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Abstract

Due to dependency of energy demand on temperature, weather
derivatives enable the effective hedging of temperature related fluctu-
ations. However, temperature varies in space and time and therefore
the contingent weather derivatives also vary. The spatial derivative
price distribution involves a risk premium. We examine functional
principal components of temperature variation for this spatial risk pre-
mium. We employ a pricing model for temperature derivatives based
on dynamics modelled via a vectorial Ornstein-Uhlenbeck process with
seasonal variation. We use an analytical expression for the risk pre-
mia depending on variation curves of temperature in the measurement
period. The dependence is exploited by a functional principal compo-
nent analysis of the curves. We compute risk premia on cumulative
average temperature futures for locations traded on CME and fit to
it a geographically weighted regression on functional principal compo-
nent scores. It allows us to predict risk premia for nontraded locations
and to adopt, on this basis, a hedging strategy, which we illustrate in
the example of Leipzig.
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1 Introduction

Weather events play an important role for industries with profits depending
on temperature or other weather conditions. Examples of such industries are
energy, tourism and agricultural sectors. As a result a market for trading
on temperature events has recently emerged. The traded financial contracts
allowing for the transfer of weather risks are called weather derivatives. The
value of those contracts depends on a certain weather event, which is often
the average temperature.

This kind of financial instrument in OTC markets was introduced in 1997 for
the first time according to Considine (2000). Exchange weather derivatives
(WD) were lauched by the CME in 1999. Since then the trading volume has
had an upward trend and geographic coverage of underlying weather indices
has expanded as well. Currently there is a wide range of products available on
the CME. Besides WDs based on temperature indices, there are contracts on
hurricane, frost, snowfall and rainfall (see http://www.cmegroup.com/trading
/weather/). Temperature based derivatives are the most popular and have
the widest geographical range. Contracts for 24 cities in the US, six in
Canada, 11 in Europe, three in Australia and three in Japan are available
for trading to date.

Basic types of contracts are calender period futures and options on heating
degree days (HDD), cooling degree days (CDD), cumulative average tem-
perature (CAT) and the cumulative total of 24-hour average temperatures
(C24AT). A single day calculation of the corresponding temperature indices
is carried out the following way: HDD index is computed as the maximum
of zero and 65◦ F (18◦ C) minus the average temperature of the day, CDD
correspondingly as the maximum of zero and the average temperature minus
65◦ F (18◦ C). HDD’s and CDD’s are then accumulated over the correspond-
ing contract period. CAT and C24AT cumulate daily average temperature
(average of maximum and minimum temperature) and 24-hour average tem-
perature of each day respectively. Trading months (seasons) for CDD and
CAT contracts are April to October, for HDD October through to April and
for C24AT all months of the year.

A CME traded future contract on such indices corresponds to a swap, such
that one party gets paid if the realised index value is greater than the strike
(price of the contract) and the other party benefits if the index value is be-
low. The notional value of one contract is 20 USD (20 EUR, 20 GBP or 2500
JPY) per index point, in which the contracts are also quoted.
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The futures market for temperature indices is primarily driven by the en-
ergy sector, which recognised the hedging power of WD in reducing earn-
ings fluctuations due to the weather dependent demand, see Perez-Gonzalez
and Yun (2010). Although, the European weather market is behind the
US, primarily by trading volume, it is growing and the recent hot summer
activated trading with European CAT futures. The trading volume for Au-
gust 2010 was 2.6 Mln. GBP for UK trades and 1.71 Mln. EUR for Euro-
pean trades (as reported by http://www.trading-risk.com/european-weather-
trading-flourishes-in-the-heat).

Figure 1 illustrates the estimated dependence between German electricity
demand and CAT monthly from 199601 to 201009 (data from EUROSTAT).
Using a semiparametric partial linear model as in Akdeniz-Duran et al. (2011)
one sees a nonlinear relationship. The described effect of temperature on de-
mand justifies hedging potential of weather futures. Similar observations on
aggregate energy intensity and temperature indices can be found in Metcalf
(2008) and with respect to natural gas consumption and HDD in Asche et al.
(2008).

However, geographical coverage of the European market for WD is still small.
There are 11 cities on which temperature derivatives are traded. For many
important locations of weather dependent industries no weather derivatives
are traded. The need to calculate prices for those regions therefore arises.

Many authors investigated the problem of finding an appropriate pricing
model for WD. The main stream approaches can be divided in those that
derive prices purely from temperature dynamics and those that take into
account utility and profit functions of weather market participants. Dornier
and Querel (2000) and Alaton et al. (2002) fitted an Ornstein-Uhlenbeck
process to the temperature observations and demonstrated effect of mean,
variance and market price of risk on CDD and HDD option prices following
the first approach. Campbell and Diebold (2005) applied an autoregressive
process of a higher order to model deseasonalised temperature and observed
seasonality in temperature variation. Benth et al. (2007) and Härdle and
López Cabrera (2011) propose to model temperature dynamics with a de-
terministic seasonal component and a higher order continuous autoregressive
process with seasonal variation. They also derive arbitrage free prices for
future contracts on CDD and CAT indices.
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Figure 1: The impact of cumulated average temperature, estimated assum-
ing linear and nonlinear underlying dependence from Akdeniz-Duran et al.
(2011). Log electricity consumption against monthly cumulated temperature
index (circles) and the estimated linear (green) and nonparametric (red) ef-
fect of temperature with 95% confidence intervals (dashed).

For the approaches which impute utility and profit functions of weather mar-
ket participants, see for example Chaumont and Müller (2006), Horst and
Müller (2007) or Lee and Oren (2009) who assume agents maximise their
utility possibly dependent on weather and derive optimal pricing in a par-
tial market clearing setting. Davis (2001) proposes a profit based pricing by
marginal value.

In the current work we stick to the first data driven approach since we have
trading WD data from the CME as well as temperature available and consider
stochastic dynamics of temperature as a basis for pricing, avoiding thereby
restrictive assumptions on utility and profit functions. Temperature based
WD on the CAT index are considered, currently traded for Berlin, Amster-
dam, Barcelona, Essen, London, Madrid, Paris, Rome and Stockholm. They
are used to construct a spatial model for the involved risk premia. Risk pre-
mia may be then calculated for arbitrary locations using functional principal
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component scores of temperature variation. We also provide an example of
a hedging strategy using CAT futures.

This paper is organised as follows. In the next section the theoretical pricing
model for temperature based derivatives and spatial specification are consid-
ered. Section 3 continues with applying the theoretical model to real tem-
perature data and computing risk premia and reports the estimation results.
We give an example of hedging with WD for the city of Leipzig. Finally, we
conclude and give an outook on future work.

2 Pricing Model for Temperature Futures

A reliable valuation procedure for a WD plays a key role in the effectiveness
of transfering risk. Any pricing model for WD must be complicated by the
fact that the underlying (weather) can not be traded and therefore WDs
can not be replicated by long positions in the underlying and risk-free asset.
Additionally, markets for WDs are not very liquid and thus they can’t be
replicated by other WDs.

We follow here the pricing methodology applied by Härdle and López Cabrera
(2011) originally developed by Benth et al. (2007).

2.1 Temperature Dynamics in Discrete Time

For a pricing model for WDs, one has to find a good approximation for
the evolution of the underlying, in this case – the temperature. From the
observed data we construct a discrete time model:

• Let Tt be the (average) temperature in day t, t = 1, . . . ,M :

Tt = Λt + Yt, (1)

• Λt is a deterministic seasonal function:

Λt = a+ bt+
s∑
i=1

c2i cos {2iπt/365}+ c2i+1 sin {2iπt/365} , (2)

• Yt is a p-order autoregressive process

Yt = α0 +

p∑
i=1

αiYt−i + σtεt, (3)
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• εt is white noise and σt
def
= σ(t) is the smooth function of time repre-

senting variation of temperature on each day of the Julian calender.

The seasonality Λt in (2) is assumed to have a periodical form with time
trend. The parameter a represents average temperature over the years and
b stands for the deterministic time trend. The set of parameters c = {ci}si=1

captures seasonal/periodical dynamics of temperature. Variation of temper-
ature is assumed to follow a seasonal pattern as well. The number of Fourier
series terms s is typically region/climate specific. In a particular application
s can be chosen by Schwarz information criteria.

The stochastic process Yt in (3) is modelled by an autoregressive process.
However, before one can proceed, the resulting series {Yt}Tt=1 has to be tested
for stationarity. For this purpose we apply two tests: Augmented Dickey-
Fuller (ADF) test for a unit root and KPSS test for stationarity. The order
of the appropriate autoregressive process is chosen via Box-Jenkins analysis,
Box and Jenkins (1970) and BIC, Hurvich and Tsai (1989).

Since there is seasonal variation in the residuals, the process in (3) is het-
eroscedastic and we have to account for it in the model. Therefore we group
the residuals in 365 groups, so that each group represents residuals of the
same day over all years. Then we compute the variation of each day and
smooth it with Fourier series.

2.2 Continuous Time Model for Temperature Dynam-
ics

In order to apply a pricing model it is convenient to switch to continuous
time and transfer our obtained discrete time temperature dynamics for Tt to
a continuous time process T (t). For that purpose we use the continuous time
autoregressive model (CAR(p)) with seasonal variation described by Benth
et al. (2007).

A CAR(p) model can be represented in terms of a state-space p-dimensional
Ornstein - Uhlenbeck process. Then, dynamics of temperature T (t) as con-
tinuous function of time can be rewritten:

T (t) = Λ(t) +X1(t) (4)

where Λ(t) is a continuous time version of Λt in (2), Xk(t) is the k-th co-
ordinate of the stochastic process X(t), defined by the vectorial Ornstein-
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Uhlenbeck differential equation:

dX(t) = AX(t)dt+ epσ(t)dB(t) (5)

with ek denoting k-th unit vector in Rp, σ(t) > 0 is a real valued and inte-
grable function and A is a (p× p)-matrix, defined as:

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−α̃p −α̃p−1 −α̃p−2 . . . −α̃1


The explicit solution to this stochastic differential equation is:

X(s) = exp {A(s− t)x}+

∫ s

t

exp {A(s− u)} epσ(u)dB(u). (6)

For details see Gillespie (1996). Stationarity of such a process is ensured
by the negative real parts of all eigenvalues of A, see below. To identify
the CAR(p) model associated with the fitted AR(p) model we use Euler
approximations of the Xt dynamics with time step 1 and obtain for X1,t

from (4),

for p = 1 : X1(t+ 1) = (1− α̃1)X1(t),

p = 2 : X1(t+ 2) = (2− α̃1)X1(t+ 1) + (α̃1 − α̃2 − 1)X1(t),

p = 3 : X1(t+ 3) = (3− α̃1)X1(t+ 2) + (2α̃1 − α̃2 − 3)X1(t+ 1)

+(−α̃1 + α̃2 − α̃3 + 1)X1(t),

p = 4 : X1(t+ 4) = (4− α̃1)X1(t+ 3) + (3α̃1 − α̃2 − 6)X1(t+ 2)

+(4 + 2α̃2 − α̃3 − 3α̃1)X1(t+ 1)

+(α̃1 + α̃3 − α̃4 − α̃2 − 1)X1(t).

where α̃1, α̃2, α̃3, . . ., α̃p denote the autoregressive coefficients of the CAR(p)
model (5) and α1, α2, . . . αp denote the coefficients of AR(p). By identification
of coefficients we obtain, e.g. for AR(4): α̃1 = 4 − α1, α̃2 = 3α̃1 − α2 − 6,
α̃3 = −3α̃1 + 2α̃2−α3 + 4 and α̃4 = α̃1− α̃2 + α̃3−α4− 1 parameters of the
CAR(4) model.
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2.3 Pricing of Temperature Futures

An important feature of the market for temperature derivatives is its incom-
pleteness. The underlying (temperature) is not tradeable and the deriva-
tives can not therefore be replicated. Although the markets for temperature
derivatives are incomplete, their prices must be arbitrage-free, since they are
tradeable assets. Therefore we assume that a pricing measure Q = Qθ(t)

exists and can be parametrized via Girsanov’s theorem, see Øksendal (2000)
by θ(t), the time varying market price of risk (MPR).

F (t, τ1, τ2) = EQθ(t) [YT {T (t)|Ft}] (7)

with 0 ≤ t ≤ T , YT {T (t)|Ft} the payoff of the temperature index at T > t.
The temperature dynamics (5) under Qθ becomes:

dX(t) = {AX(t) + epσ(t)θ(t)}dt+ epσ(t)dBθ(t), (8)

where Bθ(t)
def
= B(t)−

∫ t
0
θ(u)du. Explicit solution of (8) is:

X(s) = exp {A(s− t)x} +

∫ s

t

exp {A(s− u)} epσ(u)θ(u)du

+

∫ s

t

exp {A(s− u)} epσ(u)dBθ(u). (9)

With this result we get a feasible model for pricing temperature futures. Here
the unknown parameter θ(t) is the market price of risk. We can define the
CAT index as:

CAT(τ1, τ2) =

∫ τ2

τ1

T (u)du,

where T (t) is the average temperature of day t. From (7) we obtain:

FCAT (t,τ1,τ2) = EQθ(t)
{∫ τ2

τ1

T (s)ds|Ft
}
. (10)

By inserting the temperature dynamics (4) in (10) and using (9) we get for
0 ≤ t ≤ τ1 < τ2, see Benth et al. (2007):

FCAT (t,τ1,τ2) =

∫ τ2

τ1

Λ(u)du+ at,τ1,τ2Xt +

∫ τ1

t

θuσ(u)at,τ1,τ2epdu

+

∫ τ2

τ1

θ(u)σ(u)e>1 A
−1 [exp {A(τ2 − u)} − Ip] epdu, (11)
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with at,τ1,τ2 = e>1 A
−1 [exp {A(τ2 − t)} − exp {A(τ1 − t)}].

With the expressions above we have the tools for pricing temperature futures.
Theoretical constructs for CAT futures depend on the unknown parameter
θ(t). This parameter also specifies the magnitude of the risk premia defined
below for ith location and jth contract.

RPij(t, τ1, τ2) = FCAT,ij(θ, t, τ1, τ2)− FCAT,ij(0, t, τ1, τ2).

Plugging this into (11) and setting t = τ1 we obtain an expression for the
risk premium:

RPij(τ1, τ2) = FCAT,ij(θ, t = τ1, τ2)− F̂CAT,ij(0, t = τ1, τ2) + εij

=

∫ τ2

τ1

θ(u)σ(u)e>1 A
−1 [exp {A(τ2 − u)} − Ip] epdu+ εij.

(12)

Here εij represents the stochastic component in risk premium. Now, setting
w(t) = e>1 A

−1 [exp {A(τ2 − t)} − Ip] ep and θw(t) = θ(t)w(t) we get (13).

RPij(τ1, τ2) =

∫ τ2

τ1

θiw(u)σij(u)du+ εij (13)

On the right hand side of (13) we have the inner product of two functions
of time, whereas a scalar risk premium appears on the left. A functional
regression with scalar response is therefore considered.

2.4 Functional Principal Components of σij(t) as Input
in Geographically Weighted Regression

We deal with functional regression by extracting functional principal com-
ponents of variation first and then regressing the dependent risk premium
on the resulting scores, see Ramsay and Silverman (1997) for details. We
decompose the σij(t) variation curve into an average curve σ̄i(t) for the ith
location and deviations from it.

σij(t) = {σij(t)− σ̄i(t)}+ σ̄i(t)

9



Then (13) becomes

RPij =

∫ τ2

τ1

θiw(u)σ̄i(u)du+

∫ τ2

τ1

θiw(u) {σij(u)− σ̄i(u)}︸ ︷︷ ︸
FPCA for σij

du.

The principal component scores cijk for σij(t)− σ̄i(t) are given as:

cijk =

∫
ξik(t) {σij(t)− σ̄i(t)} dt,

ξik(t) orthonormal eigenfunctions of the covariance operator. Having ob-
tained the scores we regress the risk premium RPij at t = τ1 on the first
k = 1, 2, . . . , K scores.

RPij = βi0 +

∫ K∑
k=1

βikξik(t){σij(t)− σ̄i(t)}dt+ εij. (14)

This expression provides a regression setting for the sample of risk premium,
with spatially varying coefficients.

With (14) one has risk premia for geographically separated locations, for
which temperature derivatives are traded. We apply geographically weighted
regression to model risk premia in this spatial heterogeneity setting, see
Fotheringham et al. (2002). This specification introduces distance based
weights, accounts for nonconstant variance over space and local heterogene-
ity of the spatial process. The model is specified by:

W
1
2
i RP = W

1
2
i Cβi + ei, ei iid. (15)

with RP = (RP1,1, RP2,1, . . . , RPn,1, RP1,2, . . . . . . , RPn,7)
>.

Here, C =

( c1,1,1 ... c1,1,K
c2,1,1 ... c2,1,K
... ... ...

cn,7,1 ... cn,7,K

)
is the matrix of FPCA scores and possible dummy

variables, Wi, i = 1, . . . , n is a block diagonal weighting matrix with wi =

diag
[
exp

{
−1

2

(
di1
h

)2}
, . . . , exp

{
−1

2

(
din
h

)2}]
on the diagonal, dil, l = 1, . . . , n

– distances to ith city, n-total number of locations and K-number of PC
scores. h is the decay bandwidth. The optimal bandwidth h∗ can be found
by cross validation:

h∗ = arg min
h∈H

7n∑
m=1

{
RPm − R̂P 6=m(h)

}2

, (16)
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In (16) R̂P 6=m(h) denotes the estimated risk premium without its mth value
and using bandwidth h, see Fotheringham et al. (2002) for the deriviations.
One can also consider a contract dependent bandwidth h∗(j), however in the
present application it did not differ much over j, so to continue we use (16) to
compute h∗. In this model βi is a distance weighted sum of the other spatial
coefficients, ωi are the corresponding weights. The estimates are produced
using:

β̂i =
(
C>WiC

)−1
C>WiRP. (17)

We should mention that the geographically weighted regression presented
above is a local linear technique to quantify spatial relationships, its results
hold only locally. Therefore an out-of-sample forecast can be obtained only
locally as well.

3 Empirical Risk Premia and HedgingWeather

Exposure in Electricity

Below we present the results of the empirical analysis for European CAT
futures and develop a hedging strategy for energy companies.

3.1 Data

For the empirical analysis we took nine European cities, for which CAT fu-
tures are traded on the CME. Temperature data were downloaded from the
Deutscher Wetterdienst (Berlin and Leipzig) and Bloomberg database (Ams-
terdam, Barcelona, Essen, London, Madrid, Paris, Rome, Stokholm). Prices
of CAT futures quoted in Bloomberg were taken to compute risk premia on
traded locations. Table 1 summarises the time length and number of obser-
vations of the available datasets. The 29th February was removed from all
the data.

The observations are daily average temperatures Tt which are computed as

Tt =
Tmaxt +Tmint

2
. Missing values in the data from Bloomberg were substituted

by the mean of the time neighbouring observations. Relevant risk premia
were computed taking prices at the first day of the measurement period or
the next trading day if this day was a holiday and were averaged over the
available years.
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City First Date Last Date First FCAT Trade
Amsterdam 19730101 20101231 20030401

Berlin 19480101 20101231 20030401
Barcelona 19730101 20101231 20050401

Essen 19700101 20101231 20050401
London 19730101 20101231 20030401
Madrid 19730101 20101231 20050401
Paris 19730101 20101231 20030401
Rome 19730101 20101231 20050401

Stockholm 19730101 20101231 20030401
Leipzig 19730101 20101231 –

Table 1: Information about Weather Data. Source: Deutscher Wetterdienst,
Bloomberg.

3.2 Temperature Dynamics and PCA of temperature
variation

First we fit a seasonal function Λt of the form (2) to Tt. Orders s1, s2 for the
seasonality were chosen by BIC. The estimated parameters are presented in
tables 2-4.

We note, that the linear time trend in Λt is significant for all the cities
on 5% level, it represents the scope of global warming effects in individual
locations and have been identified to have a significant impact on energy use,
see Rosenthal et al. (1995).
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Amsterdam Barcelona Berlin
estimate t.stat estimate t.stat estimate t.stat

a 9.16 161.55 14.87 387.81 9.24 183.72
b 1.3 · 10−4 18.67 1.6 · 10−4 32.77 0.4 · 10−4 10.12
c1 -2.60 -64.88 -3.38 -124.59 -2.86 -80.52
c2 -7.04 -175.68 -6.58 -242.68 -9.35 -263.04
c3 0.45 11.25 1.10 40.43 0.15 4.10
c4 – – -0.06 -2.37 -0.00 -0.11
c5 – – 0.03 1.23 -0.05 -1.43
c6 – – -0.15 -5.41 0.25 6.95
c7 – – 0.09 3.32 0.14 3.88

Table 2: Estimated parameters of seasonality (2) for Amsterdam, Barcelona,
Berlin

After removing seasonality Λt we apply ADF and KPSS tests to check for
the stationarity of Yt. The nonstationarity of residuals could be rejected for
all locations according to ADF test statistics. The KPSS test does not reject
the hypothesis of stationarity in residuals as well. Since there are significant
autocorrelations and partial autocorrelations in residuals we fit an AR(p)
with order p determined by BIC. Tables 5-7 report the estimated coefficients
of AR(p).

Essen London Madrid
estimate t.stat estimate t.stat estimate t.stat

a 10.66 171.30 10.81 217.33 13.97 286.51
b 0.1 · 10−4 0.66 0.7 · 10−4 11.10 0.9 · 10−4 14.64
c1 -2.32 -52.79 -2.48 -70.43 -3.30 -95.68
c2 -7.82 -177.64 -6.42 -182.57 -8.93 -259.17
c3 0.49 11.21 0.77 21.85 1.67 48.46
c4 – – 0.23 6.66 0.25 7.21
c5 – – – – -0.19 -5.39
c6 – – – – -0.34 -9.87

Table 3: Estimated Parameters of seasonality (2) for Essen, London, Paris
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Paris Rome Stockholm
estimate t.stat estimate t.stat estimate t.stat

a 11.90 208.25 14.79 340.24 6.92 113.94
b 0.3 · 10−4 3.99 1.1 · 10−4 20.98 0.6 · 10−4 7.32
c1 -2.46 -60.90 -3.50 -113.90 -3.25 -75.72
c2 -7.50 -185.70 -8.02 -260.75 -9.75 -227.00
c3 0.71 17.54 0.93 30.18 0.26 5.98
c4 – – 0.16 5.33 0.83 19.27
c5 – – -0.01 -0.29 -0.21 -4.94
c6 – – -0.21 -6.77 0.11 2.46
c7 – – – – 0.26 6.06

Table 4: Estimated Parameters of seasonality (2) for Paris, Rome, Stockholm

As pointed out in the previous section, we find principal component scores
by weighting σij(t) with the eigenfunctions of its covariance operator. The
eigenfunctions for σij(t) are shown in Figure 4. They are to be interpreted
as different positive and negative weights given deviations of temperature
volatility from the mean curve σ̄.

Since first three PCs already explain more than 95% of variance in the data,
we discard further PCs in our analysis. The resulting three PCs are combined
in a matrix of explanatory variables in spatial regression.

Amsterdam Barcelona Berlin
estimate t.stat estimate t.stat estimate t.stat

α1 0.89 105.05 0.70 83.14 0.92 139.69
α2 -0.19 -16.76 0.03 3.17 -0.20 -23.14
α3 0.09 10.46 0.01 1.29 0.08 11.99
α4 – – 0.03 3.64 – –

Table 5: Estimated Parameters of AR(p) for Amsterdam, Barcelona, Berlin

Figure 3 displays the σ̂(t) of (3) of the nine cities and their Fourier smoothed
version, which will be analysed with means of principal component analysis
for functional data. We now proceed with calculating FCAT prices based on
the formula (11). Table 8 reports the observed market prices and the model
prices, calculated for August 2010. To complete our spatial regression setting
we estimate risk premia according to (13) and average it over the years.
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Figure 2: Daily temperature observations of the last 10 years and fitted
seasonality.

Essen London Madrid
estimate t.stat estimate t.stat estimate t.stat

α1 0.88 104.21 0.79 92.62 0.78 92.22
α2 -0.16 -14.47 -0.10 -9.42 -0.05 -4.57
α3 0.05 4.14 0.04 3.84 -0.01 -1.18
α4 0.03 3.22 0.03 3.23 0.04 4.30

Table 6: Estimated Parameters of AR(p) for Essen, London Madrid
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Paris Rome Stockholm
estimate t.stat estimate t.stat estimate t.stat

α1 0.91 106.98 0.82 97.09 0.90 106.36
α2 -0.19 -16.99 -0.09 -8.12 -0.19 -16.70
α3 0.07 8.23 0.03 3.63 0.10 11.46

Table 7: Estimated Parameters of AR(p) for Paris, Rome, Stockholm
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Figure 3: Estimated daily temperature variations (grey) and Fourier
smoothed series (black).
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Figure 4: Eigenfunctions of temperature variation corresponding to the 3
largest eigenvalues of covariance operator

3.3 GWR Model

Now we consider our estimated risk premia and corresponding principal com-
ponent scores in the geographically weighted regression. This local linear
method allows for the capture of local patterns and heterogeneity in spatial
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City FCAT (20100801, 20100831) F̂CAT (20100801, 20100831, θ = 0)

Amsterdam 557 540
Barcelona 769 778

Berlin 607 573
Essen 570 577

London 594 577
Madrid 769 798

Paris 617 605
Rome 786 747

Stockholm 569 543

Table 8: Observed and estimated with θ = 0 FCAT prices for August 2010

risk premium generation, induced by temperature variation.

RPij = βi0 +

∫ K∑
k=1

βikξik(t){σij(t)− σ̄i(t)}dt+ εij (18)

= βi0 +
3∑

k=1

βikcik + βi4d1 + βi5d2 + ε̃ij, ε̃ij iid.

where cik, k = 1, 2, 3 denote kth PC score for ith location, i = 1, . . . , 9, d1 and
d2 are dummy variables to capture the effect of location on the north sea coast
(London, Amsterdam) and south sea coast (Barcelona, Rome) respectively,
and βi0, βi1, βi2, βi3, βi4 and βi5 are regression coefficients corresponding to
the scores and dummy variables.

Following (15) we carry out the estimation. The estimated model param-
eters are shown in Table 9. The in-sample-fit is presented in Figure 5.
Thereby the R2

loc statistics measures how well the model calibrated at loca-
tion i can replicate the data at the vicinity of i. For some cities (Berlin,
Rome, Stockholm) replication quality is rather high. For CAT futures on
Amsterdam, Essen, London and Paris the model explains the low part of
the variability, there it must be dominated by other factors rather than tem-
perature variation. The F -test introduced by Fotheringham et al. (2002) to
compare GWR with a global OLS model yields a p-value of 0.0061, global
model therefore can be rejected on 1% significance level.

We take Leipzig, Germany as an example to demonstrate a possible inter-
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Figure 5: Risk premia (dots), fitted values by GWR (solid line) and 95% CI

polation of risk premia to the locations in between the traded ones. We
first, estimate seasonality Λt and the dynamics of stochastic process Yt, see
Table 10. In a further step we find the eigenfunctions, bottom left plot in
Figure 6, of the covariance operator and the resulting functional PC for σt
in Leipzig. Following (17) we find spatial coefficients β using distance based
weights for Leipzig and find prediction of risk premia using PC scores of
Leipzig. Nonzero weights for prediction of risk premia in Leipzig were given
to Berlin and Essen. The bottom right plot in Figure 6 shows predicted risk
premia for Leipzig in comparison to the city with the highest weight (Berlin).
Consequently, we are able to calculate FCAT prices, for Leipzig they would
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City β0 β1 β2 β3 β4 β5 R2
loc

Amsterdam −4.68∗∗ −5.28 15.31∗∗ 15.04∗∗ −0.30 −3.39 0.25

Barcelona −7.35 6.17∗∗ −5.53 8.27 5.77 0.03 0.34

Berlin −3.06 −8.07 17.58∗∗ −9.90∗ −6.07 −7.48 0.61

Essen −5.10∗∗ −4.86 14.87∗∗ 10.85∗ −1.30 −3.81 0.30

London −3.27 −5.43 12.89∗∗ 18.14∗∗ 2.37 −3.83 0.22

Madrid −10.40 11.17∗∗ −7.98 30.55∗∗ 12.36 3.42 0.42

Paris −3.75∗∗ −2.85 10.98∗ 13.38∗ 1.01 −3.67 0.21

Rome −5.54◦ 12.00∗ −23.38∗∗ −77.01∗∗ −2.83 −4.85 0.73

Stockholm 10.82 −16.29 16.91∗∗ −41.96∗∗ −20.79◦ −21.54 0.72

Table 9: Estimated Parameters of GWR. ∗∗ indicate significance on ≤ 1%
level, ∗ – on 5% and ◦ – on 10%.

estimate t.stat
a 8.75 134.36
b 11·10−5 10.67
c1 -2.82 -61.30
c2 -8.92 -193.82
c3 0.43 9.33
c4 -0.01 -0.29
c5 -0.05 -1.09
c6 0.24 5.18
c7 0.16 3.42
α1 0.97 115.26
α2 -0.27 -23.63
α3 0.11 12.76

Table 10: Estimated parameters of seasonality Λt and AR(3) for Leipzig

be 322, 463, 495, 661, 536, 358 and 241 index points for April through to
October 2010.

3.4 Hedging Weather Exposure in Electricity

As already pointed out in the introduction, electric utilities are exposed to
weather risk. Although many other hedging instruments like power futures
are available, they are primarily suitable for hedging price and cost risks,
not quantity risk. Temperature derivatives on the contrary are designed to
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Figure 6: Temperature seasonality (top left), seasonal variation (top right),
eigenfunctions of temperature variation for Leipzig (bottom left), left plot
and predicted risk premium (black line) in comparison to risk premia of
Berlin (grey), bottom right

hedge the quantity risks faced by the energy sector. An example would be
an electricity utility exposed to high costs of meeting additional demand on
eletricity during unusually hot summers. With WD available, the utility may
enter a futures contract on CAT for the summer months. If the summer is
hot it will receive a reimbursement for the extra costs. In this section we
consider an electricity utility, which is supposed to face weather dependent
demand as in Figure 7.
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Figure 7: Illustration of hedging strategy with August CAT future price 536◦

C estimated from the model

We now can use the results from the previous sections to study an example of
a hedging strategy for an electricity provider in Leipzig. Using the estimated
risk premia for Leipzig we can obtain the FCAT price, e.g. for August 2010
F̂CAT = 536◦ based on historical data. Let c be the marginal cost of meeting
additional log demand of 1% per person, b is the estimated marginal effect
of 1◦C CAT on log demand starting from threshold FCAT , here it is the slope
of the solid green line in Figure (7). If α is the number of the WD hold and t
– tick value of the WD (for traded futures on continental Europe – 20 EUR,
UK – 20 GBP). Then, the exposure to temperature caused fluctuations in
demand is ≈ cb(CAT − FCAT ) and the possible benefit of holding α tem-
perature futures is αt(CAT − FCAT ). Hedging under no transaction costs is
enhanced by buying α∗ CAT futures such that holds cb = α∗t.

Other hedging possibilities are described in Leggio and Lien (2002). The
results presented above can be extended straight forwardly to risk premia
on other kinds of temperature futures and therefore enable the hedging of
weather sensitive demands in different spatial points.
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4 Conclusion

We examined spatial risk premia on European CAT futures at the start of
the measurement period. By means of geographically weighted regression
we quantified the effect of temperature variation on the risk premia. Our
results showed that temperature variation explains significant proportions of
the variation in risk premia. With our model we were able to locally predict
variation induced risk premium as well as the future price for other locations
and execute hedging strategies; this was illustrated using the example of
Leipzig, Germany.
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