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Abstract

We propose a new approach to the normative analysis of public-good provision. In addition

to individual incentive compatibility, we impose conditions of robust implementability and coali-

tion proofness. Under these additional conditions, participants’ contributions can only depend

on the level of public-good provision. For a public good that comes as a single indivisible unit,

provision can only depend on the population share of people in favour of provision. Robust

implementability and coalition proofness thus provide a foundation for the use of voting mecha-

nisms. The analysis is also extended to a specification with more than two public-good provision

levels.
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1 Introduction

In allocation theory and public economics, the theory of public-good provision stands out as

a monolith that is hardly related to anything else. It is an essential part of the curriculum,

but the relation between the allocation mechanisms that are provided by the theory and the

allocation mechanisms that are used in the real world is hardly ever discussed. The relation

of public-good provision theory to other parts of allocation theory, the theory of taxation, and

political economy is also hardly ever considered.

This state of affairs reflects two particular features of the theory as it appears in our cur-

riculum.1 First, the analysis focuses largely on questions of individual incentive compatibility.

Second, the analysis focuses on “small” rather than “large” economies. The key question is

how to calibrate people’s payments to their expressions of preferences so that they have no wish

either to understate their preferences for the public good (so as to reduce their payments) or

to overstate their preferences (so as to get a greater provision level at other people’s expense).2

For this question to be nontrivial, each person must have a distinct chance of being “pivotal”,

i.e., of having a noticeable effect on the level of public-good provision through the expression of

her preferences.

This small-economy approach to public-good provision stands in marked contrast to the way

we deal with problems involving private goods. For private goods, the large-economy paradigm,

where no one person is able to affect market prices, is deemed to provide the proper framework

for studying what happens when there are millions of people and none of them individually has

market power. This paradigm serves as a conceptual idealization and as a normative standard

for assessing real-world markets.

In our view, the large-economy paradigm should also have a central place in public-good

provision theory. The formulation of the public-good provision problem that we have in our

curriculum may be appropriate for studying how people in a condominium may decide on how

much to spend on maintenance and gardening. It is not appropriate, however, for studying how

a society with millions of people can decide on how much to spend on national defense or on the

judicial system. For this latter question, we need a large-economy model, where no one person

individually is able to affect the level of aggregate per-capita spending on the public good in

question.

In a large economy, the problem of mechanism design for individual incentive compatibility

is trivial. Because no one person individually is able to affect the level of public-good provision,

no one is ever “pivotal”. For individual incentive compatibility, it therefore suffices to have

payments that are independent of what people say. If the preferences that a person expresses have

no effect on either public-good provision or the payments that the person has to make, she may

as well report her preferences truthfully. Given that preferences are reported truthfully, there is

no problem about implementing an efficient provision rule for the public good. Participation in

1See, for instance, Fudenberg and Tirole (1991), Mas-Colell et al. (1995), or Hindriks and Myles (2006).
2For implementation in dominant strategies, see Clarke (1971), Groves (1973); Green and Laffont (1979), for

(interim) Bayes-Nash implementation, see d’Aspremont and Gérard-Varet (1979). More recently, Bergemann

and Morris (2005) have studied interim implementation with a requirement of robustness with respect to the

specification of agents’ beliefs about the other participants.
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the system may not be voluntary, but there is no problem of incentive compatibility.3

In our opinion, the analysis must not stop here. We believe that, in addition to individual

incentive compatibility, we must be concerned with issues of coalition proofness and of robustness

of allocation mechanisms.

We illustrate our concerns by means of an example. Suppose that the public good in question

comes as a single indivisible unit. The provision cost per capita of the population is 4. A fraction
3
10 of the population assigns a value of 10 to the public good, a fraction α a value of 3, and a

fraction 7
10 −α a value of 0. An efficient provision rule stipulates that the public good should be

provided if the average per-capita valuation exceeds 4, and that it should not be provided if the

average per-capita valuation is less than 4. In other words, the public good should be provided if

α > 1
3 and should not be provided if α < 1

3 . The requisite resources can be obtained by imposing

a payment rule under which everybody pays 4 if the public good is provided and 0 if it is not

provided. If people believe that, individually, they are too insignificant to affect the provision of

the public good, a mechanism involving this provision and payment rule is incentive-compatible.

If α is common knowledge, this reasoning is unproblematic.4 By contrast, if α is the realiza-

tion of a nondegenerate random variable α̃, the problem of whether the public good should be

provided or not involves a genuine information problem. In this case, the information whether

the public good should be provided or not must be inferred from the participants’ reports about

their preferences. If the fraction of people reporting a valuation of 3 exceeds 1
3 , one may infer

that α̃ > 1
3 and that the public good should be provided.

At this point, we are bothered by the notion that efficient provision can be implemented

with a payment rule under which everybody pays 4 if the public good is provided and 0 if

it is not provided. Why should people with a valuation of 3 report this valuation honestly?

Reporting a valuation of 3 contributes to making provision of the public good more likely, if

only infinitesimally. If the public good is provided, these people enjoy a benefit of 3 and have

to pay 4 for a net payoff equal to −1. Each one of them would be better off if the public good

was not provided. Moreover, the public good would indeed not be provided if each one of these

people reported a valuation of 0. Why, then, should they report honestly, rather than claiming

that the public good is worth nothing to them?

If individual incentive compatibility is the only requirement for the public-good provision

mechanism, the answer to this question is that nobody minds reporting his or her valuation hon-

estly because nobody feels that his or her report will make a difference to anything anyway.5 We

find this answer unconvincing. We are therefore led to the conclusion that individual incentive

compatibility should not be the only requirement for public-good provision mechanisms.

We propose to impose requirements of robustness and coalition proofness in addition to in-

3We do not insist on voluntary participation. Participation constraints are irrelevant if the state has powers

of coercion and these powers can be used to make people contribute to financing a public good even when it does

not benefit them.
4This is the case, for instance, if we think of the large-economy model as a limit of finite-economy models with

independent private values. However, if α is common knowledge, the implementation of an efficient provision rule

does not require any information from participants because, even before any such information is provided, it is

commonly known whether the public good should be provided or not.
5As we show in Section 9, the same problem arises in the finite economy.
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dividual incentive compatibility. Robustness requires that the public-good provision mechanism

should not depend on the beliefs that participants have about the other participants. Coalition

proofness requires that there should be no scope for a group of participants to form a coalition in

order to co-ordinate their reports so as to influence the aggregate outcome in a way that makes

some coalition members better off and no coalition member worse off. In imposing robustness,

we follow Ledyard (1978) and Bergemann and Morris (2005), in imposing coalition proofness,

Laffont and Martimort (1997, 2000). In Section 2 below, we explain in more detail why we

believe that these are the right conditions to impose.

In the above example, the mechanism that we used for first-best implementation is robust

but not coalition-proof. Robustness is implicit in the observation that neither the rule for

determining public-good provision nor the rule for determining people’s payments depend on

the specification of beliefs that people have about each other (for a mechanism that is non-robust,

see Section 2.2 below). Coalition proofness, however, fails because a coalition of people who value

the public good at either 0 or 3 could co-ordinate their reports so that the fraction of people

reporting 3 would always be less than 1
3 and the public good would not be provided, making

all of them better off. Moreover, in contrast to a cartel trying to eliminate competition among

its members, such a coalition would not have an incentive compatibility problem of its own; the

reports that it recommends to its members would all be individually incentive-compatible.

In Sections 3 and 4 of the paper, we will specify these conditions formally and explore their

implications. For a public good that comes as a single indivisible unit, we will show that any

anonymous public-good provision mechanism that satisfies these additional requirements must

take the form of a voting mechanism, i.e., a mechanism that asks people to vote for or against

the provision of the public good, and that makes the provision rule condition on the shares of

votes for the two alternatives.

Economists have traditionally been critical of voting mechanisms because they fail to take

account of preference intensities. If there are many people opposing the provision of the public

good and few people promoting it, a voting mechanism will stipulate non-provision, which is

sub-optimal if the proponents could draw very large benefits from the public good, and the

opponents do not feel very strongly about the matter. Our analysis shows that this criticism

is irrelevant if public-good provision mechanisms must be coalition-proof and robust as well as

anonymous. Mechanisms that take account of preference intensities necessarily violate one of

these conditions.

When we refer to voting mechanisms, we are not assuming that voting must be governed

by the majority rule. If, at the stage of mechanism design, there is prior information that

beneficiaries of the public good feel strongly about it and opponents do not, it may be desirable

to have a rule by which the public good is already provided if a sufficiently large minority is

in favour. Majority voting is likely to be desirable if there is no such prior information which

would permit a discrimination of alternatives at the mechanism design stage.

The reasoning underlying our analysis is fairly straightforward. In a large economy, robust-

ness implies that payments must be independent of individual types. In any situation, therefore,

payments must be the same for all agents (Proposition 1). Coalition proofness then implies that

payments depend only on the level of public-good provision; if they were conditioned on some-
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thing else, then, in some circumstances, there would be room for the grand coalition of all agents

to co-ordinate and manipulate reports so as to lower the required payments without changing

the level of public-good provision.

Given that payments depend only on public-good provision, there is a natural specification

of winners and losers from public-good provision, those participants for whom the benefits from

the enjoyment of the public good exceed the difference between payment levels in the events of

provision and non-provision and those participants for whom the benefits from the enjoyment

of the public good fall short of this difference. These two groups define the key coalitions to

consider in assessing whether a provision rule for the public good is coalition-proof. For coalition

proofness, the level of public-good provision must be a non-decreasing function of the population

share of the group of net beneficiaries. If the decision on public-goods provision was made

dependent on preference intensities, then the decision would be vulnerable to manipulations by

a deviating coalition.

Our results also imply that, apart from exceptional circumstances, it is not possible to

implement a first-best provision rule if coalition proofness and robustness requirements are

imposed. By contrast to previous impossibility results, this finding does not involve participation

constraints or a multi-dimensional information problem. It follows directly from the observation

that coalition-proofness and robust incentive compatibility together destroy the possibility of

conditioning on intensities of preferences.

In the following, Section 2 provides some additional motivation for the requirements of

coalition proofness and robustness that we impose. Section 3 presents our formal model and

introduces the notion of robust implementation. Section 4 introduces the notion of coalition

proofness. Section 5 gives our main result, i.e., the characterization of robust and coalition-

proof public-goods provision in a large economy. Section 7 discusses the welfare implications of

this characterization. Section 9 establishes that our main result extends to an economy with

finitely many individuals. In Section 8, we extend our analysis and allow for more than two

possible provision levels of the public good. The last section contains concluding remarks. All

proofs are in the Appendix.

2 Why Coalition-Proofness and Robustness?

In this section, we explain why the requirements of coalition proofness and robustness are ger-

mane to the example that we have presented above and why an approach that relies on these

requirements is to be preferred to alternative approaches that might also deal with the problem

raised by the example.

2.1 Coalition Proofness

As mentioned, coalition proofness makes a difference in the example because a coalition of people

who value the public good at either 0 or 3 can manipulate the fraction of reports with valuation

3 that are received by the mechanism. If they co-ordinate their reports so that the fraction of

people reporting 3 is always less than 1
3 , they can prevent the public good from being provided,
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which makes all of them better off. By imposing coalition proofness, we thus address the concern

that participants who value the public good at 3 are willing to report their valuation truthfully

only because, individually, they feel that their reports do not matter anyway, when, collectively,

truthtelling may make all of them worse off.

This concern could also be addressed at the level of individual decision making, by imposing

additional conditions on the way in which people resolve their indifference between different

reports. In our example, an agent who values the public good at 3 might consider that, even

though, with probability one, her report does not make a difference, in the probability zero event

where she might be pivotal, it would better to have reported the valuation 0 because this would

contribute to not having the public good provided. There is thus a sense in which truthtelling

is weakly dominated. The efficient provision rule with equal cost sharing is not robust to the

elimination of strategies that are dominated in this sense.

Thus, it seems that a requirement of robustness to the elimination of weakly dominated

strategies would achieve the same purpose as a requirement of coalition proofness.6 By com-

parison to coalition proofness, this approach has the advantage that it does not transcend the

level of individual decision making. It is therefore much simpler.

In the present context, however, a criterion of robustness to the elimination of weakly dom-

inated strategies has the disadvantage that its application seems limited to economies that are

large, in the strict sense that no one individual alone can influence the level of public-good

provision. In a large finite economy, under a Clarke-Groves mechanism for public-good pro-

vision, truthtelling is a dominant strategy for every individual; truthtelling equilibria thus are

robust to the elimination of dominated strategies. In the transition from large finite economies

to the large-economy limit with a continuum of agents, however, the property of robustness of

truthtelling equillibria to the elimination of weakly dominated strategies exhibits a discontinu-

ity. Whereas this property holds in all finite economies, it fails in the large-economy limit where

outcome functions are completely insensitive to the behavior of individuals. We consider this

discontinuity in the transition from large finite economies to the large-economy limit to be prob-

lematic because, as a matter of principle, we think of large-economy models with a continuum

of agents as a mathematical idealization (and simplification) of large finite economies. There

should thus be some assurance that properties derived from the analysis of a large-economy

model should approximately hold in a large finite economy as well.

By contrast to the dominance criterion, a requirement of coalition proofness meets this test.

Whereas most of the analysis of this paper is carried out in a large-economy setting, in part B of

the Appendix we show that our analysis extends to finite economies, i.e., in finite as well as large

economies, the only social choice functions that satisfy robust implementability and coalition

proofness are those that can be implemented by voting mechanisms.

A second reason for studying the implications of coalition proofness involves the comparison

between private and public goods. For private goods, it is well known that, in a large economy

in which every participant is insignificant relative to the aggregates, the set of competitive-

6In political economy, this assumption is often referred to as sincere voting, i.e., it is assumed that people

vote their preferences even though, as individuals, they do not expect their votes to have an effect on aggregate

outcomes. For a clarification of this terminology, see, for instance, Austen-Smith and Banks (1996).

5



equilibrium allocations coincides with the set of core allocations, i.e., the set of allocations

that cannot be blocked by any coalitions, i.e., coalition proofness imposes no restrictions on

implementability. It is therefore of interest to observe that, for public goods, a requirement of

coalition proofness substantially restricts the set of attainable allocations.

The requirement of coalition proofness that we impose will be formulated so as to take

account of incentive constraints due to information asymmetries between the different partici-

pants of a coalition that might form. In this respect, we follow Laffont and Martimort (1997,

2000), who treated the problem of organizing a coalition whose members would co-ordinate their

reports as an mechanism design problem of its own, with distinct incentive and participation

constraints for all participants.7 In the example above, it is easy to see that these constraints

are satisfied, i.e., if a coalition of people who value the public good at either 0 or 3 proposes to

co-ordinate reports so that the fraction of people reporting 3 is less than 1
3 , then this proposal

is individually rational and incentive-compatible for all intended participants.

2.2 Robustness

In addition to coalition proofness, we impose a requirement of robustness along the lines of

Ledyard (1978) and Bergemann and Morris (2005). The mechanism that is used to determine

the level of public-good provision must not depend on the details of the stochastic specification

of the model. Individual incentive compatibility must be robust to changes in the specification

of individuals’ probabilistic beliefs.

This robustness requirement eliminates the possibility of using type-dependent differences in

beliefs to support type-dependent payment rules. This possibility has been extensively discussed

in the context of auctions with correlated values. In our setting, correlated values arise natu-

rally if the question whether the public good should be provided or not is to involve a genuine

information problem.8 For there to be a genuine information problem, there must be some prior

uncertainty about the aggregate valuation of the public good. If the aggregate valuation is de-

rived from the cross-section distribution of individual valuations, there must be some correlation

of individual and aggregate valuations. Given this correlation, individuals’ beliefs will vary with

their valuations. Robustness precludes the exploitation of this type dependence of beliefs for

purposes of mechanism design.

To understand the issue, take another look at the example in the introduction. As before, a

fraction 3
10 of the population assigns a value of 10 to the public good, a fraction α a value of 3,

and a fraction 7
10 − α a value of 0. We now assume that all agents regard α as the realization

of a random variable with possible values αH = 6
10 and αL = 2

10 . With a per-capita provision

cost equal to 4, it is thus efficient to provide the public good if α = αH and not to provide it if

α = αL.

Whereas, before, we had assumed that all agents make the same payments, we now consider

a payment rule which has agents’ payments depend on their public-good valuations. For v ∈
7Laffont and Martimort, however, focussed on deviations by the grand coalition of all agents. In contrast, we

shall mainly be concerned with smaller coalitions involving specified subsets of agents, in particular, coalitions of

agents who favour or oppose proposals for public-good provision.
8For a general discussion of this point, see Bierbrauer and Hellwig (2011).
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{0, 3, 10}, let PH(v) and PL(v) be the payments that an agent with public-good valuation v

is required to make if α = αH and if α = αL. Feasibility requires that, on aggregate, these

payments add up to the cost of public-good provision, i.e., that(
7

10
− αH

)
PH(0) + αHPH(3) +

3

10
PH(10) = 4

and (
7

10
− αL

)
PL(0) + αLPL(3) +

3

10
PL(10) = 0.

With αH = 6
10 and αL = 2

10 , these conditions are obviously satisfied if we set PH(0) = PH(10) =

10, PH(3) = 0, PL(0) = PL(10) = −2, and PL(3) = 8. For α = αH , when the public good is

provided, its cost is entirely borne by people who value the public good at 0 or 10. People who

value it at 3 contribute nothing. However, these people are required to make payments - and

the other participants receive payments - when α = αL and the public good is not provided.

Can such a payment rule be incentive-compatible? The answer depends on agents’ beliefs.

Because, individually, agents do not affect the level of public-good provision, each agent will try

to minimize his expected payment. Let βH(v) and βL(v) denote the probabilities of the events

α = αH and α = αL as assessed by an agent with public-good valuation v. The payment rule

(PH(·), PL(·)) is incentive-compatible if

βH(v)PH(v) + βL(v)PL(v) ≤ βH(v)PH(v̂) + βL(v)PL(v̂) (1)

for all v and v̂. For the payment rule specified above, one easily verifies that this incentive

compatibility condition is fulfilled if βH(3) ≥ βL(3), βH(0) ≤ βL(0), and βH(10) ≤ βL(10).

Beliefs satisfying these inequalities can be generated by Bayesian updating on a common prior

if each agent’s information about this own public-good valuation contains suitable information

about α. For instance, if the prior assigns the probability 1
2 to both αH and αL and if, conditional

on α, the public-good valuation of any given individual i is equal to 0 with probability 7
10 −α, 3

with probability α, and 10 with probability 3
10 , Bayesian updating yields βH(0) = 1

6 , βH(3) = 3
4 ,

βH(10) = 1
2 , and, for each v, βL(v) = 1− βH(v). Individual incentive compatibility is satisfied.

With this payment rule, first-best public-good provision is also coalition-proof because people

who value the public good at 3 are no longer averse to having the public good provided. They

get a net payoff of 3 when the public good is provided and a net payoff of −8 when it is not

provided. They are therefore unwilling to join any coalition that would reduce the incidence of

public-goood provision. Without their co-operation, however, a coalition that would reduce the

incidence of public-good provision cannot form. By the same argument, people who value the

public good at 0 would not join any coalition that would increase the incidence of public-good

provision, and, therefore, such a coalition cannot form.

In this example, incentive compatibility of a payment rule with type-dependent payments

is supported by differences in beliefs. The logic of the argument is the same as in the analysis

of Crémer and McLean (1985, 1988) showing that, generically, full surplus extraction can be

obtained in models of auctions with correlated values. In our example, individual valuations
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are correlated with α. This correlation induces a type dependence of preferences over outcome-

contingent lotteries. This type dependence of preferences over lotteries provide a basis for having

incentive mechanisms that are coalition-proof as well as feasible and incentive-compatible.

However, these properties are not robust. The specification of outcome-contingent lotteries

in the payment rules must be precisely calibrated to the valuation-contingent beliefs βH(v)

and βL(v) that people have. Unless payments are independent of public-good valuations, there

always exist beliefs that violate (1) for some v and v̂. Suppose for instance, that in the above

example, the prior probabilities of αH and αL are 2
3 and 1

3 , rather than 1
2 and 1

2 . Then a person

with valuation 10 will have beliefs βH(10) = 2
3 , βL(10) = 1

3 , the the specified payment rule will

violate (1) for this person.

More generally, the incentive compatibility of the payment rules that are used in the Bayesian

approach may be sensitive to details in the specification of priors and beliefs. Following Led-

yard (1978) and Bergemann and Morris (2005), we consider it unreasonable to suppose that

the mechanism designer has the information about participants’ beliefs that he would need in

order to calibrate precisely an incentive mechanism to these details. Imposing a requirement

of robustness, we therefore require that incentive mechanisms under consideration should be

incentive-compatible and feasible regardless of the specification of priors and beliefs.9

3 Robust Implementation in a Large Economy

3.1 Payoffs and Social Choice Functions

We consider an economy with a continuum of agents of measure 1.10 There is one private good

and one public good. The public good comes as a single indivisible unit. Its installation requires

aggregate resources (per-capita) equal to k units of the private good.

Given a public-good provision level Q ∈ {0, 1}, the utility of any agent i is given as viQ−Pi,
where vi is the agent’s valuation of the public good and Pi is his contribution to the cost of public-

good provision. The valuation vi belongs to a measurable space (V,V) of possible valuations,

which is the same for all i.

A social choice function determines under what conditions the public good is to be provided

and what contributions are to be made by the different individuals. Following Guesnerie (1995),

we impose an anonymity requirement by which the level of public-good provision as well as

the payments of individuals with a given valuation v are unchanged under any permutation

of individual characteristics that leaves the cross-section distribution of preferences unaffected.

Thus, an anonymous social function determines how public-good provision levels and payment

9In Bierbrauer and Hellwig (2011), we also show that robustness eliminates the dichotomy between models

with independent and with correlated values. Without robustness, for models with participation constraints,

the Bayesian approach yields impossibility theorems for first-best implementation with independent values and

possibility theorems for first-best implementation with correlated values. With robustness, we obtain impossi-

bility theorems for first-best implementation with correlated as well as independent values. In either case, with

participation constraints, if there are many participants, approximately first-best implementation is possible with

private goods and hardly anything is possible with public goods.
10In Section 9, we extend the analysis to economies with finitely many agents.
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rules depend on the cross-section distribution of preferences. We refer to the latter as the

state of the economy. Formally, the state of the economy is an element s of the set M(V ) of

probability measures on (V,V). An anonymous social choice function is a pair F = (QF , PF ) of

functions QF : s 7→ QF (s) and PF : (s, v) 7→ PF (s, v) such that, for any state of the economy

s, QF (s) ∈ {0, 1} is the level of public-good provision in the state s, and PF (s, ·) is a function

indicating how, in state s, an agent’s payment depends on the agent’s valuation.

Anonymity is a requirement of equal treatment. Two individuals with the same character-

istics have to make the same contribution to the cost of public-goods provision. In addition,

the decision whether to provide the public good does not depend on the identity of the agents

with certain preferences, but only on the cross-section distribution of those preferences in the

economy as a whole.11

For any s ∈ M(V ), the payment rule PF (s, ·) is taken to be integrable with respect to v.

The integral
∫
PF (s, v)ds(v) corresponds to the aggregate revenue that is collected in state s.

We say that the anonymous social choice function F = (QF , PF ) yields feasible outcomes if and

only if, in any state of the economy, the aggregate revenue is sufficient to cover the public-good

provision cost kQF (s), i.e., if and only if the inequality∫
V
PF (s, v)ds(v) ≥ kQF (s) (2)

is satisfied for all s ∈M(V ).

3.2 Types and Beliefs

Information about types is assumed to be private. As usual, we model information by means

of an abstract type space. Let (T, T ) be a measurable space, τ a measurable map from T into

V , and β a measurable map from T into the space M(M(T )) of probability distributions over

measures on T . We interpret ti ∈ T as the abstract “type” of agent i, vi = τ(ti) as the payoff

type, i.e., the public-good valuation of agent i and β(ti) as the belief type of agent i.

The belief type β(ti) indicates the agent’s beliefs about the other agents. We specify these

beliefs in terms of cross-section distribution of types in the economy. Thus, β(ti) is a probability

measure on the space M(T ) of these cross-section distributions. For any event X ⊂ M(T ),

β(X | ti) is the probability that type ti of agent i assigns to the event that the cross-section

distribution of types δ belongs to the set X. We refer to the map β : T → M(M(T )) as the

belief system of the economy.12

11Anonymity is a substantive constraint. Using the idea of sampling, that has been developed by Green and

Laffont (1979), Bierbrauer and Sahm (2010) show that first-best outcomes can be implemented by a procedure

where public-good preferences are elicited from a representative sample of the population only. If payment rules

differ between the members of the sample and the rest of the population, the payment rule for the sample can be

used to provide proper incentives and the payment rule for the rest can be used to finance public-good provision.

By contrast, first-best is out of reach if all individuals have the same influence on public-good provision and the

payment rule is the same for all.
12We do not assume that the belief system is compatible with a common prior. Our robustness requirement

is therefore stronger than it would be under such an assumption. As shown in Bierbrauer and Hellwig (2010),

however, our analysis would be unchanged if we restricted ourselves to belief systems that are compatible with

common priors. The existence and uniqueness of common priors for the given setup is discussed in Hellwig (2011)
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A typical element of M(T ) will be denoted by δ. We denote by θ(δ) = δ ◦ τ−1 the cross-

section distribution of valuations associated with δ. For any subset V ′ of V we write θ(V ′ | δ)
for the mass of individuals that the distribution θ(δ) assigns to payoff types in V ′.

The belief system β is said to be degenerate if, for some δ ∈M(T ) and all t ∈ T, the measure

β(t) assigns all probability mass to the singleton {δ} i.e., if all agents “know” the cross-section

distribution of types to be δ. The degenerate belief system which assigns all probability mass to

δ will be denoted as βδ.

In addition to the general notion of an abstract type space [(T, T ), τ, β], we shall also make use

of the special notion of a naive type space [(V,V), βs]. This is the special case of an abstract type

space in which agents’ types are given by their public-good valuations so that (T, T ) = (V,V)

and τ is the identity mapping. A generic distribution of payoff types will in the following be

denoted by s ∈ M(V ) and βs(v) denotes the probabilistic beliefs of an individual with payoff

type v regarding the cross-section distribution of payoff types.

3.3 Implementability on a given type space

For implementation of social choice functions, we consider anonymous incentive mechanisms of

the form f = (R, q, p), where R is a set of possible reports to the mechanism, q :M(R)→ {0, 1}
specifies a public-goods provision level as a function of the cross-section distribution of messages,

and p : R×M(R)→ R specifies an individual’s payment as a function of the message sent by this

individual and, again, of the cross-section distribution of messages. A social choice function F

is interim implementable on a given type space if, for this type space, there exists an anonymous

mechanism f = (R, q, p) and there exists a symmetric interim Nash equilibrium of the strategic

game induced by this mechanism such that, for any cross-section distribution of types δ, the

equilibrium outcome of the game induced by the mechanism is equal to the outcome that the

social choice function F stipulates for the payoff-type distribution θ(δ).

For a formal statement of this condition, we need some more notation. Given an anonymous

mechanism f = (R, q, p), a (mixed) strategy profile is a measurable function σ : T → M(R)

that specifies, for each type t ∈ T , a lottery σ(t) over reports r ∈ R that an agent might make.

The strategy profile σ corresponds to an interim Nash equilibrium if, for each t ∈ T, the lottery

σ(t) assigns probability one to the set of reports that an agent of type t considers optimal when

he or she anticipates that the other agents’ reports are given by σ. In specifying the agent’s

expectations, we assume that he or she relies on a law of large numbers for large economies and

equates the cross-section distribution of reports with the probability distribution of the report

that is submitted by a randomly drawn agent. More precisely, he or she anticipates that, if all

agents choose the strategy σ and if the cross-section distribution of types is δ, then the cross-

section distribution of reports received by the mechanism is ∆(σ, δ, f) ∈ M(R), where, for any

subset R′ ⊂ R,

∆(R′|σ, δ, f) :=

∫
T
σ(R′ | t′) dδ(t′); (3)

here σ(R′ | t′) is the probability, under the lottery σ(t′), that a report belongs to the set R′.

Given the anticipation that other agents play according to the strategy σ, the expected payoff
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of an agent of type t sending the report r is therefore given as

U(r | t, σ, f) :=

∫
M(T )

{τ(t)q(∆(σ, δ, f))− p(r,∆(σ, δ, f))} dβ(δ | t). (4)

A strategy σ∗ is an interim Nash equilibrium on the given type space if∫
R
U(r′ | t, σ∗, f)dσ∗(r′|t) ≥ U(r | t, σ∗, f) (5)

for all t ∈ T and all r ∈ R. If the cross-section distribution of types is δ, then the outcome

corresponding to this equilibrium is given by the functions q(∆(σ∗, δ, f)) for the public-good

provision rule and p(·,∆(σ∗, δ, f)) for the payment rule. The mechanism f = (R, q, p) and the

interim equilibrium σ∗ implement the social choice functionF = (QF , PF ) if

q(∆(σ∗, δ, f)) = QF (δ ◦ τ−1) (6)

for all δ ∈M(T ), and

p(r,∆(σ∗, δ, f)) = PF (τ(t), δ ◦ τ−1) , (7)

for all δ ∈M(T ), all t ∈ T , and σ∗(t)-almost all r ∈ R.

3.4 Robust Implementability and MLRP -Robust Implementability

An anonymous social choice function F is said to be robustly implementable if, for every (T, T ),

and τ : T → V, there exists an anonymous mechanism f and an interim Nash equilibrium σ∗

that implement F on the type space [(T, T ), τ, β], for every belief system β.13 Hence, F is

robustly implementable if there exists a mechanism f and a strategy σ∗ so that (5)–(7) hold for

every β.

For some of our analysis, this robustness requirement is too strong. Therefore, we also use a

weaker concept of P -robust implementability. Given some property P that belief systems may

have, an anonymous social choice function F is said to be P -robustly implementable if, for every

(T, T ), and τ : T → V, there exists an anonymous mechanism f and an interim Nash equilibrium

σ∗ that implement F on the type space [(T, T ), τ, β], for every belief system β that has property

P .

We shall be particularly interested in P -robust implementability when P is the monotone-

likelihood-ratio property requiring that, for any x, y, z in R and any t and t′ ∈ T , τ(t′) ≥ τ(t)

implies

β({δ | θ((x,∞) ∩ V | δ) ≥ z} | t′)
β({δ | θ((−∞, x) ∩ V |δ) ≥ y} | t′)

≥ β({δ | θ((x,∞) ∩ V | δ) ≥ z} | t)
β({δ | θ((−∞, x) ∩ V |δ) ≥ y} | t)

. (8)

13Our notion of robustness is slightly stronger than that of Bergemann and Morris (2005). Like Bergemann

and Morris, we require implementability on every type space, but, following Ledyard (1978), we go further than

they do and require that the mechanism that is used for implementation should be the same regardless of what

the belief system is. In contrast, Bergemann and Morris allow the mechanism to depend on β. This difference is

irrelevant if one is only concerned with the characterization of robustly implementable social choice functions. It

matters, however, for the characterization of robust and coalition-proof social choice functions; see the discussion

in Section 4.2 below.
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Thus, an anonymous social choice function F is said to be MLRP -robustly implementable if,

for every (T, T ) and τ : T → V there exists an anonymous mechanism f and an interim Nash

equilibrium σ∗ that implement F on the type space [(T, T ), τ, β], for every belief system β

that has the monotone-likelihood-ratio property. Under the monotone-likelihood-ratio property,

there is a sense in which beliefs about the cross-section distribution of payoff-types, θ(δ), depend

monotonically on the agent’s own payoff type. If the agent’s payoff type is higher, he considers

the likelihood of a cross-section distribution assigning more than a certain weight to payoff types

above a certain threshold to be higher relative to the likelihood of a cross-section distribution

assigning more than a certain weight to payoff types below the threshold.

The monotone-likelihood-ratio property is obviously satisfied by any belief system with beliefs

that are independent of types. In particular, it is satisfied by any degenerate belief system. The

following result is therefore relevant for MLRP -robustly implementability.

Proposition 1 For any property P that is satisfied by every degenerate belief system, an anony-

mous social choice function F = (QF , PF ) is P -robustly implementable if and only if it satisfies

the following ex post incentive compatibility constraints: For all v and and v′ in V and all

s ∈M(V ),

vQF (s)− PF (v, s) ≥ vQF (s)− PF (v′, s) . (9)

Proposition 1 adapts an argument of Bergemann and Morris (2005) to the given setup.14 For

any property P that is satisfied by every degenerate belief system, P -robust implementability

is equivalent to ex post incentive compatibility : suppose that a direct mechanism is used to

implement a social choice function in a truthtelling equilibrium. Then, once s has become

known, no individual regrets having revealed his type to the mechanism.

By inspection of (9), in our setting, ex post implementability is equivalent to the requirement

that PF (v, s) = PF (v′, s) for all v, v′ and s. If the payment of some agent was, for some s, smaller

than the payment of some other agent, the latter would like to imitate the agent with the small

payment. This would contradict ex post implementability. This observation yields the following

corollary to Proposition 1.

Corollary 1 For any property P that is satisfied by every degenerate belief system, an anony-

mous social choice function F = (QF , PF ) is P -robustly implementable if and only if payments

are independent of individual payoff types, i.e., there is a function P̄F : M(V ) → R such that

PF takes the form PF (v, s) = P̄F (s) for all v ∈ V and all s ∈M(V ). Robust implementation is

provided by the direct mechanism fF = (T, qF , pF ) and the “honest” strategy profile h, i.e., h(t)

is the degenerate lottery that assigns probability one to the payoff type τ(t). Consequently, for

any t ∈ T and any δ ∈M(V ),

qF (δ) = QF (δ ◦ τ−1) and pF (t, δ) = P̄F (δ ◦ τ−1) . (10)

14A proof can be found in Bierbrauer and Hellwig (2010).
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Given Corollary 1, we will represent a robustly implementable social choice function in the

following as a pair of functions (QF , P̄F ), where P̄F (s) is the lump-sum contribution to the cost

of public-good provision if the cross-section distribution of payoff types equals s ∈M(V ).

3.5 Robust Implementation of First-Best Allocations

An anonymous social choice function F = (QF , PF ) is said to yield first-best outcomes if, for all

s ∈M(V ) the pair (QF (s), PF (s, ·)) maximizes the aggregate surplus∫
V
{vQF (s)− PF (s, v)}ds(v)

subject to the feasibility condition (2). By standard arguments, this requires that the public

good should be provided if the aggregate valuation v̄(s) :=
∫
V vds(v) exceeds the cost k and

should not be provided if v̄(s) is less than k. Moreover, there should be no slack in the feasibility

constraint, i.e., aggregate payments should exactly cover the cost of public-good provision. Upon

combining these observations with Corollary 1, we obtain:

Proposition 2 A first-best anonymous social choice function F = (QF , PF ) is robustly imple-

mentable if and only if, for all s ∈M(V ),

QF (s) =

{
0, if v̄(s) < k,

1, if v̄(s) > k,
and PF (v, s) = kQF (s), for all v ∈ V .

Proposition 2 provides a general possibility result for robust first-best implementation in a

large economy. People are asked for their payoff types. The public good is provided if and

only if the reported average per-capita valuation exceeds k. Required contributions are set

so that the costs of public-good provision are equally shared; this ensures feasibility (budget

balance), as well as robust implementability. Thus, in the absence of participation constraints,

Proposition 2 suggests that the implementation of first-best allocations in large economies faces

no fundamental difficulties.15

However, we do not regard Proposition 2 as a satisfactory basis for the normative theory

of public-good provision in a large economy. As we discussed in the introduction, we consider

the requirements of robust implementation to be too weak to do full justice to the information

and incentive problems of public-good provision in such an economy. In the following section,

we therefore introduce the analysis of coalition proofness as an additional restriction on social

choice functions and incentive mechanisms.

15Robust implementation of first-best allocations is not compatible with the imposition of interim participation

constraints. Under equal cost sharing, anybody with a payoff type below k has a net payoff below zero if the

public good is provided and a payoff of zero if the public good is not provided. Such a person would not like to

participate. In this paper, however, we are not concerned with participation constraints. Participation constraints

play no role if the government has powers of coercion.
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4 Robust Implementability and Coalition-Proofness

To implement a first-best outcome, one must know the aggregate public-good valuation v̄(s).

This information is derived from people’s reports about their individual valuations. Under the

mechanism fF = (V,QF , PF ) in Proposition 2, people are willing to provide this information

because they see themselves as being unable to influence the outcome at all. Being unable

to influence anything, they are indifferent as to what they report. Given this indifference,

truthtelling is an interim Nash equilibrium of the game induced by fF .

Because of this very indifference, however, this game has many equilibria. Moreover, for cer-

tain subsets of the population, some of these equilibria are more attractive than the truthtelling

equilibrium. Consider the set of types with τ(t) > k who benefit if the public good is pro-

vided. If all of them were to submit a report v∗ = maxV, they would raise the mecha-

nisms assessment of the aggregate public-good valuation from its true level v̄(s) to the level

v̄(s) +
∫
{τ(t)>k}[v

∗ − τ(t)]dδ(t), which is higher if the set {t ∈ T |τ(t) ∈ (k, v∗)} has positive

mass under the cross-section type distribution δ. For some δ, this collective exaggeration of

enthusiasm for the public good would change the provision decision, inducing the public good

to be provided even though the aggregate valuation v̄(s) is below the per-capita cost k. From

the perspective of types with τ(t) > k, the equilibrium with the strategy σ̂ that stipulates re-

ports v∗ for them and truthtelling for the other types will therefore dominate the truthtelling

equilibrium.

For a single individual, there is no reason to deviate from truthtelling to the exaggeration

strategy. However, people with similar valuations have similar interests. Collectively, they might

upset the truthtelling equilibrium. Therefore, they would seem to have an incentive to form a

coalition in order to manipulate the social outcome collectively. To eliminate the possibility

of such a manipulation, we impose a requirement of coalition proofness in addition to robust

implementability.

4.1 Coalition Proofness

With this requirement, we follow Laffont and Martimort (1997, 2000). However, whereas Laffont

and Martimort focussed on collective deviations by the grand coalition of all agents, we focus

on deviations by coalitions of subsets of agents, where coalition membership depends on types.

Proceeding formally, let σ∗ be an interim Nash equilibrium for the game that is induced by

the mechanism f on a given type space [(T, T ), τ, β]. A subset T ′ of the type set T is said to

block the equilibrium σ∗ if there exists a function σ′T ′ : T ′ →M(R) so that:

(a) The strategy profile (σ′T ′ , σ
∗
T\T ′), which is obtained by people having types in T ′ play

according to σ′T ′ and types in T\T ′ play according to σ∗, is also an interim Nash equilibrium

for the game that is induced by the mechanism f on [(T, T ), τ, β].

(b) For all t′ ∈ T ′,∫
R
U(r′ | t′, (σ′T ′ , σ∗T\T ′), f)dσ′T ′(r

′|t) ≥
∫
R
U(r′ | t′, σ∗, f)dσ∗(r′|t), (11)
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and, for some t′ ∈ T ′, the inequality in (11) is strict.

In this definition, condition (a) is an incentive compatibility requirement. Like Laffont and

Martimort (1997, 2000), we insist that the collective deviation that a coalition induces should

itself be individually incentive-compatible so that no coalition member has an incentive to deviate

from the deviation associated with the coalition16. In addition, condition (a) requires that there

should also be no incentives for non-members of the coalition to deviate from the choice σ∗(t)

that is stipulated by the original strategy profile σ∗. Condition (b) is the usual requirement that

the a blocking coalition provides a Pareto-superior outcome to its members.17

An interim Nash equilibrium σ∗ for the game that is induced by the mechanism f on

[(T, T ), τ, β] is said to be coalition-proof if there is no set T ′ ⊂ T that blocks it. A social

choice function F is said to be robustly implementable and coalition-proof if, for every (T, T ),

and τ : T → V, there exists a mechanism f and a strategy profile σ∗ such that, for every belief

system β, σ∗ is a coalition-proof interim Nash equilibrium for the game induced by f on the

type space [(T, T ), τ, β], and, moreover, f and σ∗ implement F.

Given a property P that a belief system may have, F is P -robustly implementable and

coalition-proof if, for every (T, T ), and τ : T → V, there exists a mechanism f and a strategy

profile σ∗ such that, for every belief system β with the property P, σ∗ is a coalition-proof interim

Nash equilibrium for the game induced by f on the type space [(T, T ), τ, β], and, moreover, f

and σ∗ implement F.

Our definition of blocking does not allow the deviating agents to use incentive-compatible

side-payments to enlarge the set of agents who are willing to participate in a blocking manip-

ulation. In a model with a continuum of agents, however, this restriction is without loss of

generality. Since deviating idividuals do not perceive themselves as being pivotal for the out-

comes induced by a deviation, their participation constraint would be violated as soon as they

were asked to make a payment. If such a payment was asked for, they would be better off

free-riding; that is, they would benefit from the outcome induced by deviation, without making

a personal contribution.

The requirement that a social choice function should be robustly implementable and coalition-

proof bears some relation to the literature on “full” implementability of a social choice function.18

This literature aims at characterizing those social choice functions that can be implemented by

16In contrast to Laffont and Martimort, however, we do not explicitly study an extensive-form game of coalition

formation and merely look at coalition-proof equlibria in a normal-form formulation. An extensive-form formu-

lation is considered in Bierbrauer and Hellwig (2010); this form leads to the same charcterization of robustly

implementable and coalition-proof social choice function as the simpler formulation that is provided here.
17For ease of exposition, we do not yet invoke the requirement that a deviation must itself be coalition-proof,

i.e., that there must not be an incentive for a subset T ′′ of T ′ to deviate to a strategy σ′′T ′′ given that all other

types behave according to (σ′T ′ , σ∗T\T ′). This corresponds to the notion of Bernheim et al. (1986) that collective

manipulations themselves must be coalition-proof. As we have shown in Bierbrauer and Hellwig (2010), our main

result gets stronger if we require that deviating coalitions are subcoalition-proof. In this case, we can establish

the equivalence of robust and coalition-proof mechanisms, on the one hand, and voting mechanisms on the other

for all type spaces and not just for those satisfying the MLRP .
18See Jackson (2001), or Moore (1992) for an overview. Recently, Bergemann and Morris (2009) have discussed

full implementability in connection with the requirement of robustness with respect to the specification of the

belief system.
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a mechanism so that every equilibrium of the mechanism achieves a desired social outcome.19

Like this literature, we are concerned with alternative equilibria of the game induced by the

mechanism f on the type space [(T, T ), τ, β]. However, whereas the literature on full implemen-

tation is concerned about equilibrium multiplicity per se, we are only concerned with equilibrium

multiplicity to the extent that a group of agents might benefit from a collective deviation which

induces an alternative equilibrium.

4.2 Preliminary Results on Robust Implementability and Coalition Proofness

For robustly implementable social choice functions, Corollary 1 shows that implementation can

rely on direct mechanisms and truthtelling equilibria. The follow proposition asserts the same

for robustly implementable and coalition-proof social choice functions.

Proposition 3 For any property P that is satisfied by every degenerate belief system, a P -

robustly implementable anonymous social choice function F = (QF , P̄F ) is coalition-proof if and

only if, on every type space [(T, T ), τ, β], the “honest” strategy profile h is a coalition-proof

interim Nash equilibrium for the game induced by the direct mechanism fF = (T, qF , pF ), where

fF = (T, qF , pF ) and h are as specified in Corollary 1. In this case, in particular, truthtelling

is a coalition-proof interim Nash equilibrium for the game induced by the mechanism fF =

(V,QF , P̄F ) on the naive type space [(V,V), β], for every β.

For any property P that is satisfied by every degenerate belief system, Proposition 1 implies

that, if an anonymous social choice function is P -robustly implementable, then it is ex post

implementable. The following proposition provides an analogous result for coalition proofness.

For a formal statement, we need some more notation. Given the type space [(T, T ), τ, β] and the

direct mechanism fF = (T, qF , pF ), a collective deviation is defined as a pair π = (T ′, `′T ′), such

that T ′ ⊂ T is the set of deviating types and `′T ′ : T ′ →M(T ) is a function that specifies a “lie”

`′T ′(t
′), i.e., a lottery over (typically false) type announcements, for each t′ ∈ T ′. Along the same

lines as before, we write (`′T ′ , hT\T ′) for the strategy profile that is obtained by having types in T ′

report payoff types according to `′T ′ and types in T\T ′ report payoff types according to h. Given

this strategy profile, if the cross-section distribution of types is δ, the cross-section distribution of

reports received by the mechanism fF , is equal to ∆((`′T ′ , hT\T ′), δ, fF ) as specified by equation

(3) above.

Proposition 4 Let P be a property that is satisfied be every degenerate belief system. If a P -

robustly implementable anonymous social choice function F = (QF , P̄F ) is coalition-proof, then,

there is no s ∈ M(V ) and there is no collective deviation π = (V ′, `′V ′) such that π blocks the

honest strategy profile h in the game induced by the mechanism (V,QF , P̄F ) on a naive type

19By contrast, a large part of the mechanism design literature requires only that there is some mechanism with

some equilibrium that achieves the outcomes stipulated by a given social choice function.
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space [(V,V), βs] with a degenerate belief system, i.e., there are no s and π = (V ′, `′V ′) such

v′QF (∆((`′T ′ , hT\T ′), s, fF ))− P̄F (∆((`′T ′ , hT\T ′), s, fF ))

≥ v′QF (s)− P̄F (s),
(12)

for all v′ ∈ V ′, where, for some v′ ∈ V ′, the inequality in (12) is strict.

Condition (12) concerns the attractiveness of collective deviations ex post : if (12) holds for

all v′ ∈ V ′, with a strict inequality for some v′, and if the cross-section distribution s is known

to the participants, then the coalition of agents with types in V ′ wants to block the truthtelling

equlibrium by deviating to the “lie” `′V ′ . Proposition 4 asserts that, if the social choice function

is coalition-proof, then no such coalition exists. The argument is derived from the observation

that, for the degenerate belief system βs, coalition proofness of a strategy profile in the game

induced by the mechanism fF on the naive type space [(V,V), βs] is equivalent to coalition

proofness ex post for the cross-section type distribution s.

Proposition 4 asserts the necessity of coalition proofness ex post. This raises the question

whether coalition proofness ex post is also sufficient for a robustly implementable anonymous

social choice function to be coalition-proof. Without any additional restrictions on belief systems,

the answer to this question is negative. If we know that the truthtelling equilibrium for the

direct mechanism fF = (V,QF , PF ) cannot be blocked ex post, we still cannot rule out the

possibility that, for nondegenerate probabilistic belief systems, the truthtelling equilibrium for

this mechanism might be blocked by a coalition whose members all expect the collective deviation

to improve the outcome in some aggregate states and to worsen it in others and beliefs are such

that, taking expectations over aggregate states, they all expect to benefit from the deviation.

5 The Main Result: Implementability by a voting mechanism

This section contains our main result, namely that any social choice functions that is MLRP -

robust and coalition-proof can be reached by a voting mechanism. We proceed as follows:

we first define what we mean by a voting mechanism and then provide a characterization of

MLRP -robust and coalition-proof social choice functions. We will then show that, under a

weak assumption, any such social choice function can be implemented by a voting mechanism.

A voting mechanism Φ is defined as a mechanism with the following properties:

• People are presented with two alternatives and can vote for one or the other. The message

set RΦ is therefore a binary set, RΦ = {alternative 0, alternative 1}.

• Alternative 1 stipulates that the public good should be provided and that each participant

should make a payment P 1
Φ ≥ k. Alternative 0 stipulates that the public good should not

be provided and that each participant should make a payment P 0
Φ ≥ 0.

• Alternative 1 is implemented if the share of people voting for it exceeds a given threshold

mΦ ∈ [0, 1]. If the share of people voting for alternative 1 is less than mΦ, alternative 0

is implemented. If the share of people voting for alternative 1 is equal to mΦ, then either

alternative 0 or alternative 1 is implemented.
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Economists have long been critical of the prominent role of voting in political decision making,

arguing that the neglect of preference intensities in voting was a major source of distortions.

The following result shows that this property of voting mechanisms is actually implied by robust

implementability and coalition proofness. If an anonymous social choice function is to be robustly

implementable and coalition-proof, it must not condition the provision of the public good on

preference intensities. For robust implementabibility and coalition proofness, the provision of

the public good can only be conditioned on the size of the set of people who benefit from public-

good provision and the size of the set of people who are hurt by public-good provision. Moreover,

the provision rule must be monotonic in the sense that it is not possible to have the public good

provided when the set of net beneficiaries is smaller than in some other instance where it is not

provided.

The following two propositions, which are proven in Section 6, provides a characterization

of MLRP -robustly implementable and coalition-proof social choice functions.

Proposition 5 If an anonymous social choice function F is MLRP -robustly implementable

and coalition-proof then there exist numbers P 0
F and P 1

F so that, for all v ∈ V and all s ∈M(V ),

PF (v, s) =

{
P 0
F , if QF (s) = 0 ,

P 1
F , if QF (s) = 1 .

(13)

If the participants’ payments were high in one state and low in another when both states

involve the same level of public-good provision, then the grand coalition coalition of all partici-

pants together could use a collective deviation to induce the outcome with low payments when

the actual state would call for high payments.

Given this lemma, we restrict our attention to social choice functions with payments that

depend only on whether the public good is provided or not. For such social choice functions, we

find it convenient to write F = (QF , P
0
F , P

1
F ) rather than F = (QF , PF ).

Given such a social choice function, we denote by

V1(P 1
F − P 0

F ) := {v ∈ V | v > P 1
F − P 0

F } and V0(P 1
F − P 0

F ) := {v ∈ V | v < P 1
F − P 0

F }

the sets of payoff types of net gainers and net losers from public-good provision, respectively.

In the following we fix a social choice function F = (QF , P
0
F , P

1
F ) and ask under what

condition it is robustly implementable as a coalition-proof equilibrium. For ease of exposition

we assume that there are no indifferent types i.e., that P 1
F − P 0

F ∩ V = ∅.

Proposition 6 Consider a social choice function F = (QF , P
0
F , P

1
F ) and suppose that P 1

F−P 0
F ∩

V = ∅. This social choice function is MLRP -robustly implementable and coalition-proof if and

only if for all s and s′ in M(V ),

s(V1(P 1
F − P 0

F )) ≥ s′(V1(P 1
F − P 0

F )) implies QF (s) ≥ QF (s′). (14)
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Corollary 2 Consider a social choice function F = (QF , P
0
F , P

1
F ) and suppose that P 1

F − P 0
F ∩

V = ∅. This social choice function is MLRP -robustly implementable and coalition-proof if and

only if it is implementable by a voting mechanism.

The conditions in Propositions 5 and 6 are equivalent to the ex post coalition proofness

conditions in Proposition 4. They immediately imply that the social choice function must be

implementable by a voting mechanism. Because Proposition 4 is not restricted to MLRP -

robustly implementable and coalition-proof social choice functions, this implication is actually

more general than the Proposition make it appear. For any property P that is satisfied by all

degenerate belief systems, an anonymous social choice function that is P -robustly implementable

and coalition-proof must be implementable by a voting mechanism.

The restriction to MLRP -robust implementability is needed for the converse, i.e., the

statement that implementability by a voting mechanism is sufficient for MLRP -robust im-

plementability and coalition proofness of an anonymous social choice function. The monotone-

likelihood-ratio property of belief systems eliminates the possibility that, for nondegenerate prob-

abilistic belief systems, the truthtelling equilibrium for the given mechanism might be blocked

by a coalition whose members all expect the collective deviation to improve the outcome in

some aggregate states and to worsen it in others. Given the monotonicity of the public-good

provision rule, the monotone-likelihood-ratio property ensures that, when the participants take

expectations over the different aggregate states, they cannot all expect to benefit from the

deviation.

Remarks on Robustness and Weak Coalition Proofness

In the preceding analysis, the requirement of MLRP -robust implementability cannot be replaced

by the stronger requirement of robust implementability. If there are no restrictions on belief

systems, one can always find belief systems that give rise to the possibility of blocking the

truthtelling equilibrium for a social choice function that satisfies the conditions of Proposition 6

simply because the different groups assign different probability weights to the different aggregate

states.

The requirement of MLRP -robust implementability can, however, be strengthened to robust

implementability if, at the same time, the requirement of coalition proofness is replaced by

a notion of weak coalition proofness. This weaker concept only considers coalitions that are

themselves immune to the formation of sub-coalitions.20 More formally, it can be shown that

a social choice function F is robustly implementable and weakly coalition-proof if and only if

there exist numbers P 0
F and P 1

F so that the conditions of Propositions 5 and 6 are satisfied.

The argument involves three steps. The first step is to show that the requirement of weak

coalition-proofness does also imply that the payment scheme can be reduced to two payments

P 1
F and P 0

F . The second step is the observation that manipulations that are supported solely

20As explained in Bierbrauer and Hellwig (2010), for technical reasons, the analysis of weak coalition-proofness

is interesting only if attention is restricted to social choice functions with the property that the problem of forming

a manipulation that achieves a certain outcome Q ∈ {0, 1} with minimal payments is well-defined.
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by gainers or losers are weakly coalition-proof because all coalition members have aligned in-

terests. Steps 1 and 2 imply that the conditions in Propositions 5 and 6 remain necessary if

we replace coalition-proofness by weak-coalition-proofness. The proof that these conditions are

also sufficient is then based on the following insight: whenever a manipulation stipulates that

some gainers claim to be losers and some losers claim to be gainers of public-goods provision,

the manipulation itself fails to be coalition-proof. Given that the losers claim to be gainers, the

gainers possess a deviation that makes all of them better off, namely to communicate truthfully

that they are gainers, so as to make the provision of the public good more likely.

6 Proof of the main result

Proof of Proposition 5. Suppose that the lemma is false, and let F = (QF , P̄F ) be a

MLRP -robustly implementable and coalition-proof social choice function such that, for some s

and s̄, QF (s) = QF (s̄) and P̄F (s) > P̄F (s̄). Consider the naive type space [(V,V), βs] with the

degenerate belief system βs that assigns all probability mass to the aggregate state s, and let

fF = (V,QF , P̄F ) be the direct mechanism that implements F in truthtelling strategies on this

type space. Let `V be such that ∆((`′V , h∅), s, fF ) = s̄. Then the collective deviation π = (V, `V )

by the grand coalition of all agents induces the outcome

(QF (∆((`′V , h∅′), s, fF )), P̄F (∆((`′V , h∅′), s, fF ))) = (QF (s̄), P̄F (s̄)),

which provides a payoff

vQF (s̄)− P̄F (s̄) > vQF (s)− P̄F (s)

to a participant with payoff type v. By Proposition 4, it follows that F cannot be coalition-proof.

The assumption that the lemma is false has thus led to a contradiction.

Necessity of the Conditions of Proposition 6. We seek to show the following: given

a social choice function F = (QF , P
1
F , P

0
F ) and given that P 1

F − P 0
F ∩ V = ∅, F is robustly

implementable and coalition-proof only if, for all s and s′ inM(V ), s(V1(P 1
F−P 0

F )) ≥ s′(V1(P 1
F−

P 0
F )) implies QF (s) ≥ QF (s′).

Suppose that this condition fails to hold, i.e., that QF (s) = 0 and QF (s′) = 1 for some s and

s′ such that s(V1(p1
F−p0

F )) ≥ s′(V1(p1
F−p0

F )). To focus on the essentials of the argument, suppose

first that, in fact, s(V1(P 1
F−P 0

F )) = s′(V1(P 1
F−P 0

F )) and hence s(V0(P 1
F−P 0

F )) = s′(V0(P 1
F−P 0

F )).

We claim that, for some belief system that has the monotone-likelihood-ratio property, the

“honest” strategy profile h cannot be coalition-proof.

Consider the coalition of people with payoff types in V0(P 1
F −P 0

F ). All these people prefer the

outcome for the aggregate state s to the outcome for the aggregate state s′. Thus, if the belief

system is degenerate and all beliefs assign all probability mass to the payoff type distribution s′, a

coalition of people with payoff types in V0(P 1
F−P 0

F ) would block the honest strategy profile if they

could find a reporting strategy `T0 that would induce a reports distribution ∆((`V0 , hV \V0), s′, fF )

such that QF (∆((`V0 , hV \V0), s′, fF )) = 0.
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For instance, since QF (s) = 0, this coalition would block the honest strategy profile if it

could induce the reports distribution ∆((`V0 , hV \V0), s′, fF ) = s. Because the reports distribution

∆((`V0 , hV \V0), s′, fF ) also depends on the (honest) reports of people with payoff types in V1(P 1
F−

P 0
F ), it may not be able to do so. However, because its size is the same under both s and s′, there

does exist a reporting strategy `V0 for this coalition such that the induced reports distribution

takes the form

∆((`V0 , hV \V0), s′, fF ) = s′′,

where s′′ satisfies

s′′(V̂ ) = s(V̂ ) if V̂ ⊂ V0(P 1
F − P 0

F ) .

and

s′′(V̂ ) = s′(V̂ ) if V̂ ⊂ V1(P 1
F − P 0

F ) .

If the coalition of people with payoff types in V0(P 1
F −P 0

F ) is to be prevented from blocking the

honest strategy profile h when beliefs assign all probability mass to the type distribution s′, it

must be the case that QF (s′′) = 1.

But now consider the coalition of people with types in V1(p1
F−p0

F ). All these people prefer the

outcome for the aggregate state s′ and, therefore, also the outcome for the aggregate state s′′ to

the outcome for the aggregate state s. Thus, if the belief system is degenerate and beliefs assign

all probability mass to the type distribution s, a coalition of people with types in V1(p1
F − p0

F )

will block the honest strategy profile if they can find a reporting strategy `V1 that induces the

reports distribution

∆fF ((`V1 , hV \V1), s) = s′′,

which yields the outcome QF (s′′) = 1. Because, by the definition of s′′, the coalition of people

with payoff types in V1(p1
F − p0

F ) has the same size under s′′ as under s and s′ and, moreover,

the restrictions of s′′ and s to the set V0(P 1
F − P 0

F ) are the same, such a reporting strategy `V1
is in fact available.

Thus, if there are two aggregate states satisfying s(V1(p1
F − p0

F )) = s′(V1(p1
F − p0

F )), the

implementation of a social choice function prescribing QF (s) = 0 and QF (s′) = 1 can necessarily

be blocked. Either it can be blocked by a coalition of people with payoff types in V0(P 1
F − P 0

F )

when beliefs put all probability mass on s, or it can be blocked by a coalition of people with

payoff types in V1(P 1
F − P 0

F ) when beliefs put all probability mass on s′.

In the preceding argument, the assumption that s(V1(p1
F − p0

F )) = s′(V1(p1
F − p0

F )), is not

really needed. A little reflection shows that, if s(V1(p1
F − p0

F )) ≥ s′(V1(p1
F − p0

F )), the blocking

coalitions in the preceding argument have even more scope for finding collective deviations so

as to generate reports distributions equal to s′′.

Sufficiency of the Conditions of Proposition 6. We consider a social choice function

F = (QF , P
1
F , P

0
F ) and assume that P 1

F − P 0
F ∩ V = ∅. Moreover, we consider a belief system

with the MLRP . We seek to show the following: if F is such that for all s and s′ in M(V ),
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s(V1(P 1
F − P 0

F )) ≥ s′(V1(P 1
F − P 0

F )) implies QF (s) ≥ QF (s′), then, with a direct mechanism fF ,

the strategy profile h is coalition-proof.

The argument proceeds in two steps. In the first step, we show that, under the given

conditions, h cannot be blocked by a coalition of people with homogeneous interests. In the

second step, we show that h can neither be blocked by a coalition of people with conflicting

interests.

Step 1. Consider a coalition of people with payoff types in V0(P 1
F − P 0

F ) or a coalition of

people with payoff types in V1(P 1
F − P 0

F ).

For a collective deviation by people with payoff types in V0(P 1
F − P 0

F ) to block the imple-

mentation of F by the mechanism fF , this deviation must induce the outcome Q = 0 for some

type distribution δ for which the mechanism fF = (T, qF , pF ) stipulates qF (δ) = 1.

Given that s(V1(P 1
F − P 0

F )) ≥ s′(V1(P 1
F − P 0

F )) implies QF (s) ≥ QF (s′), this would only be

possible if the coalition could make the set of people with payoff types in V1(P 1
F − P 0

F ) appear

to be smaller than it actually is. This, however, is not possible if people with payoff types in

V1(P 1
F −P 0

F ), who do not belong to the presumed blocking coalition, report their types honestly.

By a precisely symmetric argument, there also is no collective deviation by people with payoff

types in V1(P 1
F − P 0

F ) that can block the implementation of F.

Step 2. It remains to be shown that there is no collective deviation that is attractive for

individuals with types in V0(P 1
F − P 0

F ) and for individuals with types in V1(P 1
F − P 0

F ).

For a collective deviation by people with conflicting interests to block the implementation

of F by the mechanism fF , this deviation must induce the outcome Q = 0 for some type

distributions in D01 ⊂ M(T ) for which F stipulates Q = 1 and the outcome Q = 1 for type

distributions in D10 ⊂M(T ) for which F stipulates the outcome Q = 0. Moreover, the different

participants’ beliefs must be such that each participant attaches more weight to the gains from

changes that he or she likes than to the losses from changes that he or she dislikes. Hence, if

t′′ ∈ T ′ and τ(t′′) ∈ V0(P 1
F − P 0

F ), then

β(D01 | t′′)
β(D10 | t′′)

≥ 1, (15)

and if t′ ∈ T ′ and τ(t′) ∈ V1(P 1
F − P 0

F ), then

β(D01 | t′)
β(D10 | t′)

≤ 1, (16)

with a least one type in T ′ for which the inequality is strict.

Given that the social choice function satisfies (14), there exists a critical value c so that

QF (s) = 1 if and only if s(V1(P 1
F − P 0

F )) ≥ c. Consequently, for any pair δ and δ′ with δ ∈ D01

and δ′ ∈ D10,

θ(V1(P 1
F − P 0

F ) | δ) ≥ θ(V1(P 1
F − P 0

F ) | δ′) .

But then the MLRP implies that for any pair t′′ and t′ where τ(t′′) ∈ V0(P 1
F − P 0

F ) and

τ(t′) ∈ V1(P 1
F − P 0

F ) that

β(D01 | t′)
β(D10 | t′′)

≥ β(D01 | t′)
β(D10 | t′′)
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which contradicts the assumption that the inequalities in (15) and (16) hold, and that one holds

as a strict inequality.

7 Welfare Implications

7.1 Limits to First-Best Implementation

We now turn to the welfare implications of imposing coalition-proofness, as well as robust

implementability. We begin with an example that illustrates some of the issues that arise.

Example 1 In this example, there are three possible payoff types V = {0, 5, 10}. The per-capita

cost of public-good provision is k = 4.5. There are two possible cross-section distributions sj ,

j = 1, 2 of payoff types. The population shares sjv of the different payoff types under these two

cross-section distributions are given in the following table.

j sj0 sj5 sj10 v̄(sj)

1 0.3 0.7 0 3.5

2 0.4 0.1 0.5 5.5

(17)

The last column in the table indicates the cross-section average valuation v̄(sj) of the public good

for each distribution.

In this example, first-best implementation requires that the public good should not be pro-

vided in state 1 and that the public good should be provided in state 2. With equal cost sharing,

the associated payment outcomes would be P 0
F = 0 and P 1

F = 4.5. Given these payments, the

set of opponents of public-good provision consists of all types with valuations 0 and the set of

net beneficiaries of public-good provision consists of all types with valuations 5 and 10. From

Table 1, one immediately sees that the set of net beneficiaries has a population share of 0.8 in

state 1 and of 0.7 in state 2. Because the population share of the set of net beneficiaries is larger

in state 1 than in state 2, first-best implementation runs afoul of the monotonicity requirement

in Theorems 1. In more concrete terms, any mechanism that would implement a social choice

function with first-best outcomes would be vulnerable to a deviation by individuals with valu-

ations 5 and 10. If these individuals believe that state 1 is the true state of the economy, they

benefit if all of them report a valuation of 10 with probability 5/7, and valuations 0 and 5 with

probability 1/7 each, thereby giving the impression that the true state is 2, rather than 1.

The possibility that robust first-best implementation may run afoul of coalition-proofness is

also illustrated by the example in the introduction, with possible valuations 0, 3, and 10, and

a per-capita provision cost equal to 4. In that example, all cross-section distributions of types

involved population shares 0.3 of net beneficiaries and 0.7 of opponents of public-good provision.

A robustly implementable and coalition-proof social choice function would have to be insensitive

to whatever people report, which is incompatible with the efficiency requirement that the public
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good be provided if and only if the population share of individuals with valuation 3 is sufficiently

large. By contrast to this earlier example, the example here shows that coalition-proofness has

bite even if the population share of net beneficiaries differs from state to state.

More generally, we obtain:

Corollary 3 If there is a pair of states s and s′, such that s(V0(k)) ≤ s′(V0(k)) and v̄(s) < k <

v̄(s′), then there is no social choice function that yields first best outcomes and is robust and

coalition-proof.

7.2 Second-Best Considerations

If first-best is out of reach, the overall mechanism designer is faced with a second-best problem.

Given the impossibility of achieving efficient outcomes in every state s, he must choose between

different deviations from efficiency that are compatible with robustness and coalition-proofness.

For instance, in Example 1, he can decide whether it is better to forego the net benefits from

public-good provision in state 2 or to incur the net losses from public-good provision in state

1. He might also want to change the boundary between yes-sayers and no-sayers by imposing a

payment scheme that raises more funds than he needs, e.g., by asking for a payment P 1
F = 5.1 if

the public good is provided, rather than P 1
F = k = 4.5, in order to turn people with valuations

5 from net beneficiaries into opponents of public-good provision. This would allow him to

implement a first-best public-good provision rule, but there would be a waste of resources in

state 2, when the public good is provided.

Any assessment of tradeoffs between the different kinds of inefficiency must rely on a system

of weights that the mechanism designer assigns to the different states. For specificity, we assume

that the mechanism designer has his own prior beliefs and chooses a social choice function in order

to maximize expected aggregate surplus according to these beliefs, subject to the requirements

of feasibility, robust implementability and coalition-proofness. Given our characterization robust

implementability and coalition-proofness, this is equivalent to the problem of choosing P 0
F , P 1

F

and QF :M(V )→ {0, 1} so as to maximize the expected aggregate surplus

EM [(v̄(s)− P 1
F )QF (s)− P 0

F (1−QF (s))] (18)

subject to the feasibility constraints that P 0
F ≥ 0, P 1

F ≥ k, and the coalition-proofness condition

that for every pair s and s′, s(V1(P 1
F − P 0

F )) ≥ s′(V1(P 1
F − P 0

F )) implies QF (s) ≥ QF (s′). The

expectations operator EM in (18) indicates that expectations over s are taken with respect to

the mechanism designer’s subjective beliefs.

In Example 1, the solution to this second-best problem depend on the probabilities ρM1 and

ρM2 that the mechanism designer assigns to the different states. If the benefits of public-good

provision are foregone in state 2, then, relative to first-best, there is a net per capita welfare loss

of 5.5− 4.5 = 1.0 in this state. If the public good is provided in state 1, when it should not be,

the per-capita welfare loss is 4.5− 3.5 = 1.0. If the mechanism designer deems the two states to

be equiprobable, he will be indifferent between excessive provision in state 1 and non-provision

24



in state 2. If he deems state 2 to be more likely than state 1, he will prefer excessive provision

in state 1 to non-provision in state 2; the reverse is true if he deems state 1 to be more likely.

In any case, though, non-provision in state 2 is dominated by a scheme involving non-

provision in state 1 and provision with a payment P 1
F = 5.1 > k in state 2. This scheme involves

a per-capita welfare loss, relative to first-best, that is equal to 5.1 − 4.5 = 0.6 in state 2. If

the mechanism designer deems the two states to be equiprobable, he will prefer this scheme

even to an arrangement involving excessive provision of the public good in state 1. Excessive

provision of the public good in state 1, i.e., provision of the public good in both states, with

non-wasteful payments P 0
F = 0 and P 1

F = k = 4.5 is only preferred if the probability assigned

to state 1 is less than 3/8. If the probability assigned to state 1 exceeds 3/8, the second-best

social welfare function stipulates (the efficient) non-provision of the public good in state 1 and

provision with a wasteful payment requirement in state 2. A wilful waste of resources may

thus be part of a second-best solution when first-best solutions are ruled out by robustness and

coalition-proofness.

8 An example with three provision levels

We now return to a setup with a continuum of individuals and study an extension that allows

for more than two possible provision levels of the public good. More specifically, we assume that

there are three possible provision levels, Q ∈ {0, 1, 2}. The resource requirement is given by a

cost function K with K(0) = 0, K(1) = k1 and K(2) = k2, with 0 < k1 < k2. We assume that

the cost function is convex, k2 > 2k1.

For simplicity, as in Section 2, we focus on a model with three possible payoff types so that

V = {0, x, 1}, where 0 < x < 1. A state s of the economy is hence a triple s = (s0, sx, s1) ∈
M(V ). We also assume that, under equal cost sharing, individuals with payoff type v = 1 prefer

the large provision level of 2 over the intermediate provision level of 1, which is in turn preferred

over no public goods-provision at all; hence, 2 − k2 > 1 − k1 > 0. The ranking is reversed for

individuals with a payoff type of v = 0. Individuals with an intermediate payoff type prefer the

intermediate provision level over non-provision and over the large provision level, x−k1 > 2x−k2

and x − k1 > 0. For the sake of concreteness we assume finally that 2x − k2 < 0, so that the

intermediate types prefer non-provision over the large provision level.

Figure 1 below represents the set of states by depicting the set

{(s1, s0) | 0 ≤ s0 ≤ 1; 0 ≤ s1 ≤ 1 and s0 + s1 ≤ 1} .

For any point in this set it is understood that sx = 1 − s0 − s1. The figure also illustrates the

first-best provision rule,

Q∗F (s) =


0, if s1 ≤ −x−k1

1−x + x
1−xs

0 ,

1, otherwise ,

2, if s1 ≥ k2−k1−x
1−x + x

1−xs
0 .

Corollary 1 and Proposition 4 generalize in a straightforward way to the given setup, since

the proofs did not rely on there being only two possible provision levels of the public good. By
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Figure 1: First-best in a setup with three provision levels
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Corollary 1, robust implementability implies that, for every state s, there is a payment P̄F (s)

that every individual has to make, irrespective of the individual’s payoff type. Proposition 4

states a necessary condition for robustness and coalition-proofness: From an ex post perspective

– that is, after the state s has been revealed to individuals – there is no group of individuals

who could have induced a preferred outcome by a collective lie about their payoff types.

For simplicity, we assume in the following that the individuals’ payments are set in such a

way that the feasibility constraint holds as an equality, P̄F (s) = K(QF (s)), for every s.21 Con-

sequently, under a direct mechanism with a truthtelling equilibrium, the payoff of an individual

with valuation v in state s is given by the indirect utility function

Ũ(s | v) := vQF (s)−K(QF (s)) .

The following Corollary is an implication of Proposition 4: There must not be a state s so that

– under the assumption that individuals knew the state to be s – individuals with the same

payoff type would benefit from a collective lie about their preferences.

Corollary 4 If a social choice function is robust and coalition-proof, then the following state-

ments have to be true:

i) Given s1, Ũ(s0, 1−s0−s1, s1 | 0) is a non-decreasing function of s0. Given sx, Ũ(s0, sx, 1−
sx − s1 | 0) is a non-decreasing function of s0.

ii) Given s0, Ũ(s0, sx, 1 − s0 − sx | x) is a non-decreasing function of sx. Given s1, Ũ(1 −
s0 − sx, sx, s1 | x) is a non-decreasing function of sx.

21This is an innocent assumption as long as we are interested in the question whether first-best outcomes can be

implemented. However, as we have seen in Section 7, second-best considerations may render slack in the resource

constraint desirable.
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iii) Given s0, Ũ(s0, 1 − s0 − s1, s1 | 1) is a non-decreasing function of s1. Given sx, Ũ(1 −
sx − s1, sx, s1 | 1) is a non-decreasing function of s1.

Part i) of the Corollary addresses deviations by individuals who all have a payoff type of 0.

These individuals must not benefit from collectively announcing a payoff type of x so that s0 goes

down and sx = 1− s0− s1 goes up. Likewise, these individuals must not benefit from increasing

s1 at the expense of s0. Parts ii) and iii) of the Corollary state the analogous conditions for

deviations by individuals who have a payoff type of x and for deviations by individuals, who all

have a payoff type of 1, respectively.

The following Proposition is an adaptation of our main result in Theorem 1 to the current

setup. For brevity, it focusses only on the implications of robustness and coalition-proofness.22

Proposition 7 If a social choice function is robust and coalition-proof, then:

i) Suppose that there is some s̄ so that QF (s̄) = 2. Then, QF (s) = 2, whenever s1 ≥ s̄1.

ii) Suppose that there is some s̄ so that QF (s̄) = 2, and some ŝ so that QF (ŝ) = 0. Then,

QF (s) = 0, whenever s0 ≥ ŝ0.

A provision rule satisfying the necessary conditions in Proposition 7 is illustrated in Figure

5.

Figure 2: Second-best in a setup with three provision levels
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A comparison of Figures 1 and 2 reveals that it is impossible to implement a first-best social

choice function. For instance, under a first-best provision rule, the set of states in which the

22One way to show that the conditions in Proposition 7 are not only necessary but also sufficient would, again,

be to employ a notion of weak coalition-proofness which requires that the outcome of a collective deviation must

not be undermined by a further deviation of a subcoalition.
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outcome is Q = 2 is bounded from below by an upward-sloping line. Now, whenever the true

state s is on or above this line, increasing s0 at the expense of sx (and leaving s1 constant)

implies that we enter the region in which the outcome is Q = 1. Since intermediate types prefer

the outcome Q = 1 over the outcome Q = 2, this implies that – whenever the belief system is

such that intermediate types put enough probability mass on states so that Q∗F (s) = 1 – they

can jointly benefit from understating their preferences, i.e., from falsely declaring a payoff type

of 0. Analogously, if these individuals believe that the most likely outcome is Q∗F (s) = 0, they

can jointly benefit from exaggerating; that is, from falsely declaring a payoff type of 1.

With the second-best provision rule in Figure 2 these problems are eliminated. If s0 is

increased at the expense of sx, then either the public-goods provision level remains constant at

a level of 0 or, the outcome changes from Q = 1 into Q = 0. Hence, increasing s0 at the expense

of sx, is either inconsequential, or makes the intermediate types worse off, implying that there is

no longer a rationale for an understatement of preferences by the intermediate types. Likewise,

increasing s1 at the expense of sx changes the outcome from Q = 1 into Q = 2, if anything, so

that there is neither an incentive to exaggerate public-goods preferences.

A second-best provision rule can be implemented by the following voting mechanism: ask

each individual for his preferred alternative. The outcome is Q = 2 if and only if the population

share of people in favor of Q = 2 exceeds a threshold level. Likewise, the outcome is Q = 0 if and

only if the population share of people in favor of Q = 0 exceeds some other threshold level. In

all other cases, the intermediate provision level Q = 1 is implemented. This voting mechanism

differs from the one in the model with two provision levels because an action set with three

alternatives is needed. The common feature is that only ordinal information on preferences can

be used for a decision on public-goods provision: whether the outcome is Q = 2 or not depends

only on how many individuals like this outcome best, and not on the preference intensities of

the average person who does not like this outcome best. Likewise, whether or not the outcome

Q = 0 is obtained depends only on s0. It does not matter how big sx is and how big s1 is as

long as sx + s1 = 1− s0.

9 Concluding Remarks

Our main subject in this paper has been the problem of mechanism design for public-good

provision in a large economy with prior uncertainty as to whether it is efficient for the public

good to be provided or not. In this economy, conditions for individual incentive compatibility are

simple because no one individual can affect the aggregate outcome. If there are no participation

constraints, therefore, a social choice function that yields first-best outcomes can be implemented

simply by asking people about their preferences and having them share the costs evenly if the

public good is provided. In some instances, however, such schemes are implausible because they

rely on information that (collectively) hurts the people who provide it; and people’s willingness to

provide this information is based solely on the consideration that, as individuals, they are unable

to affect the outcome anyway. We impose a requirement of coalition-proofness to eliminate this

possibility.

When coalition-proofness is imposed along with robustness, the implementability of a social
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choice function that yields first-best outcomes can no longer be taken for granted. Social choice

functions are robustly implementable and coalition-proof if and only if the provision can be

characterized by a threshold such that the public good is provided if the population share of

the net beneficiaries exceeds the threshold and is not provided if the population share of the

net beneficiaries falls short of the threshold. Preference intensities cannot play a role. Net

beneficiaries are the people for whom the benefits of the public good exceed the costs of the

contribution they have to make; contributions are the same for all people and depend only on

whether the public good is provided or not. Generally, such threshold rules cannot be used to

implement first-best outcomes, because they are not responsive to the preference intensities of

those who benefit and those who are harmed by public-good provision.

The main part of our analysis has been based on a model with a continuum of agents

even though our main result extends to a finite economy. The reason for our emphasis of the

continuum economy is twofold. First, in the continuum economy, one does not have to keep

track of the small probability events in which a single individual may be decisive for the decision

on public-goods provision. This makes it much easier to get an intuitive understanding of the

main result. Second, the large economy framework is the standard paradigm for the normative

and positive analysis of allocation problems involving private goods. The contribution of this

paper is to provide, within this paradigm, a treatment of the information and incentive problems

that are specific to problems of public-good provision.
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A Appendix

Proof of Proposition 3

The ”if” part of the proposition is trivial. To prove the ”only if” part, suppose that the so-

cial choice function F is robustly implementable and coalition-proof, i.e., that there exists a

mechanism f = (R, q, p) which reaches F by means of a strategy profile σ∗ so that (i) σ∗ is a

Nash equilibrium on every type space with a belief system that satisfies Property P , and, in

particular, on every type space with a degenerate belief system, and (ii) that on every such type

space σ∗ is coalition-proof.

The proof is by contradiction. Hence, suppose that, in the game induced by the direct

mechanism fF = (T, qF , pF ) on the type space [(T, T ), τ, β], the “honest” strategy profile h is

blocked by the set T ′ ⊂ T . Let `T ′ : T ′ → M(T ) be the associated “lying” strategy for types

in T ′ and let (`T ′ , hT\T ′) be the strategy profile that results from having types in T ′ report

payoff types according to `T ′ and types in T\T ′ report payoff types according to h. If the true

cross-section distribution of types is δ, then by (3), the strategy profile (`T ′ , hT\T ′) gives rise to

a cross-section distribution of reports ∆((`T ′ , hT\T ′), δ, fF ) such that

∆(T̂ |(`T ′ , hT\T ′), δ, fF ) =

∫
T ′
`T ′(T̂ |t′)dδ(t′) + δ(T̂\T ′) (19)

for any T̂ ⊂ T. Under the strategy profile h, the cross-section distribution of reports is just

∆(h, δ, fF ) = δ. Because T ′ blocks the strategy profile h, we have∫
T
U(t̂ | t′, (`T ′ , hT\T ′), fF )d`T ′(t̂|t′) ≥ U(t′ | t′, h, fF ), (20)

for all t′ ∈ T ′, with a strict inequality for some t′ ∈ T ′. By (4) and by the definition of qF and

pF , we have

U(t̂ | t′, (`T ′ , hT\T ′), fF ) =
∫
M(T ){τ(t′)QF (∆((`T ′ , hT\T ′), δ, fF ) ◦ τ−1)

−P̄F (∆((`T ′ , hT\T ′), δ, fF ) ◦ τ−1)}dβ(δ|t′) ,
(21)

and

U(t′ | t′, h, fF ) =
∫
M(T ){τ(t′)QF (δ ◦ τ−1)− P̄F (δ ◦ τ−1)}dβ(δ|t′) , (22)

for all t̂ ∈ T and all t′ ∈ T ′.
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In following we will show that an “equivalent” version of this manipulation exists under any

other mechanism that implements the given social choice function in a robust and coalition-proof

way. Hence, let f = (R, q, p) and σ∗ be any other mechanism and interim Nash equilibrium that

implement F on [(T, T ), τ, β]. Let σ′T ′ : T ′ →M(R) be given by setting

σ′T ′(R
′|t′) =

∫
T
σ∗(R′|t̂)d`T ′(t̂|t′)

for any R′ ⊂ R and t′ ∈ T ′, and consider the strategy profile (σ′T ′ , σ
∗
T\T ′) that results from having

types in T ′ reporting according to σ′T ′ and types in T\T ′ according to σ∗. If the cross-section

distribution of types is δ, then by (3), the strategy profile (σ′T ′ , σ
∗
T\T ′) gives rise to a cross-section

distribution of reports ∆((σ′T ′ , σ
∗
T\T ′), δ, f) such that

∆(R′|(σ′T ′ , σ∗T\T ′), δ, f) =

∫
T ′

σ′T ′(R
′|t′)dδ(t′) +

∫
T\T ′

σ∗(R′|t)dδ(t)

=

∫
T ′

∫
T
σ∗(R′|t̂)d`T ′(t̂|t′) dδ(t′) +

∫
T\T ′

σ∗(R′|t̂)dδ(t̂) (23)

for all R′ ⊂ R. Upon reversing the order of integration in the double integral on the right-hand

side and using (19), we find that (23) can be rewritten in as

∆(R′|(σ′T ′ , σ∗T\T ′), δ, f) =

∫
T
σ∗(R′|t)d∆(t|(`T ′ , hT\T ′), δ, fF )

and, therefore, that

∆((σ′T ′ , σ
∗
T\T ′), δ, f) = ∆(σ∗,∆((`T ′ , hT\T ′ , fF ), δ), f). (24)

Because the mechanism f = (R, q, p) and strategy profile σ∗ implement F, we also have

q(∆(σ∗, δ, f)) = QF (δ ◦ τ−1)

and

σ∗({r ∈ R|p(r,∆(σ∗, δ, f)) = P̄F (δ ◦ τ−1)}|t) = 1

for all t ∈ T and all δ ∈M(T ). By the definition of σ′T ′ and by (24), it follows that

q(∆((σ′T ′ , σ
∗
T\T ′), δ, f)) = QF (∆(σ∗,∆((`T ′ , hT\T ′), δ, fF )) ◦ τ−1)

and

σ′T ′({r ∈ R|p(r,∆((σ′T ′ , σ
∗
T\T ′), δ, f)) = P̄F (∆f (σ∗,∆((`T ′ , hT\T ′), δ, fF )) ◦ τ−1)}|t′) = 1

for all t′ ∈ T ′ and all δ ∈M(T ). By (4) and (21), therefore,

U(r | t′, (σ′T ′ , σ∗T\T ′), f) = U(t̂ | t′, (`T ′ , hT\T ′), fF )

for σ′T ′(t
′)-almost all r ∈ R, `T ′(t

′)-almost all t̂ ∈ T , and all t′ ∈ T ′. By (4) and (22), we also

have

U(r | t′, σ∗, f) = U(t′ | t′, h, fF )
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for σ∗-almost all r ∈ R and all t′ ∈ T ′. Thus,∫
R
U(r | t′, (σ′T ′ , σ∗T\T ′), f)dσ′T ′(r|t′) =

∫
T
U(t̂ | t′, (`T ′ , hT\T ′), fF )d`T ′(t̂|t′)

and ∫
R
U(r | t′, σ∗, f)dσ∗(r) = U(t′ | t′, h, fF )

for all t′ ∈ T ′. By (20), it follows that∫
R
U(r | t′, (σ′T ′ , σ∗T\T ′), f)dσ′T ′(r|t′) ≥

∫
R
U(r | t′, σ∗, f)dσ∗(r)

for all t′ ∈ T ′, with a strict inequality for some t′ ∈ T ′.
The set of types T ′ that possess a lie that blocks the truthtelling equilibrium for the direct

mechanism fF thus also possesses a deviation σT ′ that makes them better off relative to the

the equilibrium σ∗ for the mechanism f. To establish that (T ′, σT ′) blocks the equilibrium σ∗ it

therefore remains to be shown that (σT ′ , σ
∗
T\T ′) is a Nash equilibrium on the given type space.

This follows from the following observations: All individuals, the deviating ones as well as the

non-deviating ones, choose, almost surely, reports that belong to the support of σ∗(t), for some

t ∈ T . The fact that σ∗ is a Nash equilibrium on every type space with a degenerate belief system

implies that all individuals are giving a best response if they behave according to (σT ′ , σ
∗
T\T ′)

on the given type space.

Proof of Proposition 4

If the robustly implementable anonymous social choice function F = (QF , P̄F ) is coalition-proof,

then, by Proposition 3, for every s ∈M(V ), the “honest” strategy profile h is a coalition-proof

interim Nash equilibrium for the game induced by the direct mechanism fF = (V,QF , P̄F ) on the

naive type space [(V,V), βs]. Thus, there exists no collective deviation π = (V ′, `′V ′) such that

(`′V ′ , hV \V ′) is an interim Nash equilibrium for the game induced by fF = (V,QF , P̄F ) on the

type space [(V,V), βs] and, moreover, the inequality (12) holds for all v′ ∈ V ′, where, for some

v′ ∈ V ′, the inequality is strict. Because individual announcements do not affect outcomes,

any strategy profile (`′V ′ , hV \V ′) that is induced by a collective deviation π = (V ′, `′V ′) is an

interim Nash equilibrium for the game induced by fF = (V,QF , P̄F ). The proposition follows

immediately.

Proof of Proposition 7

Part A. We first show that statement i) in Proposition 7 is true. Suppose there is s̄ = (s̄0, s̄x, s̄1)

so that QF (s̄0, s̄x, s̄1) = 2.

Step 1. It has to be true that for all s = (s0, sx, s1) with s0 = s̄0 and s1 ≥ s̄1, QF (s) = 2.

Otherwise there would be a state ŝ so that ŝ0 = s̄0, and ŝ1 > s̄1, but Ũ(ŝ | 1) < Ũ(s̄ | 1), a

contradiction to Corollary 4. Analogously, it has to be true that for all s = (s0, sx, s1) with

sx = s̄x and s1 ≥ s̄1, QF (s) = 2. Repeating this argument implies that QF (s) = 2, for all s so

that s0 ≤ s̄0 and s0 + s1 ≥ s̄0 + s̄1. The argument is illustrated graphically in Figure 3. The
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vertical line starting at s̄ is the locus of points so that s0 = s̄0 and s1 ≥ s̄1. The downward-

sloping line is the locus of points so that s1 ≥ s̄1 and sx = s̄x. If QF (s̄) = 2, then we need to

have QF (s) = 2, for all s in the trapezoid in the northwest of s̄.

Step 2. It has to be true that for all s = (s0, sx, s1) with s0 > s̄0 and s1 = s̄1, QF (s) = 2.

Otherwise there would be a state ŝ so ŝ1 = s̄1, ŝx < s̄x, and Ũ(ŝ | x) > Ũ(s̄ | x), a contradiction

to Corollary 4. Analogously, it has to be true that for all s = (s0, sx, s1) with s0 = s̄0 and

s1 > s̄1, QF (s) = 2. Repeating this argument implies that QF (s) = 2, for all s so that s0 ≥ s̄0

and s1 ≥ s̄1. The argument is illustrated graphically in Figure 3. If QF (s̄) = 2, then we need to

have QF (s) = 2, for all s in the triangle in the northeast of s̄.

Step 3. It has to be true that for all s = (s0, sx, s1) with s0 < s̄0 and s1 = s̄1, QF (s) = 2.

Otherwise there would be a state ŝ so ŝ1 = s̄1, ŝ0 < s̄0, and Ũ(ŝ | 0) > Ũ(s̄ | 0), a contradiction

to Corollary 4. Analogously, it has to be true that for all s = (s0, sx, s1) with sx = s̄x and

s0 < s̄0, QF (s) = 2. Repeating this argument implies that QF (s) = 2, for all s so that s0 ≤ s̄0

and s0 + s1 ≤ s̄0 + s̄1. The argument is illustrated graphically in Figure 3. If QF (s̄) = 2, then

we need to have QF (s) = 2, for all s in the triangle in the northwest of s̄.

Figure 3: Implications of QF (s̄) = 2
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Part B. We now show that statement ii) in Proposition 7 is true. Suppose that there is some

s̄ so that QF (s̄) = 2, and some ŝ so that QF (ŝ) = 0.

By part i) there exists a number s̃1 > 0 so that QF (s) = 2 if and only if s1 ≥ s̃1. This

situation is illustrated in Figure 4. In the region below the s1 = s̃0-line the provision level has

to be either 0 or 1.

We can now adapt the argument from partA to show that, if there is a state ŝ withQF (ŝ) = 0,

then it has to be the case that QF (s) = 0, for all s with s0 ≥ ŝ0. The details of this exercise are

left to the reader.
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B The finite economy

We now show that our main results in Propositions 5 and 6 extend to an economy with finitely

many individuals. In the finite economy, the analysis is more complicated because an individual’s

action not only affects the own payment, but possibly also the decision on public-goods provision.

Consequently, a group deviation does not automatically satisfy the condition that each deviating

individual’s action is a best response to the behavior of all other individuals. However, as will

be shown below in Lemma 2, individuals do generally have multiple best responses. As we will

see, this leaves sufficient scope for the formation of coalitions that are individually incentive-

compatible so that our main result goes through. All proofs for the economy with finitely many

individuals are in Section B.3.

As in the body of the text, we stick to the assumption that blocking manipulations cannot

make use of on side payments. In an economy with finitely many individuals, this assumption

involves a loss of generality. We conjecture, however, that one could prove a limit result so

that, as the number of individuals goes to infinity, the effectiveness of side-payments as a means

of facilitating coalition formation goes to zero. In fact, such limit results have already been

provided by Mailath and Postlewaite (1990) for an independent private values model and by

Neeman (2004) for a model which allows for a much larger set of type spaces.

B.1 The model

This section provides an adaptation of our model to an economy with finitely many individuals.

Individuals. The set of individuals is given by I = {1, . . . , n}. Individual i has utility a

function ui = viQ − Pi, where vi ∈ V is the individual’s valuation of a public good (i’s payoff

type), Q ∈ {0, 1} and Pi is a monetary payment. We assume that V is a bounded subset of R+,

that contains 0 as its smallest element and v̄ as its largest element. We write v = (v1, . . . , vn)

for a typical vector that lists the payoff types of all individuals.

Individual i’s type ti belongs to a set of possible types T , which is taken to be the same for

all individuals. Each individual privately observes the own type. An individual’s payoff type is

determined by the function τ : T → V . We assume throughout that τ is surjective. We will

occasionally use the shorthand notation τ(t) = (τ(ti), . . . τ(tn)) for the vector of payoff types

that is induced by a vector of types t = (t1, . . . , tn).

An individual’s belief type is determined by the function β : T → M(T−i), where M(T−i)

is the set of probability measures over the possible types of all individuals, except individual i,

T−i = Tn−1. The collection [T, τ, β] is referred to as a type space.

Mechanisms. A mechanism f = (R1, . . . , Rn, q, p1, . . . , pn) consists of: (i) for each individual

i, a set of feasible reports Ri; we write r = (r1, . . . , rn) for a typical vector that lists the reports

of all individuals; (ii) a public-goods provision rule q :
∏
iRi → {0, 1}, which determines, for

each vector of reports, whether or not the public good is provided; and (iii) for each individual

i, a function pi :
∏
iRi → R, which determines i’s payment as a function of all reports. We will

occasionally write R−i =
∏
j 6=iRj for the set of possible reports by all individuals except i.

35



Given a mechanism, a (mixed) strategy for player i is a function σi : T → M(Ri). Hence,

we think of the report that is sent by type ti of individual i as a random variable ri, which

is distributed according to a probability distribution σi(ti). In the following, we denote by

σ(R′i | ti) the probability according to which type ti of player i chooses a message in a subset

R′i of Ri. We denote by R+
i (σ, ti) the smallest subset R′i of Ri so that σ(R′i | ti) = 1.

A strategy profile is in the following written as σ = (σ1, . . . , σn). Let t = (ti, . . . , tn) be

a given type profile. Conditional on this type profile, the profile of reports received by the

mechanism is a random variable r = (r1, . . . , rn). We denote by σ(t) =
∏
i σi(ti) the probability

distribution of r conditional on t.

Given a mechanism f and a type space, a strategy profile σ∗ is called an interim Nash

equilibrium provided that for all i, and all ti,

R+
i (σ∗i , ti) ∈ argmaxri∈Ri

∫
T−i

∫
R−i

u(f(r−i, ri), τ(ti)) dσ
∗
−i(r−i | t−i) dβ(t−i | ti) , (25)

where

u(f(r−i, ri), τ(ti)) := τ(ti)q(r−i, ri)− pi(r−i, ri) .

In the following, we denote the expected payoff of type ti of individual i under a strategy profile

σ by

Ui(σ, ti, f) :=

∫
T−i

∫
R

u(f(r), τ(ti)) dσ(r | t−i) dβ(t−i | ti) .

Social Choice Functions. A social choice function F = (QF , PF1, . . . , PFn) consists of (i)

a public-goods provision rule QF : V n → {0, 1}, which determines, for each vector of payoff

types, whether or not the public good is provided, and (ii) for each individual i, a function

PFi : V n → R, which determines i’s payment.

A social choice function F is said to be implementable on a given type space if there exists

a mechanism f with an interim Nash equilibrium σ∗ so that for all t = (t1, . . . , tn),

q(r) = QF (τ(t)) and pi(r) = PFi(τ(t)), for all i , (26)

σ∗(t)-almost surely.

Robust Implementability. Given a set T of types and a function τ , a social choice function

F is said to be robustly implementable if there is a mechanism f with an equilibrium σ∗ so that

(25) and (26) hold on every type space [T, τ, β].

The following lemma, that we state without proof, is due to Ledyard (1978) and Bergemann

and Morris (2005): Robust implementability is equivalent to implementability by means of a

mechanism such that individuals announce payoff types, and such that truthtelling is a dominant

strategy equilibrium. The lemma is the finite economy analogue to Proposition 1.

Lemma 1 A social choice function F is robustly implementable if and only if it is payoff-type

dominant strategy incentive compatible: for all i, all vi, all v′i, and all v−i,

viQF (v−i, vi)− PFi(v−i, vi) ≥ viQF (v−i, v
′
i)− PFi(v−i, v′i) . (27)
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The next Lemma provides a complete characterization of robustly implementable social

choice functions.

Lemma 2 A social choice function F is robustly implementable if and only if it has the following

properties: For every i, and every v−i, there exists a cutoff type ci(v−i) ≥ 0 so that

QF (v−i, vi) =

{
0, if vi < ci(v−i) ,

1, if vi ≥ ci(v−i) .
(28)

If 0 < ci(v−i) ≤ v̄, then there exist numbers P 0
Fi(v−i) and P 1

Fi(v−i) so that

PFi(v−i, vi) =

{
P 0
Fi(v−i), if vi < ci(v−i) ,

P 1
Fi(v−i), if vi ≥ ci(v−i) ,

(29)

where

inf{vi ∈ V | vi > ci(v−i)} ≥ P 1
Fi(v−i)− P 0

Fi(v−i) ≥ sup{vi ∈ V | vi ≤ ci(v−i)} . (30)

If ci(v−i) > v̄, or ci(v−i) = 0 then there exists a number P̄Fi(v−i) so that

PFi(v−i, vi) = P̄Fi(v−i) , (31)

for all vi.

Consider a direct mechanism that implements a social choice function with the properties

in Lemma 2 in a truth-telling equilibrium. Observe that on every complete information type

space, i.e., a type space where all individuals assign probability 1 to a specific payoff type profile

v, individuals have multiple best responses. If QF (v) = 0, then every individual is willing to

understate his preferences since this has neither an impact on the provision level, nor on the

individual’s payment. Likewise, if QF (v) = 1, then every individual is willing to exaggerate his

preferences. In the following, we will show that these multiple best responses generate a degree

of freedom for incentive-compatible coalition formation. As a preliminary step, however, we

need to adapt our notion of a coalition-proof equilibrium to our model of a finite economy.

Coalition-proof equilibrium. Fix a mechanism f and a type space. An interim Nash equi-

librium σ∗ is said to be coalition-proof if the following does not exist: A deviation by a set of

individuals I ′ ⊂ I to a strategy profile σ′I′ = (σ′i)i∈I′ being such that

i) The strategy (σ′∗I\I′ , σ
′
I′) is an interim Nash equilibrium.

ii) For all i ∈ I ′ and all ti so that σ′i(ti) 6= σ∗(ti), Ui((σ
′∗
I\I′ , σ

′
I′), ti, f) ≥ Ui(σ

∗, ti, f). More-

over, there is at least one i ∈ I ′ with a type ti so that Ui((σ
′∗
I\I′ , σ

′
I′), ti, f) > Ui(σ

∗, ti, f).
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Robust and coalition-proof social choice functions. Given a set T of types and a function

τ , a social choice function F is said to be robustly and coalition-proof if there is a mechanism f

and strategy σ∗ such that (i) σ∗ is a coalition-proof interim Nash equilibrium on every type space

[T, τ, β], and (ii) for every t, the equilibrium allocation coincides with the allocation stipulated

by the social choice function, i.e., (26) holds.

The following Lemma states a necessary condition for robustness and coalition-proofness.

It is the finite-economy-version of Proposition 4. In the finite economy, the condition that

each deviators is, individually, giving a best response is not trivially fulfilled. Hence, there are

participation and an incentive constraints that need to be satisfied. Proposition 4, by contrast,

stated only a participation constraint.

Lemma 3 If a social choice function is robust and coalition-proof, then the following does not

exist: a profile of payoff types v, a subset I ′ of I with a deviation v′I′ 6= vI′ so that

i) The deviators benefit. For all i ∈ I ′,

viQF (vI\I′ , v
′
I′)− PFi(vI\I′ , v′I′) ≥ viQF (vI\I′ , vI′)− PFi(vI\I′ , vI′) ,

with a strict inequality for at least some i ∈ I ′.

ii) Each deviator gives a best response. For all i ∈ I ′,

viQF (vI\I′ , v
′
I′−i, v

′
i)− PFi(vI\I′ , v′I′−i, v′i) ≥ viQF (vI\I′ , v

′
I′−i, vi)− PFi(vI\I′ , v′I′−i, vi) .

The inequalities in Lemma 3 state properties of a social choice function that are necessary for

robustness and coalition-proofness. The words in Lemma 3 are based on the interpretation of

such a social choice function as a direct mechanism in which individuals communicate their payoff

types and in which truthtelling is a dominant strategy equilibrium. A truthtelling equilibrium

is coalition-proof only if there is no profile of payoff types so that some individuals benefit from

lying (property i)) and choose an action that is as good as the truth (property ii)).

We could add a third requirement, namely that each non-deviator is giving a best response:

For all j ∈ I \ I ′, and all v′j ,

viQF (vI\I′ , v
′
I′−j , vj)− PFi(vI\I′ , v′I′−j , vj) ≥ viQF (vI\I′ , v

′
I′−j , v

′
j)− PFi(vI\I′ , v′I′−j , v′j) .

However, since robust implementability of a social choice function is equivalent to dominant

strategy incentive compatibility, this requirement will be trivially fulfilled by any social choice

function that is of interest to us.

B.2 The main result in the finite economy

In the finite economy we replace the condition of anonymity by the weaker condition of symme-

try.23 This condition says that individuals with the same payoff types make the same payment

23Symmetry in the finite economy is weaker in that a single individual may be pivotal for whether or not the

public good is provided. In a continuum economy and under anonymity this is impossible.
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and, moreover, that a permutation of the individuals’ types does not affect the decision on

public-goods provision. Formally, we say that a social choice function is symmetric, if, for

every v, and every pair of individuals (i, j) ∈ I2, PFi(v−i−j , vi, vj) = PFj(v−i−j , vj , vi) and

QF (v−i−j , vi, vj) = QF (v−i−j , vj , vi).

The following Proposition, which is proven in the Appendix, is the finite economy analogue

to Proposition 5.

Proposition 8 A symmetric social choice function F is robustly implementable and coalition-

proof only if there exist numbers P 0
F and P 1

F , so that for all v and all i,

PFi(v) =

{
P 0
F if QF (v) = 0 ,

P 1
F if QF (v) = 1 .

(32)

Since robust implementability implies, in particular, MLRP -robust implementability, the

necessary condition in Proposition 8 applies if we limit attention to belief systems satisfying

MLRP . If we do this, we can show that the implementability by a voting mechanism is both

necessary and sufficient for the robustness and coalition-proofness of a social choice function.

This follows from Proposition 9 which is the finite economy analogue of Proposition 6. The

proof is omitted because it parallels the one of Proposition 6.

Proposition 9 Consider a social choice function F = (QF , P
0
F , P

1
F ) and suppose that P 1

F −
P 0
F ∩ V = ∅. Denote by s1(v) := #{i | vi > P 1

F − P 0
F } the number of individuals who are

net gainers from public-good provision, given a payoff profile v. This social choice function is

MLRP -robustly implementable and coalition-proof if and only if for all v and v′,

s1(v) ≥ s1(v′) implies QF (v) ≥ QF (v′). (33)

The basic insight is the one previously obtained for an economy with a continuum of in-

dividuals: Under robustness, coalition-proofness and symmetry there is a payment P 1
F that

everybody has to deliver if the public good is provided and another payment P 0
F that is relevant

if the public good is not provided. Given these payments we can define the set of individuals

who prefer non-provision over provision. Under robustness and coalition-proofness, the decision

on public-goods provision can only reflect the number of individuals within and outside this set.

Information on preference intensities cannot be used.

B.3 Proofs

Proof of Lemma 2

We first show that a social choice function satisfying equations (28) - (31) also satisfies (27)

and hence is robustly implementable. Fix i, v−i, and vi. (i) If ci(v−i) > v̄, then viQF (v−i, v
′
i)−

PFi(v−i, v
′
i) = −P̄i(v−i) for any v′i ∈ Vi. Likewise, if ci(v−i) = 0, then viQF (v−i, v

′
i)−PFi(v−i, v′i) =

vi − P̄i(v−i), for any v′i ∈ Vi. Since these expressions do net depend on v′i, dominant strategy
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incentive compatibility is trivially fulfilled. (ii) Now Suppose that 0 < ci(v−i) ≤ v̄. Assume first

that vi < ci(v−i). Then, v′i < ci(v−i), implies that viQF (v−i, v
′
i)− PFi(v−i, v′i) = −P 0

i (v−i); and

v′i ≥ ci(v−i) implies that viQF (v−i, v
′
i)− PFi(v−i, v′i) = −P 0

i (v−i). Hence, (27) holds if and only

if

P 1
Fi(v−i)− P 0

Fi(v−i) ≥ vi .

By (30) this is fulfilled for all vi < ci(v−i). A symmetric argument establishes that (27) holds

under the assumption that vi ≥ ci(v−i).
We now show that if a social choice function satisfies (27) then it does also satisfy (28) -

(31). Fix i, and v−i. (i) Upon adding the two incentive constraints viQF (v−i, vi)−PFi(v−i, vi) ≥
viQF (v−i, v

′
i)−PFi(v−i, v′i) and v′iQF (v−i, v

′
i)−PFi(v−i, v′i) ≥ v′iQF (v−i, vi)−PFi(v−i, vi), we find

that (vi − v′i)(QF (v−i, vi) −QF (v−i, v
′
i)) ≥ 0. Hence, vi ≥ v′i implies QF (v−i, vi) ≥ QF (v−i, v

′
i),

and hence the existence of a cutoff level ci(v−i) so that (28) holds. (ii) Let QF (v−i, vi) =

QF (v−i, v
′
i), then the two incentive constraints imply that PFi(v−i, vi) = PFi(v−i, v

′
i), and hence

that (29) and (31) hold true. (iii) Finally, if vi < ci(v−i) ≤ v′i, then the incentive constraint

viQF (v−i, vi)−PFi(v−i, vi) ≥ viQF (v−i, v
′
i)−PFi(v−i, v′i) simplifies to −P 0

Fi(v−i) ≥ vi−P 1
Fi(v−i).

If this holds for all vi < ci(v−i), then it must be true that P 1
Fi(v−i) − P 0

Fi(v−i) ≥ sup{vi ∈ V |
vi ≤ ci(v−i)}. Analogously, for v′i < ci(v−i) ≤ vi, the incentive constraint viQF (v−i, vi) −
PFi(v−i, vi) ≥ viQF (v−i, v

′
i)− PFi(v−i, v′i) simplifies to vi − P 1

Fi(v−i) ≥ −P 0
Fi(v−i). If this holds

for all vi ≥ ci(v−i), then it must be true that inf{vi ∈ V | vi > ci(v−i)} ≥ P 1
Fi(v−i)− P 0

Fi(v−i).

This shows that (30) holds.

Proof of Lemma 3

The proof is by contradiction. We consider a robustly implementable social choice function and

suppose that there is a profile of payoff types v, a subset I ′ of I with a deviation v′I′ 6= vI′ so

that properties i) and ii) hold and show that this yields a contradiction to the assumption that

F is not only robustly implementable but also coalition-proof.

Let f be a mechanism, so that σ∗ is an interim Nash equilibrium on every type space and

moreover suppose that (26) holds, so that f implements the social choice function.

Consider a type space so that it is commonly known among individuals that the type profile

t is such that τ(t) = v. More formally, the belief system β is such that β(t−i | ti) = 1 for all i.

We show in the following that, on this type space, σ∗ is not coalition-proof.

Consider a strategy profile σ̄ := (σ′∗I\I′ , σ
′
I′), where, for any i ∈ I ′, σ′i(ti) = σ∗(τ−1(v′i)). Note

that σ′ is constructed in such a way that each individual in I ′ behaves as if he still followed σ∗,

but had a payoff type of v′i 6= vi

Step 1. We first show that, on the given type space, Ui(σ
′, ti, f) ≥ Ui(σ∗, ti, f), for all i ∈ I ′

and all ti so that σ′i(ti) 6= σ∗i (ti); with a strict inequality for at least one type of at least one

i ∈ I ′. Given that β(t−i | ti) = 1 for all i, and given that (26) holds,

Ui(σ̄, ti, f) = viQF (vI\I′ , vI′)− PFi(vI\I′ , vI′) .

The construction of σ̄ and (26) imply that

Ui(σ
′, ti, f) = viQF (vI\I′ , v

′
I′)− PFi(vI\I′ , v′I′)
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Hence, i) implies that Ui(σ
′, ti) ≥ Ui(σ∗, ti), for all i ∈ I ′ and all ti so that σ′i(ti) 6= σ∗(ti); with

a strict inequality for at least one type of at least one i ∈ I ′.
Step 2. It remains to be shown that σ̄ is an interim Nash equilibrium on the given type

space.

(a) We show that, for every i ∈ I ′, there is no message ri ∈ Ri that yields a higher payoff

than behaving according to σ′i(ti). Suppose otherwise, then there is i and ri ∈ Ri so that∫
R−i

u(f(r−i, ri), τ(ti)) dσ̄−i(r−i | t−i) > Ui(σ̄, ti, f) = viQF (vI\I′ , v
′
I′)− PFi(vI\I′ , v′I′) .(34)

Property ii) in Lemma 3 and inequality (34) imply∫
R−i

u(f(r−i, ri), τ(ti)) dσ
′
−i(r−i | t−i) > viQF (vI\I′ , v

′
I′−i, vi)− PFi(vI\I′ , v′I′−i, vi) . (35)

Now consider a type space so that it is commonly known among individuals that the type

profile equals t′ where t′i = ti and τ(t′) = (vI\I′ , v
′
I′−i, vi). Note that σ̄−i(t−i) = σ∗−i(t

′
−i), so that

inequality (35) can be rewritten as∫
R−i

u(f(r−i, ri), τ(ti)) dσ
∗
−i(r−i | t′−i) > viQF (vI\I′ , v

′
I′−i, vi)− PFi(vI\I′ , v′I′−i, vi) . (36)

Given that (26) holds the right-hand side of (36) equals∫
R−i

u(f(r−i,m
∗∗
i ), τ(ti)) dσ

∗
−i(r−i | t′−i)

for some m∗∗i ∈ M
+
i (σ∗i , ti). Hence, inequality (36) implies that there exists ri ∈ Ri and m∗∗i ∈

M+
i (σ∗i , ti) so that∫

R−i

u(f(r−i, ri), τ(ti)) dσ
∗
−i(r−i | t′−i) >

∫
R−i

u(f(r−i,m
∗∗
i ), τ(ti)) dσ

∗
−i(r−i | t′−i) .

But this implies that σ∗ is not an interim Nash equilibrium on a type space where it is com-

monly known among individuals that the type profile equals t′. Hence, a contradiction to the

assumption that σ∗ is an interim Nash equilibrium on every type space.

(b) We now show that for every i ∈ I \ I ′, there is no message ri ∈ Ri that yields a higher

payoff than behaving according to σ∗i (ti). Otherwise, there is ri ∈ Ri and so that∫
R−i

u(f(r−i, ri), τ(ti)) dσ̄−i(r−i | t−i) > Ui(σ̄, ti, f) ,

where Ui(σ̄, ti, f) = viQF (vI\I′ , v
′
I′−i, vi)− PFi(vI\I′ , v′I′−i, vi) Hence,∫

R−i

u(f(r−i, ri), τ(ti)) dσ̄−i(r−i | t−i) > viQF (vI\I′ , v
′
I′−i, vi)− PFi(vI\I′ , v′I′−i, vi) ,

which is equivalent to inequality (35) above. We can now use the same arguments as in (a) to

arrive at a contradiction to the assumption that σ∗ is an interim Nash equilibrium on every type

space.
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Proof of Proposition 8

We say that a social choice function is neutral if it has the following two properties:

a) For any pair of individuals i and j, any v−i−j , and any pair vi and v′i: QF (v−i−j , vi, 0) =

QF (v−i−j , v
′
i, 0) = 0 and PFi(v−i−j , vi, 0) = PFi(v−i−j , v

′
i, 0) imply that PFj(v−i−j , vi, 0) =

PFj(v−i−j , v
′
i, 0).

b) For any pair of individuals i and j, any v−i−j , and any pair vi and v′i: QF (v−i−j , vi, v̄) =

QF (v−i−j , v
′
i, v̄) = 1 and PFi(v−i−j , vi, v̄) = PFi(v−i−j , v

′
i, v̄) imply that PFj(v−i−j , vi, v̄) =

PFj(v−i−j , v
′
i, v̄).

Neutrality requires that a change in individual i’s payoff type, which is inconsequential both

for the decision on public-goods provision and for i’s payments, does not affect the payment of

individual j if (a) j has the minimal valuation of the public good and the public good is not

provided, or (b) j has the maximal valuation of the public good and the public good is provided.

Lemma 4 If a symmetric social choice function is robust and coalition-proof, then it is neutral.

Proof We only prove that a symmetric, robust and coalition-proof satisfies property a) in the

definition of neutrality above. The proof of part b) is analogous.

Suppose that condition a) in the definition of neutrality is violated, i.e., suppose that there are

individuals i and j, any v−i−j , and a pair vi and v′i so thatQF (v−i−j , vi, 0) = QF (v−i−j , v
′
i, 0) = 0,

PFi(v−i−j , vi, 0) = PFi(v−i−j , v
′
i, 0), but PFj(v−i−j , vi, 0) 6= PFj(v−i−j , v

′
i, 0). We show that this

implies that coalition-proofness fails.

Suppose the true payoff type profile equals (v−i−j , vi, 0). Consider a deviation from truth-

telling by individuals i and j, and suppose they report instead (v′i, 0). By dominant strategy

incentive compatibility, individual j, who still reports truthfully, is giving a best response.

Individual i’s deviation neither affects the decision on public-goods provision, nor his pay-

ment. Hence, the deviation yields the same payoff as truthtelling, and therefore is a best

response. Since individual i′s payoff is unaffected he is willing to participate in the deviation.

Coalition-proofness, therefore requires that individual j is not made strictly better off by the

deviation, which requires that PFj(v−i−j , vi, 0) ≥ PFj(v−i−j , v
′
i, 0). Since we hypothesized that

PFj(v−i−j , vi, 0) 6= PFj(v−i−j , v
′
i, 0), it must be the case that PFj(v−i−j , vi, 0) > PFj(v−i−j , v

′
i, 0).

Then, if the true payoff type profile equals (v−i−j , v
′
i, 0), a deviation by i and j to (vi, 0) is such

that both are giving a best response, individual i is willing to participate and j is made strictly

better off. Hence, a contradiction to coalition-proofness.

Lemma 5 Let F by symmetric, robust and coalition-proof. Then it has the following properties:

i) For every pair of individuals i and j, and for every v with QF (v) = 0,

QF (v−i−j , 0, 0) = 0 and PFi(v−i−j , 0, 0) = PFi(v−i−j , vi, vj) . (37)
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ii) For every pair of individuals i and j, and 1 for every v with QF (v) = 1,

QF (v−i−j , v̄, v̄) = 1 and PFi(v−i−j , v̄, v̄) = PFi(v−i−j , vi, vj). (38)

iii) For every pair of individuals i and j, and for every v, PFi(v−i−j , vi, vj) = PFj(v−i−j , vi, vj).

Proof We only proof part i). The proof of part ii) is analogous. Exploiting symmetry part iii)

follows immediately from i) and ii).

Let F by symmetric, robust and coalition-proof. Fix some v so that QF (v) = 0 and suppose

that two individuals I ′ = {i, j} jointly announce (0, 0) instead of (vi, vj).

Step 1. We first verify that this deviation satisfies property ii) in Lemma 3, i.e., both

deviators are individually giving a best response: by (28) we have that for all k, and all v−k,

that v′k < vk implies that QF (v−k, v
′
k) ≤ QF (v−k, vk). Hence, we have that

QF (v−i−j , vi, 0) = QF (v−i−j , 0, vj) = QF (v−i−j , 0, 0) = 0 . (39)

Equations (28) and (29) then imply that

PFi(v−i−j , 0, 0) = PFi(v−i−j , vi, 0) and PFj(v−i−j , 0, 0) = PFj(v−i−j , 0, vj) . (40)

Consequently,

viQF (v−i−j , 0, 0)− PFi(v−i−j , 0, 0) = viQF (v−i−j , vi, 0)− PFi(v−i−j , vi, 0)

and

vjQF (v−i−j , 0, 0)− PFj(v−i−j , 0, 0) = vjQF (v−i−j , 0, vj)− PFi(v−i−j , 0, vj) .

Hence, property ii) in Lemma 3 holds.

Step 2. Coalition-proofness therefore requires that either at least one individual does not

benefit from this deviation,

PFi(v−i−j , 0, 0) > PFi(v−i−j , vi, vj) or PFj(v−i−j , 0, 0) > PFj(v−i−j , vi, vj) , (41)

or, that both individuals are indifferent, which requires that

PFi(v−i−j , 0, 0) = PFi(v−i−j , vi, vj) and PFj(v−i−j , 0, 0) = PFj(v−i−j , vi, vj) . (42)

We show in the following that (41) implies a contradiction to coalition-proofness, so that (42)

has to be true. This will complete the proof, since by symmetry we have that PFi(v−i−j , 0, 0) =

PFj(v−i−j , 0, 0) =: Pij(v−i−j , 0, 0), so that (42) implies in particular that PFi(v−i−j , vi, vj) =

PFj(v−i−j , vi, vj).

The proof that (41) cannot be true proceeds by contradiction. Hence, suppose that these

inequalities hold true. This gives rise to the following possibilities:

Case 1: Pij(v−i−j , vi, vj) > PFi(v−i−j , 0, 0) and Pij(v−i−j , 0, 0) > PFj(v−i−j , vi, vj). Then,
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if the profile of payoff types equals (v−i−j , 0, 0), a deviation so that i and j jointly announce

(vi, vj) instead of (0, 0) makes both of them better off, and, by (40), is such that both are giving

a best response. Hence, a contradiction to the assumption that F is coalition-proof.

Case 2: PFj(v−i−j , vi, vj) > Pij(v−i−j , 0, 0) > PFi(v−i−j , vi, vj). It follows from equations

(28) and (29) and from the symmetry of F that

PFj(v−i−j , vi, vj) = PFj(v−i−j , vi, 0)

and

PFi(v−i−j , vi, vj) = PFi(v−i−j , 0, vj) = PFj(v−i−j , vj , 0) .

Hence, condition PFj(v−i−j , vi, vj) > Pij(v−i−j , 0, 0) > PFi(v−i−j , vi, vj) can be equivalently

written as

PFj(v−i−j , vi, 0) > PFi(v−i−j , 0, 0) > PFj(v−i−j , vj , 0) . (43)

This is a contradiction to neutrality provided that

QF (v−i−j , vi, 0) = QF (v−i−j , vj , 0) and PFi(v−i−j , vi, 0) = PFi(v−i−j , vj , 0) . (44)

To see that (44) holds, note that (39) and symmetry imply thatQF (v−i−j , vi, 0) = QF (v−i−j , vj , 0).

Given that this is true, it follows from (28) and (29), that PFi(v−i−j , vi, 0) = PFi(v−i−j , vj , 0).

Case 3: PFi(v−i−j , vi, vj) > Pij(v−i−j , 0, 0) > PFj(v−i−j , vi, vj). A similar reasoning as in

Case 2 can be used to arrive at a contradiction.

Corollary 5 If a symmetric social choice function is robust and coalition-proof, then there exist

numbers P 0
F and P 1

F so that, for all v, and all i,

PFi(v) =

{
P 0
F if QF (v) = 0 ,

P 1
F if QF (v) = 1 .

(45)

Proof We only show that there is a number P 0 so that, for all i, PFi(v) = P 0, whenever

QF (v) = 0. It follows from Lemma 5 that, for all v, all individuals pay the same, i.e., PFi(v) =

PFj(v) := P̄ (v), for any pair (i, j). From part i) it follows that, starting from an arbitrary v,

with QF (v) = 0, if we successively replace valuations vi, that are possibly different from 0, by

0, the decision on provision and the payment P̄ remain unaffected. Hence, if v is such that

QF (v) = QF (0, . . . , 0) = 0, then also P̄ (v) = P̄ (0, . . . , 0).
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