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Abstract

In many countries the demand for health care services is of increasing

importance. Especially in the industrialized world with a changing de-

mographic structure social insurances and politics face real challenges.

Reliable predictors of those demand functions will therefore become

invaluable tools. This article proposes a prediction method for the dis-

tribution of the number of visits to the medical doctor for a determined

population, given a sample that is not necessarily taken from that pop-

ulation. It uses the estimated conditional sample distribution, and it

can be applied for forecast scenarios. The methods are illustrated along

data from Sidney. The introduced methodology can be applied as well

to any other prediction problem of discrete distributions in real, future

or any fictitious population. It is therefore also an excellent tool for

future predictions, scenarios and policy evaluation.1

keywords: predicting health care demand, visits to the doctor, health

economics, model selection

JEL classification: I12, C51, C53, H75.
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1 Introduction

A main challenge for health insurances is to analyze health demand2. One

reason for this is the legitimate hope a better understanding will ease pre-

diction, may it be for the future or new markets, that means in either case

different populations. There, the frequency distribution of doctor consulta-

tions is a primary indicator of health care utilization in a population and, as

such, is of obvious importance for health care budgeting. Therefore, patterns

in the frequency of consultations to the doctor, especially the dependency

of the utilization of health resources on demographic, socioeconomic and ge-

ographic factors has been extensively documented, and its proper modeling

is of central interest for empirical research in health economics and applied

econometrics, respectively (Cameron et al., 1988; Pohlmeier and Ulrich, 1995;

Windmeijer and Santos Silva, 1997; Deb and Trivedi, 1997; Jochmann and

León-González, 2004; Winkelmann, 2004; to mention only few). Typically,

the literature bemoans a lack of data on certain key variables on the one hand

and the ‘shrinkage effect’ effect of conditional expectations on the other hand.

More recently, Berzel et al. (2006) offered a plausible description of the num-

ber of doctor visits by modeling its dependence on a very limited number of

demographic factors. In fact, it turned out that the mean number of doctor

visits can already be estimated quite well when applying appropriate statisti-

cal modeling on simple available demographic factors such as age, gender and

location. These are excellent news as an important job for the future will be

to tackle the increasing demand of health care services due to a drastically

changing demography, especially in most parts of the industrialized world. In

the Australian Capital Territory for example, where our data are taken from,

the average age has increased from about 29 in 1990 to about 35 in 2010.

The serious distributional change can be seen in Figure 1 from the Australian

Bureau of Statistics:

The target is to predict the numbers of visits for a population having at hand

only these simple demographic factors for the population of interest, but full

information - i.e. also the numbers of visits - observed for a particular sample.

There exist several well-studied methods for estimating missing values (see

Dempster et al., 1977; Little and Rubin, 1987; Rubin, 1996; Schafer, 1997),

some of which could be used in our context. Then, instead of estimating the

distribution of interest directly one could consider the numbers of visits as

2See for example the contributions of to the special issue of The Journal of Risk and
Insurance 2010, Vol 77
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Figure 1: The population structure of Australia from 1990 to 2010 by age and
sex. Source: The Australian Bureau of Statistics

missing values and complete the data by simulated (imputed) values. Most

of these imputation processes are iterative. A key feature of such approaches

is to regard missing data as random variables, and then to replace them with

multiple draws from the assumed underlying distribution. Therefore, these

methods are often known as ‘multiple imputation’.

However, to our knowledge, no direct estimator of the population distribu-

tion of the doctor consultations has been reported yet. Note that the above-

mentioned methods perform well for imputing missing values but have not

been studied for imputing values for a whole population. Just thinking of the

computational burden, if - as typically the case - the underlying sample is

small but the population is large, these methods are not really attractive for

our problem. Although the method we introduce here is straight forwardly

applicable on many similar estimation or prediction problems, we concentrate

on estimating the population distribution of doctor consultation frequencies,

based on a moderate sample.

In a first step, Section 2, we search for a reasonable conditional distribution

model based on only those covariates that are available in both the sample and

the population of interest. As commonly acknowledged, the Poisson or nega-

tive binomial generalized linear model is the simplest way to model count data.

The chosen link is typically the logarithm, i.e. the canonical link. According

to the exploratory analysis, however, it may not be appropriate to use Poisson
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or negative binomial generalized linear models for our data problem since the

generalized linear model does not allow for the overdispersion parameter to de-

pend on covariates. As a way of overcoming these limitations associated with

Generalized Linear Models (GLM, see Nelder and Wedderburn, 1972) we tried

also the generalized additive model for location, scale and shape (GAMLSS),

introduced by Rigby and Stasinopoulos (2005). Nevertheless, all distribution

models in question should be adapted to the sample, as the final objective

is the optimal prediction or estimation of the unconditional distribution(s) of

the population(s) of interest. In a second step, Section 3, one can now derive

these distributions of interest as being a mixture of N(=population size) of the

above calculated conditional distributions. All we need is a clear idea of the

distribution of the covariates in the populations of interest and the assumption

that the a priori fitted conditional models hold throughout. In Section 3 we

present the numerical results. Section 4 concludes.

2 Modeling of the conditional distributions

The data set considered in this paper records the 23, 607 inhabitants of the

Sydney suburb Ryde in 1994 and 1995. The available information comprises

age, gender, and the number of doctor visits for both years. A more detailed

description of these data can be found in Heller (1997). In the original data set

there are 11 individuals (of the 23, 618) reporting more than 100 visits. As it

turned out that this was due to an excessive misuse of the health insurance card

by illegal immigrants for which is was impossible to obtain reliable corrections,

we decided to truncate the data at a maximum of 100 visits. Note that then we

have just 41 individuals in 1994, and 40 in 1995, with more than 52 visits, i.e.

more than one each week. As no information is available that would allow for

a sound detection of missmeasurement, we have not truncated these counts.

The summary statistics for the remaining set of N = 23, 607 inhabitants are

given in Table 1.

There are mainly two prediction problems of interest. First, practitioners usu-

ally only have access to surveys, which for local areas can be of moderate size.

From these they have to estimate the number of visits for a certain popu-

lation, or to predict them for an artificial population to calculate scenarios.

For example, in most industrialized countries a serious demographic change is

expected in the next two decades which will effect the health systems and pen-

sion funds. In order to simulate these two situations we first draw a random
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Table 1: Summary statistics, standard deviations in parentheses.
population sample

men women men women
number of individuals 11302 12305 101 99
average age in 1994 36 (22) 39 (24) 37 (21) 40 (23)
average age in 1995 37 (22) 40 (24) – –
average number of visits in 1994 5.2 (6.3) 6.9 (7.2) 5.0 (5.3) 6.8 (6.1)
average number of visits in 1995 5.6 (6.5) 7.2 (7.2) – –

sample of only 200 observations from 1994 with the summary statistics given

in Table 1. The extension to stratified sampling or other sampling schemes is

obvious. The aim is to estimate the distribution of the number of visits to the

medical doctor in 1994, and afterwards to predict it for 1995.

On the one hand it is well known that gender strongly interacts with age when

looking at visits to the doctor; on the other hand, age is the only additional

variable. Therefore, we first have to decide whether for a reasonable model

fit the sample should be split by gender. In order to study this, we plot the

number of doctor visits against age in Figure 2, separately for male and female.

The solid and dotted lines are simple local linear regression estimates. They

indicate a non-linear relationship between the mean of the number of doctor

visits with age and gender. Furthermore, the differences between males and

females seem to be quite complex and hard to capture in one common model.

Secondly, we analyze the variance-mean ratio to check for under or over dis-

persion. Figure 3 shows the variance-mean ratio by age and gender for the

random sample of 200 inhabitants in 1994. The ratio is clearly greater than

one for all levels of age, indicating inappropriateness of the Poisson model be-

cause of over dispersion. This exploratory analysis also reveals that age and

gender have a strong influence on both the mean as well as the variance of

visits; compare Figure 2 and 3.

Recall that the negative binomial regression model allows for overdispersion by

introducing an unobserved heterogeneity term for each observation i. Observa-

tions are assumed to differ randomly in a manner that is not fully accounted

for by the observed covariates. It assumes a negative binomial distribution

for the response variable y in which its mean µ is modeled as a function of

explanatory variables and a variance of the form µ + µ2σ, where σ is an un-

known overdispersion parameter which in turn shows no extra dependency on

the covariate values. However, from Figure 3 we notice that the variance-mean

ratio varies substantially over the covariate values. Consequently neither the
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Figure 2: The number of visits to a GP (left, in 1994; right, in 1995) plotted
against age for a simple random sample of 200 residents in Ryde. Local linear
regression estimate with cross-validation bandwidth ĥCV = 2.78 (black line,
male) and ĥCV = 2.78 (grey line, female)
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Figure 3: Variance by mean, separate for males and females, based on 200
random samples in 1994.

standard Poisson nor negative binomial generalized linear models seem to be

appropriate in this case.

As indicated, we will need to fit appropriate models of conditional distributions

to our data. Given our count data and the above findings we start with the

negative binomial model (see for example, Cameron and Trivedi, 1998, Section
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4.2.2), defined by

f(y|µ, σ) =

{
Γ(y+1/σ)

Γ(y+1)Γ(1/σ)
(µσ)y

(µσ+1)(y+(1/σ)) if x = 0, 1, · · ·
0 otherwise

with mean µ and variance µ+ µ2σ, see above. If the overdispersion is mainly

due to zero inflations, an alternative extension of the simple Poisson is the

zero inflated Poisson, i.e.

f(y|µ, α) = (1− α) · Po(y, 0) + α · Po(y, µ), Po(y, µ) = e−µµy/y!, (2.1)

where again µ is modeled as a function of the covariates whereas α is an

unknown scalar. An alternative to this extension of the Poisson we can also

consider a zero inflated negative binomial having µ as a function of covariates

and two unknown parameters σ and α. Different approaches to tackle the

zero-inflation or other finite mixtures are proposed e.g. by Gurmu (1997),

Deb and Trivedi (1997). See that issue also for further suggestions though

in different contexts. As we mentioned before, for modeling linear functions,

the linear models, lm(), and generalized lineal models, glm() of Hastie and

Pregibon (1992) in the R language can be used. However we are restricted to

model only the mean using lm() and glm().

In order to compare these three models we calculate the log-likelihood (llh),

the deviance difference ∆D (relative to the simple Poisson) and the AIC of the

fitted models as quality of fit statistics. The results are listed in Tables 2 and

3 respectively, separated by gender. Note first that the different criteria do

not contradict each other. The zero-inflated Poisson model provides a slightly

better fit than the Poisson model (not shown). However, the model which is

superior (according to the AIC) is the negative binomial. The zero-inflated

negative binomial shows no improvement compared to the negative binomial

because the zero inflation is unnecessary after the inclusion of σ. Consequently,

the observed deviance difference is zero relative to the negative binomial. The

AIC even indicates that the improvement in fit is insufficient to justify the

use of the more flexible but also more complex model. Recall that our main

objective is not the optimal fitting but prediction, which is much more sensitive

to overfitting due to complexity. Indeed, complexity is often one of the worst

enemies of good prediction.

However, the generalized linear considered so far is restricted to allow only the

location parameter to depend on covariates, and this only in a known para-
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Table 2: Quality of fit statistics using GLM (for males)
Model Link Terms llh ∆D AIC
zero-inflated Poisson log(µ) age+ age2 −294 − 596
negative binomial log(µ) age+ age2 −253 82 515
zero-inflated negative binomial log(µ) age+ age2 −253 82 517

Table 3: Quality of fit statistics using GLM (for females)
Model Link Terms llh ∆D AIC
zero-inflated Poisson log(µ) age+ age2 −360 − 728
negative binomial log(µ) age+ age2 −286 148 579
zero-inflated negative binomial log(µ) age+ age2 −286 148 581

metric way. Rigby and Stasinopoulos (1996, 2005) developed a general class of

univariate regression models, called the Generalized Additive Model for Loca-

tion, Scale and Shape (GAMLSS) with two important extensions. First, they

allow all distribution parameters to depend on a predetermined set of covari-

ates. Second, the modeling of these parameter functions may include random

effects or even be nonparametric, but being always of an additive structure.

The model assumes independent observations of the response variable given

the parameters, the covariates and the values of the random effects. It pro-

vides a very general distribution family for univariate continuous or discrete

response variables. In our case, under the negative binomial distributional

assumption, both the mean and the dispersion parameter can be modeled as

a function of age. To summarize, we consider the negative binominal density

f(y|µ, σ) and will estimate

log(µ) = g1(age), log(σ) = g2(age), (2.2)

where we first will set g1, g2 to be parametric quadratic function, and after-

wards nonparametric cubic splines (cs). For the latter we have plotted the

functions g1, g2 in Figure 4.

For comparing these two GAMLSS models, we use the well known fitted global

deviances GD = −2l(θ̂) = −2
∑n

i=1 l(θ̂
∗), the Akaike information criterion

AIC of Akaike (1974) and the Schwarz Bayesian criterion SBC of Schwarz

(1978). AIC and SBC are asymptotically justified as predicting the degree of

fit in a new data set, i.e. approximations to the average predictive error. The

global deviance, SBC and AIC are summarized as statistics relating to the

fit of the parametric and nonparametric GAMLSS models in Table 4 and 5,

again separately for males and females. Fortunately, the different criteria do

8
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Figure 4: Impact of age and gender on the GAMLSS nonparametric regression
estimates for mean g1 (left) and dispersion g2 (right), based on a random
sample of 200 residents in Ryde in 1994.

Table 4: Quality of fit statistics using GAMLSS (for males)
Model Link terms GD AIC SBC

negative binomial log(µ) age+ age2 506 518 533
(parametric model) log(σ) age+ age2

negative binomial log(µ) cs(age) 502 515 534
(nonparametric model) log(σ) cs(age)

give the same selections so that it is enough to look at the AIC here.

A further possibility to model dispersion in parametric or nonparametric neg-

ative binomial regression is the Vector Generalized Additive Model introduced

by Yee and Wild (1996). One can also find some discussions about applying

the provided R-package VGAM for count data in Berzel et al.(2006). However,

already now we can see, compare Tables 2 to 5 that the AIC always selects

the negative binomial generalized linear model throughout. This confirms our

statement that, depending on the amount of information (data and signal-noise

ratio), complexity is one of the worst enemies of prediction. Consequently, it

is questionable to what extend other flexible, semi- or non-parametric model

approaches can improve in our prediction problem. Nevertheless, in the final

step we will also consider the GAMLSS results for the following reason. Our

Table 5: Quality of fit statistics using GAMLSS (for females)
Model Link terms GD AIC SBC

negative binomial log(µ) age+ age2 568 580 596
(parametric model) log(σ) age+ age2

negative binomial log(µ) cs(age) 568 580 595
(nonparametric model) log(σ) cs(age)

9



objective is not the conditional but the unconditional density of visits, and we

do not know which model yields the best results there. Figure 4 shows that

the data fit indicates a nonlinear, nonconstant dispersion parameter. While

limiting to a quadratic modeling seems adequate, ignoring this finding might

cause prediction loss in the final step.

3 Predicting the population distribution

In this section, we come to this final step when applying our new method to

the two described problems. Both are for prediction: ones is using a random

sample of 101 males, and 99 females respectively, in 1994 to estimate the

distribution of number of visits for the male (and female) population in Ryde

in the same year (case study 1); another one is to predict the number of visits

prediction for male (or/and female) population in Ryde in 1995 using the same

random sample of males (or/and females) in 1994 (case study 2).

3.1 Case study 1

We start with estimating the distribution of number of doctor visits for the

population, given a sample in the same year. The method we suggest is not

simulation based; it provides transparent and reproducible estimators. We

have a sample {(xsi , ysi )}ni=1, and the covariates {xj}Nj=1 of the population of

interest. Recall that the required unconditional distribution of the population

of interest, say fN(y), is simply the marginal distribution of the joint density

fN(y, x) such that

fN(y) =

∫
fN(y, x)dx =

∫
fN(y|x)fN(x)dx . (3.1)

For finite populations we can simplify to

fN(x) =

{
1
N

if x = xj

0 if x 6= xj

and then obtain

fN(y) =
1

N

N∑
j=1

fN(y|xj). (3.2)
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Thus, what we need is a reasonable substitute in equation (3.2) for the con-

ditional densities fN(y|x). An obvious choice here is one of the conditional

densities fitted to the sample data, say fn(y|x). If fn(y|x) is a consistent es-

timate of fN(y|x), the consistency for fN(y) follows immediately. Also the

asymptotic properties can be derived directly for most cases via Taylor expan-

sion. In the nonparametric case this can be quite tedious, compare e.g. Van

Keilegom and Veraverbeke (2002) or Sperlich (2009). In both the nonparamet-

ric and the parametric world, the estimator of the unconditional density will

inherit consistency and convergence rate from the conditional density estimate.

What happens if fn(y|x) is not a consistent estimate of fN(y|x)? In that

case our procedure will still give a good approximate for fN(y) as long as the

relation between y and covariates x specified and estimated from the sample

can be carried over to the population reasonably well. In that case one could

think of

f̂N =
1

N

N∑
j=1

fn(y|xj)

as an N-fold mixture of pre-determined densities relating y to some covariates

x.

In our case we considered the negative binomial (NB) as a reasonable de-

scription of the relation between y and x. With the estimates ĝ1, ĝ2 obtained

from our sample {(xsi , ysi )}ni=1 in Section 2 we estimate then the unconditional

probability function of y by

f̂N(y) =
1

N

N∑
j=1

NB[y|ĝ1(xj), ĝ2(xj)]. (3.3)

For the different specifications, NB with quadratic g1 and constant g2 (the

GLM), g1 and g2 quadratic functions of age, and finally cubic splines for g1

and g2 (GAMLSS), the results are given in Figure 5. As in our example we have

records of the real number of visits, we can evaluate our predictions exactly.

It can be seen that the distribution of the estimated conditional mean (circles)

is much too narrow to be of use when we are interested in the distribution of

real visits (bars). In contrast, the predicted unconditional distribution (solid

circles) fits very well. While for men, it seems that it would be worth to pay

more attention on a possible zero inflation, the problem is less emphasized for

females.

For comparing the different GLM and GAMLSS specifications we need a more

11
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Figure 5: Predicted population distribution based on negative binomial GLM
estimates (upper), negative binomial GAMLSS parametric (middle) and cubic
spline (lower) specification for 1994.

careful analysis. In order to do so, we calculated the prediction error

1

M

M∑
m=1

LOSS[f̂N(ym)− fN(ym)], (3.4)

where M is the number of values y does take, i.e. 1, 2, · · · , 42 for males and

1, 2, · · · , 34 for females. LOSS[·] stands simply for abs[·] (L1-norm) and [·]2

(L2-norm) respectively. The outcome is listed in Table 6. According to this,

the negative binomial GAMLSS using spline performs best for both males and

females. It might however be surprising that for males it does much better

than GLM although the AIC was the same (515 for both CS-GAMLSS and

GLM). The problem with the AIC is that one needs to calculate the degrees

of freedom which can be quite problematic in nonparametric statistics, see

e.g. Sperlich et al. (1999) or Müller (2001). Note finally that based on our

observation in Figure 5 we also calculated the prediction errors for the zero-

inflated NB GLM; surprisingly, it never outperforms the NB GAMLSS using
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Table 6: L1 and L2-Norm prediction errors of case 1
L1-Norm L2-Norm

Model males females males females
negative binomial GLM .02480 .03558 .00385 .00451

zero-inflated negative binomial .02481 .03558 .00390 .00451
negative binomial GAMLSS .02483 .03531 .00389 .00448
NB GAMLSS using spline .02334 .03193 .00371 .00346

spline.

3.2 Case study 2

Even more challenging - and also more interesting for health economics and

political decision making - is the prediction of visits to the medical doctor for

the future.

Clearly, the theoretical findings from equations (3.1) to (3.3) stay all the same.

The only difference is that, at least for far horizons, it is to be expected that

the relation between y and the used covariates will change. The prediction

performance of our method to the future depends on the persistency of the

relation we estimate from the sample. To keep the problem simple we will

use the same sample, i.e. the results obtained in Section 2 to now predict the

distribution of visits to the doctor for 1995. Applying the same procedure as

we used in the first case study, we get the predictions illustrated in Figure 6. At

first glance the prediction performance looks even better than the estimation

performance in case 1. This is due to the lack of zero inflations in the recorded

real visits. This now also explains why the different criteria in Section 2 opted

for models without zero-inflation. All these criteria are constructed thinking of

an infinite hyperpopulation, i.e. of a distribution from which the populations

in 1994 and 1995 are just random samples. Then, a zero-inflation would fit

better the 1994 data but constitutes an overfit for the hyperpopulation.

As for the first case study we again analyzed the prediction errors, see equation

(3.4), of our different specifications, summarized in Table (7). We get a similar

ranking of the specifications as in case study 1 but, as already noted from Fig-

ure 6, with better total performance. Again, the nonparametric NB GAMLSS

clearly gives the best predictions for both the male and female populations.
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Figure 6: Predicted population distribution based on negative binomial GLM
estimates (upper), negative binomial GAMLSS parametric (middle) and cubic
spline (lower) specification for 1995.

Table 7: L1 and L2-Norm prediction errors of case 2
L1-Norm L2-Norm

Model males females males females
negative binomial GLM .02402 .03407 .00367 .00411

zero-inflated negative binomial .02403 .03407 .00371 .00411
negative binomial GAMLSS .02405 .03369 .00368 .00409
NB GAMLSS using spline .02238 .03110 .00348 .00325

4 Conclusions

The number of visits to the medical doctor is of essential interest in health

economics, be it for political decision making or the planning of health care

institutions and insurance. While there exist many econometric model ap-

proaches to study the demand for health care, it is hard to find a simple but

effective method to estimate and predict the unconditional distribution of the
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number of visits. Often demographic information which is easily available even

on the census level turns out to be more helpful for estimating – not to men-

tion for prediction and scenario simulations – the distribution of the number

of visits than complex econometric models. Doubtless the latter have their

particular justification in more sophisticated analysis.

A careful model specification and selection is the necessary prior step to obtain

the conditional relationship between the number of visits and the demographic

factors. Here, we fitted different conditional densities to the sample data. Then

a well known integration principle yields a predictor for the required uncon-

ditional distribution of visits. In case the conditional sample distribution is

a consistent estimator for the population analogue, this predictor inherits its

asymptotic properties, in particular consistency and convergence rate. In case

the population of interest follows a different distribution than the sample at

hand, we still have the interpretation of our predictor as an intuitively appro-

priate N-fold mixture distribution. This may explain the excellent performance

of our method despite its simplicity, in both case studies: for the estimation

of the unconditional population distribution, and for the future prediction.

The model selection might be done via standard criteria as we used. However,

one should not forget that these try to select the best estimator for the condi-

tional distribution whereas the final objective is the unconditional one. This

or the problematic calculation of the degrees of freedom for nonparametric es-

timators would explain that, for example, the AIC did not select the optimal

model for the prediction of female visits to the medical doctor. In our case

studies we were in the fortunate situation of knowing the outcome and could

therefore compare the prediction with the real number of visits. In practice

we recommend to evaluate the final predictor of the unconditional distribution

on the observed sample. Note that due to the explicit analytic form of our

estimator / predictor our results are transparent and reproducible. We do not

use any random-, simulation- or resampling methods. As a flexible method

it can be incorporated in any mixed effects or more sophisticated economet-

ric models. Furthermore, it can be easily extended to any other context and

allows for further inference.

Moreover, the here originally introduced method can be applied equally well

to any other prediction problem of discrete distributions. It does not matter

whether these are predictions (or estimations) for presently real, possible future

or any fictitious population. It is therefore also an excellent tool for future

predictions, scenarios and policy evaluation.
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