition 2 A non-empty set of strateqy-tuples M C X strictly Pareto
dominates a pure-strategy profile y € X\M if, for all i € N,

min 7, (x) > m;(y). (2)

xeM

10



Theorem 2 Let I' be a finite n-player game with an MCUBR set Y, which
strictly Pareto dominales all other pure-strategy profiles. If s/m < 1/|X]|,
,8,E

s sufficiently large, and e is sufficiently small, the perturbed process P*™

puts arbitrarily high probabilily on a minimal ~-configuration with span'Y.
PrOOF: See the Appendix.

The proof of Theorem 2 uses the following two observations. First, a state
in a strictly Pareto-dominant set Y can be reached from any state outside
the set if all individuals drawn to play simultaneously make a mistake and
play a pure strategy in Y, and a sequence of imitators thereafter pick samples
including this mistake. Second, the resistance of the reverse transition can
be made arbitrarily large by choosing a sufficiently large sample and memory
size.

Theorem 2 does not hold under the weaker condition that an MCUBR
set strictly Pareto dominates all other MCUBR sets. Consider the game
in Figure 1. In this game, there are two MCUBR sets, (A,a) and (C,¢),
and (A, a) strictly Pareto dominates (C, ¢). However, (A, a) does not strictly
Pareto dominate (B, b), and for a sufficiently large sample size and sufficiently
incomplete information, the stochastic potential is two for both 4 q) and
h(c,e)- This follows since the process will make the transition from f4 q) t0
h(B,p), if the two players simultaneously make mistakes in period ¢ and play
(B,b), and a sequence of s — 1 imitators in population C, corresponding to
the row player, thereafter are drawn to play and sample only z¢ and earlier
strategy realizations, and finally imitators in both populations sample only
from plays more recent than /! for m—s periods. Since state h(Bp) is clearly

in the basin of attraction of ¢ ), this implies that the stochastic potential

11



of he,e) is two at most.

a b c
A13,3]10,0]0,0
B10,0]|40]1,1
C10,0]0,01|22

FiGUure 1.

In games of common interest there exists a strict Nash equilibrium — a
singleton MCUBR set — which strictly Pareto dominates all other strategy-
tuples. From Theorem 2, it immediately follows that for a sufficiently large
memory and sample size, and sufficiently incomplete information, this equi-

librium is played with probability one under the limiting distribution.
4 Results for 2x2 Coordination Games

In this section, I will study the predictions of heterogeneous adaptive play in
the special class of 2x2 Coordination Games and illustrate how the stochas-
tically stable states depend on the sample size.

Consider the game in Figure 2.

a b
m1(A,a), m2(A,a) | m1(A,b),ma(A,Db)
m1(B,a),mo(B,a) | 71(B,b), ma(B,b)

A
B

FiGURE 2.

This game is a 2x2 Coordination Game if (A,a) and (B,b) are strict Nash
equilibria. It is a symmetric 2x2 Coordination Game if, in addition, the diag-
onal payoffs are equal for the two players, m1(B,a) = mo(A,b) and 71(A, b) =
(B, a). An equilibrium (A, a) of a 2x2 Coordination Game is risk dominant

if its Nash product exceeds that of (B, b):

[71(A,a) —m1(B, a)] [12(A, a) — m2(4, )]

> [m1(B,b) — m1(A4, )] [r2(B,b) — me(B, a)] . (3)

This definition (with a strict inequality) is originally due to Harsanyi and

Selten (1988). Denote a monomorphic state h such that h = (z, ...,x) by hy.

12



If x is a strict Nash equilibrium, then hy, is called a convention (Young,1993a,
1998). If x is risk (strictly Pareto) dominant, I say that the convention hy,
is risk (strictly Pareto) dominant. From Theorem 2, the following corollary

immediately follows.

Corollary 1 In 2x2 Coordination Games with a strictly Pareto-dominant
equilibrium, for a sufficiently large sample size, and sufficiently incomplete
information, the strictly Pareto-dominant convention is a unique stochasti-

cally stable state.

For certain payoffs, the sample size must to be very large for this result
to hold. Consider the game in Figure 3, where the equilibrium (A4, a) strictly
Pareto dominates the equilibrium (B, b), but where (B, b) is the unique risk-

dominant equilibrium.

a b
2,2 —1000,0
0,—1000 1,1

W o

FiGURrE 3.

If the process is in state i(p ) and the sample size s > 1, then two simul-
taneous mistakes, followed by a sequence of imitators, are required to reach
h(4,q)- One mistake is sufficient to make the reverse transition if this makes
the expected payoff to playing strategy B higher than that of A for a better

or best replier, or formally if

S s < —. (4)

2(s —1) — 1000 < 1 1003
S S

Hence, only the risk-dominant equilibrium is selected, in the sense that the
corresponding convention is stochastically stable, for s such that 1 < s <
501. In order to ensure that only the strictly Pareto-dominant equilibrium is

selected, the sample size must be so large that

2(s — 2) — 2000 2
(s=2) > Z s> 1003, (5)
S S

13



For a sample size in between these values, i.e. s such that 501 < s < 1003,
both equilibria are selected.

More generally, define the probabilities g4, ¢4, and gmin by

mo(B,b) — we(B, a)
A= A a) = ma(A,0) + 7a(B,b) — ma(B, ) (6)
m1(B,b) — w1 (A, b)
T = 714 a) — m(B, a) + m1(B, ) — m1(A, b)’ (7)
and
Gmin = min {QA7 qa, 1— qdA, 1- qa} . (8)

In other words, g4 is the probability of strategy A which makes the expected
payoff to strategies a and b identical for player 2, and g, is the probability of
strategy A which makes the expected payoff to strategies A and B identical for
player 1. qmin is the lowest probability required to make a player indifferent
between her pure strategies. Note that in symmetric Coordination Games
gA = qq and that (see Young,1998) an equilibrium (A4, a) is risk dominant if
and only if

min{g4, ¢a} < min{l —ga,1 —ga}. (9)

Let Z44 be the set of positive integers and let [y] denote the smallest
integer greater than or equal to y for any real y. Further, define the function

Sdifs : Z4q — Zp4 U{0} and the set STP C 7, as follows:
saig(s) =|[smin{ga, ga}] — [smin{l — g4, 1 — ga}]| (10)

SED —fsecZ,,: saifr(s) > 1 and s < 1/qmin}- (11)

Note that sg;¢f(s) is increasing in s, implying that if there are integer sample

sizes s,s’, and s” such that s < s’ < s”, and s,s” € SE, then also s’ € SEP.

Theorem 3 Let I' be a 2x2 Coordination Game and assume that informa-
tion is sufficiently incomplete (s/m < 1/2).
i) From any initial state, the unperturbed process P*™%9 converges with prob-

ability one to a convention and locks in.

14



ii) For sufficiently large s the stochastically stable states of the perturbed
process P*"%% correspond one to one with the conventions that are not
strictly Pareto dominated.

i) If there is a unique risk-dominant equilibrium and the set SEP is non-

SED - only the risk-dominant convention is

empty, then, for sample size s €
stochastically stable.
iv) If both equilibria are risk dominant, then, for sample size s € [1,2/qmin],

both conventions are stochastically stable.
PrOOF: See the Appendix.

Theorem 3 gives sufficient conditions for the selection of different equilib-
ria. The intuition behind the proof of this theorem is the same as in the above
example. If the process is in state fi(4 ), and (B, b) is a risk-dominant equilib-
rium, then, for sample sizes such that gumm, < 1/s, or equivalently s < 1/gmin,
only one mistake is necessary to make a sequence of subsequent better or best
repliers switch to the risk-dominant pure strategy such that ip ) is reached.
Second, if the process is in state h(p ;) and (A, a) is not strictly Pareto dom-
inated, then two simultaneous mistakes, followed by a sequence of imitators
in one of the populations, are sufficient to reach the basin of attraction of
N(A,q)- The condition that sg;;r(s) > 1 implies that the transition from hp )
to f(4,q) cannot be made with only one mistake followed by a sequence of
best or better repliers.

The following corollary shows that in symmetric Coordination Games,
there always exists a range of sample sizes such that the risk-dominant equi-

librium is selected.

Corollary 2 In symmetric 2x 2 Coordination Games, if information is suf-
ficiently incomplete (s/m < 1/2) and the sample size sufficiently small (2 <

$ < 1/Gmin), only the risk-dominant convention is stochastically stable.

ProoF: If the symmetric game has two risk-dominant equilibria, the

result follows immediately from Theorem 3 iv). If the game has a unique
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risk-dominant equilibrium, then g, < 1/2. This implies that if the sample
size is such that 2 < s < 1/gumin, then sgmn < 1, and s(1 — gmin) > 1; hence,
the requirement that sg¢r(s) > 1 is redundant, and the claim follows from

Theorem 3 iii). Q.E.D.

Holding the sample and memory size fixed in symmetric games with
one risk-dominant equilibrium and a different Pareto-dominant equilibrium,
Corollary 2 implies that the risk-dominant equilibrium should be observed
for payoffs such that guni, is low, possibly both equilibria for payoffs such
that gmi, is intermediate, and the Pareto-dominant equilibrium for payoffs
such that g¢ni, is high. This appears to be in line with experimental evidence
from symmetric Coordination Games (see Van Huyck (1997) for a survey),
although the absolute difference between the equilibrium payoffs and the off-
equilibrium payoffs also seems to matter. Given the limited number of repe-
titions in such experiments, one may naturally question whether the outcome

observed actually corresponds to the stochastically stable state.
5 Conclusion

In this paper, I analyze stochastic adaptation in finite n-player games played
by heterogeneous populations of myopic best repliers, better repliers and im-
itators. I show that for sufficiently incomplete information, and indepen-
dently of the population shares, the recurrent sets of the resulting unperturbed
Markov chain correspond one to one with the minimal closed sets closed un-
der better replies of the game. Such sets are also asymptotically stable under
a large class of deterministic continuous time selection dynamics, containing
the replicator dynamics.

The stochastically stable states are contained in the recurrent sets with
minimum stochastic potential. In games where one minimal closed set under
better replies is Pareto efficient, the span of the stochastically stable states is
equal to this set. This result requires a sufficiently large sample size, deter-

mined by the payoffs of the game. In all symmetric Coordination Games and
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many asymmetric Coordination Games, the Pareto efficient equilibrium is se-
lected for a sufliciently large sample size, and the risk-dominant equilibrium
is selected for a sufficiently small sample size.

The main contribution of this paper is to analyze the long-run outcome
when multiple rules of adaptation, previously analyzed only in isolation, are
present in the populations. It is shown that the support of the limiting dis-
tribution is independent of the population shares. However, in many games,
the exact shape of the limiting distribution will depend on the population
shares using the different learning rules, and so will the expected payoff to
the individuals employing the various rules. A next step is to study how
the individuals using the different learning rules fare for different population
shares, and to ask if there exists a rule, or a particular combination of rules,

which is evolutionarily stable.
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Appendix

Definition 3 (Young, 1998) P< is a reqular perturbed Markov process if
P¢ is irreducible for every e € (0,¢*], and for every h,h/ € H, Pf,, approaches
P,?h, at an exponential rate, i.e. lim. .o Pf,, = P,?h, and if Pr,, > 0 for some

: Ps
e >0, then 0 < lime—,0 722+ < co for some rpp > 0.
Lemma 2 P*"™%° {s a reqular perturbed Markov process.

PrOOF: The proof of Lemma 2 is completely analogous to the proof in

Young (1998, p. 55) Q.E.D.

Theorem 4 (Young, 1998) Let P° be a regular perturbed Markov process and
let pf be the unique stationary distribution of P¢ for e > 0. Then lim. ,opu° =
u exists, and ¥ is a stationary distribution of P°. The stochastically stable
states are precisely those states that are contained in the recurrent classes of

PO having minimum stochastic potential.

PrROOF OF THEOREM 1: Part i) of Theorem 1 will be proved in two

steps. In step A, I will prove that from any initial state, P*™0

converges to
a minimal v-configuration. In step B, I will prove that for any MCUBR set,
there exists a minimal ~y-configuration.

A. Let ~v-adaptive play be the induced Markov chain when the share of bet-

ter repliers in each population is one. According to Theorem 1 in Josephson

(2000), for a sufficiently large sample size and sufficiently incomplete infor-

L

X] ), the span of each recurrent class of the y-adaptive play

mation (s/m <
corresponds one to one with an MCUBR set. Since, in each period, there is
a positive probability that only better repliers will be selected to play, there
is also a positive probability that the Markov chain, from any initial state,
and in a finite number of periods, will end up in a state h which belongs to
a recurrent class E} of the better-reply dynamic, and thus only involves play

of pure-strategy profiles in a corresponding MCUBR set Y. From Lemma 1,

it follows that the process will never play a pure strategy outside Y, once it
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has reached such a state. If E} is singleton, this means that it is a recurrent
class also under heterogeneous adaptive play P*™%0, If E} is not singleton,
there is a positive probability that the process makes the transition from h to
any other state h' of E} in a finite number of periods and, naturally, with-
out playing any pure strategy outside Y. This follows since in each period,
there is a positive probability that only better repliers will be selected to play.
Hence, there exists a recurrent class Iy, of Pm30 such that E} C Ey and
S(Bp) CY =5 (£3).

B. Conversely, I will prove that for any MCUBR set, there exists a minimal
~-configuration. If Y is an MCUBR set, then, by Theorem 1 in Josephson
(2000), there exists a unique recurrent class E} of ~v-adaptive play such that
S (E}) = Y. If the Markov chain P*™%0 is in a state involving no pure
strategy outside Y, there is a positive probability that it will reach a state
which belongs to E} in a finite number of periods. This follows since P*™%:0
by A., from any initial state and in a finite number of periods will end up
in a state h, which belongs to a recurrent class of the better-reply dynamic,
and since, by Lemma 1, the process will never play a pure strategy outside
Y, once it has reached a state only involving pure-strategy profiles of Y. It
thereafter follows from A. that there exists a recurrent set Ey of prms0
such that S(E}) =Y.

Part ii) of Theorem 1 follows directly from Theorem 4 in the Appendix
since P*™%¢ by Lemma 2 in the Appendix, is a regular perturbed Markov
process. Q.FE.D.

PrROOF OF THEOREM 2: Theorem 2 will be proved in three steps. In step
A, I show that the transition from any recurrent class to a Pareto-dominant
minimal ~-configuration can always be made with at most n mistakes. In
step B, I prove that for a sufficiently large sample size, the transition from a
Pareto-dominant minimal v-configuration to any other recurrent class requires
at least n + 1 mistakes. In step C, I use A and B to prove that the Pareto-

dominant minimal y-configuration must have minimum stochastic potential.
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A. Assume that the sample size is sufficiently large and s/m < 1/|X]| so

P*m50 corresponds

that, by Theorem 1, the span of each recurrent class of
one to one with an MCUBR set. Let Y C X be a strictly Pareto-dominant
MCUBR set, and let 3 be the corresponding minimal «-configuration. As-
sume there exists at least one other recurrent class (otherwise Theorem 2
holds trivially). The transition from such a recurrent class to E5 can always
be made with a probability of the order eV (or higher). This is, for instance,
the case if the individuals in all roles experiment and play a pure-strategy
profile ' € Y in period ¢, and a sequence of m — 1 imitators thereafter are
drawn to play in all roles, and all sample .

B. Let E7, be an arbitrary recurrent class, different from F3. I claim that
for a sufficiently large sample size, the probability of the transition from E5

N+1 To make a best or better replier in role i,

to I/ is at least of the order
switch to a pure strategy z; ¢ Y; after at most n mistakes; the expected payoff

to that pure strategy must be greater than for any pure strategy y; € Y,

S—n

n S n n
ui(ﬁyivp):i) + ;ui<yi7p)—(i) < ui<xi7p):i) + ;ui<xi7pi{i) (12)

=
n iy, pY5) — wilys, p¥y) +wilws, p~) — wilws, p¥y)]

S S 3 (13)
wi(yi, p¥,) — wizi, pY)

where p¥, € O(Y_;), and p*, € O(X_;). By the boundedness of payoffs and
the strict Pareto dominance of Y, the right-hand side of this inequality is
clearly bounded for any i, y; € V;, 7; ¢ Vi, p¥, € O(Y_;), and p¥, € O(X_;).
Hence, there exists some finite §, such that for s > §, strictly more than n
mistakes are necessary for a better or best replier to play a pure strategy
outside Y.

Similarly, in order to make an imitator maximizing the average realized
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payoff switch to a pure strategy z; ¢ Y; after at most n mistakes,

(s — n)u;(yi, p¥,) + (n — 1) w;(yi, p~,)
s—1

< (T, ) (14)

~

n [ui<yi7p)ji) - ui(yzwp)fi)] + ui(iyivp)fi) — i@, ;)
s < % . (15)
ui(yivp,i) - 7Ti<xi7x7i)

Once again, by the boundedness of payoffs and the strict Pareto dominance

of Y, the right-hand side of the last inequality is bounded for any ¢, y; € Y;,
v, & Vi, x; € Xy, p¥, € O(Y;), and p¥, € O(X ;). Hence, there exists
some finite &, such that if s > 3, strictly more than n mistakes are necessary
for a better or best replier to play a pure strategy outside Y. An imitator
who simply pick the pure strategy with the maximum realized payoff can, of
course, never switch to a pure strategy x; ¢ Y; with less than s mistakes.
Thus, for s > max{3, 3, N}, the resistance of the transition from £ to £},
must be greater than N.

C. Consider the minimum resistance tree rooted at an arbitrary recurrent
class E7,, different from £ In this tree, there must be a directed edge from
E% to some other recurrent class E}, (possibly identical to E7,). Assume that
the sample size is so large that the resistance of the transition from 3 to £7
is greater than N (this is possible by B.), and that the stochastic potential of
E7, is smaller than or equal to that of £5 . Create a new tree by deleting the
edge from E§ to I/7, and adding an edge from £7, to 5. The resistance of
the deleted edge is, by assumption, greater than N, and the resistance of the
added edge is (by A.) smaller than or equal to N. Hence, the total resistance
of the new tree is less than that of the tree rooted at £7,, contradicting the
assumption that the stochastic potential of E7, is smaller than or equal to
that of I/5,. This proves that the stochastic potential of the Pareto-dominant
recurrent class [, is lower than for any other recurrent class and, by Lemma

2 and Theorem 4 in the Appendix, Theorem 2 follows. Q.. D.

ProOF OF THEOREM 3: i) Convergence with probability one to a con-

vention. By Theorem 2 in Josephson (2000), if the share of better repliers
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is one in all populations and s/m < 1/2, then the recurrent classes of the
unperturbed process are the two monomorphic states h4 q) and h(pp). It is
clear that these states are absorbing also when the shares of imitators and
best repliers are positive. Moreover, since in each period, there is a positive
probability that only better repliers are drawn to play, there is a positive
probability of reaching one of these two states in a finite number of periods
from any other state. Hence, for s/m < 1/2, the recurrent classes of P*"*9
are two states ly q) and hp ).

ii) Selection of equilibria that are not strictly Pareto dominated. Without
loss of generality, assume that (A, a) is a strictly Pareto-dominant equilibrium.
Then, the transition from hp ) to the basin of attraction of (4 4) can always
be made with two simultaneous mistakes in period ¢ followed by a sequence of
s—1 imitators in both populations, who all sample ¢ or more recent strategy-
tuples. The reverse transition requires at least three mistakes if the following
two conditions are fulfilled. First, in state h(4 ), best or better repliers in
one of the populations should not be able to switch to strategy B when the
sample contains less then three mistakes by the other population. This is
prevented if g > 2/s, or equivalently if s > 2/gum. Second, imitators in
population C4 should not be able to switch to strategy B with less than
three mistakes. They can only do this if two mistakes, one after the other by
different populations, make the average payoff to strategy B at least as large

as that of A, or formally, if
(8 — 2)71<A7 a’) + 7Tl<A7 b)

— <71(B,a) (16)
=
271'1(14, a) — 71'1<Bya) — 7T-1<147 b) -3
s < (A a) — mi(B, a). - an

It is clear that for s > §; this inequality does not hold, and a similar critical
sample size §9 can be computed for individuals in population (. Hence,
for s > max{81,52,2/Gmin}, the transition to (B,b) requires at least three

mistakes, whereas the reverse transition requires exactly two mistakes (if all
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imitators choose the pure strategy with maximum sample payoff, i.e. nobody
chooses the pure strategy with the maximum average payoff in the sample,
then it is sufficient that s > 2/¢min)-

If neither of the equilibria are Pareto dominated, then either 71(A,a) >
m1(B,b) and me(A,a) < mo(B,b), or m1(A4,a) < w(B,b) and mwo(A4,a)

V

mo(B,b). Without loss of generality, assume that the first two inequalities
hold. Then, the transition from /g ) to the basin of attraction of i ) can
always be made with two simultaneous mistakes in period t, followed by a
sequence of s — 1 imitators in population C7, who all sample xf and earlier
strategy realizations. In an analogous fashion, the transition from /(4 q) to
h(B,py can be made with two mistakes. If, in addition, s > 1/¢min, then no
better or best repliers are able to switch strategies in state ha,q) or h(pp)
after only only mistake. Thus, for general Coordination Games and sample
size such that s > max{$1, 89,2/¢mm}, the stochastic potential is lowest for

the state(s) which is (are) not strictly Pareto dominated.

iii) Unique risk-dominant equilibrium. The transition from h(pp) to the
basin of attraction of l(4 ) can be made with k& mistakes if individuals in
one of the populations, say population (7, by mistake plays A k times in a
row, and k/s > g4. This follows since there is a positive probability that
better or best repliers are drawn to play in the other population for the next
s periods, and that these individuals all sample the k& mistakes. Without loss
of generality, assume that (A,a) is a risk-dominant equilibrium. Then, the
transition from h(p ) to h(4 q) requires only one mistake if gmn < 1 /s. The
requirement that sg¢r(s) > 1 ensures that the reverse transition requires at

least two mistakes.

iv) Two risk-dominant equilibria. If both equilibria are risk dominant,

then
min{gz‘h Qa} = mll’l{l —qa, 1 — Qa} = Gmin- (18)

This implies that for sgmn < 2, the transition from %4 q) to h(py), and the
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reverse transition, requires the same number of mistakes, & < 2. Since at

least two mistakes are required to make an imitator switch strategies when

the process is in a convention, the stochastic potential of the conventions will

equal the number of mistakes required to make better and best repliers switch

strategy for s € [1,2/qmin]-

Theorem 3 now follows by Lemma 2 and Theorem 4. Q.FE.D.
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