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Abstract: This paper is intended as a guide to building insurance risk (loss) 

models. A typical model for insurance risk, the so-called collective risk model, 

treats the aggregate loss as having a compound distribution with two main 

components: one characterizing the arrival of claims and another describing the 

severity (or size) of loss resulting from the occurrence of a claim. In this paper we 

first present efficient simulation algorithms for several classes of claim arrival 

processes. Then we review a collection of loss distributions and present methods 

that can be used to assess the goodness-of-fit of the claim size distribution. The 

collective risk model is often used in health insurance and in general insurance, 

whenever the main risk components are the number of insurance claims and the 

amount of the claims. It can also be used for modeling other non-insurance 

product risks, such as credit and operational risk. 
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1 Building Loss Models

Krzysztof Burnecki, Joanna Janczura, and Rafa l Weron

1.1 Introduction

A loss model or actuarial risk model is a parsimonious mathematical descrip-
tion of the behavior of a collection of risks constituting an insurance portfolio.
It is not intended to replace sound actuarial judgment. In fact, according to
Willmot (2001), a well formulated model is consistent with and adds to intu-
ition, but cannot and should not replace experience and insight. Moreover, a
properly constructed loss model should reflect a balance between simplicity and
conformity to the data since overly complex models may be too complicated to
be useful.

A typical model for insurance risk, the so-called collective risk model, treats the
aggregate loss as having a compound distribution with two main components:
one characterizing the frequency (or incidence) of events and another describing
the severity (or size or amount) of gain or loss resulting from the occurrence of
an event (Kaas et al., 2008; Klugman, Panjer, and Willmot, 2008; Tse, 2009).
The stochastic nature of both components is a fundamental assumption of a
realistic risk model. In classical form it is defined as follows. If {Nt}t≥0 is a
process counting claim occurrences and {Xk}∞k=1 is an independent sequence
of positive independent and identically distributed (i.i.d.) random variables
representing claim sizes, then the risk process {Rt}t≥0 is given by

Rt = u+ c(t) −
Nt∑

i=1

Xi. (1.1)

The non-negative constant u stands for the initial capital of the insurance
company and the deterministic or stochastic function of time c(t) for the pre-

mium from sold insurance policies. The sum {∑Nt

i=1Xi} is the so-called ag-
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gregate claim process , with the number of claims in the interval (0, t] being
modeled by the counting process Nt. Recall, that the latter is defined as
Nt = max{n :

∑n
i=1Wi ≤ t}, where {Wi}∞i=0 is a sequence of positive ran-

dom variables and
∑0

i=1Wi ≡ 0. In the insurance risk context Nt is also
referred to as the claim arrival process.

The collective risk model is often used in health insurance and in general insur-
ance, whenever the main risk components are the number of insurance claims
and the amount of the claims. It can also be used for modeling other non-
insurance product risks, such as credit and operational risk (Chernobai, Rachev,
and Fabozzi, 2007; Panjer, 2006). In the former, for example, the main risk
components are the number of credit events (either defaults or downgrades),
and the amount lost as a result of the credit event.

The simplicity of the risk process defined in eqn. (1.1) is only illusionary. In
most cases no analytical conclusions regarding the time evolution of the process
can be drawn. However, it is this evolution that is important for practitioners,
who have to calculate functionals of the risk process like the expected time to
ruin and the ruin probability, see Chapter ??. The modeling of the aggregate
claim process consists of modeling the counting process {Nt} and the claim size
sequence {Xk}. Both processes are usually assumed to be independent, hence
can be treated independently of each other (Burnecki, Härdle, and Weron,
2004). Modeling of the claim arrival process {Nt} is treated in Section 1.2,
where we present efficient algorithms for four classes of processes. Modeling of
claim severities and testing the goodness-of-fit is covered in Sections 1.3 and
1.4, respectively. Finally, in Section 1.5 we build a model for the Danish fire
losses dataset, which concerns major fire losses in profits that occurred between
1980 and 2002 and were recorded by Copenhagen Re.

1.2 Claim Arrival Processes

In this section we focus on efficient simulation of the claim arrival process
{Nt}. This process can be simulated either via the arrival times {Ti}, i.e. mo-
ments when the ith claim occurs, or the inter-arrival times (or waiting times)
Wi = Ti − Ti−1, i.e. the time periods between successive claims (Burnecki and
Weron, 2005). Note that in terms of Wi’s the claim arrival process is given by
Nt =

∑∞

n=1 I(Tn ≤ t). In what follows we discuss four examples of {Nt},
namely the classical (homogeneous) Poisson process, the non-homogeneous
Poisson process, the mixed Poisson process and the renewal process.
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1.2.1 Homogeneous Poisson Process (HPP)

The most common and best known claim arrival process is the homogeneous
Poisson process (HPP). It has stationary and independent increments and the
number of claims in a given time interval is governed by the Poisson law. While
this process is normally appropriate in connection with life insurance modeling,
it often suffers from the disadvantage of providing an inadequate fit to insurance
data in other coverages with substantial temporal variability.

Formally, a continuous-time stochastic process {Nt : t ≥ 0} is a (homogeneous)
Poisson process with intensity (or rate) λ > 0 if (i) {Nt} is a counting process,
and (ii) the waiting times Wi are independent and identically distributed and
follow an exponential law with intensity λ, i.e. with mean 1/λ (see Section
1.3.2). This definition naturally leads to a simulation scheme for the successive
arrival times Ti of the Poisson process on the interval (0, t]:

Algorithm HPP1 (Waiting times)

Step 1: set T0 = 0

Step 2: generate an exponential random variable E with intensity λ

Step 3: if Ti−1 + E < t then set Ti = Ti−1 + E and return to step 2 else stop

Sample trajectories of homogeneous (and non-homogeneous) Poisson processes
are plotted in the top panels of Figure 1.1. The thin solid line is a HPP with
intensity λ = 1 (left) and λ = 10 (right). Clearly the latter jumps more often.

Alternatively, the homogeneous Poisson process can be simulated by applying
the following property (Rolski et al., 1999). Given that Nt = n, the n oc-
currence times T1, T2, . . . , Tn have the same distribution as the order statistics
corresponding to n i.i.d. random variables uniformly distributed on the inter-
val (0, t]. Hence, the arrival times of the HPP on the interval (0, t] can be
generated as follows:

Algorithm HPP2 (Conditional theorem)

Step 1: generate a Poisson random variable N with intensity λt

Step 2: generate N random variables Ui distributed uniformly on (0, 1), i.e.
Ui ∼ U(0, 1), i = 1, 2, . . . , N

Step 3: set (T1, T2, . . . , TN) = t · sort{U1, U2, . . . , UN}
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Figure 1.1: Top left panel : Sample trajectories of a NHPP with linear intensity
λ(t) = a+ b · t. Note that the first process (with b = 0) is in fact a
HPP. Top right panel : Sample trajectories of a NHPP with periodic
intensity λ(t) = a+ b · cos(2πt). Again, the first process is a HPP.
Bottom panel : Intensity of car accident claims in Greater Wroc law
area, Poland, in the period 1998-2000 (data from one of the major
insurers in the region). Note, the larger number of accidents in late
Fall/early Winter due to worse weather conditions.

STF2loss01.m

In general, this algorithm will run faster than HPP1 as it does not involve a
loop. The only two inherent numerical difficulties involve generating a Poisson
random variable and sorting a vector of occurrence times. Whereas the latter
problem can be solved, for instance, via the standard quicksort algorithm im-
plemented in most statistical software packages (like sortrows.m in Matlab),
the former requires more attention.

http://www.quantlet.de/codes//STF2loss01.html
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A straightforward algorithm to generate a Poisson random variable would take

N = min{n : U1 · . . . · Un < exp(−λ)} − 1, (1.2)

which is a consequence of the properties of the HPP (see above). However, for
large λ, this method can become slow as the expected run time is proportional
to λ. Faster, but more complicated methods are available. Ahrens and Dieter
(1982) suggested a generator which utilizes acceptance-complement with trun-
cated normal variates for λ > 10 and reverts to table-aided inversion otherwise.
Stadlober (1989) adapted the ratio of uniforms method for λ > 5 and classical
inversion for small λ’s. Hörmann (1993) advocated the transformed rejection
method, which is a combination of the inversion and rejection algorithms. Sta-
tistical software packages often use variants of these methods. For instance,
Matlab’s poissrnd.m function uses the waiting time method (1.2) for λ < 15
and Ahrens’ and Dieter’s method for larger values of λ.

Finally, since for the HPP the expected value of the process E(Nt) = λt, it
is natural to define the premium function as c(t) = ct, where c = (1 + θ)µλ
and µ = E(Xk). The parameter θ > 0 is the relative safety loading which
“guarantees” survival of the insurance company. With such a choice of the
premium function we obtain the classical form of the risk process:

Rt = u+ (1 + θ)µλt −
Nt∑

i=1

Xi. (1.3)

1.2.2 Non-Homogeneous Poisson Process (NHPP)

The choice of a homogeneous Poisson process implies that the size of the port-
folio cannot increase or decrease. In addition, it cannot describe situations,
like in motor insurance, where claim occurrence epochs are likely to depend
on the time of the year (worse weather conditions in Central Europe in late
Fall/early Winter lead to more accidents, see the bottom panel in Figure 1.1)
or of the week (heavier traffic occurs on Friday afternoons and before holidays).
For modeling such phenomena the non-homogeneous Poisson process (NHPP)
is much better. The NHPP can be thought of as a Poisson process with a
variable (but predictable) intensity defined by the deterministic intensity (or
rate) function λ(t). Note that the increments of a NHPP do not have to be sta-
tionary. In the special case when the intensity takes a constant value λ(t) = λ,
the NHPP reduces to the homogeneous Poisson process with intensity λ.
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The simulation of the process in the non-homogeneous case is slightly more
complicated than for the HPP. The first approach, known as the thinning or
rejection method, is based on the following fact (Bratley, Fox, and Schrage,
1987; Ross, 2002). Suppose that there exists a constant λ such that λ(t) ≤ λ
for all t. Let T ∗

1 , T
∗
2 , T

∗
3 , . . . be the successive arrival times of a homogeneous

Poisson process with intensity λ. If we accept the ith arrival time T ∗
i with

probability λ(T ∗
i )/λ, independently of all other arrivals, then the sequence

{Ti}∞i=0 of the accepted arrival times (in ascending order) forms a sequence of
the arrival times of a non-homogeneous Poisson process with the rate function
λ(t). The resulting simulation algorithm on the interval (0, t] reads as follows:

Algorithm NHPP1 (Thinning)

Step 1: set T0 = 0 and T ∗ = 0

Step 2: generate an exponential random variable E with intensity λ

Step 3: if T ∗ + E < t then set T ∗ = T ∗ + E else stop

Step 4: generate a random variable U distributed uniformly on (0, 1)

Step 5: if U < λ(T ∗)/λ then set Ti = T ∗ (→ accept the arrival time)

Step 6: return to step 2

As mentioned in the previous section, the inter-arrival times of a homogeneous
Poisson process have an exponential distribution. Therefore steps 2–3 gener-
ate the next arrival time of a homogeneous Poisson process with intensity λ.
Steps 4–5 amount to rejecting (hence the name of the method) or accepting a
particular arrival as part of the thinned process (hence the alternative name).
Note, that in this algorithm we generate a HPP with intensity λ employing the
HPP1 algorithm. We can also generate it using the HPP2 algorithm, which in
general is much faster.

The second approach is based on the observation that for a NHPP with rate
function λ(t) the increment Nt − Ns, 0 < s < t, is distributed as a Poisson

random variable with intensity λ̃ =
∫ t

s
λ(u)du (Grandell, 1991). Hence, the

cumulative distribution function Fs of the waiting time Ws is given by

Fs(t) = P(Ws ≤ t) = 1 − P(Ws > t) = 1 − P(Ns+t −Ns = 0) =

= 1 − exp

{
−
∫ s+t

s

λ(u)du

}
= 1 − exp

{
−
∫ t

0

λ(s+ v)dv

}
.
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If the function λ(t) is such that we can find a formula for the inverse F−1
s for

each s, we can generate a random quantity X with the distribution Fs by using
the inverse transform method. The simulation algorithm on the interval (0, t],
often called the integration method, can be summarized as follows:

Algorithm NHPP2 (Integration)

Step 1: set T0 = 0

Step 2: generate a random variable U distributed uniformly on (0, 1)

Step 3: if Ti−1 +F−1
s (U) < t set Ti = Ti−1 +F−1

s (U) and return to step 2 else
stop

The third approach utilizes a generalization of the property used in the HPP2
algorithm. Given that Nt = n, the n occurrence times T1, T2, . . . , Tn of the
non-homogeneous Poisson process have the same distributions as the order
statistics corresponding to n independent random variables distributed on the
interval (0, t], each with the common density function f(v) = λ(v)/

∫ t

0
λ(u)du,

where v ∈ (0, t]. Hence, the arrival times of the NHPP on the interval (0, t] can
be generated as follows:

Algorithm NHPP3 (Conditional theorem)

Step 1: generate a Poisson random variable N with intensity
∫ t

0
λ(u)du

Step 2: generate N random variables Vi, i = 1, 2, . . .N with density f(v) =

λ(v)/
∫ t

0
λ(u)du.

Step 3: set (T1, T2, . . . , TN) = sort{V1, V2, . . . , VN}.

The performance of the algorithm is highly dependent on the efficiency of the
computer generator of random variables Vi. Simulation of Vi’s can be done
either via the inverse transform method by integrating the density f(v) or
via the acceptance-rejection technique using the uniform distribution on the
interval (0, t) as the reference distribution. In a sense, the former approach
leads to Algorithm NHPP2, whereas the latter one to Algorithm NHPP1.

Sample trajectories of non-homogeneous Poisson processes are plotted in the
top panels of Figure 1.1. In the top left panel realizations of a NHPP with
linear intensity λ(t) = a + b · t are presented for the same value of parameter
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a. Note, that the higher the value of parameter b, the more pronounced is the
increase in the intensity of the process. In the top right panel realizations of a
NHPP with periodic intensity λ(t) = a+ b · cos(2πt) are illustrated, again for
the same value of parameter a. This time, for high values of parameter b the
events exhibit a seasonal behavior. The process has periods of high activity
(grouped around natural values of t) and periods of low activity, where almost
no jumps take place. Such a process is much better suited to model the seasonal
intensity of car accident claims (see the bottom panel in Figure 1.1) than the
HPP.

Finally, we note that since in the non-homogeneous case the expected value of
the process at time t is E(Nt) =

∫ t

0
λ(s)ds, it is natural to define the premium

function as c(t) = (1 + θ)µ
∫ t

0
λ(s)ds. Then the risk process takes the form:

Rt = u+ (1 + θ)µ

∫ t

0

λ(s)ds−
Nt∑

i=1

Xi. (1.4)

1.2.3 Mixed Poisson Process

In many situations the portfolio of an insurance company is diversified in the
sense that the risks associated with different groups of policy holders are sig-
nificantly different. For example, in motor insurance we might want to make a
difference between male and female drivers or between drivers of different age.
We would then assume that the claims come from a heterogeneous group of
clients, each one of them generating claims according to a Poisson distribution
with the intensity varying from one group to another.

Another practical reason for considering yet another generalization of the clas-
sical Poisson process is the following. If we measure the volatility of risk pro-
cesses, expressed in terms of the index of dispersion Var(Nt)/E(Nt), then often
we obtain estimates in excess of one – a value obtained for the homogeneous
and the non-homogeneous cases. These empirical observations led to the intro-
duction of the mixed Poisson process (MPP), see Rolski et al. (1999).

In the mixed Poisson process the distribution of {Nt} is given by a mixed
Poisson distribution (Rolski et al., 1999). This means that, conditioning on an
extrinsic random variable Λ (called a structure variable), the random variable
{Nt} has a Poisson distribution. Typical examples for Λ are two-point, gamma
and general inverse Gaussian distributions (Teugels and Vynckier, 1996). Since
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for each t the claim numbers {Nt} up to time t are Poisson variates with
intensity Λt, it is now reasonable to consider the premium function of the form
c(t) = (1+θ)µΛt. This leads to the following representation of the risk process:

Rt = u+ (1 + θ)µΛt−
Nt∑

i=1

Xi. (1.5)

The MPP can be generated using the uniformity property: given that Nt = n,
the n occurrence times T1, T2, . . . , Tn have the same joint distribution as the
order statistics corresponding to n i.i.d. random variables uniformly distributed
on the interval (0, t] (Albrecht, 1982). The procedure starts with the simulation
of n as a realization ofNt for a given value of t. This can be done in the following
way: first a realization of a non-negative random variable Λ is generated and,
conditioned upon its realization, Nt is simulated according to the Poisson law
with parameter Λt. Then we simulate n uniform random numbers in (0, t).
After rearrangement, these values yield the sample T1 ≤ . . . ≤ Tn of occurrence
times. The algorithm is summarized below.

Algorithm MPP1 (Conditional theorem)

Step 1: generate a mixed Poisson random variable N with intensity Λt

Step 2: generate N random variables Ui distributed uniformly on (0, 1), i.e.
Ui ∼ U(0, 1), i = 1, 2, . . . , N

Step 3: set (T1, T2, . . . , TN) = t · sort{U1, U2, . . . , UN}

1.2.4 Renewal Process

Generalizing the homogeneous Poisson process we come to the point where
instead of making λ non-constant, we can make a variety of different distribu-
tional assumptions on the sequence of waiting times {W1,W2, . . .} of the claim
arrival process {Nt}. In some particular cases it might be useful to assume that
the sequence is generated by a renewal process, i.e. the random variables Wi

are i.i.d., positive with a distribution function F . Note that the homogeneous
Poisson process is a renewal process with exponentially distributed inter-arrival
times. This observation lets us write the following algorithm for the generation
of the arrival times of a renewal process on the interval (0, t]:
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Algorithm RP1 (Waiting times)

Step 1: set T0 = 0

Step 2: generate an F -distributed random variable X

Step 3: if Ti−1 +X < t then set Ti = Ti−1 +X and return to step 2 else stop

An important point in the previous generalizations of the Poisson process was
the possibility to compensate risk and size fluctuations by the premiums. Thus,
the premium rate had to be constantly adapted to the development of the
claims. For renewal claim arrival processes, a constant premium rate allows
for a constant safety loading (Embrechts and Klüppelberg, 1993). Let {Nt}
be a renewal process and assume that W1 has finite mean 1/λ. Then the
premium function is defined in a natural way as c(t) = (1 + θ)µλt, like for the
homogeneous Poisson process, which leads to the risk process of the form (1.3).

1.3 Loss Distributions

There are three basic approaches to deriving the loss distribution: empirical,
analytical, and moment based. The empirical method, presented in Section
1.3.1, can be used only when large data sets are available. In such cases a
sufficiently smooth and accurate estimate of the cumulative distribution func-
tion (cdf) is obtained. Sometimes the application of curve fitting techniques –
used to smooth the empirical distribution function – can be beneficial. If the
curve can be described by a function with a tractable analytical form, then this
approach becomes computationally efficient and similar to the second method.

The analytical approach is probably the most often used in practice and cer-
tainly the most frequently adopted in the actuarial literature. It reduces to
finding a suitable analytical expression which fits the observed data well and
which is easy to handle. Basic characteristics and estimation issues for the
most popular and useful loss distributions are discussed in Sections 1.3.2-1.3.8.
Note, that sometimes it may be helpful to subdivide the range of the claim
size distribution into intervals for which different methods are employed. For
example, the small and medium size claims could be described by the empirical
claim size distribution, while the large claims – for which the scarcity of data
eliminates the use of the empirical approach – by an analytical loss distribution.

In some applications the exact shape of the loss distribution is not required.
We may then use the moment based approach, which consists of estimating
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only the lowest characteristics (moments) of the distribution, like the mean
and variance. However, it should be kept in mind that even the lowest three
or four moments do not fully define the shape of a distribution, and therefore
the fit to the observed data may be poor. Further details on the moment based
approach can be found e.g. in Daykin, Pentikainen, and Pesonen (1994).

Having a large collection of distributions to choose from, we need to narrow
our selection to a single model and a unique parameter estimate. The type of
the objective loss distribution can be easily selected by comparing the shapes
of the empirical and theoretical mean excess functions. Goodness-of-fit can
be measured by tests based on the empirical distribution function. Finally,
the hypothesis that the modeled random event is governed by a certain loss
distribution can be statistically tested. In Section 1.4 these statistical issues
are thoroughly discussed.

1.3.1 Empirical Distribution Function

A natural estimate for the loss distribution is the observed (empirical) claim size
distribution. However, if there have been changes in monetary values during
the observation period, inflation corrected data should be used. For a sample
of observations {x1, . . . , xn} the empirical distribution function (edf) is defined
as:

Fn(x) =
1

n
#{i : xi ≤ x}, (1.6)

i.e. it is a piecewise constant function with jumps of size 1/n at points xi. Very
often, especially if the sample is large, the edf is approximated by a continuous,
piecewise linear function with the “jump points” connected by linear functions,
see Figure 1.2.

The empirical distribution function approach is appropriate only when there is
a sufficiently large volume of claim data. This is rarely the case for the tail of
the distribution, especially in situations where exceptionally large claims are
possible. It is often advisable to divide the range of relevant values of claims
into two parts, treating the claim sizes up to some limit on a discrete basis,
while the tail is replaced by an analytical cdf.

If the claim statistics are too sparse to use the empirical approach it is desirable
to find an explicit analytical expression for a loss distribution. It should be
stressed, however, that many standard models in statistics – like the Gaussian
distribution – are unsuitable for fitting the claim size distribution. The main
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Figure 1.2: Left panel : Empirical distribution function (edf) of a 10-element
log-normally distributed sample with parameters µ = 0.5 and
σ = 0.5, see Section 1.3.5. Right panel : Approximation of the
edf by a continuous, piecewise linear function superimposed on the
theoretical distribution function.

STF2loss02.m

reason for this is the strongly skewed nature of loss distributions. The log-
normal, Pareto, Burr, and Weibull distributions are typical candidates to be
considered in applications. However, before we review these probability laws
we introduce two very versatile distributions – the exponential and gamma.

1.3.2 Exponential Distribution

Consider the random variable with the following density and distribution func-
tions, respectively:

f(x) = βe−βx, x > 0, (1.7)

F (x) = 1 − e−βx, x > 0. (1.8)

This distribution is called the exponential distribution with parameter (or in-
tensity) β > 0. The Laplace transform of (1.7) is

L(t)
def
=

∫ ∞

0

e−txf(x)dx =
β

β + t
, t > −β, (1.9)

http://www.quantlet.de/codes//STF2loss02.html
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yielding the general formula for the k-th raw moment

mk
def
= (−1)k ∂

kL(t)

∂tk

∣∣∣
t=0

=
k!

βk
. (1.10)

The mean and variance are thus β−1 and β−2, respectively. The maximum
likelihood estimator (equal to the method of moments estimator) for β is given
by:

β̂ =
1

m̂1
, (1.11)

where

m̂k =
1

n

n∑

i=1

xk
i , (1.12)

is the sample k-th raw moment.

To generate an exponential random variable X with intensity β we can use
the inverse transform (or inversion) method (Devroye, 1986; Ross, 2002). The
method consists of taking a random number U distributed uniformly on the
interval (0, 1) and setting X = F−1(U), where F−1(x) = − 1

β log(1 − x) is the

inverse of the exponential cdf (1.8). In fact we can set X = − 1
β logU since

(1 − U) has the same distribution as U .

The exponential distribution has many interesting features. As we have seen
in Section 1.2.1, it arises as the inter-occurrence time of the events in a HPP. It
has the memoryless property, i.e. P(X > x+ y|X > y) = P(X > x). Further,
the n-th root of the Laplace transform (1.9) is

L(t) =

(
β

β + t

) 1

n

, (1.13)

which is the Laplace transform of a gamma variate (see Section 1.3.4). Thus
the exponential distribution is infinitely divisible.

The exponential distribution is often used in developing models of insurance
risks. This usefulness stems in a large part from its many and varied tractable
mathematical properties. However, a disadvantage of the exponential distri-
bution is that its density is monotone decreasing (see Figure 1.3), a situation
which may not be appropriate in some practical situations.
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Figure 1.3: Left panel: A probability density function (pdf) of a mixture of two
exponential distributions with mixing parameter a = 0.5 superim-
posed on the pdfs of the component distributions. Right panel:

Semi-logarithmic plots of the pdfs displayed in the left panel. The
exponential pdfs are now straight lines with slopes −β. Note, the
curvature of the pdf of the mixture of two exponentials.
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1.3.3 Mixture of Exponential Distributions

Using the technique of mixing one can construct a wide class of distributions.
The most commonly used in applications is a mixture of two exponentials, see
Chapter ??. In Figure 1.3 a pdf of a mixture of two exponentials is plotted
together with the pdfs of the mixing laws. Note, that the mixing procedure
can be applied to arbitrary distributions.

The construction goes as follows. Let a1, a2, . . . , an denote a series of non-
negative weights satisfying

∑n
i=1 ai = 1. Let F1(x), F2(x), . . . , Fn(x) denote an

arbitrary sequence of exponential distribution functions given by the parame-
ters β1, β2, . . . , βn, respectively. Then, the distribution function:

F (x) =

n∑

i=1

aiFi(x) =

n∑

i=1

ai {1 − exp(−βix)} , (1.14)

is called a mixture of n exponential distributions (exponentials). The density

http://www.quantlet.de/codes//STF2loss03.html
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function of the constructed distribution is

f(x) =
n∑

i=1

aifi(x) =
n∑

i=1

aiβi exp(−βix), (1.15)

where f1(x), f2(x), . . . , fn(x) denote the density functions of the input expo-
nential distributions. The Laplace transform of (1.15) is

L(t) =

n∑

i=1

ai
βi

βi + t
, t > − min

i=1...n
{βi}, (1.16)

yielding the general formula for the k-th raw moment

mk =

n∑

i=1

ai
k!

βk
i

. (1.17)

The mean is thus
∑n

i=1 aiβ
−1
i . The maximum likelihood and method of mo-

ments estimators for the mixture of n (n ≥ 2) exponential distributions can
only be evaluated numerically.

Simulation of variates defined by (1.14) can be performed using the composition
approach (Ross, 2002). First generate a random variable I, equal to i with
probability ai, i = 1, ..., n. Then simulate an exponential variate with intensity
βI . Note, that the method is general in the sense that it can be used for any
set of distributions Fi’s.

1.3.4 Gamma Distribution

The probability law with density and distribution functions given by:

f(x) = β(βx)α−1 e
−βx

Γ(α)
, x > 0, (1.18)

F (x) =

∫ x

0

β(βs)α−1 e
−βs

Γ(α)
ds, x > 0, (1.19)

where α and β are non-negative, is known as the gamma (or Pearson’s Type
III) distribution. In the above formulas

Γ(a)
def
=

∫ ∞

0

ya−1e−ydy, (1.20)
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is the standard gamma function. Moreover, for β = 1 the integral in (1.19):

Γ(α, x)
def
=

1

Γ(α)

∫ x

0

sα−1e−sds, (1.21)

is called the incomplete gamma function. If the shape parameter α = 1, the
exponential distribution results. If α is a positive integer, the distribution is
called an Erlang law. If β = 1

2 and α = ν
2 then it is called a chi-squared

(χ2) distribution with ν degrees of freedom, see the top panels in Figure 1.4.
Moreover, a mixed Poisson distribution with gamma mixing distribution is
negative binomial.

The gamma distribution is closed under convolution, i.e. a sum of indepen-
dent gamma variates with the same parameter β is again gamma distributed
with this β. Hence, it is infinitely divisible. Moreover, it is right-skewed and
approaches a normal distribution in the limit as α goes to infinity.

The Laplace transform of the gamma distribution is given by:

L(t) =

(
β

β + t

)α

, t > −β. (1.22)

The k-th raw moment can be easily derived from the Laplace transform:

mk =
Γ(α+ k)

Γ(α)βk
. (1.23)

Hence, the mean and variance are

E(X) =
α

β
, (1.24)

Var(X) =
α

β2
. (1.25)

Finally, the method of moments estimators for the gamma distribution param-
eters have closed form expressions:

α̂ =
m̂2

1

m̂2 − m̂2
1

, (1.26)

β̂ =
m̂1

m̂2 − m̂2
1

, (1.27)

but maximum likelihood estimators can only be evaluated numerically.
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Figure 1.4: Top panels: Three sample gamma pdfs, Gamma(α, β), on linear
and semi-logarithmic plots. Note, that the first one (black solid
line) is an exponential law, while the last one (dashed blue line)
is a χ2 distribution with ν = 6 degrees of freedom. Bottom pan-

els: Three sample log-normal pdfs, LogN(µ, σ), on linear and semi-
logarithmic plots. For small σ the log-normal distribution resembles
the Gaussian.
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Unfortunately, simulation of gamma variates is not straightforward. For α < 1
a simple but slow algorithm due to Jöhnk (1964) can be used, while for α > 1
the rejection method is more optimal (Bratley, Fox, and Schrage, 1987; Devroye,
1986). The gamma law is one of the most important distributions for modeling
because it has very tractable mathematical properties. As we have seen above
it is also very useful in creating other distributions, but by itself is rarely a
reasonable model for insurance claim sizes.

http://www.quantlet.de/codes//STF2loss04.html
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1.3.5 Log-Normal Distribution

Consider a random variable X which has the normal distribution with density

fN (x) =
1√
2πσ

exp

{
−1

2

(x− µ)2

σ2

}
, −∞ < x <∞. (1.28)

Let Y = eX so that X = logY . Then the probability density function of Y is
given by:

f(y) = fN (log y)
1

y
=

1√
2πσy

exp

{
−1

2

(log y − µ)2

σ2

}
, y > 0, (1.29)

where σ > 0 is the scale and −∞ < µ < ∞ is the location parameter. The
distribution of Y is called log-normal; in econometrics it is also known as the
Cobb-Douglas law. The log-normal cdf is given by:

F (y) = Φ

(
log y − µ

σ

)
, y > 0, (1.30)

where Φ(·) is the standard normal (with mean 0 and variance l) distribution
function. The k-th raw moment mk of the log-normal variate can be easily
derived using results for normal random variables:

mk = E
(
Y k
)

= E
(
ekX

)
= MX(k) = exp

(
µk +

σ2k2

2

)
, (1.31)

where MX(z) is the moment generating function of the normal distribution. In
particular, the mean and variance are

E(X) = exp

(
µ+

σ2

2

)
, (1.32)

Var(X) =
{

exp
(
σ2
)
− 1
}

exp
(
2µ+ σ2

)
, (1.33)

respectively. For both standard parameter estimation techniques the estimators
are known in closed form. The method of moments estimators are given by:

µ̂ = 2 log

(
1

n

n∑

i=1

xi

)
− 1

2
log

(
1

n

n∑

i=1

x2
i

)
, (1.34)

σ̂2 = log

(
1

n

n∑

i=1

x2
i

)
− 2 log

(
1

n

n∑

i=1

xi

)
, (1.35)
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while the maximum likelihood estimators by:

µ̂ =
1

n

n∑

i=1

log(xi), (1.36)

σ̂2 =
1

n

n∑

i=1

{log(xi) − µ̂}2
. (1.37)

Finally, the generation of a log-normal variate is straightforward. We simply
have to take the exponent of a normal variate.

The log-normal distribution is very useful in modeling of claim sizes. For large
σ its tail is (semi-)heavy – heavier than the exponential but lighter than power-
law, see the bottom panels in Figure 1.4. For small σ the log-normal resembles
a normal distribution, although this is not always desirable. It is infinitely
divisible and closed under scale and power transformations. However, it also
suffers from some drawbacks. Most notably, the Laplace transform does not
have a closed form representation and the moment generating function does
not exist.

1.3.6 Pareto Distribution

Suppose that a variate X has (conditional on β) an exponential distribution
with intensity β (i.e. with mean β−1, see Section 1.3.2). Further, suppose
that β itself has a gamma distribution (see Section 1.3.4). The unconditional
distribution of X is a mixture and is called the Pareto distribution. Moreover,
it can be shown that if X is an exponential random variable and Y is a gamma
random variable, then X/Y is a Pareto random variable.

The density and distribution functions of a Pareto variate are given by:

f(x) =
αλα

(λ+ x)α+1
, x > 0, (1.38)

F (x) = 1 −
(

λ

λ+ x

)α

, x > 0, (1.39)

respectively. Clearly, the shape parameter α and the scale parameter λ are
both positive. The k-th raw moment:

mk = λkk!
Γ(α− k)

Γ(α)
, (1.40)
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Figure 1.5: Three sample Pareto pdfs, Par(α, λ), on linear and double-
logarithmic plots. The thick power-law tails of the Pareto distribu-
tion (asymptotically linear in the log-log scale) are clearly visible.
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exists only for k < α. The mean and variance are thus:

E(X) =
λ

α− 1
, (1.41)

Var(X) =
αλ2

(α − 1)2(α− 2)
, (1.42)

respectively. Note, that the mean exists only for α > 1 and the variance only
for α > 2. Hence, the Pareto distribution has very thick (or heavy) tails, see
Figure 1.5. The method of moments estimators are given by:

α̂ = 2
m̂2 − m̂2

1

m̂2 − 2m̂2
1

, (1.43)

λ̂ =
m̂1m̂2

m̂2 − 2m̂2
1

, (1.44)

where, as before, m̂k is the sample k-th raw moment (1.12). Note, that the
estimators are well defined only when m̂2 − 2m̂2

1 > 0. Unfortunately, there are
no closed form expressions for the maximum likelihood estimators and they
can only be evaluated numerically.

Like for many other distributions the simulation of a Pareto variate X can
be conducted via the inverse transform method. The inverse of the cdf (1.39)

http://www.quantlet.de/codes//STF2loss05.html
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has a simple analytical form F−1(x) = λ
{

(1 − x)−1/α − 1
}

. Hence, we can

set X = λ
(
U−1/α − 1

)
, where U is distributed uniformly on the unit interval.

We have to be cautious, however, when α is larger but very close to one. The
theoretical mean exists, but the right tail is very heavy. The sample mean will,
in general, be significantly lower than E(X).

The Pareto law is very useful in modeling claim sizes in insurance, due in large
part to its extremely thick tail. Its main drawback lies in its lack of mathe-
matical tractability in some situations. Like for the log-normal distribution,
the Laplace transform does not have a closed form representation and the mo-
ment generating function does not exist. Moreover, like the exponential pdf
the Pareto density (1.38) is monotone decreasing, which may not be adequate
in some practical situations.

1.3.7 Burr Distribution

Experience has shown that the Pareto formula is often an appropriate model for
the claim size distribution, particularly where exceptionally large claims may
occur. However, there is sometimes a need to find heavy-tailed distributions
which offer greater flexibility than the Pareto law, including a non-monotone
pdf. Such flexibility is provided by the Burr distribution and its additional
shape parameter τ > 0. If Y has the Pareto distribution, then the distribution
of X = Y 1/τ is known as the Burr distribution, see the top panels in Figure
1.6. Its density and distribution functions are given by:

f(x) = ταλα xτ−1

(λ+ xτ )α+1
, x > 0, (1.45)

F (x) = 1 −
(

λ

λ+ xτ

)α

, x > 0, (1.46)

respectively. The k-th raw moment

mk =
1

Γ(α)
λk/τ Γ

(
1 +

k

τ

)
Γ

(
α− k

τ

)
, (1.47)

exists only for k < τα. Naturally, the Laplace transform does not exist in a
closed form and the distribution has no moment generating function as it was
the case with the Pareto distribution.
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Figure 1.6: Top panels: Three sample Burr pdfs, Burr(α, λ, τ), on linear and
double-logarithmic plots. Note, the heavy, power-law tails. Bottom

panels: Three sample Weibull pdfs, Weib(β, τ), on linear and semi-
logarithmic plots. We can see that for τ < 1 the tails are much
heavier and they look like power-law.
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The maximum likelihood and method of moments estimators for the Burr dis-
tribution can only be evaluated numerically. A Burr variateX can be generated
using the inverse transform method. The inverse of the cdf (1.46) has a sim-

ple analytical form F−1(x) =
[
λ
{

(1 − x)−1/α − 1
}]1/τ

. Hence, we can set

X =
{
λ
(
U−1/α − 1

)}1/τ
, where U is distributed uniformly on the unit inter-

val. Like in the Pareto case, we have to be cautious when τα is larger but very
close to one. The sample mean will generally be significantly lower than E(X).

http://www.quantlet.de/codes//STF2loss06.html
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1.3.8 Weibull Distribution

If V is an exponential variate, then the distribution of X = V 1/τ , τ > 0,
is called the Weibull (or Frechet) distribution. Its density and distribution
functions are given by:

f(x) = τβxτ−1e−βxτ

, x > 0, (1.48)

F (x) = 1 − e−βxτ

, x > 0, (1.49)

respectively. For τ = 2 it is known as the Rayleigh distribution. The Weibull
law is roughly symmetrical for the shape parameter τ ≈ 3.6. When τ is smaller
the distribution is right-skewed, when τ is larger it is left-skewed, see the bottom
panels in Figure 1.6. We can also observe that for τ < 1 the distribution
becomes heavy-tailed. In this case, like for the Pareto and Burr distributions,
the moment generating function is infinite. The k-th raw moment can be shown
to be

mk = β−k/τ Γ

(
1 +

k

τ

)
. (1.50)

Like for the Burr distribution, the maximum likelihood and method of moments
estimators can only be evaluated numerically. Similarly, Weibull variates can
be generated using the inverse transform method.

1.4 Statistical Validation Techniques

Having a large collection of distributions to choose from we need to narrow our
selection to a single model and a unique parameter estimate. The type of the
objective loss distribution can be easily selected by comparing the shapes of
the empirical and theoretical mean excess functions. The mean excess func-
tion, presented in Section 1.4.1, is based on the idea of conditioning a random
variable given that it exceeds a certain level.

Once the distribution class is selected and the parameters are estimated using
one of the available methods the goodness-of-fit has to be tested. A standard
approach consists of measuring the distance between the empirical and the
fitted analytical distribution function. A group of statistics and tests based on
this idea is discussed in Section 1.4.2.
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1.4.1 Mean Excess Function

For a claim amount random variable X , the mean excess function or mean
residual life function is the expected payment per claim on a policy with a
fixed amount deductible of x, where claims with amounts less than or equal to
x are completely ignored:

e(x) = E(X − x|X > x) =

∫∞

x {1 − F (u)} du
1 − F (x)

. (1.51)

In practice, the mean excess function e is estimated by ên based on a represen-
tative sample x1, . . . , xn:

ên(x) =

∑
xi>x xi

#{i : xi > x} − x. (1.52)

Note, that in a financial risk management context, switching from the right tail
to the left tail, e(x) is referred to as the expected shortfall (Weron, 2004).

When considering the shapes of mean excess functions, the exponential dis-
tribution plays a central role. It has the memoryless property, meaning that
whether the information X > x is given or not, the expected value of X − x
is the same as if one started at x = 0 and calculated E(X). The mean ex-
cess function for the exponential distribution is therefore constant. One in fact
easily calculates that for this case e(x) = 1/β for all x > 0.

If the distribution of X is heavier-tailed than the exponential distribution we
find that the mean excess function ultimately increases, when it is lighter-
tailed e(x) ultimately decreases. Hence, the shape of e(x) provides important
information on the sub-exponential or super-exponential nature of the tail of
the distribution at hand.

Mean excess functions for the distributions discussed in Section 1.3 are given
by the following formulas (and plotted in Figure 1.7):

• exponential:

e(x) =
1

β
;

• mixture of two exponentials:

e(x) =

a
β1

exp(−β1x) + 1−a
β2

exp(−β2x)

a exp(−β1x) + (1 − a) exp(−β2x)
;
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• gamma:

e(x) =
α

β
· 1 − F (x, α+ 1, β)

1 − F (x, α, β)
− x = β−1 {1 + o(1)} ,

where F (x, α, β) is the gamma distribution function (1.19);

• log-normal:

e(x) =
exp

(
µ+ σ2

2

){
1 − Φ

(
ln x−µ−σ2

σ

)}

{
1 − Φ

(
lnx−µ

σ

)} − x =

=
σ2x

lnx− µ
{1 + o(1)} ,

where o(1) stands for a term which tends to zero as u→ ∞;

• Pareto:

e(x) =
λ+ x

α− 1
, α > 1;

http://www.quantlet.de/codes//STF2loss07.html


26 1 Building Loss Models

• Burr:

e(x) =
λ1/τ Γ

(
α− 1

τ

)
Γ
(
1 + 1

τ

)

Γ(α)
·
(

λ

λ+ xτ

)−α

·

·
{

1 − B

(
1 +

1

τ
, α− 1

τ
,

xτ

λ+ xτ

)}
− x =

=
x

ατ − 1
{1 + o(1)} , ατ > 1,

where Γ(·) is the standard gamma function (1.20) and

B(a, b, x)
def
=

Γ(a+ b)

Γ(a)Γ(b)

∫ x

0

ya−1(1 − y)b−1dy, (1.53)

is the beta function;

• Weibull:

e(x) =
Γ (1 + 1/τ)

β1/τ

{
1 − Γ

(
1 +

1

τ
, βxτ

)}
exp (βxτ ) − x =

=
x1−τ

βτ
{1 + o(1)} ,

where Γ(·, ·) is the incomplete gamma function (1.21).

1.4.2 Tests Based on the Empirical Distribution Function

A statistics measuring the difference between the empirical Fn(x) and the fit-
ted F (x) distribution function, called an edf statistic, is based on the vertical
difference between the distributions. This distance is usually measured either
by a supremum or a quadratic norm (D’Agostino and Stephens, 1986).

The most popular supremum statistic:

D = sup
x

|Fn(x) − F (x)| , (1.54)

is known as the Kolmogorov or Kolmogorov-Smirnov statistic. It can also be
written in terms of two supremum statistics:

D+ = sup
x

{Fn(x) − F (x)} and D− = sup
x

{F (x) − Fn(x)} ,
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where the former is the largest vertical difference when Fn(x) is larger than
F (x) and the latter is the largest vertical difference when it is smaller. The
Kolmogorov statistic is then given by D = max(D+, D−). A closely re-
lated statistic proposed by Kuiper is simply a sum of the two differences, i.e.
V = D+ +D−.

The second class of measures of discrepancy is given by the Cramer-von Mises
family

Q = n

∞∫

−∞

{Fn(x) − F (x)}2
ψ(x)dF (x), (1.55)

where ψ(x) is a suitable function which gives weights to the squared difference

{Fn(x) − F (x)}2. When ψ(x) = 1 we obtain the W 2 statistic of Cramer-von
Mises. When ψ(x) = [F (x) {1 − F (x)}]−1 formula (1.55) yields the A2 statistic
of Anderson and Darling. From the definitions of the statistics given above,
suitable computing formulas must be found. This can be done by utilizing the
transformation Z = F (X). When F (x) is the true distribution function of X ,
the random variable Z is uniformly distributed on the unit interval.

Suppose that a sample x1, . . . , xn gives values zi = F (xi), i = 1, . . . , n. It can
be easily shown that, for values z and x related by z = F (x), the corresponding
vertical differences in the edf diagrams for X and for Z are equal. Consequently,
edf statistics calculated from the empirical distribution function of the zi’s
compared with the uniform distribution will take the same values as if they
were calculated from the empirical distribution function of the xi’s, compared
with F (x). This leads to the following formulas given in terms of the order
statistics z(1) < z(2) < · · · < z(n):

D+ = max
1≤i≤n

{
i

n
− z(i)

}
, (1.56)

D− = max
1≤i≤n

{
z(i) −

(i− 1)

n

}
, (1.57)

D = max(D+, D−), (1.58)

V = D+ +D−, (1.59)

W 2 =

n∑

i=1

{
z(i) −

(2i− 1)

2n

}2

+
1

12n
, (1.60)
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A2 = −n− 1

n
(2i− 1)

n∑

i=1

{
log z(i) + log(1 − z(n+1−i))

}
= (1.61)

= −n− 1

n

n∑

i=1

{
(2i− 1) log z(i)+

+(2n+ 1 − 2i) log(1 − z(i))
}
. (1.62)

The general test of fit is structured as follows. The null hypothesis is that a
specific distribution is acceptable, whereas the alternative is that it is not:

H0 : Fn(x) = F (x; θ),

H1 : Fn(x) 6= F (x; θ),

where θ is a vector of known parameters. Small values of the test statistic T
are evidence in favor of the null hypothesis, large ones indicate its falsity. To
see how unlikely such a large outcome would be if the null hypothesis was true,
we calculate the p-value by:

p-value = P (T ≥ t), (1.63)

where t is the test value for a given sample. It is typical to reject the null
hypothesis when a small p-value is obtained.

However, we are in a situation where we want to test the hypothesis that
the sample has a common distribution function F (x; θ) with unknown θ. To
employ any of the edf tests we first need to estimate the parameters. It is
important to recognize that when the parameters are estimated from the data,
the critical values for the tests of the uniform distribution (or equivalently of
a fully specified distribution) must be reduced. In other words, if the value
of the test statistics T is d, then the p-value is overestimated by PU (T ≥ d).
Here PU indicates that the probability is computed under the assumption of a
uniformly distributed sample. Hence, if PU (T ≥ d) is small, then the p-value
will be even smaller and the hypothesis will be rejected. However, if it is large
then we have to obtain a more accurate estimate of the p-value.

Ross (2002) advocates the use of Monte Carlo simulations in this context.

First the parameter vector is estimated for a given sample of size n, yielding θ̂,
and the edf test statistics is calculated assuming that the sample is distributed
according to F (x; θ̂), returning a value of d. Next, a sample of size n of F (x; θ̂)-
distributed variates is generated. The parameter vector is estimated for this
simulated sample, yielding θ̂1, and the edf test statistics is calculated assuming
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that the sample is distributed according to F (x; θ̂1). The simulation is repeated
as many times as required to achieve a certain level of accuracy. The estimate
of the p-value is obtained as the proportion of times that the test quantity is
at least as large as d.

An alternative solution to the problem of unknown parameters was proposed by
Stephens (1978). The half-sample approach consists of using only half the data
to estimate the parameters, but then using the entire data set to conduct the
test. In this case, the critical values for the uniform distribution can be applied,
at least asymptotically. The quadratic edf tests seem to converge fairly rapidly
to their asymptotic distributions (D’Agostino and Stephens, 1986). Although,
the method is much faster than the Monte Carlo approach it is not invariant –
depending on the choice of the half-samples different test values will be obtained
and there is no way of increasing the accuracy.

As a side product, the edf tests supply us with a natural technique of esti-
mating the parameter vector θ. We can simply find such θ̂∗ that minimizes
a selected edf statistic. Out of the four presented statistics A2 is the most
powerful when the fitted distribution departs from the true distribution in the
tails (D’Agostino and Stephens, 1986). Since the fit in the tails is of crucial
importance in most actuarial applications A2 is the recommended statistic for
the estimation scheme.

1.5 Applications

In this section we illustrate some of the methods described earlier in the chapter.
We conduct the analysis for the Danish fire losses dataset, which concerns major
fire losses in Danish Krone (DKK) that occurred between 1980 and 2002 and
were recorded by Copenhagen Re. Here we consider only losses in profits.
The Danish fire losses dataset has been adjusted for inflation using the Danish
consumer price index.

1.5.1 Calibration of Loss Distributions

We first look for the appropriate shape of the distribution. To this end we plot
the empirical mean excess function for the analyzed data set, see Figure 1.8.
Since the function represents an empirical mean above some threshold level, its
values for high x’s are not credible, and we do not include them in the plot.
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Figure 1.8: The empirical mean excess function ên(x) for the Danish fire data.
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Before we continue with calibration let us note, that in recent years outlier-
resistant or so-called robust estimates of parameters are becoming more wide-
spread in risk modeling. Such models – called robust (statistics) models –
were introduced by P.J. Huber in 1981 and applied to robust regression anal-
ysis (Huber, 2004). Under the robust approach the extreme data points are
eliminated to avoid a situation when outliers drive future forecasts in an un-
wanted (such as worst-case scenario) direction. One of the first applications
of robust analysis to insurance claim data can be found in Chernobai et al.
(2006). In that paper top 1% of the catastrophic losses were treated as outliers
and excluded from the analysis. This procedure led to an improvement of the
forecasting power of considered models. Also the resulting ruin probabilities
were more optimistic than those predicted by the classical model. It is impor-
tant to note, however, that neither of the two approaches – classical or robust
– is preffered over the other. Rather, in the presence of outliers, the robust
model can be used to complement to the classical one. Due to space limits, in
this chapter we will only present the results of the latter. The robust approach
can be easily conducted following the steps detailed in this Section.

The Danish fire losses show a super-exponential pattern suggesting a log-
normal, Pareto or Burr distribution as the most adequate for modeling. Hence,
in what follows we fit only these three distributions. We apply two estima-
tion schemes: maximum likelihood and A2 statistics minimization. Out of the
three fitted distributions only the log-normal has closed form expressions for

http://www.quantlet.de/codes//STF2loss08.html
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Table 1.1: Parameter estimates obtained via the A2 minimization scheme and
test statistics for the fire loss amounts. The corresponding p-values
based on 1000 simulated samples are given in parentheses.

Distributions: log-normal Pareto Burr
Parameters: µ=12.525 α=1.3127 α=0.9844

σ=1.5384 λ=4.0588 · 105 λ=1.0585 · 106

τ=1.1096
Tests: D 0.0180 0.0262 0.0266

(0.020) (<0.005) (<0.005)

V 0.0326 0.0516 0.0496
(0.012) (<0.005) (<0.005)

W 2 0.0932 0.2322 0.2316
(0.068) (<0.005) (<0.005)

A2 0.9851 2.6748 1.8894
(0.005) (<0.005) (<0.005)

STF2loss08t.m

the maximum likelihood estimators. Parameter calibration for the remaining
distributions and the A2 minimization scheme is carried out via a simplex nu-
merical optimization routine. A limited simulation study suggests that the
A2 minimization scheme tends to return lower values of all edf test statistics
than maximum likelihood estimation. Hence, it is exclusively used for further
analysis.

The results of parameter estimation and hypothesis testing for the Danish fire
loss amounts are presented in Table 1.1. The log-normal distribution with
parameters µ = 12.525 and σ = 1.5384 returns the best results. It is the only
distribution that passes any of the four applied tests (D, V , W 2, and A2) at a
reasonable level. The Burr and Pareto laws yield worse fits as the tails of the
edf are lighter than power-law tails. As expected, the remaining distributions
return even worse fits. Hence, we suggest to use the log-normal distribution as
a model for the Danish fire loss amounts.

http://www.quantlet.de/codes//STF2loss08t.html
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Figure 1.9: Left panel : The quarterly number of losses for the Danish fire data.
Right panel : The aggregate number of losses and the mean value
function E(Nt) of the calibrated HPP and NHPP. Clearly the latter
model gives a better fit to the data.
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1.5.2 Simulation of Risk Processes

We conduct empirical studies for Danish fire losses recorded by Copenhagen
Re. The data concerns major Danish fire losses in Danish Krone (DKK),
occurred between 1980 and 2002 and adjusted for inflation. Only losses of
profits connected with the fires are taken into consideration. We start the
analysis with a HPP with a constant intensity λ1. Studies of the quarterly
numbers of losses and the inter-occurrence times of the fires lead us to the
conclusion that the annual intensity of λ1 = 98.39 gives the best fitted HPP.
However, as we can see in the right panel of Figure 1.9, the fit is not very
good suggesting that the HPP is too simplistic. A renewal process would also
give unsatisfactory results as the data reveals a clear increasing trend in the
number of quarterly losses, see the left panel in Figure 1.9. This leaves us
with the NHPP. We tested different exponential and polynomial functional
forms, but a simple linear intensity function λ2(s) = c + ds gives the best
fit. Applying the least squares procedure we arrive at the following values of
the parameters: c = 17.99 and d = 7.15. Processes with both choices of the
intensity function, λ1 and λ2(s), are illustrated in the right panel of Figure 1.9,
where the accumulated number of fire losses and mean value functions for all
23 years of data are depicted.

http://www.quantlet.de/codes//STF2loss09.html
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Figure 1.10: The Danish fire data simulation results for a NHPP with log-
normal claim sizes (left panel) and a NHPP with Burr claim sizes
(right panel). The dotted lines are the sample 0.001, 0.01, 0.05,
0.25, 0.50, 0.75, 0.95, 0.99, 0.999-quantile lines based on 3000 tra-
jectories of the risk process.
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After describing the claim arrival process we have to find an appropriate model
for the loss amounts. In Section 1.5.1 a number of distributions were fitted
to loss sizes. The log-normal distribution with parameters µ = 12.525 and
σ = 1.5384 produced the best results. The Burr distribution with α = 0.9844,
λ = 1.0585 · 106, and τ = 1.1096 overestimated the tails of the empirical
distribution, nevertheless it gave the next best fit.

The simulation results are presented in Figure 1.10. We consider a hypothetical
scenario where the insurance company insures losses resulting from fire damage.
The company’s initial capital is assumed to be u = 400 million DKK and the
relative safety loading used is θ = 0.5. We choose two models of the risk
process whose application is most justified by the statistical results described
above: a NHPP with log-normal claim sizes and a NHPP with Burr claim
sizes. In both panels the thick solid blue line is the “real” risk process, i.e.
a trajectory constructed from the historical arrival times and values of the
losses. The different shapes of the “real” risk process in the two panels are
due to the different forms of the premium function c(t) which has to be chosen
accordingly to the type of the claim arrival process. The dashed red line is a
sample trajectory. The thin solid lines are the sample 0.001, 0.01, 0.05, 0.25,

http://www.quantlet.de/codes//STF2loss10.html
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0.50, 0.75, 0.95, 0.99, 0.999-quantile lines based on 3000 trajectories of the risk
process. We assume that if the capital of the insurance company drops bellow
zero, the company goes bankrupt, so the capital is set to zero and remains at
this level hereafter.

Comparing the log-normal and Burr claim size models, we can conclude that in
the latter model extreme events are more likely to happen. This is manifested
by wider quantile lines in the right panel of Figure 1.10. Since for log-normal
claim sizes the historical trajectory is above the 0.01-quantile line for most of
the time, and taking into account that we have followed a non-robust estimation
approach of loss severities, we suggest to use this specification for further risk
process modeling using the 1980-2002 Danish fire losses dataset.
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