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Abstract

By representing a system of budget shares as an approximate factor model we deter-
mine its rank, i.e. the number of common functional forms, or factors, spanning the
space of Engel curves. Once the common factors are estimated via approximate prin-
cipal components, we identify them by imposing statistical independence. Finally,
by means of parametric and non-parametric regressions we estimate the factors as
functions of total expenditure. Using data from the U.K. Consumption Expendi-
ture Survey from 1968 to 2006, we find evidence of three common functional forms
which correspond to decreasing, increasing and almost constant Engel curves. The
household consumption behavior is therefore driven by three factors respectively
related to necessities (e.g. food), luxuries (e.g. vehicles), and goods to which is al-
located the same percentage of total budget both in rich and in poor households (e.g.
housing).
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1 Introduction

We investigate the problem of estimating the rank of a system of Engel curves by using
factor analysis. Engel curves represent the dependence of different categories of expen-
ditures on total income, usually proxied by total expenditure (Banks et al., 1997). We
consider here Engel curves expressed in the budget share form as wj = ℎj(x), where wj

is the proportion of total expenditure x on the category of expenditure j. Following the
literature (see e.g. Lewbel, 1991), we assume that ℎj is the sum of different functional
forms: ℎj =

∑
r arjgr(x). The rank of a system of Engel curves is defined as the maxi-

mum dimension of the function space spanned by ℎj , i.e. the rank of the matrix formed by
the elements arj . The estimation of the rank of this system has concerned much literature
on empirical analysis of consumption (see Gorman, 1981; Lewbel, 1991; Kneip, 1994;
Donald, 1997; Banks et al., 1997, among others). It has indeed been shown that the rank
has several logical connections with the properties of consumer preferences, separability
and aggregation of demands (Lewbel, 1991). The most remarkable result is the proof in
Gorman (1981) that if consumers are utility maximizer agents, then the rank of the de-
mand system has to be three at maximum. However, the reverse does not hold: if the rank
of demand system is three, this does not necessarily mean that the underlying preferences
have a particular structure or that consumption behaviors match up with those postulated
by the model of rational choice (cfr. Aversi et al., 1999)

We formalize the system of Engel curves as a factor model and show that finding
the maximum rank amounts to estimating the maximum number of common factors as
suggested in Bai and Ng (2002). We apply the model to U.K. Family Expenditure Survey
annual data from 1968 to 2006. Factor models are usually applied to panels of time
series under the assumption of large cross-section and time dimension (see e.g. Stock
and Watson, 1989; Forni et al., 2000; Bai and Ng, 2002, among others). In this paper the
cross-section dimension is made of a large number of budget shares relative to 13 different
goods pooled over few years, while the time dimension is substituted by 100, income
determined, representative households (the database is built exactly as in Kneip, 1994).
Exploiting this large panel we are able to identify the number of factors by eschewing any
assumption of cross-sectional uncorrelation among idiosyncratic shocks. The method
employs the criterion for determining the number of factors proposed by Bai and Ng
(2002) and recently refined by Alessi et al. (2010).

In the majority of the panels considered we find evidence of a maximum of three
common factors. The variance explained by the common factors constantly decreased
in time since the early 1970s. Once the factors are estimated via approximate principal
components (see Bai and Ng, 2002), we exploit their non-Gaussianity to achieve identifi-
cation by imposing statistical independence (see Hyvärinen et al., 2001, for a review on
the possible algorithms used for estimation). Finally, by means of different regressions
of the identified factors on total expenditure, we find the common functional forms of the
system of budget shares Engel curves. This last step is accomplished both in a parametric
way (choosing the same regressors as Lewbel, 1991) and non-parametrically (using ker-
nel regressions). The household consumption behavior turns out to be driven by at most
three different functions of total expenditure corresponding to the standard classification
of goods: i) a decreasing function capturing consumption necessities (e.g. food), ii) an
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increasing function related to luxuries (e.g. vehicles), and iii) an almost constant function
corresponding to the expenditure for goods to which is allocated the same percentage of
total budget both in rich and in poor households (e.g. housing).

In section 2 we show the economic implications of different values of the rank of a
system of Engel curves. In section 3 we represent the system as an approximate factor
model, we explain the approximate principal components estimation method, the related
test for the number of common factors, and identification via independent component
analysis. In section 4 we describe the data used and the way we built the dataset used. In
section 5 we show results on the number of factors and their interpretation as non-linear
functions of total expenditure. In section 6 we conclude.

2 Theoretical framework

In this paper we study the properties of a system of Engel curves of the form:

wjℎ =
R∑

r=1

ajrgr(xℎ), j = 1, . . . , J, ℎ = 1, . . . , H (1)

where wjℎ is the budget share of household ℎ spent on good j , xℎ is total consumption
expenditure, and we assume R ≤ J . Or in vector notation:

wℎ = A g(xℎ), ℎ = 1, . . . , H, (2)

where wℎ, A, and g(xℎ) have dimensions J × 1, J × R, and R × 1 respectively. Since
R ≤ J , R is the rank of the matrix A and determines the maximum dimension of the
function space spanned by Engel curves. Gorman (1981) and Lewbel (1991) prove that
the knowledge of R provides important implications about the functional form, separa-
bility, and aggregability of consumer preferences. In particular, Lewbel (1991) shows
that:1

(i) if R = 1, and the adding-up condition holds, then budget shares are constant across
income. Indeed, the adding up conditions requires that

∑J
j=1wj = 1, J being

the total number of goods in which the budget is subdivided. Thus, we have that∑J
j=1 a1jg1(xℎ) = 1. Hence, g1(xℎ) = (

∑J
j=1 a1j)

−1 which is a constant. There-
fore, since each budget share is wjℎ = a1jg1(xℎ), this implies that actually wjℎ does
not depend on xℎ;

(ii) if R = 2, then the underlying demand functions are generalized linear. The so-
called AIDS, trans-log, linear expenditure, PIGL, and PIGLOG models are all rank-
two models;

1We have to notice that although Lewbel (1991) considers the model using the logarithms of total ex-
penditure, while we specify it using total expenditure as explanatory variable, the economic implications
of the model conclusions do not change. Indeed, by assuming that gr can be non-linear functions of total
expenditure we implicitly allow for the log dependence.
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(iii) if the system of equations (1) is an exactly aggregable class of demand, that is the
aggregate (across households) demand depend only on the means of the individual
demands qℎ, then utility maximization constrains the maximum number of R to
three (Gorman, 1981).

Concerning the last case, Aversi et al. (1999) simulate micro-founded models of con-
sumption expenditure which indirectly support Gorman’s rank-three assumption, inde-
pendently of the level of aggregation over goods. This, however, happens despite the fact
that the simulated individual behaviors are designed by the author to be at odds with those
postulated by the standard utility-based model of rational choice. Therefore, we can con-
clude that R ≤ 3 is a necessary but not sufficient condition for having utility-maximizer
consumers.

3 Econometric setup

3.1 An approximate factor model for budget shares

Following Lewbel (1991), we consider equation (1) with a noise term added:

wjℎ =
R∑

r=1

ajrgr(xℎ) + ejℎ, j = 1, . . . , J, ℎ = 1, . . . , H, (3)

This is a factor model with R factors which are common to the J budget shares, where
we assume R < J . We call the first term on the right hand side the common component
and the second the idiosyncratic component, which by assumption has zero mean. An
exact factor model would require that idiosyncratic components are uncorrelated across
goods, i.e. for any household ℎ we would need E[eiℎejℎ] = 0 for any i ∕= j. This is an
unreasonable restriction. Indeed, the whole budget must sum to one, i.e.

∑J
j=1wjℎ =

1, for every household ℎ, which implies non zero correlation across goods both in the
common and in the idiosyncratic component. However, if J is large, we can allow for
mildly correlated idiosyncratic terms. A large cross-section of budget shares allows us
to choose a different modeling and estimation strategy with respect to Lewbel (1991).
Namely, we can represent budget shares with an approximate factor structure as in Bai
and Ng (2002).

For every household ℎ, (3) can be written using vector notation as

wℎ = Afℎ + eℎ, ℎ = 1, . . . , H, (4)

where wℎ is a J-dimensional zero-mean vector, A is the J × R loadings matrix, and fℎ
is an R-dimensional vector of latent factors (independent of j) and driving the common
component of each of the J budget shares wjℎ. Finally, eℎ is a zero mean J-dimensional
vector of possibly mildly correlated idiosyncratic noises.
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We recall the main Assumptions of the model by Bai and Ng (2002):2

1. Factors:

(a) E[fiℎ] = 0, for any i = 1, . . . , R and any ℎ = 1, . . . , H ,

(b) limH→∞
1
H

∑H
ℎ=1 fℎf

′
ℎ = Σf , for some positive definite and diagonal R × R

matrix Σf ,

(c) E[∣∣fℎ∣∣4] <∞;

2. Loadings:

(a) ∣ajr∣ ≤ ā <∞, for any j = 1, . . . , J and r = 1, . . . , R,

(b) limJ→∞ ∣∣A′A/J −D∣∣ = 0, for some positive definite R×R matrix D;

3. Idiosyncratic components:

(a) E[ejℎ] = 0, for any j = 1, . . . , J and any ℎ = 1, . . . , H ,

(b) define Σe = E[eℎe
′
ℎ] then there exists M > 0 s.t.

∑J
k=1 ∣(Σe)jk∣ ≤ M for

any j = 1, . . . , J .

Assumption 1 implies the existence of the covariance matrix of the factors which we also
assume to be uncorrelated. Assumption 2 is necessary for identification of the loadings
and implies that, when J goes to infinity, A′A = O(J). Assumption 3 defines an approx-
imate factor model by allowing for some correlation across goods in the idiosyncratic
components, this is equivalent to require boundedness of the largest eigenvalue of Σe as
J goes to infinity (see Chamberlain and Rothschild, 1983).

The rank of the considered system of budget shares, holding prices fixed, is therefore
the smallest integer R such that (4) holds and where the R factors, common across goods,
are non-linear functions of total expenditure xℎ, i.e. fℎ = [g1(xℎ) . . . gR(xℎ)]′. While
Lewbel (1991) proposes a test based on LDU decomposition to determine R even in
presence of small cross sections, both Kneip (1994) and Donald (1997) propose non-
parametric estimation methods of both R and the functions gr. We instead adopt here the
approach by Bai and Ng (2002) who propose an estimation method based on approximate
principal component analysis (PCA). This approach provides a consistent estimate of
R and of the space spanned by the factors for both H and J going to infinity, without
the need for non-parametric estimation of the gr functions. Once the rank R of wℎ is
determined, the non-parametric functions evaluated at xℎ are consistently estimated as
the principal components, i.e. as the factors (see section 3.2). If R > 1, the functions are
determined only up to an orthogonal transformation. We provide below an identification
strategy based on statistical independence of the factors (see section 3.3). Finally, the
functions gr may be recovered from the identified factors via non-linear regression or
non-parametric estimation.

2We define the norm of a generic matrix B as ∣∣B∣∣ =
√

Tr(B′B).

5



     #1101 
 
 

  

 

 

 

 

 

 

 

3.2 Estimation of the factors

We follow Bai and Ng (2002) for the estimation of model (4) and of R. Let us collect all
the budget shares into a J × H matrix w = (w1 . . .wH), and the factors into a R × H
matrix F = (f1 . . . fH). First, let us assume that R and F are known, then the estimated
loadings must satisfy

Â = arg min
A

E[(w −AF)(w −AF)′], (5)

which is equivalent to minimizing the variance of the idiosyncratic component. In order
to solve the above minimization, we need to impose an additional identification condition
on the estimated loadings. Consistently with Assumption 2, we require Â′Â/J = IR,
where IR is the R-dimensional identity matrix. In this case the columns of Â are given by√
J-times the eigenvectors corresponding to the R largest eigenvalues of the covariance

matrix of w. Equivalently, we can look for maximum variance weighted averages of data,
the weights being such that

Â = arg max
A

E[(A′w)(A′w)′] (6)

with the same identification condition as before, i.e. Â′Â/J = IR. The first order con-
ditions derived from (5) and (6) are identical and therefore have the same solution for Â.
Geometrically, we are just looking in a J-dimensional space for the R mutually orthogo-
nal directions along which the variance of the observed data is maximum. Such directions
are given by the normalized eigenvectors corresponding to the R largest eigenvalues of
the covariance matrix of observed data.

From classical PCA, we know that ifH is large the covariance matrix of w is estimated
consistently as 1

H

∑H
ℎ=1 wℎw

′

ℎ, and therefore also its eigenvectors (i.e. the loadings) are
estimated consistently. If J is large too, then also the factors can be consistently estimated
as the R largest principal components: F̂ = Â′w/J (see Theorem 1 in Bai and Ng, 2002,
for a proof).

To understand why in approximate factor models we can rule out the idiosyncratic
components as J goes to infinity, we show that, in this case, all the relevant information
contained in the data is summarized by the factors, which are nothing else but a weighted
average of the data. Since by Assumptions 1 and 3, both the factors and the idiosyncratic
components have zero mean, the covariance of Â′w/J is estimated as

1

J2
Â′

(
1

H

H∑
ℎ=1

wℎw
′
ℎ

)
Â =

1

J2
Â′Â

(
1

H

H∑
ℎ=1

fℎf
′

ℎ

)
Â′Â +

1

J2
Â′

(
1

H

H∑
ℎ=1

eℎe
′
ℎ

)
Â.

By defining Σw = E[wℎw
′
ℎ] and given Assumptions 1 and 3, as H goes to infinity the

previous expression converges in probability to

1

J2
A′ΣwA =

1

J2
A′AΣFA′A +

1

J2
A′ΣeA ≤ 1

J2
A′AΣFA′A +

1

J2
MA′A,

where the inequality and M are due to Assumption 3. Finally, from Assumption 2 we
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know that A′A = O(J), therefore as J goes to infinity, the contribute of the common
component to the total variance of A′w/J is O(1), while the contribute of the idiosyn-
cratic component becomes negligible being O(J−1). This means that all the relevant
information contained in w can be recovered by estimating the first R factors as weighted
averages of w with weights given by the estimated eigenvectors Â divided by the cross-
sectional dimension J .

3.3 Estimation of the number of factors

Following Bai and Ng (2002), we can use the above estimation method to estimate the
number of factors R. This can be done by estimating the factors and their loadings for
different values k of the number of factors and by computing each time the average vari-
ance of the idiosyncratic component which is given in (5), call it V (k, Âk, F̂k), where Âk

and F̂k are estimates of loadings and factors when assuming the existence of k common
factors. The true number of factors is the value of k that minimizes this function, conve-
niently penalized with a penalty function p(k, J,H) that depends both on J and on H . In
this paper we look for minima of the ICs criteria proposed by Bai and Ng (2002), i.e.

R̂ = argmin
1≤k≤kmax

log V (k, Âk, F̂k) + p(k, J,H) (7)

where

p(k, J,H) = k

(
J +H

JH

)
log

(
JH

J +H

)
or (8)

p(k, J,H) = k

(
J +H

JH

)
log
(

min
{√

J,
√
H
})2

.

Provided that we have a consistent estimate of the factors and their loadings, Bai and Ng
(2002) prove consistency of R̂ as J and H tend to infinity.

In the following sections we also apply a refinement of the information criteria by Bai
and Ng (2002), proposed by Alessi et al. (2010) and the criterion by Onatski (2010) which
is instead based on the asymptotic distribution of the eigenvalues of the sample covariance
matrix.

3.4 Identification of the factors

Factor models have an indeterminacy which they cannot solve: both the estimated loading
matrix Â and factors F̂ are asymptotically consistent estimates of the true ones only up to
an orthogonal transformation. We have, therefore, an identification problem which makes
difficult the economic interpretation of the estimated factors. In order to identify the
model we use independent component analysis (ICA) which is based on the imposition
of two further assumptions on the R latent factors:

7
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4. the components of the factor vector fiℎ are mutually independent, i.e. the joint
cumulative distribution of the factors is given by

ℱ(fℎ) =
R∏
i=1

Fi(fiℎ), ℎ = 1 . . . , H,

where Fi is the marginal cumulative distribution of the i-th factor;

5. the marginal distributions Fi are not Gaussian, for all i = 1, . . . , R with the excep-
tion of at most one.

Assumption 4 can be justified on the basis of the fact that the latent factors represent the
common functional forms of a system of Engel curves. These forms, in turn, have char-
acteristics which reflect fundamental aspects of human behaviors that drive consumption
decisions. Consumption decisions can be seen as driven by basic needs and acquired
wants. Therefore, assuming that latent factors are independent amounts to claim that the
set of needs and wants associated with each factor is of fundamental different nature, i.e.
generates an independent pattern, from the set of needs and wants associated with the
other factors. For example, if a factor reflects a pattern associated with necessities and
another factor reflects a pattern associated with luxuries, these two factors can be seen as
statistical independent, because necessities mainly reflect physiological needs, while lux-
uries reflect culturally acquired wants such as social recognition and status. The drivers
underlying consumption decisions about necessities and luxuries react in an independent
way to changes in income: for example, physiological needs tend rapidly to satiate, as
income gives the possibility to satisfy these needs, whereas acquired wants such as social
recognition and status may be even increasingly reinforced, as income increases.

Assumption 5 can be justified by testing for normality in the data and also by noticing
that often data on consumption expenditures are non-Gaussian (see e.g. Fagiolo et al.,
2010) and, moreover, being budget shares defined on the unit interval, they must have a
distribution with bounded support (e.g. a beta distribution) hence not a Gaussian distri-
bution. A consequence of Assumption 5 is that also the joint distribution of the factors is
not Gaussian.

ICA can been seen as an extension or a strengthening of PCA (see Comon, 1994;
Hyvärinen et al., 2001; Bonhomme and Robin, 2009). Indeed, while PCA gives a trans-
formation of the original space such that the computed latent factors are linearly un-
correlated, ICA goes further by attempting to minimize all statistical dependencies be-
tween the resulting components. One can show that if there exists a representation with
non-Gaussian, statistically independent components then the representation is essentially
unique (up to a permutation, a sign, and a scaling factor) (Comon, 1994). There exist
a number of computationally efficient algorithms for consistent estimation (Hyvärinen
et al., 2001).

The most popular ICA algorithms are: Joint Approximate Diagonalization of Eigen-
matrices (JADE Cardoso and Souloumiac, 1993), Fast Fixed-Point Algorithm (Hyvärinen
and Oja, 2000, FastICA). Both methods are based on two steps: i) a whitening step
achieved by PCA, in which the data are transformed so that the covariance matrix is
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diagonal and has reduced rank, i.e. we get rid of the idiosyncratic component; ii) a source
separation step in which the orthogonal transformation necessary for achieving identifi-
cation is determined.

When data usually tend to exhibit fat-tailed distributions and poor serial correlation
(in our framework we have no correlation across households), JADE and FastICA, which
are based on non-Gaussianity of the data, hence on higher order moments, are the most
used algorithms. 3 We consider here only JADE, the results obtained with FastICA being
similar.

Once estimation of the common component is accomplished via approximate PCA,
we are left with a first estimate of the factors f̂ℎ for any household ℎ. JADE looks for
an orthogonal J × R matrix Û such that the identified factors f̃ℎ = Û′f̂ℎ are maximally
non-Gaussian distributed. A set of random vectors is mutually independent if all the cross-
cumulants (i.e. the coefficients of the Taylor series expansion of the characteristic func-
tion) of order higher than two are equal to zero. In particular, Cardoso and Souloumiac
(1993) prove that the factors f̃ℎ are maximally independent if their associated fourth-order
cumulant tensor which is a R×R matrix is maximally diagonal. Roughly speaking, if we
call Q̂ the estimated fourth-order cumulant tensor of f̂ℎ then Û must be such that Û′Q̂Û
is diagonal.4 JADE is a very efficient algorithm in low dimensional problems as the one
treated here (we have few factors), while a higher computational cost is required when the
dimension increases.

Once we apply ICA the estimated and identified factors, f̃ℎ, are identified up to a
permutation, a sign, and a scaling factor. The order of the factor is irrelevant for our
purposes so it is left undetermined. Given that independent components are nothing else
but weighted averages of the data, the sign is chosen to be consistent with the average
of budget shares across goods. Finally, the scale is determined in such a way that the
estimated factors have unit variance.

4 Data

The data set on which we estimate our model is built using data from the U.K. family
expenditure survey (FES) 1968-2001 jointly with the expenditure and food survey (EFS)
2002-2006. We have data about household expenditures on various categories of goods
and services. Each year approximately 7000 households were randomly selected, and
each of them recorded expenditures for two weeks. We are able to recover information
about total expenditures and expenditures on fourteen aggregated categories: (1) housing
(net); (2) fuel, light, and power; (3) food; (4) alcoholic drinks; (5) tobacco; (6) clothing

3Another algorithm is Second-Order Blind Identification (SOBI Belouchrani et al., 1997), which, al-
though usually applied in time-series analysis, could be extended to cross-sectional data with correlations
among observations. However, this is not the case for us, as we assume no correlations across households.

4While the cumulant depends on four indexes the cumulant tensor depends on two indexes, the other
two being canceled by means of an additional arbitrary matrix. We thus have to consider several cumulant
matrices which have to be jointly diagonalized. We omit here the details, while giving just a general idea of
the algorithm.
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and footwear; (7) household goods; (8) household services; (9) personal goods and ser-
vices; (10) motoring, fares and other travel; (11) leisure goods; (13) leisure services; and
(14) miscellaneous and other goods. The fourteen categories add up to total expenditure.
In order not to have to impose the adding-up condition on budget shares, we omit from our
analysis the last category of expenditure and we restrict therefore to thirteen categories.5

We build the dataset used in the next sections as follows (see also Kneip, 1994, for a
similar procedure). In order to have samples of households which are demographically
homogeneous, we only consider families which have a number of members between two
and three. Families of this type are approximately 3000 each year. We pool together
budget shares over different years (we choose windows of 3, 5, and 10 years) in order to
deal with a number of categories J big enough to estimate the model. Pooling together
10 years, for example, we are able to get J = 13× 10 = 130. To be able to pool together
data over different years, we need to build normalized total expenditure. For each year
considered, we divide data on total expenditure by the mean across households. Let Xit

be the normalized total expenditure of household i in year t, then Wgit = Xgit/Xit de-
notes the resulting budget share of household i, in year t, when the expenditure for good
g = 1, . . . 13 is Xgit. Starting from the original data, (Xit,Wgit), we want to obtain a
new set of pooled data (xℎ, wjℎ) for every j ranging over the 13 categories multiplied by
the number of years under consideration, and ℎ ranging over representative households
as defined below. The pooling of budget shares consists in three steps. First, we specify
a domain Xit ∈ [0.25, 1.75]. Since the value 1 for Xit corresponds to the average total
expenditure in the year t, we exclude data for very rich and very poor households, which,
being quite sparse, are not very reliable. Second, we specify a grid of equidistant val-
ues of total expenditure which do not depend on the chosen household nor on the year:
0.25 = �0 < �1 < �2 < . . . < �H = 1.75, with H = 100. Third, given a window
T = 3, 5, 10 years, and for every j = 1, . . . , 13 ⋅ T , we define a new set of data points
(xℎ, wjℎ). The new budget sharewjℎ denotes the average across households ofWgit, when
considering only data for good g in years t = 1, . . . T , and for households i such that the
corresponding total expenditureXit is such thatXit ∈ [(�k−1+�k)/2, (�k+�k+1)/2]. The
normalized total expenditure for the representative household ℎ is then xℎ = �ℎ. Finally,
since x1, . . . , x100 are equidistant and normalized (scale free) values, in what follows for
graphical convenience we let x1 = 1, x2 = 2, . . . , x100 = 100.

In table 1 we report the average (across households) budget shares for all 13 the con-
sidered goods and for the three 10-years windows considered. The majority of the budget
is spent for food and housing. However, while the share of budget allocated to food has
decreased since the early 1980s from 24% to 19%, the share allocated to housing has
remained constant at an average level of 16%. A slight decrease is found also for fuel,
light, and power budget shares from 7% to 4%. A smaller fraction of budget is allocated
to all other goods and remained constant in time at values less than 10%. Two exceptions

5From 1987 to 2006 the survey contains a macro-code for each of the 13 categories. From 1968 to
1986 the FES contains macro-codes only for the first 6 categories (from housing to clothing and footwear),
plus other macro-categories which are not consistent with the other 7 categories listed above (household
goods, household services, personal goods and services, motoring, fares and other travel, leisure goods,
and leisure services). We thus constructed, for the years 1968-1986, these 7 macro-categories aggregating
micro-categories (disaggregate expenditures) in order that they resulted consistent with the way they are
formed in the years 1987-2006.
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are represented by motoring budget shares that increased from 9% to 14% and leisure
services that increased from 4% to 11%, a sign of an increased level of welfare in English
population.

In table 2, we consider the same averages but for more homogeneous classes of
normalized total expenditure xℎ (as a proxy for income): poor (xℎ ≤ 30), medium
(30 < xℎ ≤ 70), and rich (xℎ > 70) households. While the same time patterns high-
lighted above remain true for all classes, we find differences among households with
different income level. In each 10-years window considered poor households allocate
more budget than rich to necessities as food (25% against 14% in the last window) and
fuel, light, and power (6% against 2% in the last window, and up to 11% against 5% in
the first window): this is the well known Engel’s law. Also poor households allocate less
budget than rich to motoring (10% against 17% in the last window) and leisure services
(9% against 14% in the last window). Finally, irrespectively of their income households
allocate between 15% and 17% of their budget to housing and between 4% and 5% to
alcoholic drinks.

Already from this descriptive analysis we can classify goods according to their budget
shares into three broad classes: necessities (budget shares decreasing with total expendi-
ture), luxuries (budget shares increasing with total expenditure), and goods for which the
budget share is constant with respect to total expenditure.

5 Results

5.1 Number of factors

Table 3 displays the estimates of the number of factors for different time windows. We
consider time windows of 3, 5, and 10 years length. Due to the asymptotic properties of
the criteria employed we cannot consider the results concerning the 3 years windows reli-
able enough, since in this case J = 39, which is definitely too small. Results concerning
5 and 10 years windows (J = 65 and J = 130) are more reliable and indeed are more
homogeneous. We find in this case between 3 and 2 common factors. We thus carry on
the identification analysis that follows by considering the maximum number of factors
allowed by the criteria employed, i.e. R = 3.

In the last 3 columns of table 3 we show the proportion of variance explained by
each factor. The first factor explains, for all the time windows considered, always more
than 50% of total variance, being clearly the most important. Its contribution to the total
variance of budget shares, however, decreases with time. This is probably due to the fact
that in the last thirty or forty years families of the same income class have increasingly
differentiated their consumption habits, so that idiosyncratic components have played a
relatively bigger role. This may in turn be due to a wider range of products available
joint with an increase in families total resources. Moreover, as the first factor will be
interpreted as related to necessities (see section 5.2), a decrease in the explained variance
of the first factor can also be seen as a sign of an increased level of welfare, as mentioned
above.
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Factor models are identified under a specific condition on diverging eigenvalues of the
covariance matrix of the data (see Assumption 3). This is precisely the Assumption tested
by the Bai and Ng (2002) criterion which shows evidence of an additional one or even two
less important, but still common, factors explaining a much lower proportion of variance,
in fact lower than 10%. We must stress the fact that not recognizing the existence of such
factors would imply the existence of common features in the idiosyncratic components.
Indeed, in order to be truly common the factors do not have to be necessarily large (a
relative concept) in terms of explained variance, but they have to be pervasive, a well
defined feature that can be measured by studying the asymptotic behaviour of eigenvalues.
This is exactly what the employed criteria do.

5.2 Interpretation of the factors

In this section we present results only for the last window considered, i.e. from 1997 to
2006.6 The identification of the factors is based on the independent component analysis,
as explained in section 3.4. This method can be applied only if the underlying independent
components, and, consequently, the estimated (non-identified) factors are non-Gaussian.
Figure 1 shows the quantiles of estimated factors vs. Gaussian quantiles: a non-linear
relation clearly appears. This suggests that the factors do not follow a Gaussian distribu-
tion. We also test directly for Gaussianity. The Shapiro-Wilk test rejects the hypothesis of
Gaussianity at the 0.05 level of significance in each case. The resulting p-values are: 6.9
10−6, 2.6 10−9, 1.5 10−3 for the three factors estimated via PCA and 8.4 10−9, 2.3 10−5,
1.6 10−11 for the identified factors.7

Once estimation and identification of the factors are completed, we obtain the model:

wjℎ =
3∑

r=1

ajrf̃rℎ =
3∑

r=1

ajrgr(xℎ), j = 1, . . . , J ℎ = 1, . . . , H, (9)

where gr are three non-linear functions of total expenditure xℎ, which are still unknown.

In order to estimate gr we regress the estimated factor f̃rℎ on total expenditure, for
each r = 1, 2, 3:

f̃rℎ = gr(xℎ) + "rℎ, ℎ = 1, . . . H. (10)

Figure 2 displays the three factors f̃rℎ as functions of total expenditure together with their
estimated non-parametric fits ĝr(xℎ), obtained by means of the Nadaraya-Watson kernel
regression. The first function ĝ1(xℎ) decreases for small values of total expenditure and
then remains stable. This pattern is very similar to the pattern of food and fuel budget
shares, as evidenced from figure 3 (a-b). Table 4 displays the estimates Pearson correla-
tion coefficients between the three factors and budget shares.8 As expected, we find that
the first factor is highly correlated with food and fuel budget shares (correlation coefficient
0.84 and 0.80 respectively). This again suggests that the first factor captures consumption

6Results for the other windows considered are available upon request.
7The Shapiro-Francia test produces analogous results.
8Spearman and Kendall rank correlation coefficients produce analogue results.
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patterns typically associated with the Engel’s law: as income (proxied by total expendi-
ture) rises, budget shares decrease, the falling down of budget share being more dramatic
for low levels of income.

The second function, ĝ2(xℎ), as shown in figure 2 (b), apart from the very first portion
of total expenditure, is increasing with total expenditure. It is associated with categories
of expenditure that are more likely to include luxuries as clothing and footwear, motoring,
and leisure services. Indeed, from figure 3 (c-d) we see that the second factor displays a
pattern similar to leisure service and motoring budget shares. These are also the budget
shares with which the second factor is mostly correlated (see table 4).

Finally, the third function, ĝ3(xℎ), is slightly increasing in the first quarter of total
expenditure and then slightly decreasing, remaining on average approximately constant.
This pattern is similar to the one displayed by housing (see figure 3 e), which is the budget
share with which the third factor is most correlated (see table 4). The third factor tends
to reflect patterns of intermediate categories, that is goods that have quite stable budget
shares over total expenditure.

In order to compare our results with the literature (Lewbel, 1991; Banks et al., 1997),
we also investigate which functional form of total expenditure better fits each identified
factor. We estimate the following functions of total expenditure xℎ: xℎ, x2ℎ, x−1ℎ , x−2ℎ ,
log xℎ, (log xℎ)2, xℎ log xℎ. These are are the functional forms also considered by Lewbel
(1991, p. 719) and Donald (1997, pp. 122-123). As displayed in table 5, the first factor
obtains the best fit, in terms of R2, with the simple logarithmic form: � + � log x. This
is the functional form incorporated in the Working-Leser model. The second and third
factors (see tables 6 and 7) obtain the best relative fit, in terms of R2, with the quadratic
form � + �x2. Notice, however, that, as regards the third factor, R2 are quite small for
all the functional forms (many of which result to be non-significant), so that a constant
relation constitutes a good approximation. This is also confirmed from the analysis of
the third factor when excluding the highest 20% of high income family. The quadratic fit
becomes a constant.

In sum the parametric specification of the system of Engel curves which is most con-
sistent with our findings is:

wjℎ = aj + bj log xℎ + cjx
2
ℎ + ejℎ, j = 1, . . . , J, ℎ = 1, . . . , H. (11)

This is consistent with Lewbel (1997), who proposed:

wjℎ = aj + bj log xℎ + cj�(xℎ) + ejℎ, j = 1, . . . , J, ℎ = 1, . . . , H, (12)

for some non-linear function �. Banks et al. (1997), using 1980-1982 U.K. FES data,
found that Engel curves have indeed the form of equation (12), with �(xℎ) = (log xℎ)2.
In this latter respect, our results slightly differ from previous findings, since our last term
is quadratic in xℎ.

A final way to interpret the factors is based on the estimation of the average derivative
of gr(xℎ), whose sign is strictly connected to whether a category of expenditure should be
classified as luxury or necessity. Total expenditure elasticity has a direct connection with
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the double log model, since for any good j:

logwjℎ = �jℎ + (�j − 1) log xℎ, j = 1, . . . , J, ℎ = 1, . . . , H, (13)

where �j is the the total expenditure elasticity of good j (see Deaton and Muellbauer,
1980, p. 17). Hence, if a factor f̃rℎ is supposed to represent a necessity, we should expect
that the average derivative of the factor with respect to log xℎ is less than one (and greater
than one if it represents a luxury). After rescaling the factor in such a way that f̃rℎ > 0,
we estimate the average (over households) derivative ∂f̃rℎ

∂xℎ
, since it has the same sign as

∂ log f̃rℎ
∂ log xℎ

, being in this case both f̃rℎ and xℎ greater than zero.

We estimate average derivatives in a non-parametric manner, using the method pro-
posed by Härdle and Stoker (1989), which being based on kernel density estimates does
not presuppose any functional form of the factors. Table 8 displays the estimated average
derivatives together with results from the Wald test for zero derivative. The null hypothe-
sis is rejected at a 5% level of significance for the first and second factors. The signs and
the significance of the derivatives confirm that the first factor captures necessities, the sec-
ond factor captures luxuries, while the third factor captures goods with income elasticity
close to unit, i.e. zero derivative.

6 Conclusions

In this paper, we propose a method to determine the rank of a system of Engel curves for
different categories of expenditures expressed in budget shares form. The rank of such
a system determines the maximum number of functions of total expenditure that drive
consumers’ behavior. The method we propose is based on approximate factor models and
independent component analysis. We frame the problem of finding the rank as the prob-
lem of determining the number of latent common factors that explain variations of the
system of budget shares. Herein, we identify the maximum number of common factors
by means of the criteria proposed by Bai and Ng (2002). The factors can be estimated via
approximate principal components and then identified by independent component analy-
sis.

We apply this method to U.K. Family Expenditure Survey annual data. In order to ap-
ply factor analysis, we build a large dimension panel of data, in which the budget shares
(relative to 13 categories of expenditures) of 100 representative households are pooled
over different years. The way this data set is built is based on the method to pool and nor-
malize expenditures over years proposed by Kneip (1994). This large dimensional dataset
permits us to eschew any assumption of uncorrelation among idiosyncratic shocks. The
departure from normal distribution that budget shares display and a hypothesis about the
nature of the fundamental drivers of consumption decisions permit us to apply indepen-
dent component analysis to achieve identification.

Once the common latent factors are identified, we study their properties by different
parametric and non-parametric regressions. We also estimate their average derivative
by applying the method proposed by Härdle and Stoker (1989). Results show that the
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system of Engel curves should be specified as the sum of a logarithmic, quadratic, and
constant term, in a form which is consistent with the model suggested by Lewbel (1997).
Moreover, the three common factors reflect consumption behaviors which are typical of
necessities, luxuries, and unity elasticity goods.
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Tables and figures

Table 1: Average budget shares over all household income classes.

Good window
1977-1986 1987-1996 1997-2006

Housing 0.17 0.16 0.16
Fuel, light, power 0.07 0.06 0.04
Food 0.24 0.21 0.19
Alcoholic drinks 0.05 0.05 0.04
Tobacco 0.04 0.03 0.02
Clothing and footwear 0.07 0.06 0.05
Household goods 0.06 0.08 0.08
Household services 0.03 0.05 0.05
Personal goods and services 0.03 0.04 0.04
Motoring 0.09 0.12 0.14
Fares and other travel 0.02 0.02 0.02
Leisure goods 0.04 0.05 0.05
Leisure services 0.04 0.08 0.11
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Table 3: Determining the number of factors and their explained variance.

window IC1 IC2 ABC O Avg. Explained Variance
Factor 1 Factor 2 Factor 3

1968 - 1970 3 2 2 1 2.00 0.74 0.04 0.03
1971 - 1973 3 3 1 1 2.00 0.73 0.04 0.03
1974 - 1976 6 3 2 2 3.25 0.69 0.08 0.03
1977 - 1979 12 7 1 1 5.25 0.70 0.05 0.04
1980 - 1982 5 4 1 1 2.75 0.70 0.04 0.04
1983 - 1985 10 5 1 1 4.25 0.74 0.05 0.04
1986 - 1988 12 2 1 2 4.25 0.62 0.09 0.03
1989 - 1991 15 7 1 1 6.00 0.62 0.06 0.05
1992 - 1994 15 8 1 1 6.25 0.59 0.06 0.05
1995 - 1997 8 6 1 1 4.00 0.60 0.05 0.04
1998 - 2000 13 5 2 1 5.25 0.58 0.06 0.05
2001 - 2003 13 7 1 1 5.50 0.60 0.05 0.04
2004 - 2006 13 13 2 1 7.25 0.53 0.07 0.06
1972 - 1976 3 3 3 3 3.00 0.70 0.05 0.03
1977 - 1981 6 2 1 1 2.50 0.69 0.03 0.03
1982 - 1986 4 4 1 2 2.75 0.71 0.05 0.03
1987 - 1991 9 4 3 2 4.50 0.62 0.06 0.04
1992 - 1996 6 2 3 1 3.00 0.59 0.04 0.04
1997 - 2001 5 4 2 1 3.00 0.58 0.04 0.04
2002 - 2006 8 6 1 1 4.00 0.55 0.05 0.04
1977 - 1986 5 2 2 2 2.75 0.70 0.03 0.02
1987 - 1996 7 2 2 2 3.25 0.60 0.04 0.03
1997 - 2006 3 2 4 2 2.75 0.56 0.04 0.03

IC1 and IC2: Bai and Ng (2002) criteria. ABC: Alessi et al. (2010) criterion. O: Onatski
(2010) criterion. Avg.: average computed over the four criteria. Explained variance: vari-
ance explained by each factor computed with respect to total variance.
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Table 4: Correlations between factors and budget shares: 1997-2006.

Good Average Correlation
Factor 1 Factor 2 Factor 3

Housing -0.12 -0.41 0.27
Fuel, light, power 0.84 -0.43 0.14
Food 0.80 -0.50 0.20
Alcoholic drinks -0.31 -0.01 0.08
Tobacco 0.65 -0.39 0.14
Clothing and footwear -0.29 0.31 -0.07
Household goods -0.21 0.23 -0.16
Household services 0.10 0.02 -0.01
Personal goods and services -0.16 0.15 -0.08
Motoring -0.66 0.42 -0.11
Fares and other travel -0.04 0.22 -0.08
Leisure goods -0.10 0.10 -0.11
Leisure services -0.46 0.41 -0.25

Averages are computed over the 10 years period 1997-2006.
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Table 5: Parametric fits for the first factor: 1997-2006.

Functional form � � adj.R2

Factor 1 non-parametric 0.86

�+ �xℎ coeff *** *** 0.42
t-stat 7.35 -8.47

�+ �x2ℎ coeff *** *** 0.22
t-stat 4.05 -5.42

�+ �x−1ℎ coeff *** *** 0.51
t-stat -4.16 10.25

�+ �x−2ℎ coeff ∘ *** 0.22
t-stat -0.87 5.51

�+ � log(xℎ) coeff *** *** 0.74
t-stat 16.37 -16.78

�+ �(log(xℎ))
2 coeff *** *** 0.63

t-stat 12.24 -14.40

�+ �x(log(xℎ)) coeff *** *** 0.36
t-stat 6.25 -7.51

Regressions of the factors on functions of total expenditure
xℎ for ℎ = 1, . . . ,H . Symbols report whether coefficients
are significant at the *** 0.01, ** 0.05, * 0.1 level
(∘ = no significance at any level < 0.01)
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Table 6: Parametric fits for the second factor: 1997-2006.

Functional form � � adj.R2

Factor 2 non-parametric 0.57

�+ �xℎ signif *** *** 0.44
t-stat -7.64 8.80

�+ �x2ℎ signif *** *** 0.50
t-stat -7.52 10.06

�+ �x−1ℎ signif ∘ ∘ 0.00
t-stat 0.31 -0.75

�+ �x−2ℎ signif ∘ ∘ 0.00
t-stat -0.05 0.29

�+ � log(xℎ) signif *** *** 0.20
t-stat -4.76 4.91

�+ �(log(xℎ))
2 signif *** *** 0.30

t-stat -6.14 7.08

�+ �x(log(xℎ)) signif *** *** 0.46
t-stat -7.73 9.30

Regressions of the factors on functions of total expenditure
xℎ for ℎ = 1, . . . ,H . Symbols report whether coefficients
are significant at the *** 0.01, ** 0.05, * 0.1 level
(∘ = no significance at any level < 0.01)
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Table 7: Parametric fits for the third factor: 1997-2006.

Functional form � � adj.R2

Factor 3 non-parametric 0.23

�+ �xℎ signif *** *** 0.09
t-stat 2.83 -3.26

�+ �x2ℎ signif *** *** 0.14
t-stat 3.09 -4.14

�+ �x−1ℎ signif ∘ ∘ 0.00
t-stat 0.12 -0.30

�+ �x−2ℎ signif ∘ ∘ 0.00
t-stat 0.08 -0.48

�+ � log(xℎ) signif ∘ ∘ 0.01
t-stat 1.39 -1.43

�+ �(log(xℎ))
2 signif ** ** 0.04

t-stat 2.02 -2.23

�+ �x(log(xℎ)) signif *** *** 0.10
t-stat 2.93 -3.53

Regressions of the factors on functions of total expenditure
xℎ for ℎ = 1, . . . ,H . Symbols report whether coefficients
are significant at the *** 0.01, ** 0.05, * 0.1 level
(∘ = no significance at any level < 0.01)
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Table 8: Average derivatives: 1997-2006.

Factor 1 -0.3159*
standard error 0.1450
Wald statistic 4.7430

Factor 2 0.2830**
standard error 0.0966
Wald statistic 8.5802

Factor 3 -0.0783
standard error 0.1082
Wald statistic 0.5229

Average derivative obtained with the
Härdle-Stoker (1989) method. Standard
errors are obtained via bootstrap procedure.
Wald Test with H0 : average derivative = 0.
Significance at the * 0.05, ** 0.01 level.
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Figure 1: Q-Q plots of the three estimated factors for the window 1997-2006.

(a) First factor

(b) Second factor

(c) Third factor
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Figure 2: Estimated non-parametric fits: 1997-2006.

(a) First factor

(b) Second factor

(c) Third factor

Non-parametric estimates (Nadaraya-Watson regressions) of the functions of total expenditure
(solid line): gr(xℎ), and 95% confidence intervals (dashed lines). Points denote the values taken
by the factors. Notice that by construction factors have mean zero.
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Figure 3: Interpreting the factors: 1997-2006.

(a) First factor and food BS (b) First factor and fuel, light, power BS

(c) Second factor and leisure services BS (d) Second factor and motoring BS

(e) Third factor and housing BS (f) Third factor and alcoholic drinks BS

Scatter plots of budget shares wjℎ of selected goods (squares) and estimated non-parametric func-
tions of total expenditure gr(xℎ) (solid lines), as obtained from Nadaraya-Watson regressions of
the estimated factors on xℎ. Notice that by construction the non-parametric fits have mean zero,
hence wjℎ are rescaled accordingly.
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Figure 4: Estimated parametric fits: 1997-2006.
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(a) First factor - fit
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(b) Second factor - fit
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(c) Third factor - fit
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(d) Third factor - fit without rich households

Parametric estimates (non-linear regressions) of the functions of total expenditure (solid line): (a)
g1(xℎ) = � + � log(xℎ), (b) g2(xℎ) = � + �(xℎ)

2, (c) g3(xℎ) = � + �(xℎ)
2, (d) g3(xℎ) =

�+�(xℎ)
2 without 20% richest households xℎ = 1, . . . 80, and 95% confidence intervals (dashed

lines). Notice that by construction the factors and the non-linear fits have mean zero.
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