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Abstract

Decision making usually involves uncertainty and risk. Understanding which
parts of the human brain are activated during decisions under risk and which
neural processes underly (risky) investment decisions are important goals in
neuroeconomics. Here, we reanalyze functional magnetic resonance imaging
(fMRI) data on 17 subjects which were exposed to an investment decision
task from Mohr et al. (2010b). We obtain a time series of three-dimensional
images of the blood-oxygen-level dependent (BOLD) fMRI signals. Our goal
is to capture the dynamic behavior of specific brain regions of all subjects in
this high-dimensional time series data, by a flexible factor approach resulting
in a low dimensional representation. We apply a panel version of the dynamic
semiparametric factor model (DSFM) presented in Park et al. (2009) and
identify task-related activations in space and dynamics in time. Further,
we classify the risk attitudes of all subjects based on the estimated low-
dimensional time series. Our classification analysis successfully confirms the
estimated risk attitudes derived directly from subjects’ decision behavior.

Keywords: risk, risk attitude, fMRI, decision making, medial orbifrontal
cortex, semiparametric model, factor structure, SVM
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1. Introduction

Decision making is a complex process of integrating and comparing var-
ious aspects of choice options. In the past years decision neuroscience has
made important progress in grounding these aspects of decision making in
neural systems (Heekeren et al., 2008; Rangel et al., 2008). Economic deci-
sion making is usually described as a form of value-based decision making,
in which individuals are assumed to first evaluate the different choice alter-
natives, then compare the different values, and finally choose the one with
the highest value. Expected Utility Theory (EUT)(von Neumann and Mor-
genstern, 1953), Prospect Theory (Kahneman and Tversky, 1979), and the
Mean-Variance Model (Markowitz, 1952) are important examples for value-
based decision models.

Various studies in decision neuroscience (Kable and Glimcher, 2007; Plass-
mann et al., 2007) investigated neural representations of value, the crucial
metric in value-based decision models. Kable and Glimcher (2007) and Plass-
mann et al. (2007) indicate that the value of a choice alternative is represented
in a network consisting of medial orbitofrontal cortex(mOFC), ventromedial
prefrontal cortex (VMPFC), ventral striatum (VST), and posterior cingu-
late cortex (PCC). Although most models of decision making share the idea
of a value metric that is determined and compared to make a decision, the
assumed valuation process differs significantly from one model to another.

For decisions under risk a crucial metric that is assumed to influence the
value of a choice alternative is the decision maker’s risk attitude. In utility-
based models of decision making under risk (e.g., EUT) the risk attitude
determines the curvature of the utility function, thereby influencing the val-
uation process of risky choice alternatives. In contrast, risk-return models
(Sarin and Weber, 1993; Weber and Johnson, 2009b), incorporate the risk
attitude as a weighting factor on the risk metric of the model. So far only a
few studies tried to identify neural representations of risk attitude or neural
mechanisms reflecting the effect of the risk attitude on the valuation process.
One study found correlations between risk attitude and risk-related brain ac-
tivity in lateral OFC (lOFC) for risk averse individuals and in mOFC for risk
seeking individuals (Tobler et al., 2007). Another study (Mohr et al., 2010b)
found that inter-individual differences in decision-related brain activity in
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lOFC and PCC correlated with inter-individual differences in risk attitudes
independent of the current level of risk. Finally, the authors of a latter study
could show that the value signal in the VLPFC increased with risk in risk
seeking individuals and decreased with risk in risk averse individuals, thereby
reflecting the risk attitude.

All of the above mentioned studies applied a general linear model (GLM)
to analyze the fMRI data. Although it is frequently used in neuroscience and
has led to important insights into the neurobiological processes underlying
cognition and emotion, the GLM approach has some important limitations.
First, it focuses on task-related changes in the mean BOLD signal. Thereby,
the GLM neglects information that might be carried by the variability of
the BOLD signal (Mohr and Nagel, 2010). For example, Samanez-Larkin
et al. (2010) found that the relationship between age and the number of
risk-seeking mistakes in a risky decision making task was mediated by the
temporal variability of the BOLD signal. Second, the GLM is a model-based
approach, and can therefore only detect effects that were previously hypoth-
esized and modeled. Recent advances in model-free analysis techniques, such
as the tensor probabilistic independent component analysis (T-PICA) devel-
oped by Beckmann and Smith (2005), have the potential to detect effects
without any constraints on a priori hypotheses or modeling.

In line with these approaches we investigate individual differences in risk
attitudes with a model-free technique focusing on the temporal variability
of its components. Specifically, we use the dynamic semiparametric factor
model (DSFM) introduced by Park et al. (2009) to reduce dimensions of the
high-frequent, high-dimensional multisubject fMRI data. DSFM estimates
both spatial factors common for all studied subjects and subject-specific
factor loadings varying in the temporal domain.

The DSFM factorization technique is in the setup similar to the T-PICA
approach (Beckmann and Smith, 2005). T-PICA decomposes the full data
set into factors in spatial, temporal and subject domain using a large number
of model control variables and parameters. In contrast, the panel version of
the DSFM finds spatial factors common for all subjects and time-varying fac-
tor loadings which include the subject specificity too. All easily-interpretable
components are estimated by using a small number of model parameters. In
summary, the parsimoniousness and flexibility of DSFM allows us to capture
the variability of corresponding brain regions by subject-specific time-series
loadings. Further, we hypothesize that the temporal variability of compo-
nents corresponding to factors in brain regions related to value processing
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(e.g. mOFC/VMPFC, VST, and VLPFC) is correlated with the risk atti-
tude of individuals.

2. Materials and Methods

Experimental procedures
We reanalyzed data from a previously published study (Mohr et al., 2010b).
22 young volunteers (age 18 − 35 years, 11 females) participated in this
study. All participants were native German speakers, right-handed and had
no history of neurological or psychiatric diseases. Three participants had to
be excluded due to extensive head motion (> 5 mm absolute head movement)
or modeling problems (always chose the risky alternative). Next two were
excluded due to different scanning frequency.

Figure 1: RPID task: Subjects were presented with streams of 10 returns from an invest-
ment. Then, they either (a) judged the subjective expected return of the return stream,
(b) judged the perceived risk of the return stream, or (c) chose between an investment
with a fixed return of 5% and an investment with a variable return which was represented
by the return stream (modified from Mohr et al. (2010b))

Each trial of the Risk Perception and Investment Decision (RPID) task
consisted of two phases: the presentation of a return stream, followed by a
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decision or subjective judgment task (see Fig.1). In investment situations
investors are often confronted with past performance data of possible invest-
ments. To mimic this situation, in the first phase we sequentially presented
a stream of 10 returns from an investment, each presented for 2 s without
fixation-phases between the returns. These 10 returns provided information
about the past performance of a given investment. In the experiment, each
return stream was independent of the others and described a new invest-
ment option. We varied the mean and the standard deviation of the return
streams parametrically with three means (6%, 9%, and 12%) and three stan-
dard deviations (1%, 5%, and 9%), resulting in nine different combinations of
means and standard deviations. In the second phase, subjects performed one
of three possible tasks in each trial (each 7 s) without knowing in advance
which one they would have to perform after the stream.

Three tasks were used to be able to investigate choices as well as perceived
risk and subjective expected return, as specified in recent psychological risk-
return models (Weber and Johnson, 2009a). In the decision task the subjects
had to make a choice between an investment with 5% fixed return (safe in-
vestment) and the investment represented by the return stream they just
saw (risky investment). In the other two tasks subjects reported their sub-
jective expected return and perceived risk of the investment represented by
the return stream. Subjects indicated subjective expected return on a scale
ranging from -5% to +15% and perceived risk on a scale ranging from 0 (no
risk) to 100 (maximum risk) (Klos et al., 2005). Subjects performed each
task (decision, subjective expected return, perceived risk) 27 times (81 tri-
als in total). Before the experiment subjects completed four training trials,
knowing that the standard deviations in the experiment would be in the same
range as in the training trials. No explicit information regarding means or
standard deviations was given to the participants. Subjects received a flat
payment of 10 Euro for their participation in the experiment and a virtual
endowment of 100 Euros to invest. They were explicitly told that the returns
they observe during the experiment are randomly drawn from Gaussian dis-
tributions. They were further instructed that after the experiment, 1 of their
27 choices will be randomly chosen to determine decision dependent pay-
ments. If the subject would choose the safe option in the respective trial, she
would get 5 Euros (5% of 100 Euros) in addition to the 10 Euros. If a subject
would choose the risky option in this trial, a random return was drawn from
a Gaussian distribution with the same mean and standard deviation as the
respective return stream. The resulting outcome (return times 100 Euro)

5



was added to or subtracted from the flat payment.

Behavioral Modeling

According to subjects’ responses a risk attitude for each individual could
be estimated. We applied the following psychological risk-return model (de-
tailed description can be found in Mohr et al., 2010b):

V (x) = µ(x)− φσ(x) . (1)

In this equation V (x) defines the value a subject assigns to an investment x,
µ(x) represents the subjective expected return, σ(x) represents the perceived
risk, and φ is the individual risk weight.

To determine which model predicted subjective expected return and per-
ceived risk judgments best, we used a ”leaving one out at a time” cross-
validation method, which ensures the predictive power especially in situations
with few trials. First, we divided trials into 26 fitting trials and one test trial.
Second, we estimated the parameters for every model that maximized the
correlation between model predictions and stated subjective expected returns
and perceived risks. For subjective expected return we compared five different
models: (1) mean, (2) recency, (3) primacy, (4) overweight < 0%, and (5)
overweight < 5%. All models are weighted average models that we mod-
eled with memory (number of returns over which the model was computed)
and weighting as free parameters. Regarding perceived risk we compared six
different models: (1) standard deviation, (2) coefficient of variation, (3) prob-
ability < 0%, (4) probability < 5%, (5) range, and (6) coefficient of range.
Whereas the standard deviation and the range are measures of variation, the
coefficients of variation and range are measures of variation divided by the
mean. Probability < 0% and probability < 5% are models for the probabil-
ity of a loss given a particular loss threshold. The only free parameter in
all models was memory (number of returns over which the model was com-
puted). Model predictions of risk models, generated by applying the models
on the return streams, were regressed on the stated perceived risks to allow
a transformation of the model predictions (which depend on the scale of the
returns) into the dimensions of the scale used in the experiment (0–100).

Third, we applied all models to the return stream of the test trials, mak-
ing predictions for subjective expected return and perceived risk. We then
calculated the squared difference between model predictions and stated sub-
jective expected returns/perceived risks in the test trial. We repeated this
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procedure for all 27 trials, that is, each trial once served as the test trial.
The models with the least average squared difference between model predic-
tions and stated subjective expected returns/perceived risks were identified
as individual best models for subjective expected return and perceived risk.
Finally, we used all 27 trials to estimate the parameters of these best mod-
els, which were later used to predict subjective expected return and perceived
risk during choice trials.

We used these predictions to estimate the risk weight and test the risk-
return models behaviorally. Risk weights were estimated by fitting a soft-
max function to the choice data. Best risk weights maximized the sum of
loglikelihoods of all 27 choices. Additionally, we tested how many of the
actual choices could be explained by the fitted risk weight, if we assume
a deterministic decision rule. The decision rule was defined as follows. If
V (safe) > V (risky) the individual chooses the safe option and vice versa.
The value of the safe option is always constant (V (safe) = 5%−φ · 0 = 5%)
because there is no risk involved. This risk weight was then used to make
a prediction about the choice in all 27 trials. To compare the psychologi-
cal risk-return model with the normative risk-return model we repeated the
above described procedures for this model.

The risk attitude can be measured as value reduction in Euro for maxi-
mum risk (the case when the subjective perceived risk = 100), as described
in Mohr et al. (2010b). All subjects were classified as risk averse indicated
by a positive risk weight. However, for seven subjects the risk attitude was
low (risk weight ≤ 5) resulting in only a small influence of risk on value. For
that purpose the seven subjects with the lowest risk attitude were classified
as weakly risk-averse. All subjects with risk weight > 5 were classified as
strongly risk-averse.

fMRI data acquisition

fMRI data were acquired on a 1.5 T Magnetom Sonata fMRI system
(Siemens, Erlangen, Germany) equipped with a standard head coil. We used
a vacuum pad to minimize head motion. Functional images were acquired
using a BOLD-sensitive T2*-weighted echo-planar imaging (EPI) sequence
[TR, 2500 ms; echo time (TE), 40 ms; flip angle, 90; field of view, 256 mm;
matrix, 64 x 64 mm; 26 axial slices approximately parallel to the bicommis-
sural plane; slice thickness, 4 mm]. Two functional runs were acquired (735
and 625 volumes). The first two scans of each run were discarded to allow
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longitudinal magnetization to reach equilibrium. After the functional runs,
a high-resolution structural image was acquired to aid in normalization and
co-registration.

fMRI data analysis

Due to the computational limitations (software memory capacity), we
used the first part (first 722 observations including 15 out of 27 trials) of
the experiment for our analysis. The data was initially pre-processed with
FSL 4.0 (FMRIB’s Software Library, http://www.fmrib.ox.ac.uk/fsl/). Pre-
processing included motion correction and slice-time correction. Addition-
ally, images were normalized into a standard stereotaxic space (Montreal
Neurological Institute (MNI), Montreal, Quebec, Canada).

To capture the temporal variability in the high-dimensional fMRI series,
that may be related to individual differences in risk attitude, we use a dy-
namic semiparametric factor model (DSFM) which was proposed by Park
et al. (2009). DSFM is a model-free multivariate method, which is able to
identify activated brain regions (factors) and corresponding low dimensional
time series (factor loadings) in only one estimation step (Park et al., 2009).
In addition, the panel version of the DSFM allows determining active brain
areas for multiple subjects, whereas the individual changes are described by
subject-specific time series.

From a statistical point of view the BOLD signal of all voxels during the
whole experiment can be considered as a multi-dimensional time series. The
following DSFM is calibrated to study such high-dimensional time series:

Yt,j = m0(Xt,j) +
L∑
l=1

Zt,l ml(Xt,j) + εt,j, 1 ≤ j ≤ J, 1 ≤ t ≤ T.

def
= Z>t m(Xt,j) + εt,j = Z>t A

∗Ψt,j + εt,j . (2)

Here, Zt = (1, Zt,1, . . . , Zt,L)> is an unobservable L-dimensional stochas-
tic process and m is an L-tuple (m1, . . . ,mL) of unknown real-valued func-
tions ml. Xt,j ∈ Rd are known predictors and Yt,j ∈ R is the response variable
of interest (the BOLD signal). The errors εt,j are assumed to have zero means
and finite second moments. The functions ml are approximated by a space
basis Ψt,j = [ψ1(Xt,j), . . . , ψK(Xt,j)]

> and corresponding (L+ 1)×K matrix
of unknown coefficients A∗. More precisely, [ψ1(Xt,j), . . . , ψK(Xt,j)]

> denote
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quadratic tensor B-splines on K equidistant knots. The estimates of Z>t and
A∗ are found by minimizing:

S(Ẑt, Â∗) = arg min
Zt,A∗

T∑
t=1

J∑
j=1

{Yt,j − ZtA∗Ψt,j}2 . (3)

The minimum is found by the Newton-Raphson algorithm. The paramet-
ric part Ẑt captures the evolution in time, while Â∗ represents the smooth,
nonparametrically estimated spatial structure.

In our experiment, the voxel’s index (i1, i2, i3) is the covariate Xt,j and
the normalized BOLD signal is the dependent variable Yt,j; j = 1, . . . , J ; t =
1, . . . , T . To simplify numerical operations blank areas were removed from
the original data. Thus, the spatial and temporal dimensions equals J = 91×
92×71 = 594 412 and T = 722, respectively. Such that the covariate is time-
invariant and it follows: Xt,j = Xj = (i1, i2, i3) ∈ {(1; 91), (1; 92), (1; 71)}.

To analyze all tested subjects i = 1, . . . , I in one model, we extended (2)
to a panel dynamic semiparametric factor model (PDSFM):

Y i
t,j = m0(Xj) +

L∑
l=1

(
Zt,l + αit,l

)
ml(Xj) + εit,j,

1 ≤ j ≤ J, 1 ≤ t ≤ T, 1 ≤ i ≤ I .

αit,l is the fixed individual effect for subject i on function ml at time point
t. For identification purpose, we assume that the individual effects over all
subjects and over all functions ml sums to zero, e.g.:

E

[
I∑
i=1

(
L∑
l=1

αit,lml(Xj)|Xj

)]
= 0. (4)

It is reasonable to claim that different subjects have different patterns of
brain activation to external stimuli and characterized by different stochastic
processes Zi

t). On the other hand, we can assume that they share essen-
tially the same spatial structure of the brain which could be characterized
by the same ml functions. Our analysis concentrates on the detection of
those common active brain regions over all subjects. Hereinafter, we assume
that these regions are homogeneous for all individuals and therefore can be
modeled by a joint (average) spatial factors denoted as ml, l = 1, . . . , L. The
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activation differences between the individuals are captured by their specific
low-dimensional time series Zi

t,l.

For the averaged fMRI series Y t,j holds an equivalent relation to (2):

Y t,j = m0(Xj) +
L∑
l=1

Zt,lml(Xj) + εt,j , 1 ≤ j ≤ J , 1 ≤ t ≤ T , (5)

with factor loadings Zt,l corresponding to common factors ml.
After the spatial functions are determined, the subject specific time series

Ẑi
t,l can be estimated using the ordinary least square method:

Y i
t,j = m0(Xj) +

L∑
l=1

Zi
t,lml(Xj) + εit,j . (6)

The statistical inference of the whole system is then based on the low-
dimensional time series analysis. Park et al. (2009) has shown that the dif-
ference between the inference based on the estimated low-dimensional time
series and the “true” unobserved time series is asymptotically negligible.

Our multi-subject multivariate estimation procedure can be summarized
in the following steps:

1. Take the average Y t,j of Y i
t,j across all subjects i ∈ {1, 2, . . . , I} and

estimate the common spatial factors m̂l(Xj), as in the original DSFM
approach (2).

2. Given the commonml(Xj) estimate the subject-specific temporal factor

loadings Ẑi
t,l from (6). Repeat this estimation procedure for all i =

1, . . . , I.

3. Analyze the joint factors ml(Xj), significant active brain regions are
defined by the threshold of 0.5%- and 99.5%-quantiles of the empirical
distribution function of ml(Xj) in all voxels.

4. Find the variations between individuals by looking at the factor load-
ings Ẑi

t,l. Is it possible to reconstruct subjects’ behaviour just by ana-
lyzing this low-dimensional time series?

3. Results

In this section we describe the choice of the model parameters for the
studied data set. Further, we discuss a selection of estimated factors and
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corresponding factor loadings for selected subjects. The classification pro-
cedure described in the last paragraph is based only on the fMRI data and
predicts the subjects’ risk aversion with a high precision.

Model parameters

The analyzed raw data are high-dimensional (722×594 412 = 429 165 464).
We have chosen quadratic tensor B-splines on equidistant knots as the space
basis Ψj. The numbers of knots in the three directions were set to 12, 14 and
14, which is a trade-off between the best possible resolution and a reasonable
computational time. With this parameter choice, 250 = (91×92×71)/(14×
14 × 12) points correspond to one 3 dimensional quadratic B-spline basis
function.

The most important parameter in our model is L, the number of factors
ml and of corresponding factor loadings Zt,l, l = 1, . . . , L. The choice of L
was based on both, the specificity of factors interpretation and the averaged
explained variance by factors:

EV (L) = 1−

∑T
t=1

∑J
j=1

{
Yt,j −

∑L
l=0 Zt,lml(Xt,j)

}2

∑T
t=1

∑J
j=1

{
Yt,j − Ȳ

}2 .

Table 1: Explained variation in percent of the model with different numbers of factors L.
The explained variation is averaged over all 17 analyzed subjects.

L = 2 L = 4 L = 5 L = 10 L = 20
92.07 92.25 92.29 93.66 95.19

Table 1 shows the averaged explained variation for different numbers of
factors. Here, only slight differences between the explained variation for
L ≥ 2 can be observed. The fMRI signals Yt,j were explained mostly by the
null-factor and the first 2 factors: m̂0(Xt,j)+Zt,1m̂1(Xt,j)+Zt,2m̂2(Xt,j). The
relatively small effects of the functions ml for l ≥ 2 are due to the small dif-
ferences of activation in the selected regions. The inclusion of greater number
of factors leads to detection of the important areas for decision making under
risk. We choose L = 20, which allows for relatively low complexity and an
explicit interpretation of the functions m̂l. Residual analysis, as shown in
Appendix B, supports our model selection.
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Factors m̂l

In our study we are looking for spatial maps which undergo signifi-
cant changes in BOLD signal during the experiment. These spatial maps
(factors) determine the regions while the time evolution and subject speci-
ficity are captured by the corresponding factor loadings Zi

t,l. After ap-
plying the DSFM technique we estimated 20 spatial factors. 6 of them
(m̂l , l = 5, 9, 12, 16, 17, 18) correspond to brain areas mFOC and Parietal
Cortex (PC) which were already found in decision making contexts (see
Heekeren et al. (2008), Rangel et al. (2008) for review). Fig. 2 shows these 6
factors, only voxels with the highest values m̂l(Xj) ≥ 99.95% of the empirical
quantile are highlighted in white. Factors m̂5, m̂9, m̂16, m̂17 and m̂18 have
the largest values in the medial orbitofrontal cortex (mOFC), located in the
bottom frontal part of the brain. mOFC is associated with the value of a
choice option (Plassmann et al., 2007). Factor m̂9 represents the PC. Beside
these interesting factors connected with decision making, we detected other
spatial maps that correspond to brain areas previously associated with mo-
tor responses and visual perception, likely unrelated to the decision making
process within the task.

Herewith, we have shown, that the estimated function m̂l, l = 1, . . . , L
in our model represent those brain regions which were expected to be in-
volved during the experiment (visualization, motoric and value-of-choice ar-
eas). The activity of these regions changes over the subjects and in time. This
variability is described by the factor loadings Zi

t,l for t = 1, 2, . . . , T ; l =
1, 2, . . . , L; i = 1, . . . , I which are discussed in the next session.

Factor loadings Ẑt,l

The dynamics and subject specificity are jointly represented by the low-
dimensional time series Ẑi

t,l. These subject-specific Ẑi
t,l correspond to the

individual temporal differences of the activated brain regions in m̂l. For bet-
ter illustration we have selected two extreme subjects: 12 (with the smallest

risk attitude) and 18 (with the largest risk attitude). Both time series Ẑt,12
and Ẑt,18 show a high fluctuation around their mean value (Fig.3).

To get a better insight into the dynamics of the time series, a detailed view
of Ẑ12

t,1 in 200 (out of 722) data points with highlighted 3 different types of
stimulus (e.g. decision, subjective expected return, perceived risk) is shown
in Fig. 4. The most important values of the factor loading Zt,l are the next
3 observation after stimulus, measured up to 7.5 seconds after stimulus, as
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the hemodynamic response has its peak usually around 6 seconds after the
stimulus onset. Figure 5 shows these responses for studied factor loadings and

representative subjects. Formally, we plotted ∆Ẑt,l
def
= Ẑs+t,l − Ẑs,l against

t, where s is the time when a stimulus was given. In Figure 5, one can
observe that the responses to the stimulus of the weakly risk-averse individual
show a significantly different volatility than the responses of the strongly
risk averse individual. We found this volatility pattern in all factor loadings
corresponding to the selected factors (l = 5, 9, 12, 16, 17, 18).

Risk classification

After we could reasonably interpret the estimated factors m̂l and de-
scribed the behavior of the factor loadings Ẑi

t,l we try to connect our findings
with the risk attitude of the subjects. Without knowing the subjects’ an-
swers, based only on low-dimensional Ẑi

t,l representation of BOLD signal, we
develop a classification method which can predict the risk attitude. For this
purpose we use the functions ∆Ẑi

t,l, l = 5, 9, 12, 16, 17, 18 and i = 1, 2, . . . , I
since they correspond to the brain activity of factors, which are linked with
utility and decisions under risk.

As described in Section 2, there were 3 different types of answers which
subjects had to make. Since risk attitude influence the value of a choice
alternative, we considered ∆Ẑi

t,l, l = 5, 9, 12, 16, 17, 18 only after the deci-
sion task. Further, we use only the 3 observation points after the stimu-
lus in the classification anlysis (see paragraph Factor loadings Ẑt,l). Since
the observations are not exactly in time points of the BOLD peak and
we want to capture the variability in the stimulus responses, the average
value of the responses after each of the 15 decision exercise is calculated:
∆Ẑi

s,l = 1
3

∑3
τ=1 ∆Ẑi

s+τ,l, l = 5, 9, 12, 16, 17, 18. Here, ∆Ẑi
s,l denotes the av-

erage reaction to the decision stimulus after the task s, for loading l and
subject i. Further, we calculated the variance of ∆Ẑi

s,l and observed higher
variability for weakly risk averse subjects than for strongly averse subjects
(see Appendix A). In order to confirm that finding, these six variables, cor-
responding to l = 5, 9, 12, 16, 17, 18, were chosen as the input variables for
the classification algorithm.

In the next step, we classify studied subjects according to their risk atti-
tude based on data extracted from the BOLD signal. Classification analysis
of the subjects was conducted via Support Vector Machines (SVM), a widely
used nonlinear method based on statistical learning theory of Cortes and
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Vapnik (2005). In the learning step, strongly risk averse subjects were la-
beled with 1 and the weakly risk averse subjects with −1. The estimated
risk attitude described in Behavioral Modeling were used for the validation of
the classification predictions. In order to avoid overparametrization and too
optimistic results we applied the double cross-validation method to tune the
SVM and estimate the classification rate. The algorithm can be described as
follows

1. separate the data into training set and testing set (leave-one-out pro-
cedure)

2. apply the leave-one-out cross validation on the training set only and
tune the algorithm

3. classify the testing data

4. repeat 1-3 for all different testing sets

5. average the classification rate over all iterations 4.

Using the standard deviation of the differences and the optimal SVM pa-
rameters, the classification rate was optimal (100%) for strongly risk averse
and 85.71% for weakly risk averse individuals (Table 2). We compare our
classification performance with an SVM classifier taking as input variables
the mean of the averaged reaction to the decision stimulus ∆Ẑt,l. Table 2
clearly shows that the mean of the averaged reaction does not indicate any
differences between weakly and strongly risk averse subjects. Yet, these 2
classes can be distinctly identified by their volatility. The risk attitude of the
subject is derived directly from the time series Ẑi

t,l, l = 5, 9, 12, 16, 17, 18; -
the low-dimensional representation of the BOLD signals series.

Table 2: Classification rates of the SVM method using standard deviation (left) and mean

(right) of the ∆Ẑt,j , j = 5, 9, 12, 16, 17, 18.

STD Estimated MEAN Estimated
Strongly Weakly Strongly Weakly

Data
Strongly 1.00 0.00

Data
Strongly 0.70 0.30

Weakly 0.14 0.86 Weakly 0.55 0.45

We have provided the SVM classification using a wide range of prior
parameters to the Gaussian kernel, the capacity C and the radial basis coef-
ficient r. Table 3 summarizes the results obtained by using different values
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of these parameters. The classification rates are the averages over the pa-
rameter ranges.

Table 3: Classification rates of the SVM method using different values of parameters r
and C for mean and standard deviation.

Rate r C
Std 0.81 0.6− 1.00 1− 80

Mean 0.60 0.02− 1.00 1− 80

4. Discussion

Decision making is a complex process consisting of valuation, comparison
and the final choice. Decision neuroscience has frequently investigated neu-
ral representations of value, the key metric in the decision models. Previous
studies showed that the BOLD response in VMPFC, PCC, VST, mOFC and
DLPFC are activated during the valuation process. For decisions under risk,
risk attitude is the crucial metric that is assumed to influence the value of a
choice alternative. Up to now, only few studies tried to identify neural rep-
resentations of risk attitude, correlated regions were found in lOFC, mOFC,
PCC and VLPFC.

The usual technique used in neuroscience to evaluate the fMRI data is
the GLM approach. This approach has some limitations which are crucial
for the identification of brain regions associated with risk attitude. GLM
focuses on the changes in the mean BOLD signal and hereby neglects the
information in the variance of the signal. Further, GLM is a model-based
technique which is able to detect only pre-defined effects.

In this paper, we applied a novel nonparametric statistical model to anal-
yse fMRI data from an experiment associated with risky decisions. Our panel
dynamic semiparametric factor model (PDSFM) is a model-free, dimension
reduction technique with minimum number of model parameters. DSFM
provides a spatial maps common for all studied subjects and time-variant
factor loadings which are specific for each individual. Both, spatial maps
and factor loadings are very easy to interpret. Statistical inference of the
whole high-dimensional data set is based only on the low-dimensional time
series (factor loadings).
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Applying the PDSFM, we analyzed an fMRI experiment with 17 subjects,
each with 722 images of 91 × 109 × 91 voxels. We have identified 20 spa-
tial factors m̂l, six of them corresponding to mOFC and PC. Other spatial
factors were associated with brain areas previously associated with motor
responses and visual perception which were related to the experiment too.
The identified 20 spatial factors, however, did not contain any activations
previously reported by Mohr et al. (2010b) using the GLM approach and
only the PC out of several brain regions identified in a recent meta-analysis
on neural representations of risk (Mohr et al., 2010a). Mohr and colleagues
(2010b) identified neural representations of perceived risk in the anterior
(AI) insula, neural representations of subjective value in medial prefrontal
cortex (MPFC), dorsolateral prefrontal cortex (DLPFC), and ventrolateral
prefrontal cortex (VLPFC), and neural representations of risk attitude in
lOFC and PCC. There are at least two possible reasons that could account
for the different results. First, the results from Mohr et al. (2010b) were
based on regressors for the decision trials, which capture only around 5% of
the time series. Second, the regressors for perceived risk and subjective ex-
pected return model use very specific effects, namely the correlation between
these metrics and the BOLD response on a trial-by-trial basis. Third, we
only used part of the data used in Mohr et al. (2010b). It is, therefore, very
unlikely that the first 20 factors, identified in a PDSFM using only part of
the data, capture the described very specific effects based on only 5% of the
time series.

Further, we provided the statistical analysis of factor loadings correspond-
ing to the spatial maps in mOFC and PC. We observed that the variability
in the responses after the decision stimuli is significantly higher for weakly
risk averse individuals then for strongly risk averse individuals. We used the
variance of these stimuli responses as input for the classification algorithm.
Very high classification rates (100% and 86%) were obtained with the SVM
classifier by applying the leave-one-out cross validation algorithm. We classi-
fied the risk attitude of the subjects from the low-dimensional representation
of the brain activities, without knowing the subject’s answers. Herewith we
have shown that our PDSFM approach is able to detect the neural represen-
tations of risk attitude and to classify the weak and strong averse individuals
by their time-dependent factor loadings.

In the literature, the group fMRI analysis is usually carried out by the
mixed effects functional model (Wang, 1998) and (Guo, 2002). Mumford and
Poldrack (2007) describe the mixed effects model on the application to fMRI
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data. Compared to their works, there are several differences in our model.
First, their works mainly focus on the univariate (or low dimensional) time
series, while we focus on the high dimensional time series. Specifically for the
fMRI data analysis, Mumford and Poldrack (2007) perform the analysis based
on some (pre-specified) voxel of special interest, while we try to find both, the
temporal dynamics and the regions of special interest (w.r.t. risk attitude
in our example) directly based on the high dimensional fMRI time series.
Second, as illustrated via a political opinion study discussed in Mumford and
Poldrack (2007), the mixed effect model considers the case where subjects
participating in the experiment are drawn from several subgroups with their
own group effects. Contrary, we assume that the subjects participating in our
experiment were drawn randomly from the population without considering
any special group effects. Our work, as far as we know, is one of the first
works on panel high dimensional time series analysis with multiple subjects.
One possible way of extending it to the mixed effect situation is to add the
group effect to the time part of (4). However, this is out of the scope of this
paper and deserves further research.
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(f)

Figure 2: Selected estimated functions m̂l, l = 0, . . . , L with L = 20. (a) Estimated
function m̂5 with largest values in medial orbitofrontal cortex (mOFC). (b) m̂9 with largest
values in parietal cortex (PC). (c) m̂12 with largest values in mOFC. (d) m̂16 with largest
values in mOFC. (e) m̂17 with largest values in mOFC. (f) m̂18 with largest values in
mOFC.
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Figure 3: Factors loadings Ẑt,12 (top) and Ẑt,18 (bottom) for subjects 12 (left, weakly risk
averse) and 19 (right, strongly risk averse) during the whole experiment (722 time points).
Red points correspond to the time points of stimuli.
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Figure 4: Detailed view of factor loading Ẑt,1 for subject 12 (blue line) with vertical lines
in time points of stimuli of 3 different task: decision (red), subjective expected return
(green) and perceived risk (black)
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Figure 5: Reaction to stimulus for factors loadings Ẑt,12 (top) and Ẑt,18 (bottom) for
subjects 12 (left, weakly risk averse) and 19 (right, strongly risk averse) during the whole
experiment (45 stimuli).
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Appendix A. Plots of average responses to the “Decision under
Risk” stimulus
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Figure A.6: Average responses to the “Decision under Risk” stimulus in factor loading Z5

for the weakly risk-averse group (top, blue lines) and strongly risk-averse group (bottom,
green lines).
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Figure A.7: Average responses to the “Decision under Risk” stimulus in factor loading Z9

for the weakly risk-averse group (top, blue lines) and strongly risk-averse group (bottom,
green lines).
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Figure A.8: Average responses to the “Decision under Risk” stimulus in factor loading Z12

for the weakly risk-averse group (top, blue lines) and strongly risk-averse group (bottom,
green lines).
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Figure A.9: Average responses to the “Decision under Risk” stimulus in factor loading Z16

for the weakly risk-averse group (top, blue lines) and strongly risk-averse group (bottom,
green lines).
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Figure A.10: Average responses to the “Decision under Risk” stimulus in factor loading Z17

for the weakly risk-averse group (top, blue lines) and strongly risk-averse group (bottom,
green lines).
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Figure A.11: Average responses to the “Decision under Risk” stimulus in factor loading Z18

for the weakly risk-averse group (top, blue lines) and strongly risk-averse group (bottom,
green lines).
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Appendix B. Residual εit,j analysis
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Figure B.12: Boxplots of random subsets (size 3× 107) from εit,j (4.3× 109 points) for all
17 analyzed subjects. Kurtosis exceeds 10
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Figure B.13: Histograms of random subsets (size 3 × 107) from εit,j (4.3 × 109 points)
for subjects i = 1, 2, 3, 4, 5, 6, 8, 9 (upper panel) and i = 10, 11, 12, 15, 16, 17, 18, 19 (lower
panel) respectively. Normality hypothesis (KS test) for standardized εit,j rejected for all
subjects at significance level 5%
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Figure B.14: QQplots of random subsets (size 3 × 107) from εit,j (4.3 × 109 points) for
subjects i = 1, 2, 3, 4, 5, 6, 8, 9 (upper panel) and i = 10, 11, 12, 15, 16, 17, 18, 19 (lower
panel) respectively
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