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Abstract

We prove that standard regularity and saddle stabilityragsions for linear approximations are suf-
ficient to guarantee the existence of a unique solution farraletermined coefficients of nonlinear
perturbations of arbitrary order to discrete time DSGE nimd@/e derive the perturbation using a
matrix calculus that preserves linear algebraic strusttoerbitrary orders of derivatives, enabling
the direct application of theorems from matrix analysisrimve our main result. As a consequence,
we provide insight into several invertibility assumptidnam linear solution methods, prove that
the local solution is independent of terms first order in teetyrbation parameter, and relax the

assumptions needed for the local existence theorem ofrpattan solutions.
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1 Introduction

Macroeconomists are increasingly using nonlinear methodsalyze dynamic stochastic general
equilibrium (DSGE) models. One such method, the pertushatiethod initiated in macro DSGE
modeling by Gaspar and Judd (1997), Judd and Guu (1997), @t (1998, ch. 13), has been
successfully applied to a variety of applications with a fewent examples including the effects of
time varying interest rates in the small open economy in &ealez-Villaverde, Guerron-Quintana,
Rubio-Ramirez, and Uribe (2011), to multi country realibass cycle models in Kollmann, Kim,
and Kim (2011), to the yield curve with recursive preferenead long run risks in Rudebusch
and Swanson (2012). Intuitively, perturbation rests onitlea that successive differentiation of
the equilibrium conditions will generate a set of equatitms are sufficient to uniquely recover
the coefficeints of the Taylor expansion of the policy fuaoti As emphasized by Judd (1998) and
Jin and Judd (2002), this unique recovery rests on solvalmitinditions that enable the implicit
function theorem to guarantee the existence of a uniqueigolfor the undetermined coefficients
of higher order terms. Current perturbation analyses mwaeeder the tenuous assumption that
these solvability conditions hold generically, as no gahset of conditions has been proven. We fill
this gap and provide conditions that guarantee the existand uniqueness of solutions for DSGE
perturbations of an arbitrarily high order. Specificallyr smmain result shows that assumptions on the
linear approximation that are standard in the literatuesahready sufficient to ensure this existence
and uniqueness.

We derive our main result by demonstrating that the set eflirequations in the undetermined
coefficients to be solved for each order of approximationm@expressed as a generalized Sylvester
equationt Under the assumption of a unique saddle stable solutionnedpect to the closed unit

circle for the homogenous component of the first order phedtion (i.e., (log-)linearization), a fac-

LJuillard and Kamenik (2004) and Kamenik (2005) provide av€ster representation for many of the unknown
coefficients in their perturbation. We formulate the statece, see below, to extend this approach to all coefficients.



torization provided by a corollary of the generalized B@ztheorem relates the set of remaining
unstable eigenvalues to a generalized eigenvalue problémthve saddle stable solution as an ar-
gument. With this factorization in hand, we relate the secf the matrix pencils associated with
the leading and trailing coefficients in the generalized/8ster equation at an arbitrary order to the
spectrum of the stable solution and the remaining set ofabteseigenvalues. Due to the separation
induced by the unique stable solution, the spectra of theilsan the generalized Sylvester equation
necessarily form a disjoint set (akin to a nonzero deterntimea standard linear equation system),
ensuring the existence and uniqueness of solutions to tire saquence of Sylvester equations.
Our result relies crucially on our ability to provide a cldderm representation for the homoge-
nous components of the Sylvester equations. The curremiatd approach to higher dimensional
differentiation resorts to tensor notatiémyith which Jin and Judd (2002), Schmitt-Grohé and Uribe
(2004), and others have shown that the equations to be salwzith order of approximation are lin-
ear. Unfortunately, the solvability conditions (that isyertibility of these linear maps or coefficient
matrices) change as the order of approximation changeseaith and Judd (2002) to conclude that
this invertibility remains an open issue. Our results desti@te that the choice of tensor notation
can obfuscate underlying algebraic relationsHipse change in the coefficient matrices leading
to the change in the solvability conditions as the analysisgeds to higher orders of approxima-
tion is trivial. We uncover the pattern of the linear map athearder of approximation using the
linear-algebraic preserving multidimensional calculeseloped in Lan and Meyer-Gohde (2011),
enabling the direct application of results from linear &igedescribed above. At each order, the
lone trailing matrix in the Sylvester equation is a Kronegkewer of the linear transition matrix of

the state space. As the order increases, so too does thedkesrpower; but if the linear transition

2See Schmitt-Grohé and Uribe (2004) or Kim, Kim, Schaumbangl Sims (2008). Gomme and Klein (2011) and
Lombardo and Sutherland (2007) provide two exceptionsli@ttp avoiding tensor notation in second order calcula-
tions. See Lan and Meyer-Gohde (2011) for further discussio

3Gomme and Klein (2011) have argued that deriving pertushatblutions with standard linear algebra increases the
transparency of the technique, we extend this idea usingholtidimensional mechanical system of differentiation fo
arbitrarily high orders of approximation and demonstragg imaintaining standard linear algebraic structureslesab
the derivation of additional analytic results.



matrix is stable with respect to the closed unit circle, soisoan arbitrary Kronecker power of the
matrix stable with respect to the closed unit circle. Withather coefficients in the homogenous
part of the linear map remaining unchanged at each ordetatikeof deriving general solvability

conditions is greatly reduced.

We construct the Taylor series approximation of the polisyction with these uniquely solvable
coefficients, proving that the commonly used numerical @doce of successive differentiating the
equilibrium conditions of a smooth model uniquely recoveerBaylor approximation. Jin and Judd
(2002) provide a local existence theorem for solutions daolsstic nonlinear DSGE models—and
hence such Taylor approximations—using an implicit fumetiheorem for Banach spaces, our fac-
torization result of the matrix quadratic equation allowsaeliminate their solvability assumptién.
Anderson, Levin, and Swanson (2006) show that under thergdgan of analyticity of the true pol-
icy function, ann’'th order perturbation is a global solution in a rigorous seKinside the Taylor
series’s domain of convergence). Under their assumpti@malyticity, which ensures that the true
nonlinear policy function can be uniquely represented bw#sociated Talyor series within its do-
main of convergence, our result proves that successiverdiffiation of the equilibrium conditions
is sufficient (in the limit) to recover the policy function.

We proceed to apply our results to several issues in linehnanlinear perturbations. In numer-
ous studies of linear approximations—from McCallum (1983Binder and Pesaran (1997), to Uh-
lig (1999), to Cho and Moreno (2011), the analyses procedémte proviso that certain matrices
are invertible to deliver a unique solution for the mappirayi exogenous to endogenous variables.
From our main result, the existence and uniqueness of sakifor these mappings is guaranteed
as the existence and uniqueness of a saddle point stabteadhr the homogenous component in
the endogenous variables is assumed. We show how the fatton provided by the generalized

Bézout theorem can be directly applied in their analysg@sdwe the missing invertibility conditions.

4Kim, Kim, Schaumburg, and Sims (2008) show that their assiompf bounded support for exogenous shocks is
unnecessary if accuracy in probability instead of an alte@acuracy is sought.



King and Watson (1998) and Klein (2000) exploit the triaragity of their factorizations to prove
the existence and uniqueness of their mapping from exogeioaendogenous variables line by line
and we relate this scalar approach to the matrix approadh out factorization that allows us to
accomplish this task in one step instead of recursively. [iNearly, several analyses have pointed
out that the first derivative of the policy function with resp to the perturbation parameter ought
to be zero. Jin and Judd (2002) and Schmitt-Grohé and UZib@4) notably present this result in
the context of the first derivative of the policy function witespect to the standard deviation of the
shock. Both of these analyses assume the invertibility@fithppings they show to be homogenous,
thus enabling our main result to complete their proofs byigng this necessary invertibility.

The rest of the paper is organized as follows. In sec®ome lay out a general nonlinear multi-
variate DSGE model and develop théh order approximation to its associated policy function b
mechanical application of the differentiation rules pd®d by the linear-algebraic preserving multi-
dimensional calculus and associated Taylor's Theorem. &jebn sectior8 with the derivations of
the terms associated with the endogenous state space irstt@dier perturbation, leading to a ma-
trix quadratic problem familiar from the analysis of lind28GE models. Here we relate the matrix
guadratic problem to a generalized eigenvalue problem rindduce the factorization enabled by
the generalized Bézout theorem allowing us to place tweiteeon different sides of the unit circle.
In sectiord, we derive the remaining coefficients of the perturbatiothaisequence of generalized
Sylvester equations and derive our result on the existendeiniqueness of the solutions to these
equations, using properties of the solutions to Sylvesjaagons and our separation of two matrix
pencils from the previous section. The existence and unieggeof these solutions is then linked
to the local existence and approximation of the policy fiorct We apply our results in sectidn
to some remaining invertibility assumptions in linear misdend address the first order role of the

perturbation parameter in nonlinear settings. Finallgtisa 6 concludes.



2 DSGE Problem Statement and Policy Function

In this section, we introduce the class of models we analyzktlae policy function we examine
as a solution. Our class of models is a standard system ofiiiean) second order expectational
difference equations compatible with Adjemian, Bastauillard, Mihoubi, Perendia, Ratto, and
Villemot’s (2011) Dynare or Anderson, Levin, and Swansq2B806) PerturbationAIM. We will

first present the model class followed by the solution forrd #ren conclude with the Taylor ap-
proximation of the solution and the matrix calculus neces&afollow the derivations in subsequent

sections.
2.1 Model Class

We analyze a family of discrete-time rational expectatimaglels given by

(1) 0=Et[f(Ye+1, Y1, Yt—1,&)]
the vector-valued functiofi : R"Y x R x R"™Y x R"® — R"Y is assume®", wheren is the order of
approximation to be introduced subsequently, with respeat! its argumentsy; € R™ the vector
of endogenous variables; apde R" the vector of exogenous shocks. Note that we assume there
are as many equations as endogenous variables.

Additionally, & is assumed independently and identically distributed ghebE [¢;] = 0 and
E [st‘@[”]] exists and is finite for alh up to and including the order of approximation to be intraetlic

subsequently.

5The notationg®[" represents Kronecker powerg®" is the n'th fold Kronecker product ofg; with itself:
& RE&---®¢g. For simulations and the like, of course, more specific decssregarding the distribution of the ex-
times
oge?mus processes will have to be made. Kim, Kim, Schaumlmg Sims (2008, p. 3402) emphasize that distri-
butional assumptions like these are not entirely local mggions. Dynare (Adjemian, Bastani, Juillard, Mihoubi,
Perendia, Ratto, and Villemot 2011) assumes normality @utiderlying shocks. PerturbationAIM (Anderson, Levin,
and Swanson 2006) assumes mutual independence of the ¢deshgn



2.2 Solution Form

Let the policy function be time invariant and ergodic, rglinut explosive and nonfundamental

solutions, following Anderson, Levin, and Swanson (200&)mnd let it take

(2) z = |:yt—1:| c anxl
&t
as its state vector, wherz= ny+ ne
As is usual in perturbation methods, we introduce an auyifmrameteo < [0, 1] to scale the

uncertainty in the model. The “true” stochastic model uratady corresponds to =1 ando =0

represents the deterministic version of the model. Heheentodel has solutions indexed by
(3) Wt :y<07zt>7 y: RJF x R — R™

Time invariance and scaling uncertainty give

Wt

c anxl, y+ . R-i- < R"Z _y RNY
O€t4+1

(4) M+1=y+@L&+D,&+1=[
The notationy andy™, is adopted so that we can keep track of the source (thrgughdy;. 1
respectively) of any given partial derivative of the polfeyiction. The necessity of which can be
seen by the fact that scales the;_ ; in thez_ 1 argument of/, but not that o&; in thez argument

of y, and the the; . ; argument of/" is itself a function ofy through its dependance gn
2.3 Taylor Series Approximation

We seek a Taylor approximation of the solutioB), €xpanded around a nonstochastic steady state

Definition 2.1. Nonstochastic Steady State

Lety € R"Y be a vector such that

) 0=1f(y.y,,0)

that is, the function f inX) with all shocks, set to zero, and the policy function eveddaat the

nonstochastic steady state

(6) y=Y(0,2)



wherez= [y O’]', and all uncertainty regarding the future eliminatéad = 0).

Note that the nonstochastic steady state need not nedgssannique as we will admit models
that possess unit root solution in the first order approxionat

Following general practice in the perturbation literafwve attempt to pin down the approxima-
tion of the unknown policy function3) by successively differentiatind and solving the resulting
systems for the unknown coefficients. Notice that, sihisea vector valued function, successive dif-
ferentiation off with respect to its vector arguments will generate a hypgezaf partial derivatives.
We use the method of Lan and Meyer-Gohde (2011) that adaptstiiicture of matrix derivatives
defined in Vetter (1973) to differentiate conformably to Kmnecker product, by deriving partial
derivatives from successive differentiationfoés two dimensional matrices. This allows us to avoid
tensor notation—mitigating to some extent what Jin and J2662) called a “nontrivial notational
challenge”—and use standard linear algebra, operatmngliGomme and Klein’s (2011) goal of

two dimensional derivatives to arbitrary orders of differation.

Definition 2.2. Matrix Derivatives
Let A(B) : RS — RP*9 be a matrix-valued function that maps ar & vector B into an p< q matrix
A(B), the derivative structure of 8) with respect to B is defined as
_ _[oa i)
where b denotes i'th row of vector B, indicates transpositioﬁ.Structures of n'th derivatives are

thereby uniquely defined
_ _ (2 g 1%

This structure will make the presentation of the solutiorthbnd more transparent—successive
differentiation off to the desired order of approximation is a mechanical agptin of the associ-

ating calculus

60utside of the derivative structures, we use the apostrupinglicate transposition.



Theorem 2.3. A Multidimensional Calculus
Given the vector B RS*! and the matrix-valued functions /8 — RP*9, G: B — R¥*Y H:B —
RY*V and given the vector-valued function:® — RY1, J:C — RP*! and the matrix-valued

function A: C — RP*9, the following rules of calculus hold
1. Matrix Product Rule:Zgr {FG} = Fg (Is® G) + FGg, where k is an sx s identity matrix
2. Matrix Chain Rule:Zgr {A(C)} = Ac (Ca®@1q), where } is an gx q identity matrix

3. Matrix Kronecker Product RuleZgr {F ® H} = Fs® H + (F ® Hg) Kqus (Is® Kyq), Where

Kqvsand K, q are gvsx qvs and qw qv commutation matrices (Magnus and Neudecker 1979).
4. Vector Chain RuleZgr {J(C)} = AcCs
Proof. See Lan and Meyer-Gohde (2011). O

By adapting the notation from Definitidh2and writingy.mgn as the partial derivative, evaluated
at the nonstochastic steady stateyefith respect tas n times and with respect tg m times, we

can then write thé-th order Taylor approximation of the policy functioB) (using the following

Corollary 2.4. An M-th order Taylor Approximation o8] is written as

9 B M 1 M—m 1 . e
9) Y= mZoﬁ 2 oYzmend” | (2 —2)
Proof. See Appendix. O

Here [yM " Lymgno™ collects all the coefficients associated with thih fold Kronecker
product of the state vectar,. For a givenm, the sum oven gathers coefficients in powers of the
perturbation parameterthat correct the coefficients associated withritign fold Kronecker prod-
uct of the state vectog, for uncertainty up to the-th order. This enables the useful classification

of the contributions of uncertainty to the model as cormewito the Taylor series coefficients for

uncertainty. That is, moving to a higher order of approxiomgtM, in (9) comprises two changes:



(i) adding a higher order partial derivative with respecttte state vectoz; and (ii) opening up all
existing partial derivatives of current order to a highetesrcorrection for uncertaintyThe change

in moving from anM — 1'th to M’th order approximation is

(10) z M, ADRE z T i [CTr i

m=0 i1=0i,=0 in=0
Change (i) adds aN’th order partial derlvatlve W|th a zeroth order correction uncertainty (for
m= M above,y,mgm-moM M = y,m00° = y,m) and from (i) comes then additionally a first order
uncertainty correction foM — 1'th order partial derivatives with respect zg a second order un-
certainty correction for th&1 — 2'th partial derivatives with respect @ and so on up to th#'th
order correction for uncertainty in the constant. The utaiety correction at a given order directly
depends on the moments of future shocks at each order anyican(be interpreted as successively

opening each partial derivatives of current order up to @ghoments in the distribution of future

shocks, while (i) maintains the deterministic Taylor nat@f moving to a higher order polynomial.
2.4 Systems of Equations for the Unknown Coefficients

The procedure can be outlined as folldvsiserting the policy functions fog andy;, 1—equations,

(3) and @) respectively—into the model) yields

1) o= [t(v (0. /o)) wo2.2)]

a function with arguments andz. At each order of approximation, we take the collection of

derivatives off from the previous order (for the first-order, we start with thnctionf itself) and

1. differentiate each of the derivatives bffrom the previous order with respect to each of its

arguments (i.eqg andz)

2. evaluate the partial derivatives bind ofy at the nonstochastic steady state

3. apply the expectations operator and evaluate using Wie@ ghoments

"We are grateful to Michael Burda for suggesting this intetation.
8See Anderson, Levin, and Swanson (2006) for a similar aitlin



4. set the resulting expression to zero and solve for thewirpartial derivatives oy.

The partial derivatives of, obtained in step (4) at each order, constitute the missanggb deriva-

tives for the Taylor approximation.

3 Solving and Factoring the Matrix Quadratic Equation

In this section, we deal with the only nonlinear equatiort tteeeds to be solved, a matrix quadratic
equation. The existence and uniqueness of a saddle stéli®@se-stable with respect to the closed
unit circle—for linear approximations is given by the egiste and uniqueness of a stable solution
the matrix quadratic solutioh This is well known, but we will need to make the standard agsum
tions that guarantee this solution. It has, however, noh laggreciated in the DSGE literature that
this stable solution can be used to deflate the matrix quadrgqtiation into a second generalized
eigenvalue problem containing the unstable manifold. Tdgsorization, a corollary of the general-
ized Bézout theorem that relates lambda-matrices, stéaa right division of matrix polynomials,
splits the matrix quadratic problem into two disjoint (de&bhnd unstable) components that will be
crucial in later sections for ensuring the existence anduemness of solutions out to arbitrary orders

of approximation.
3.1 Matrix Quadratic Equation

Following Corollary2.4, the first order Taylor expansion of the policy functi@ &round the non-
stochastic steady state takes the form

(12) W =Y+Yo0+Yz(z —2)

The unknown coefficients are the partial derivatiygsindys.

Following the method outlined above, we differenti&te (11) with respect t@; to generate the

°E.g., Uhlig (1999).

10



equation that determings,
(13) Dg{f} =Ty, 3y, + fyy + T,
Evaluating this at the nonstochastic steady state anagétsi expectation to zero yield
(14) B |27 11} | = fyvazye + fyyet f2=0
Postmultiplying the foregoing with, yields
(15) fyr (V22y)? + fyyz2y + T2/ =0

This is a matrix quadratic equationygz,. Both Binder and Pesaran (1997) and Uhlig (1999) re-
late their solutions of linear models explicitly to such dretic equations, other approaches, such as
Blanchard and Kahn (1980) or Klein (2000), work insteadatlyewith model equations by applying
matrix factorizations to the model’s coefficients. Uhli®@B) constructs a class of diagonalizable
solutions using generalized eigenvalue decompositiornileMre dispense with the diagonalizabilty
requirements and use a generalized Schur form followingnKR000), making his assumptiofs
to solve (5), the generalized eigenvalue decomposition will be céfdraleflation of the quadratic
problem given a unique stable solution. We will link our pet in (15), to which we will require
a unigue stable solution, to the general application of Qffni the entire set of solutions (or ‘sol-
vents’) to matrix quadratic problems in Higham and Kim (2))0@ho note that direct eigenvalue

methods may fail to identify solutions to matrix quadratigiations even when they exist.
3.2 The Saddle Stable Solution

We will now construct the stable solution to our matrix quedolr problem 15) using the general-

ized Schur decomposition. The existence and uniquenes® aitable solution will be guaranteed
by three assumptions standard in the literature. The fisstraption is a regularity assumption that
requires all the equations to be linearly independent, ¢ésersd is the Blanchard and Kahn (1980)

eigenvalue condition in our context requiring exactly aswnstable eigenvalues as variables, and,

10Though we relax his stability assumption from the open toctheed unit circle, permitting unit-root solutions.

11



third, a singular version of the Blanchard and Kahn (198@kreondition—KIlein's (2000) trans-
latability assumption—necessary to be able to constructutisn to (15) from the unique set of
stable eigenvalues.

In order to construct its solution (or solvent), we need torfalize the definition of our problem
as a matrix quadratic equation. Our analysis will proceétigity in the complex plane, but we
show—uwith assumptioB.7—that the results carry over when we restrict solutions teelévalued,

see also Klein (2000). We will begin by formalizing the natiof a matrix quadratic problem

Definition 3.1. Matrix Quadratic Problem
For f+, fy, and £z, € R"™Y*"Y, a matrix quadratic MX) : C"™Y*"Y — C*Win matrix X € C"*Wis
defined as
(16) M(X) = fr X2+ fyX + T,z
A solution to the matrix quadratid ) is called a solvent and is defined as

Definition 3.2. Solvent of Matrix Quadratic

A matrix Xe C™*" is a solvent of the matrix quadratid ) if and only if M(X) =0

A solvent of the matrix quadratic can be characterized raéttdrely via the deflating subspace
of the associated block companion formulation or lineatigencil of (L6), following Higham and

Kim (2000)

Lemma 3.3. Solvent Characterization via Linearization
A matrix Xe C™*W is a solvent of the matrix quadrati¢ §)—i.e., M X) = 0— if and only if
(17) D Iny x — E Iny ; D — OnyX ny Iny , E — Iny OnyX ny

X X fyF OnyX ny - fy - szy

where fy is an nyx ny identity matrix andny.ny is an nyx ny matrix with all its entries being zero

Proof. See Higham and Kim (2000). O

We will construct solvents ofl) with the generalized Schur decomposition of the matrixcgden

Poe(z) = Dz— E, where we define a pencil and its spectrum via

12



Definition 3.4. Matrix Pencil and Spectrum
Let P: C — C"™" be a matrix-valued function of a complex variable; a matrenpil. Its set of

generalized eigenvalues or spectrp(®) is defined vigp(P) = {z € C : detP(z) = 0}.

Now we can apply Theorem 3 of Higham and Kim (2000) to recavercomplete set of solvents

of (16).

Theorem 3.5. The Generalized Schur Decomposition and Solvents

All solvents of MX) are given by X= Z»1Z; = Q11 T11S1Q; 1, wheré*!

(18) QEZ=T, Q'DZ=S

is a generalized Schur decomposition with unitary Q and Zwger triangular S and T, and where

Q,Z,S,and T are patrtitioned as blo2k 2 matrices with ny ny blocks.
Proof. See Higham and Kim (2000). O

Our interest lies in the unique stable solvent and we will pogceed to the standard assumptions
following Klein (2000) and their consequences for the sesabents. King and Watson’s (1998)
solvability condition, adapted also as Klein’s (2000, p13Assumption 4.3, requires the matrix

pencilPoe(z) = Dz— E to be regular

Assumption 3.6. Regularity Assumption

There exists az C such that defDz— E) # 0: the matrix pencil Be(z) = Dz—E is called regular

This assumption rules out a mundane source of singularitgiwleads to a general nonunique-
ness of solvents of the matrix quadratit6), merely because the problem is ill specified—e.g., two
equations are linearly dependent in the first-order appra&on. If this condition were not to hold,

the spectrunp(Pog) would be the entire complex plane—see Golub and Loan (1995, 9.

1 denotes conjugate transposition.

13



With this assumption and any generalized Schur decomposifiPog (z), the spectrum of the

pencilPoe(2) is a finite set given by

(19) p<PDE>={t“/S" Si 70 'i:l,...,Zny}

0, otherwise
wheres;j andt; denote tha’'th row andi’th column of SandT respectively. With the continuation

to infinite generalized eigenvalu&sthe set of generalized eigenvalues or spectrum has exautly 2
elementg3

We will require the solvent to be stable with respect to tloset! unit circle. From theorefs5,
the eigenvalues of a solvent will be equal to the fingpairst;; /s;i (suitably extended to infinity as
above). Thus, if there exists a unique solvent of the mauedgatic (6), the Blanchard and Kahn

(1980) eigenvalue condition must hold

Assumption 3.7. Eigenvalue Count
Of the2ny generalized eigenvalues of the matrix pengit ) = Dz— E, there are exactly ny inside
or on the unit circle, called stable. Consequently, theme @xactly ny outside the unit circle, called

unstable.

As the pairs(si,tij) can be arranged in any order, they can be arranged suchytipairs with
Itii| < |sil, or stable eigenvalues, come first. The remaimggairs with|t;| > |s;j|, or unstable
eigenvalues, follow. As Klein (2000) also notes, with realuned matrice® andE in (17), com-
plex eigenvalues will come in pairs and thus the 2 blocks on the diagonals df andSin the
real generalized Schur decomposifibmould not change the method. Essentially, the possibility
of a complex valued solution despite real valued coeffisientruled out by the separation of the
eigenvalues, which come in pairs with equal modulus whenptexrand are thus both either on one
side or the other with an associated real valued solutiaats® Uhlig's (1999) discussion. From

assumptiorB.7, the partitioning of each the four matriced, Z, SandT as (2 x 2) blocks with

12gee also Klein (2000, p. 1410).

13gee J. E. Dennis, Traub, and Weber (1976, p. 835) or Golub aad (1996, p. 377), where the regularity in
assumptior8.6 rules out the possibility tha; = t;j = 0 for somei.

14See Golub and Loan’s (1996) Theorem 7.7.2.
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(nyx ny) blocks is conformable with the dimension of the two setdjlstand unstable, generalized
eigenvalues. From theore®b, the solvent associated with any generalized Schur decsitiggo
for the matrix quadratic problem is given b= 22121_11 and thus for us to be able to construct a
solvent from the combination of stable eigenvalues, we gegollowing Klein’s (2000, p. 1413)

Assumption 4.5

Assumption 3.8. Solvent Constructibility

The upper right block # is nonsingular

As the maximal number of solvents given our regularity agstion is given by the number
of different possible combinations of eigenvalues respgatlgebraic multiplicities? if a solvent
exists for a uniguay dimensional set of eigenvalues stable with respect to theedl unit circle then
it is the only solvent whose eigenvalues satisfy the stgh#iquirement.

Thus, under assumptiords6-3.8, there exists a unique stable solution 1&)( which we sum-

marize in the following

Theorem 3.9. Existence of a Unique Stable Solvent

There exists a unique solution dfd) with all its eigenvalues inside the closed unit circle (gfhwe
will call y,z), if the associated linearized pencil is regular (assuimp8.6), has exactly ny stable
eigenvalues—inside or on the unit circle (assump8adf), and if a generalized Schur decomposition

with the ny stable eigenvalues order first admits a solvesgi{enptior8.8).
Proof. By construction. O

We will reservey,z, for this unique stable solvent of%).

15See J. E. Dennis, Traub, and Weber (1976), Higham and Kim0(j200 Higham and Kim (2001).
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3.3 Factoring the Unstable Solutions

In the previous section, we made three stantfaadsumptions to deliver a unique stable solvent or
solution to the matrix quadratic problem at the first ordehisTsolvent is constructed using half
(ny out of 2ny) of the eigenvalues associated with the quadratic probMf@.will now apply the
generalized Bézout theorem to show that with a solventifagaour case the unique stalylgy) in
hand, the original matrix quadratic problem can be deflaiedgeneralized eigenvalue problem with
all eigenvalues outside the unit circle (i.e., the remamug eigenvalues not used in the construc-
tion of y,z,). The generalized eigenvalue problem combines the casitichatrices of the original
quadratic problem with our unique stalyle, into a pencil with unstable eigenvalues, providing us
with a means to factor the remaining eigenvalues as pemeitdving our stable solution.

From, e.g., J. E. Dennis, Traub, and Weber (1976, p. 835) otrzacher’s (1959a, p. 228)
Theorem 4, the set of eigenvalues of all solventsl®) @re latent roots of the associated lambda-

matrix

Definition 3.10. Lambda-Matrix
The lambda-matrix Nh) : C — C™" (of degree two) associated with@) is given by
(20) M(A) =M(Alp) = fye A2+ fh + fr2
Its latent roots are values &f such thatdetM (A) = 0.
The set of latent roots ir2() is identical to the set of eigenvalues of the generalizgdmeialue

problem associated with the pencil formed by the matricethénlinearized versionl{) of the

guadratic problem

Lemma 3.11.The matrix pencil Be(z) = Dz—E is a linearization of the lambda-matri2Q), hence

the latent roots 0fZ0) coincides with the elements of the spectffog)

16see Klein (2000).
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Proof. See, e.g., Davis (1981), Gohberg, Lancaster, and Rodma2,(I&h. 7), or Tisseur and

Meerbergen (2001). O

Thus, the set of eigenvalues of the pemjk (z), p(Poe), is identical to the set of’s such that
detM(A) =0.

We are now prepared to link lambda matrices and solventsigfirthe generalized Bézout theo-
rem, repeated in the Appendix, which states that a lambdaxaatided on the right by a binomial
in a matrix has as a remainder the matrix polynomial assediaith the lambda matrix evaluated
at the matrix of the binomial. As noted by Gantmacher (19%%a, 4) and repeated in Lancaster
(1966), Davis (1981), Higham and Kim (2000), and Higham ama K2001), if this matrix in the
binomial is a solvent of the matrix polynomial, the divisienwithout remainder, yielding a fac-
torization of the matrix polynomial. Our matrix polynomiala matrix quadratic and can thus be

factored as follows

Corollary 3.12. As y;7, is a solvent of 16), then 0) has the following factorization
(21) M(A) = (Mfyr + fyeyazy + fy) (Ingh — V22y)

Proof. Apply theoremA.1 in the Appendix to 16), setA = y,z,, and note thali(y,z,) = 0 asy,z,

is a solvent oM (X). O

Note that the eigenvalues of the perféik (), p(Poe), are given byA’s such that
(22) det(A fyr + fyy-2,+ fy) det(InA —y,2)) =0
The latter determinant gives the eigenvalues associatidhva solveny,z, and the former determi-
nant gives a generalized eigenvalue problem in the coefteiaM (X) and the solveny,z,. We can
now use assumptiod 7, the Blanchard and Kahn (1980) condition, on the numbergdmialues to

restrict the eigenvalues of the generalized eigenvalugl@nodetz f,+ + fy+y,z,+ fy) = 0.

Proposition 3.13. The eigenvalues of the matrix penail @) = zf,+ + fy+y,z,+ fy are contained

entirely outside the closed unit circle.
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Proof. From assumptioB.7, there are exactlpy eigenvalues of the pendfg(z) inside or on the
unit circle and exactlyly outside the unit circle. From lemn811, then, there are exacttyy latent
roots ofM(A) inside or on the unit circle and exacthy outside the unit circle. They eigenvalues
of the pencilPs(z) = Iz — Y.z, are all inside or on the unit circle by theoredr®. Hence, theny
eigenvalues ofR, (z) are theny remaining latent roots of(A), which must be outside the unit

circle. O

So the latent roots d¥l(A) comprise the elements pf(Ps)—all inside or on the unit circle—and
the elements op (R, )—all outside the unit circle. These two spectra are hengeidtshaving no
element in common.

Furthermore, the regularity ¢hbg(z) in assumptior8.6 immediate transfers to both, (z) and
Ps(2)

Lemma 3.14.The matrix pencils(z) = zf+ + f,+y,z,+ fy and R(2) = Inyz— Y2z, are both regular.

Proof. See Appendix. O

Both the regularity and disjointness of these spectra wilténtral to the solvability of the un-
determined coefficients of perturbations of arbitrary ortiewhich we will turn in the next section.
Before we proceed, we can now complete the deterministigpoment of the first order solution.
Given our unique stablgz,, y, solves
(23) (fy+ fyry22))y, = —1;

and the existence of its unique solution is summarized ifiadhawving
Proposition 3.15. Under the assumptions of theoré&, y, uniquely solvesa3).

Proof. We need to prove the nonsingularity of the matfix+ f,+y,z,. This matrix is singular,
det(fy+ fy+yzzy) = 0, if and only if zero is an eigenvalue of the regular peigjl(z) = zf,+ +
fy+yz2z,+ fy. From propositior8.13 the eigenvalues di{; (z) are outside the unit circle and cannot

be zero. O
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The factorization provided by the generalized Bézout teeoensures the nonsingularity of the
leading coefficient matrix in23). Thus, the deterministic component of the first order soiut
exists and is unique necessarily from the assumptionsrigadi a unique stable solution to the
matrix quadratic equation. We will now extend this resultitbthe undetermined coefficients of

perturbations of arbitrary order.

4 Existence and Uniqueness in Higher Order Perturbations

In this section, we solve for the unknown coefficients of aymation with an arbitrarily high order
of approximation. A standard result in the literature, doby Judd (1998, ch. 13), Jin and Judd
(2002), Schmitt-Grohé and Uribe (2004) and others, isttehigher order terms of the Taylor ex-
pansion are solutions to linear problems taking the coefiisi from lower orders as given. Jin and
Judd (2002), however, have emphasized that the solvabiiithese linear systems is not a given
and furthermore that the conditions that need to be fulfiltkedsolvability change with the order of
approximation. While they conjecture the generic solvgbdt all orders, they conclude that this
remains an open issue. We will provide conditions for theaality of perturbation coefficients
at all orders using the theorem of Chu (1987) on the existehcmique solutions to generalized
Sylvester equations. Surprisingly, we show that the astiomgpmade in sectiof to guarantee the
existence of unique stable transition matrix in the linggoraximation are already sufficient to guar-
antee solvability. As a consequence, it follows that thenamkn coefficients of a Taylor expansion
of arbitrary order can be uniquely recovered through swsreedlifferentiation of the equilibrium
conditions if there is a unique stable solvent to the mataadyatic at first order. Additionally, our
solvability results eliminate a key assumption in the laastence proof of Jin and Judd (2002) for

stochastic perturbations, leaving only their bounded stissumption as potentially nonstandard.

19



4.1 Generalized Sylvester Equations

We generate the linear systems in the unknown coefficieragpefturbation as Sylvester equations
for all coefficients at all orders. We construct the lineanagpns following the method outlined
in section2.4 by mechanical application of the multi-dimensional calsutieveloped in Lan and
Meyer-Gohde (2011) to the equilibrium conditions. The éinalgebraic structure reveals a gener-
alized Sylvester equations with leading coefficients doirg the unstable and trailing coefficients
the stable components of the factorized matrix quadratiaggn of the previous section.

The Sylvester form in the higher order perturbation literatis not an innovation, having been
identified in previous studies. Aside from the identificatad Sylvester equations in a second order
context by, e.g., Kim, Kim, Schaumburg, and Sims (2008) om@e and Klein (2011), Juillard
and Kamenik (2004) and Kamenik (2005) show explicitly thaine of the unknown coefficients
can be cast as Sylvester equations. To our knowledge, hovikigeis the first representation that
takes this pattern to the limit, showing that all equatioharmarbitrary order perturbation can be
cast into Sylvester form. While our form is appear wastefoihf the numerical perspective of most
higher order perturbation analyses, it is precisely thismfthat enables our proof of the existence
and uniqueness of solutions for these equations that noatstudies have taken for granted. Thus,
this form is only need for the proof of the validity of the metls and with our results in hand,
numerical studies can confidently ignore our form and opevatmore efficient compositions.

The first order Taylor expansion that we began in the pre\season is incomplete, we still need
to determine the stochastic perturbation or first order tiaogy correctionys. We differentiatef
in (11) with respect tao
(24) Do{f} = Ty Y5 Yo+ fyeyd Zeer i+ fyr¥d + fy¥o
Evaluating the foregoing at the nonstochastic steady,&atad setting its expectation to zero yields
(25) E [Zs{f}] , fy+Yo + (fy + fy+Vozy)Yo + fy+ VozeBi[€r11] = O

A generalized Sylvester equation, taking the unique stsdllgtiony,z, as given from the previous
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section.

For the unknown coefficients of second and higher orderspaeessively differentiatel () with
respect to the state vectarand the perturbation parametey evaluate the resulting expressions
at the nonstochastic steady state and set their expedaoual to zero. This generates a set of

generalized Sylvester equations similar28)( We summarize this in the following

Lemma 4.1. For all j,i € N® such that j-i > 1 except the case 1 and i= 0, the undetermined
coefficients yi solve the following generalized Sylvester equation

(26) fy+ Voo (3Y2) U+ (fy+ fy¥23y) Vi + A1) = 0

where Aj,i) is a function of known terms: coefficients from lower ordersgproximation and

given moments %ﬁt‘@“ﬂ k<.
Proof. See the Appendix. O

This representation provides an explicit formulation af ttomogenous structure of the equa-
tions that the unknown coefficients of each order of appratiom must fulfill}” which will facil-
itate the analysis of solvability using linear algebra. Atle order, the leading matrix coefficients,
fy+ andfy + fy+y-z,, remain unchanged and are formed by the coefficients of biestactorization
Ry of the matrix quadratic as detailed in proposit&t3 The trailing matrix coefficientgzyyz)@@m,
is a Kronecker power of the linear transition matrix of thestspace and changes with the order of
approximation.

That the trailing matrix changes withis the source for the problematic dependence of the
solvability conditions on the order of approximation id&at by Jin and Judd (2002). Specifically,
Jin and Judd (2002) first develop a deterministic pertuoibain z only, and perturb stochastically,
with respect too. They point out that the change in the solvability condisi@tcurs only in a

change in the order of approximation in the deterministidyybation. This is reflected in our

"For example, whertij = 0,i = 1), (26) reduces t025). In the Appendix, we provide the detailed derivations for
the second order Taylor expansion, which yields the threegdized Sylvester equations @8] with (j = 2,i = 0),
(j=1,i=1)and(j =0,i = 2) for the unknown coefficientg., y,; andy,. respectively.
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Sylvester equations in that the only change occurs \vithe order of the state vectar, and that
the coefficients are independentidf the order of the (stochastic) perturbation parameter.

We now proceed to establish conditions under which the soiub (26) exist and are unique.
This is crucial for relating assumptior®s6-3.8 to the characterization of the general solvability

condition for the generalized Sylvester equations thdo¥e in the next section.
4.2 Existence and Uniqueness

In this section, we will appeal to Chu’s (1987) necessarysufticient conditions for the existence
and uniqueness of solutions to generalized Sylvester ieqsaand prove that they are fulfilled for
all our equations in lemmé.1 as a direct consequence of the existence of the unique stahleon
to the matrix quadratic equatio@¥). Thus, the three standard assumptions—our assum&i6énas
3.8—from linear analyses to this end are already sufficient snemthe existence of unique solutions
for all unknown coefficients of perturbations of arbitrarger.

The necessary and sufficient conditions proposed by ThebrenChu (1987) requires the two
matrix pencils formed by the leading and trailing matrixifioceents of a generalized Sylvester equa-
tion to be regular and have disjoint spectra. We adapt haaéme, adopting his notation temporarily,

to our purposes in the following

Proposition 4.2. There exists a unigue solution foreXR™" in the generalized Sylvester equation
AXB+CXD+E=0

if and only if
1. Pac(A) = AN +C and Bg(A) = DA — B are regular matrix pencils, and

2. p(Pac) Np(Pog) =0

where AC € R™™Mand DB € R™",

18A(j,i) is of course dependent dnreflecting the fact that we can generically expect the valuthe solutions
associated with differenits to differ. For the solvability conditions to remain unctyged at different’s requires the
coefficients of the homogenous portion to remain unchanged.
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Proof. See Chu (1987). Notice the rearrangement and redefinititeriofs. O

As we have already established the Sylvester form—see leminghe existence and unique-
ness of solutions for all the coefficients of a perturbatibarbitrarily high order will follow from
propositiord.2if we can establish the regularity of the following matrixyeés and the disjointness

of their spectra

Definition 4.3. For all j € N°, the leading and trailing matrix pencils, respectivelyloé general-

ized Sylvester equatio26) in lemma4.lare
1. Ry(2) =z + fyy22/+ fy (the Ry () in corollary 3.12)
2. Rs(2) =2l — (3y2) !

Before we examine the regularity and spectral disjointimetise general case, we will highlight
the intuition behind propositioA.2in the special scalar version &), whenf:, fy,y,z, andzy; €
R andA(j,i) is a scalar function of known terni8.In this case, 26) can be arranged as
(27) [fy+ (ZyYZ)j + (fy+ fyﬂ’zzy)] Yz +A(],1) =0
From, e.g., Strang (2009), the foregoing has a unique soliftiand only if the leading coefficient
IS not zero, i.e.,[fw (zyyz)j + (fy+ fwyzzy)] = 0. As otherwise there is either no solution (when
A(j,i) # 0) or there exists infinitely many solutions (whéij,i) = 0). The two conditions in
propositiord.2translate directly into the two ways this leading coeffitiean be equal to zero.
The regularity condition in the scalar case translates th boefficients in either of the pencils
being simultaneously equal to zero: eittfgr = fy + fy1y,z, =0 or 1= (zyyz)j = 0. Obviously,
both coefficients in the trailing pencil cannot be zero ansl general regularity holds in the matrix
case as well. The second condition, disjoint spectra, aul¢the remaining possibility that the sum

of all the coefficients is zero, which can be rearrangedyﬁfs’# # (z,y,)’. Recognize that the
y

19This special case, of course, is not useful practicallyhditll shocks or the presenceypf; has to be shut down,
but the mechanisms behind the matrix case are usefullyréiiesl in this case.

23



two terms correspond to the eigenvalues of the scalar negaleilsR, (z) andPis(z), hence their
set of eigenvalues (or spectra) must not contain any iderglements (be disjoint).

Returning to the general matrix case, we will now first esséibthe regularity of the pencils
Ry (z) andPs(z) and then proceed to prove the disjointness of their spedthe leading pencil
R (2) is one of the two pencils in corollaB.12, its regularity was established in lem@d.4and all
its eigenvalues were placed outside the closed unit cincpgaposition3.13 The regularity of the
trailing pencil is guaranteed by the presence of the identétrix and we will show that its spectrum
is contained inside the closed unit circle by virtue of tleenB.9.

The regularity of both the pencils is summarized in the follay?®
Lemma 4.4. For all j € N9, the leading and trailing matrix pencils, see definitiés, are regular

Proof. ForR,(z), see lemma&.14 ForPRs(z), this follows from its leading matrix being the identity

matrix, see Gantmacher (1959b, pp. 25-27). O

The spectral disjointness follows nearly directly from thetorization of the matrix quadratic in
corollary 3.12 with the spectrum of the leading pengil (z) being outside and that of the trailing
pencilPs(z) being inside the closed unit circle. In corolle8yl2, it was the penciPs(z) = lnyz— Yz,
that was the stable pencil, but noting tizalandz are two constant matrices with all their entries
being either unit or zero
(28)  z=9%; {a}=9{z}= [Onle”:ny} %= Ig{a} = Doy {711} = [O”,y:e”e]
the matrixzy, in Ps(z) is
@ 2= o, e
and it follows directly that the the eigenvaluesRy(z) are all stable with respect to the closed unit

circle, and thus those of an arbitrary Kronecker power tbthase ofy,z, are. We summarize the

disjointness in the following

20The regularity ofPis(z) can also be verified by generalized Schur decompositionceStne identity matrix is
diagonal, it is also upper-triangular, and thereforesgd of S= Q*1Z are unity. Hences; =t = 0 is ruled out for ali
andPs(z) is regular.

24



Lemma 4.5. For all j € N°, the leading and the trailing matrix pencils of definitidt8 have no

eigenvalues in common—their spectra form a disjoint set.
Proof. See Appendix. O

From lemmatat.4and4.5, propositiord.2applies and the existence and uniqueness of solutions

to the generalized Sylvester equatio26)(in lemma4.1follows immediately. In sum,

Proposition 4.6. Let the assumptions of theore3r® be fulfilled—there exists a unique solution,
y-zy, of the matrix quadratic equatiori ) stable with respect to the closed unit circle, then for all
j,i € N®such that j+i > 1 except the case= 1 and i= 0, there exist unique,y; that solve

fy+Vaioi (ZY2) U+ (fy+ o2y Vai +A() 1) =0

the generalized Sylvester equatio@6)(in lemma4.1

Proof. From lemmatat.4 and4.5, the two conditions of propositio#h.2 are fulfilled and the result

is immediate. U

Thus, given the unique stable solution of the matrix quadexquation 15), all coefficients of
in a perturbation of arbitrary order exist and are unique vWMenow proceed to examine the conse-

guences of this result for the policy function or exact Soluy(o, z) and its Taylor approximation.

4.3 Discussion and Consequences for Nonlinear PerturbatdViethods

In this section, we will examine the conditions for the loegistence of a solution to our modé))(
and then construct a Taylor approximation using the salgtto the generalized Sylvester equations
(26) along with the first order terny, from the previous section. We then highlight the insight
of Anderson, Levin, and Swanson (2006) that this local smtutan take on global facets as the
order of approximation is increased. As we have shown thlestiutions for the coefficients that

we will use to construct our Taylor approximation exist amel anique, our analysis proves that
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the method of successively differentiating the equilibriconditions of a smooth model as used by
many numerical algorithms necessarily leads to a uniquevesy of this Taylor series.

Jin and Judd (2002) provide a local existence theorem fosdhgion to stochastic models and
note the importance of checking whether a particular madéll$ these necessary conditions. We
eliminate their solvability assumption, as their assuorptf a unique locally asymptotically stable
solution implies our theorerB.9 holds, enabling us to apply our factorization from the gahzeed
Bézout theorem of sectioB and confirm that their solvability assumption is necesgduilfilled,

analogously to our propositich®.

Theorem 4.7. Simplified Local Existence Theorem of Jin and Judd (2002)

If (i) the function f in Q) exists and is analytic for al; in some neighborhood afdefined in%), (ii)
there exists a unique deterministic solutiof®yz ) locally analytic in z and locally asymptotically
stable, (iii) E[¢;] = 0, and (iv)&; has bounded support, then there is an ® such that for all(z, o) in
a ball with radius r centered af0, ) there exists a unique solutiorig, z ) to (11). Furthermore, all

derivatives of yo, z) exist in a neighborhood @D, z) and can be solved by implicit differentiation.

Proof. See Jin and Judd’s (2002) Theorem 6, where we have adaptationaio our exposition.

Note that their assumption (iii) has been eliminated. Seedpppendix. O

This simplification is potentially important, as it elimies the only prohibitive assumption that
has not been addressed elsewhere for the extension of kisé¢érece from a deterministic to a
stochastic setting. Kim, Kim, Schaumburg, and Sims (20@8)hdiscussed the assumption of
bounded support and argue that if an accuracy in probapi#itgpective is taken, then this assump-
tion is not needed for finite time simulations and estimatiohll told, what is needed for the local
existence of a solution to a stochastic problem is suffiaiigfeerentiability of the equilibrium con-
ditions, the existence of a solution to the deterministicard of the model and restrictions on the

moments of the stochastic processes that ensure the matshewell defined.
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Taking now the existence, at least locally, of a solutiorgi@nted, we will gather the solutions to
the generalized Sylvester equatioB6)(along with the first order teriyy as the unknown coefficients
in a Taylor approximation of the policy function. Recallitige assumed differentiability of the
equilibrium conditions and the existence of the nonstatihateady state, we apply our results thus
far and conclude that successive differentiation of theldégwm conditions (1) is sufficient to

uniquely recover a Taylor approximation of arbitrary order

Theorem 4.8. Let the assumptions of theored1® be fulfilled—there exists a unique solutiopzy
of the matrix quadratic equatiorilp) stable with respect to the closed unit circle, a Taylor esri

approximation at a nonstochastic steady state of the pdlingtion y = y(0,%)
_ A n =\ @[m]
%= 3 | 2 Y| (@-2)

m=0
exists and is unique for all M and can be uniquely recoveredumgessive (implicit) differentiation

of the equilibrium conditionsl(l).

Proof. The existence and uniqueness of the coefficients in the Taplproximation follows from
proposition3.15for y, and from propositior.6 for all remaining coefficients. Recalling the as-

sumed differentiability of ), successive differentiation o1{) is then well defined. O

This result ensures that a Taylor approximation of the gdiimction can be unambiguously
recovered by the obvious method of successive differeotiaif the equilibrium conditions and
solving the resulting linear system of equations for thenawkn coefficients. This method is, of
course, the basis of the numerous numerical algorithmsdimutating perturbation solutions to
DSGE models and this result proves that their users can heeaksthat perturbation applied to
sufficiently smooth problems at a nonstochastic steadg statt deliver a solution and that it must
be unique under standard saddle stability conditions ofirtkar approximation.

Perturbation methods generate local approximations optitiey function—the Taylor expan-

sion around the nonstochastic steady state at which thé@olf the model is (assumed) known.
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As Jin and Judd (2002) state, these methods do well for smahdntrivial neighborhoods of the
point around which we approximate and, as Anderson, Levid,Swanson (2006) point out, this
nontrivial neighborhood is potentially very large if thelipyg function along with the function of the
equilibrium conditions are analytic. As a consequenceyéiielity of perturbation methods can be
extended past the local level to the entire domain of correrg of the Taylor expansion of the true
policy function. If we assume that the policy function is btia, the Taylor expansion converges
to the policy function as the order of approximation becomésite. As corollary4.8 ensures that
perturbation methods can uniquely recover a Taylor expartbiat satisfies the model’s equilibrium
conditions out to the order of approximation, then this ueig recovered Taylor expansion must be

a valid solution everywhere within its domain of convergend/e formalize this in the following

Corollary 4.9. Under the assumptions that the policy function y ir=yy(0,z) is analytic and
asymptotically stable at the poi(®,z), the function f in the model statemefj {n analytic at the
point (y,Y,Y,0) and the Taylor series9j of the policy function expanded around the pqi0iz)
converges in any (compact) subset of the domain of the plolimtion, R x R"?, successive differ-

entiation of the equilibrium conditiond Q) is sufficient to recover the policy function in this subset.

Proof. If the policy function is analytic at the point around whicle expand the Taylor series,
then the Taylor expansion converges to the policy funct®mitha order of approximation becomes

infinite. Theorem4.6 ensures the unique recovery of such an asymptotic expansion O

Our Sylvester characterization of the equations to be gaveach order of approximation along
with the factorization provided by the generalized Bézbebrem leads to a linear algebraic charac-
terization of the solvability conditions for a perturbatiof arbitrarily high order. While we confirm
Jin and Judd’s (2002) assessment that these conditiongeRéth the order of approximation, the
change is minimal comprising only Kronecker powers of tlmedir transition matrix of the state
space. Our same factorization enabled us to weaken thaeeagnts for the local existence proof

of a solution, which provides the theoretical foundatiortfe Taylor expansion that we have proven
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is necessarily uniquely recoverable by successive diftexton of the equilibrium conditions given

a unique stable solution at the first order of approximation.

5 Applications

Here we will address to specific components of our arbitradgoperturbation: the linear mapping
from exogenous (in our caseg) to endogenous (herg) variables and the first order independence
of the policy function on the perturbation parameter Many studies on linear solution methods
have paid the existence and uniqueness of the first mapjilegditention, directing focus towards
the endogenous mapping associated (in our formulatiort) thig matrix quadratic equation. Our
factorization from the generalized Bézout theorem canpied directly in the context of such
linear studies—we center our analysis around Uhlig (199®)prove the existence and uniqueness
of this mapping under saddle stability conditions. In a meedr result, Jin and Judd (2002) and
Schmitt-Grohé and Uribe (2004) have conjectured the iaddpnce of the policy function from
first order effects of the perturbation parametgf( = 0 for i = 1), as the equations that these
coefficients solve are homogenous. Our analysis adds thengisnk, showing not only that zero

is a solution (as follows from the homogeneity), but thas ithe only solution.
5.1 Uhlig’s (1999)Q or the Linear Mapping from Exogenous Variables

The literature on linear DSGE models is well established,thea matrix factorization provided
by the generalized Bézout theorem can also be applied tedvability of the mapping from ex-
ogenous to endogenous variables in existing linear solutiethods. Specifically, we show how
the techniques of the previous two sections can be appligdsonapping in several linear solution
methods spanning the last three decades. The result thatdpiping can be uniquely resolved is not
new— the procedure of King and Watson (2002, pp. 73—74) aethKR000, p. 1416) is a recursive
scalar alternative to our direct matrix approach. Howether,main focus of most research on lin-

ear solutions concentrates on the quadratic equation—a#p@img of endogenous variables through
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time. McCallum (1983), Binder and Pesaran (1997), Uhligdd)9 and Cho and Moreno (2011)
are a few papers in this expansive literature that leavexistemce and uniqueness of the mapping
from exogenous variables to endogenous variables unexkolWhile this solvability is guaranteed
by our propositior8.15 it is instructive to apply the underlying linear algebrarejposition3.13
and theoremtt.2—directly to this well known literature. We will focus in det on Uhlig (1999),
adopting his notation for this section, and then relate tieadbility of his exogenous to endogenous
mapping to that of McCallum (1983), Binder and Pesaran (}1,28¥d Cho and Moreno (2011).
Uhlig (1999) solves a linear model by the method of undeteethicoefficients, with the follow-
ing problem statemefit
(30) 0=E[FX+1+Gx+Hx_1+Lz1+Mz], z=Nz_1+¢&
wherex; is a vector (ix x 1) of endogenous variables,is an exogenous vectonZ x 1) autoregres-
sive process, angl a vector of serially uncorrelated innovationsg?
Proceeding with the method of undetermined coefficientsgugie postulated solution
(31) X =Px%_1+Qz
the matrixP solves a matrix quadratic equation
(32) FP?4+GP+H =0
Uhlig (1999) constructs a solvent with a setrofeigenvalues and eigenvectors associated with the
linearization of 82). Assuming there is a unique solution stable with respettteé@losed unit circle,
we can apply the generalized Bézout theorem for right aidiby a solvent—corollarg.12— and

combine with Uhlig's (1999) assumption thidthas only stable eigenvalues to yield

Lemma 5.1. The matrix pencils fg(A) = FP+ G+ AF and Ry(A) = In,A — N are regular.

The spectrum ofgpg(A) is wholly outside the closed unit circle and that @f(R) wholly inside.

Proof. For Pepg(A), see propositioB.13and lemméa3.14 Py (A) is by assumption. O

2IThis is his “brute force” formulation. The same logic applie his “with sensitivity” approach and the results carry
over to that formulation too. We choose this formulationdogerve space.
22Note that our problem statemen) (vould put Uhlig’s (1999x andz in oury;

30



This leaves the mapping from to %, the matrixQ, to be determined. Uhlig (1999) shows that
Q solves a generalized Sylvester equation
(33) FQN+ (FP+G)Q+M+LN =0
He applies the vec operation 033] to solve forQ, yieldingV x veqQ) = —veqdM +LN) and states
that “if [V] is invertible, then [the equation iQ has] a unique solution fd®.” If there is a unique
solution toP with all eigenvalues inside or on the unit circle, howevhis fproviso is not needed,

lemmab.1enables a direct application of Chu (1987), repeated hettecaseny.2) to (33,

Proposition 5.2. If there is a unique solution P stable with respect to the etbanit circle, then

there exists a unique solution for Q.

Proof. From lemmab.1, the pencilsPepg(A) and Py(A) are regular and their eigenvalues form a

disjoint set. Thus, following Chu’s (1987) Theorem 1, thexésts a unique solution t@8). O

Again, the uniqueness of a stable solution to the matrix catackquation—here8Q)—guarantees
the existence of a unique solution to all remaining coeffitse-hereQ as a solution to33).

Our matrix factorization can be applied directly to numexrother linear methods from the past
thirty years. Beginning with McCallum (1983, p. 16¥)who setsH, L = 0 and states® will be
unique for almost all values df andN.” Proposition5.2 applies here directly witl = 0 always
being a stable solution t@®) and assuming its uniqueness, lembaanecessarily applies. Binder
and Pesaran (1997) examine the special case of—I,x and add the proviso of “if;x— FP is
invertible” to their solution method, stating that “[ajtthgh it is in general difficult to establish
strong analytic results regarding the existence and ntigityp of solutions [...] we so far have
not encountered any well-specified economic model for whigh FP would have been singular.”
Indeed, under the assumption tlRahas a unique stable solution, the invertibility Igf — FP is

guaranteed by lemnal Recently, Cho and Moreno (2011) have explored the forwalution as

Z3McCallum (1983, p. 164) then extends his analysis to altbw 0, apparently claiming unique solvability in this
more general case. No indication is provided as to why hisrvasions in the more restricted case are eliminated when
he loosens his assumptions.
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a refinement mechanism, likewise under the assumptidd -6f—I,x and like Binder and Pesaran
(1997), their results hold “provided thdet(l,x— FP) # 0.” Again, if P is the unique stable solution
to the matrix quadratic equation, this condition necelshdlds. The generalized Bézout theorem
and the solvability of Sylvester equations ensure in théedrof linear models with a unique stable
solution thaiQ is unique and tha& + FP is indeed invertible.

Of course, the uniqueness Qfhas been addressed in other analyses. Klein (2000) and King
and Watson (2002) both provide a recursive procedure tlatepds element by element through
the combined vecto®z.?* The recursivity follows from the triangularization proed by Schur
decomposition (see our theoredrb). In particular, Klein (2000) highlights that the methodlwi
fail if si =tj = 0 (the notation fors andt aligns with our sectiorB8), which is ruled out by the
regularity assumptio3.6, and moves through the unstable triangular block, invgrtire matrix
siN —tjilnz If an eigenvalud;; /s; were to coincide with an eigenvalue in the exogenous triansit
matrix N, Klein’s (2000) inversion would not succeed. But he is mgwvinrough the unstable block
and thus the eigenvalues Nfand the unstablg /s; form a disjoint set, guaranteeing the necessary
invertibility. This is the same mechanism as we present @b@he only difference being that our
approach uses matrix techniques to solve the problem intepe whereas Klein (2000) and King

and Watson (2002) move element by element through the Uastabof eigenvalues.
5.2 First Order Independence fromo

This section confirms the conjecture of both Jin and JuddZp@@d Schmitt-Grohé and Uribe
(2004) that the policy function is independent of the pdyation parameteo. This follows intu-
itively, we argue, as the first moment of the exogenous she@dssumed to be zero, thus eliminating
its impact at all orders. Some studies, e.g., Kim, Kim, Samawrg, and Sims (2008), deriving their

second or higher order Taylor expansions assuming withoatf phat these coefficients are all zero.

24Klein (2000) also provides a matrix formulation in terms @yvester equation as above, but does not address the
solvability of the equation. While he advocates the reseraiethod for computation reasons, its formulation enables
the solvability to be directly verified in his analysis frons lassumptions.
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The root of the difficulty lies in the solvability of these $gss: Schmitt-Grohé and Uribe (2004) to
second order and Jin and Judd (2002) to arbitrary order ghat¢éhe unknown coefficients involv-
ing the perturbation parameter solve homogeneous eqgsatiofcourse, the zero solution solves
these equations, but the claim that the solution is unigmelp requires solvability in addition to
homogeneity—see, e.g., Strang (2009). Our main resultroosfihe conjecture by providing the
necessary solvability so as to add uniqueness to theireedstof the zero solution.

With the first moment of exogenous shocks and/al] for k < j zero, the generalized Sylvester
equations iry,j; are homogenous
(34) fy Yoo (z¥2) "W+ (fy + fyeyazy) Yoig = O
As the zero matrix is always a solution t84) and the solution must be unique following theorem

4.6, Y,i; = 0 is the unique solution for ajl. We formalize this in the following
Proposition 5.3. For all j € N9, y,; is zero.

Proof. See the Appendix. O

The intuition behind this is simple: the unknown coefficigyg is the comparative static matrix
measuring the impact of the first order moment of exogenoaskshon the policy functioy (and
its derivatives with respect to the state vecQr As the first order moment is assumed to be zero,

the first order moment of exogenous shocks has no impact at all
6 Conclusion

We have proven the existence and uniqueness of solutiotisdamdetermined coefficients in per-
turbations of an arbitrarily high order. For users of num&riperturbation algorithms, such as
Adjemian, Bastani, Juillard, Mihoubi, Perendia, Rattaj &filemot’s (2011) Dynare or Anderson,
Levin, and Swanson’s (2006) PerturbationAlM, we have amsd/éwo questions. First, given a
nonlinear perturbation solution from a numerical algariths this solution the only solution? Sec-

ond, should a numerical algorithm fail to deliver a solutidoes a solution not exist at all or did the
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numerical algorithm simply fail to find it? Given a uniquelsasolution at first order, our results
provide a definitive assurance that a solution must existlaaidis must be unique. In essence, we
show that successive differentiation of the equilibriumdition will generate set of equations that
are sufficient to uniquely recover the coefficients of thel@agxpansion of the policy function.

Our method exploits the analytic factorization providedthg generalized Bézout theorem of
the matrix quadratic equation from the linear (or first ojgeoblem, taking a unique stable solution
at that order as given. The factorization separates thénatignatrix quadratic problem into two
regular pencils with disjoint sets of eigenvalues. Thesepencils form the basis of the pencils of
the leading and trailing coefficient matrices in the geneeal Sylvester equations that govern the
undetermined coefficients at all higher orders of approkimna Our results make extensive use of
the multidimensional calculus of Lan and Meyer-Gohde (2@iat preserves linear algebraic struc-
tures, enabling us to provide this explicit representatbthe homogenous components of these
linear equations. The existence and uniqueness of the@wuior the undetermined coefficients
is then a straightforward application of Chu’s (1987) tleormon solutions to generalized Sylvester
equations and follows from the regularity and disjointnefsthe sets of eigenvalues of the pencils
of the leading and trailing coefficient matrices.

With the recent proliferation of interest in nonlinear needk and general familiarity of economists
with the simplest perturbation—i.e., the first order or (Migearization, our results should provide
researchers applying perturbation methods numericalily thie confidence that a perturbation of
arbitrary order is guaranteed to provide a unique solufidhe linear approximation has a unique

stable solution.
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A Appendices

A.1 Proof of corollary 2.4

From Vetter (1973, pp. 358—-363), a multidimensional Tagkgansion using the structure of deriva-

tives (evaluated eB_) in Lan and Meyer—Gohde (2011) is given by

A-1 M 78:M(B) (B—B)“™™ B.B
( ) (pxl)((sxl z ) +RN+1( ) )
(A-2) whereRy.1(B,B) = % /E S NLmE) (152 (B-8)"V) d

Differentiating @) with respect to all its argumenikd times and noting permutations of the order

of differentiation, a Taylor approximation about the narcstastic steady stards

1/1 1 1 y
Y= o! y+ !y00+ yozo +. +M,y0Mcr

1 1 1 1 . )

+5 11 ( yZ+ YZ00'+ !y20202+...+ myzoM*lo-M 1) (Zt —Z)
1/1 1 1 i )

+ 2 (O|y22+ 1|y2200+ !yzzczcrz—f—...—f— MVZZGM%GM 2) (z _Z)®[2}
11 -

+miorY? (2 —2)°M

Writing the foregoing more compactly yield8)(in the text.
A.2 The Generalized Bezout Theorem

Theorem A.1. The Generalized &out Theorem

The arbitrary lambda-matrix
M(A) = MoA™+MA™ 1 4 My, where M # (ngn)
when divided on the right by the binomial
InA—A
yields

M(A) = QQ\) (Inh — A) + M(A)
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where

Q) = MOA™ L 4 (MoA+ M) A™ 2+ MoA™ MiA™ 2 4 . M,
Proof. See Gantmacher (1959a). O

A.3 Proof of Lemma3.14

The regularity of the matrix pendibe (z) in assumptior8.6 means

(A-3) det(fy+ 22+ fyz+ f.z) #0

Following corollary3.12 the matrix polynomial inside the foregoing admits thedwling factor-
ization

(A-4) det((zf,+ + fyryzz + fy) (Inyz—y22)) # 0

and using the product rule of matrix determinants of Str&@99, ch. 5), the foregoing rewrites

(A-5) det(zf,+ + fyryz,+ fy) det(lnyz—y-z)) # 0

This means neither of the two determinants is zero, or etgnitly, matrix pencilsh, (z) = zf,+ +

fy+yzzy + fy andPs(z) = Inyz— Y-z, are both regular.
A.4 Proof of Lemma4.1

We will first show that for allj,i € N° such thatj +i > 1 except the casp= 1 andi = 0, successive
differentiation of the functiorf with respect to its argumentg,ando, yields

(A-6) Drigt =ty Yaio (%) + (fy+ fy+¥22) Vaiot +B(. 1)

where the functiom( j,i) is (i) linear ing1 up to and including-th Kronecker power and contains
(i) products involving derivatives of andy' with respect taz j +i or less times and i or less
times except for the unknowy; i under consideration

A7) B =B (Vige Yo &5 )

(A-8) wherel =0,1,2,...,j+i; k=0,1,2,...,i; | +k< j+i; butnotl = jandk =1
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The index rule A-8) ensures that all the terms in ti#j,i) function are given by previous
calculations as the unknown under consideratypg;, has been excluded Iby= j andk =i simul-
taneously having been disallowed.

We will proceed inductively by differentiatingA¢6) with respect tag and o respectively and
confirming that the two resulting expressions take the foir{(Ae6). First, differentiating A-6) with
respect t yields

Diaglt} =ty Yaag (@) "+ (fy + fy22) Vo g
+ 2 {1y} (1ne® [y @970 ) + 055 0 2 { (290?11}
+ 27 {fy} (Ine®Ysoi) + Zyr {1y Y22y} (Ine® Yzig)
(A-9) + 2 {B (Yo vaoeilt) }

The terms in the second and third lines of the foregoing ¢opt@ducts involving the derivatives
of y andy*t with respect taz j+i or less times and i or less times, all known from previous
calculations.

The terms in the last line contain products involving the\deives ofy andy™ with respect to

z j+i+1orlesstimes and i or less times. This can be shown by differentiating throBghi)
in the last line with respect tg in which
(A1) 2y {Vige) = Viagl @YD O 1), 2y {Vaok} = Yarrol(zy) ©14)

wherel =0,1,2,...,j+i; k=0,1,2,...,i; | +k< j+i; butnotl = jandk =i
Importantly, the unknown under consideration upon difféiggion, y,;:1i, iS excluded by advanc-
ing the exclusion in the index rule: with ng;, in B(j,i), there can be ng,j1, in B(j + 1,i).
Second the terms constitute a linear functiorgim up to and including-th Kronecker power as

®]

differentiatingg; +'f in the last line does not advance the indelence A-9) can be rewritten

(A-11) @ZtTHlOi{f} = fy'FyzHloi (Zyy2)®“+l] + (fy+ fy+yzzy) Yzitigi + B(J +1, i)

40



Differentiating @A-6) with respect tao yields
Drigal T} =Ty Yaigin (zyy) W+ (fy + fy+Y22)) Vsiginn
+ Do{fy+} [y;rjoi (ZyYZ)®m} + fy+y;+lgi (ZyYZ)®“+H + fy+y;+10i 255t+1(ZyYZ)®m
+ 1y Vi Z0 { (2920 + Do { b aiai + Do 1y V2 oo
(A-12) +Ds {B (yjok,yﬁ ks sfﬂ'f) }

The terms in the second and third lines of the foregoing éoptaducts involving the derivatives
of y andy™ with respect ta@ j+i+ 1 or less times and i or less times, all known from previous
calculations. Note again that the unknown, hgyg 1, only appears in the first line.

The last line contains products involving the derivativey andy™ with respect tag j +i+1
or less times and i + 1 or less times. This can be shown by differentiating throBghi) in the
last line with respect to in which
(A13)  Zo{Vio} = Vg @Yo+ 280:1) + Vigea
(A-14) Do {Ypok} =Yoot

wherel =0,1,2,...,j+i; k=0,1,2,...,i; | +k< j+1i; butnotl = jandk =i
Importantly, the unknowty,;qi+1 iS again not present here either, as whesa i or equivalently,
k+1=i+1,1=jisnotallowed by the index rule: with ngj,i in B(j,i), there can be ng,ji+1 in
B(j,i+1). Notice that an additionak_ 1 is included in A-13). The possibility that this term mul-

®]

tiplies with the existingg, +'f necessitates the advancement of the index associated vatiregker

powers ofe 1 for B(j,i+ 1) to remain linear in the set aﬁ“ﬁ”.

Allterms in the last three lines oA¢12) can thus be collected B(yjom,yj k1, (stH)@[k“]) —
B(j,i+1) and @A-12) can be rewritten
(A-15) Driga{ T =Ty Yaign (BY2) "W+ (fy+ fy¥22)) Vaiga + B + 1)

The second step is to evalua#-§), having been verified by induction above, with the given

moments o€;, 1 and at the nonstochastic steady state. Setting the regaekpression equal to zero
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and lettingA(j,i) = E [B(],i)] , yields 26) in the text.

All that remains is to address the cases that where exclugirte indexing and initialize the
induction. The two cases that were excluded argj# 0,i = 0) corresponding to the nonstochastic
steady state value gfwhich was assumed given in the text; (iij)= 1,i = 0) for y,, which was
solved separately a2y in the text. Noting that the cag¢ = 0,i = 1) for y, in (25) also conforms
to the pattern, we can start the induction with the three red¢arder termgj = 2,i = 0), Y,;
(j=1,i=1),y,; and(j =0,i = 2) y,2 which are provided in the next section separately and thus

complete the proof.
A.5 Generalized Sylvester Equations for Second Order Terms

Following corollary2.4, the second order Taylor expansion of the policy funct@®)rigkes the form
(A-16) W= +Y60+ 2620+ (Ve +Y00) (2~ D)+ Yz (z 2P
Given coefficients from the first order, there are three unki®y.,z, y;c andy,z, to be solved.
To findy,2, we differentiate 13) with respect ta
D ity =25 {ty} (n2®Y; 2¥2) + fy Y (3Y2) % + e y7 20y
(A-17) + Dy {fy} (In2®Y2) + fyye + Zor {12}
where 71 { fy+ } = T2 [(V; 2¥z) @ Iny] + fyyr (V2@ Iny) + oy

T {ty} = fyy [(Y23¥2) ©lny] + T2 (V2@ Iny) + foy
Evaluating the foregoing at the nonstochastic steady,stakkeng its expectation, and setting the
resulting expression equal to zero yields

Ey [@z;z; {f }] ]2 =fyy2(2y2) 2+ (o2 + fy )y
+E |25 {fy ) (@i ay) + 7 {1y} (@) + 27 {2} )

(A-18) =0

z

This is the generalized Sylvester equati@6)(with | = 2 andi = 0, and under the expectation are

known terms from previous orders.
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To determinegy/,s, we differentiate 24) with respect tx
D5 A1 =27 {fy+} (In2® (£ V7 (Z¥0 + ZeErs1) +Y51))
+ fyr 27 {¥7 } In2® (2¥o + Ze&t11)) + fy Y2 Y20
(A-19) + fyr Yao2yyz + Dt {fy} (Inz®Yo) + fyyzo
where 71 {y} } =y (2y2) > +V; zy,2
Setting the expectation of the foregoing evaluated at tmstozhastic steady state to zero yields
B [ Z70(1}] || =ty vao(@ya) + (fy-yazy+ fy) Yo

+E [% {fy-} (1n2® (fy [V (ZYo + Ze€t 1) + Y5 )

+ Ty I V7 } In2® (Yo + Ze&t41)] + D {1y} ('nz®Ycr)} ’z
(A-20) =0
This is 26) with j = 1 andi = 1.
To determing/,2, we differentiate 24) with respect tay
D {1} =T { Ty} (Inz® (fy+ [V (B¥0 +Ze8111) +Y5 )

+ Ty Do {¥S } (Inz® (ZYo + Ze€r41)) + fye V3 BYo2 + fye v

(A-21) + Do { fy} (Inz2®Yo) + fyyge
where 76 { fy+ } = fy2 [(V7 (3o + Z€t11) + Y5 ) @ lny] + fyy+ (Yo @ Iny)

Do {Y; } = V(3o + ZeEt1) + Yoy

Do { fy} = fyiy [(y;(zy)’cr +Ze€t41) +y§) ® Iny] + fy2(Yo @ Iny)
Evaluating the foregoing at the nonstochastic steady,stakkeng its expectation, and setting the

resulting expression equal to zero yields
B (72 (1)) | =Tyyoe + (fyyazy+ fy) Voo
+E {% {fy: } (Inz® (fy+ [7 (Yo + ZeEt11) +¥5]))
z

+ Ty Do {¥7 } (Inz® (ZYo + Z&t11)) + Zo { Ty } (|nz®y0):| }
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(A-22) =0

This is £6) with j =0 andi = 2.2°
A.6 Proof of Lemma4.5

From @9), it follows that the eigenvalues afy, are those o,z plus a zero eigenvalue with al-
gebraic multiplicityne and are thus, following theore®9, all inside the closed unit circle. From
Theorem 1 of Magnus and Neudecker (2007, ch .2), the eigeewalf the Kronecker product of
two matrices are equal to the products of the eigenvaludseofwto matrices and hence it follows
immediately that all the eigenvalues(ag,yz)@[” for all j € N°, and hence the trailing pencil of def-
inition 4.3, are also inside the closed unit circle. The eigenvaluesefdading pencil of definition

4.3 are all outside the closed unit circle from proposit®A3 The two pencils in question have

thusly no eigenvalue in common as their spectra are sepdrgitde unit circle.
A.7 Proof of Theorem4.7

Under our problem statemertt)( the derivative of Jin and Judd’s (2002) operato(y,o) has a
leading coefficient matrix given byy + fy+y,z, at the steady state. From propositi8ri3 this
matrix is necessarily invertible. Hence, we conclude thatahd Judd’s (2002) assumption (ii),
from which our theoren3.9follows, ensures that their assumption (iii), the invailitypof Ay (y,0),

is necessarily fulfilled.
A.8 Proof of Proposition 5.3

Following the proof of lemm&.1in sectionA.4, we can write the set of equations governing,
for j >0, as

(A-23) fYoio (BY2) "0+ (fy+ fyry22y) Voo + A(j,1) = 0

25The second moment of future shocksA22) can be identified by multiplying out the terms under the etgion
operator. Terms of the form, i.e(Z€t+1) ® (Z&+1) can be rewritten a{f[z]) (aﬁ[i}) using the mixed Kronecker
product rule.
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whereA(j,1) = E[B(j,1)]. We will proceed inductively over the termsBij,1) where the homo-
geneity of the set of equations governiyyg; will follow inductively from the solvability proven in
propositiord.6.

To begin, assume that for some> 0, B(j, 1) is a set of terms involving a product of at least one
of yxg, K< j, Or &1, but at most one of the latter. As differentiating
(A-24) fyYaio (2%2)“ + (fy+ fyy22y) Voo + B(j, 1) = 0
with respect t@ only advances the index see sectioi.4, it follows that
(A-25) Z;5(B(j. 1)} =B(j +1,1)
with B(j +1,1) being a set of terms involving a product of at least ongQf, k < j +1, or &1,
but at most one of the latter. To start the induction, notenf(24) that
(A-26) B(0,1) = fy+y, Ze€t 11
thus, confirming the composition & j,1) as a set of terms involving a product of at least one of
Yxg K< J, Or &1, but at most one of the latté?.

Taking expectations
(A-27) A(j,1) = E[B(j, 1)
and as the first moment &f was assumed zero, all terms except those involving onlyymtsdof
Yxg, K< j are eliminated. Thus, if alx,, k < j are zero, thed\(j, 1) and the equation g is
homogenous. From propositidn6 it then follows thaty,j; must also be zero, as a unique solution
exists and zero is always a solution of a homogenous equatience by induction, starting from

the homogenous equation fgy, all y,j; =0, for j > 0.

26As k < j permits only negative powers &fin v, in B(0,1), it is perhaps useful to examirg(1,1) as well.
Eaxmining @-19) for the second order case, which gives

B(1.1) =Zy {fy } (Ine® (fy+ V7 (Y0 + 1) + Y1) + fyr Zy {¥7 } Ine® (29¥o + Ze8es1)] + Z7 {fy} (ne® Vo)
where @ZtT {y;} = yjz (Zyyz>®2 + y;—zyyz2

notice that all terms involve a product of at least onggfor €, 1, but at most one of the latter.
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