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Farsighted Stable Sets in Hotelling’s Location Games

Junnosuke Shino∗

Abstract

We apply farsighted stable set to two versions of Hotelling’s location games: one

with linear market and another with circular market. It is shown that there always

exists a farsighted stable set in both games. In particular, the set of all location

profiles that yields equal payoff across all players is shown to be a farsighted stable

set. This stable set contains location profiles that reflect minimum differentiation

as well as those profiles that reflect local monopoly. These results are in contrast

to those obtained by equilibrium analysis. While the stable set uniquely exists

when the number of players is 2, the uniqueness is not guaranteed when n ≥ 3.

In particular, we exhibit multiple stable sets in three person location games. We

provide possible interpretations of these farsighted stable sets from the viewpoint

of players’ bargaining power and coalition formation.

(Journal of Economic Literature Classification Number: C71, C72, L13)

Keywords: Farsighted stable set, Indirect dominance, Hotelling location game,

Strategic form game with no-Nash equilibrium, Coalition formation

1 Introduction

Location model is one of the classical topics in the theory of product differentiation.

To describe “whether sellers will tend to concentrate at one point or to disperse

over the area” (Chamberlin (1933)) as an equilibrium is a fundamental question in

this theory. In Hotelling’s (1929) duopoly model with linear market, two firms are

located at the centre of the market (Minimum Differentiation, hereafter MD) in the
∗Department of Economics, Rutgers, The State University of New Jersey, NJ, USA. E-mail:

jshino@econ.rutgers.edu
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unique equilibrium, rather than differentiating their location point (Local Monopoly,

hereafter LM ). On the other hand, Eaton and R.G. Lipsey(1975) showed that when

the number of firms is more than 2, or when the shape of the market is circle, MD

does not necessarily arise in an equilibrium.

Furthermore, in the process of revealing these properties of equilibrium in spatial

competition, another fundamental question emerged: As Eaton’s paper noted, when

the market is linear and the number of firms is three, there exists no pure strategy

equilibrium. The existence of pure strategy equilibrium is recovered in a three person

location game where after firms’ location decisions, consumers has opportunity to

relocate (see M. Fujita and J.F. Thisse (1986)). The location game is the special

case of games with discontinuous payoff, for which did P. Dasgupta and E. Maskin

(1986) show the existence of mixed strategy equilibrium.

In this paper, we employ stable set as a solution concept to analyze these issues

in the location games. Specifically, we examine the farsighted stable set, due to

Chwe (1994). Stable set was originally proposed by von Neumann and Morgenstern

(1953) as a solution to cooperative games. The stable set is a set of outcomes

satisfying internal stability and external stability. Internal stability requires that

no outcome in the set dominates another. External stability requires that any

outcomes outside the set must be dominated by an outcome in the set. In contrast

to equilibrium concept, a deviation from an outcome in a stable set is deterred

because such deviation induce further deviations, returning to an another outcome

in the set by external stability. Internal stability ensures that a final outcome is not

preferable for the deviation.

The farsighted stable set is also defined as a set of outcomes satisfying internal

and external stabilities. The idea is that given an outcome as a status quo, “far-

sighted”players take individual or coalitional moves from it, which in turn may lead

to further deviation by another coalition, and so on. Thus, it takes into account

a domination of one outcome over an another via chain of such coalitional moves

rather than myopic views in the original stable set concept 1 (See Chwe(1994) and

Greenberg(1990)).

In this paper, we consider two versions of location game: one with linear market

and another with circular market, and we will see that farsighted stable set gives

new points of view to the issues discussed above. First, as for the existence of a

1For a recent application of farsighted stable set to strategic form games, see Suzuki and Muto (2005).
Properties of farsighted stable sets in cooperative game context are investigated in Beal et al. (2008).
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solution, it is shown that there always exists a farsighted stable set in both games,

no matter what the number of player is. In particular, the set of all location profiles

that yields equal payoff across all players is shown to be a farsighted stable set.

Therefore, as for the possibility of description of MD or LM , this stable set contains

location profiles that reflect minimum differentiation as well as those profiles that

reflect local monopoly. These results are in contrast to those obtained in analyses

mentioned above. While the stable set uniquely exists when the number of players is

2, the uniqueness is not guaranteed when n ≥ 3. In particular, we exhibit multiple

stable sets in three person location games. We provide possible interpretations of

these farsighted stable sets from the viewpoint of players’ bargaining power and

coalition formation.

The organization of the rest of this paper is as follows. In Section 2, we give

formal definition of farsighted stable set and brief comments on its interpretation.

In Section 3, we describe two versions of location games as strategic form games.

Main results are derived in Section 4. Some concluding remarks are made in Section

5.

2 Farsighted Stable Set

In this section, we give formal definition of farsighted stable set in strategic form

games and brief comments on its interpretation.

Let G = (N, {Zi}i∈N , {ui}i∈N ) be a strategic form game where N = {1, 2, ..., n}
is the set of players, Zi is the set of strategies of player i, and ui is the player i’s

utility function where ui : Z = ×i∈NZi −→ R. We call z = (z1, ..., zn) ∈ Z an

outcome. When
∑

i∈N ui(z) = c for all z ∈ Z and for some c ∈ R, we call that G is

constant-sum.

A subset of players S ⊆ N is called a coalition. For any two outcomes v =

(v1, v2, ..., vn) ∈ Z and w = (w1, w2, ..., wn) ∈ Z, we say w is induced from v via

coalition S ⊆ N , or, S deviates from v to w, denoted v −→S w, if vi = wi for all

i ∈ N\S . v −→S w means that coalition S can move from v to w by itself.

For any two outcomes v and w, we say w indirectly dominates v, denoted v ≪ w,

if there exists a sequence of outcomes (w0, w1, ..., wK) with v = w0 and w = wK ,

and there exists a sequence of coalitions (S0, S1, ..., SK−1) such that for all k ∈
{0, 1, ..., K − 1}, wk −→Sk

wk+1 and ui(wk) < ui(wK) for all i ∈ Sk.

The situation behind the definition of indirect dominance is that any coalitions
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can be formed without binding contracts. For example, any members in the coalition

Sk can enter another coalition Sk+1, which induces further deviation. Moreover, it

should be noted that players are assumed to be farsighted in the definition of indirect

dominance. All members in Sk compare current outcome wk with not immediate

outcome wk+1 but with possible final outcome wK . Therefore, it is likely that Sk

moves from wk to wk+1, which may not be prefered to wk, anticipating this deviation

induces further deviations.

When K = 1, we call w directly dominates v. Direct dominance relation between

two outcomes was originally proposed by von Neunmann and Morgenstern(1953)

in cooperative game context. Greenberg(1990) also introduced notion of direct

dominance into noncooperative games. After that, however, direct dominance is

criticized for representing only myopic players, and Harsanyi(1974) and Chwe(1994)

proposed indirect dominance relation so as to be consistent with a farsighted player’s

behavior. As for more detailed discussion, see these articles.

Farsighted stable set is a solution concept based on the indirect dominance. A

set of outcomes V ⊆ Z is a farsighted stable set if (1)for all v, w ∈ V , neither v ≪ w

nor w ≪ v, and (2)for all v ∈ Z\V , there exists w ∈ V such that v ≪ w. Conditions

(1) and (2) are called internal stability and external stability, respectively.

A farsighted stable set can be interpreted as a set of outcomes which are sup-

ported by a “stable standard of behavior”. Now suppose that players engage in open

bargaining with moves and counter moves, given an outcome x ∈ Z as a status quo.

If we assume that players behave consistent with indirect dominance, it is natural

to think that the set of all possible outcomes is P (x) = {x} ∪ {y ∈ Z|x ≪ z}.
Furthermore, if players have common understanding about which outcomes are not

excluded as a consequence of the open bargaining, we can define a mapping ϕ(·)
that assigns a subset of P (x) as a set of possible agreement points, to each status

quo x. In accordance with Greenberg(1990), we call ϕ a standard of behavior. In

principle, ϕ can be any arbitrary mapping, but now consider the following stability

condition on ϕ;

y ∈ ϕ(x) ⇐⇒ y ̸≺S w for all w ∈ ϕ(z) such that y −→S z2.

where y ̸≺S w means that there exists i ∈ S such that ui(y) ≥ ui(z). Then it

can be shown that a farsighted stable set V is identical to the set ∪x∈Zϕ(x) (See

2Note that ϕ does not necessarily uniquely exist.
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Xue(1998)), that is, a farsighted stable set can be interpreted as a set of outcomes

which are supported by a certain “stable standard of behavior 3 ”.

3 n-Person Location Games

In this section, we describe two versions of spatial competitions as a strategic form

game: one with linear market and another with circular market. We call each game

a linear location game and a circular location game, respectively.

In the linear location game, we assume that there is a “linear city,”which is

expressed as real number line [0, 1]. n firms produce identical physical good, and

each of them chooses its location point on the line. A firm’s production and location

accompany no cost. Consumers are uniformly distributed on the line, and each of

them always buys one unit of good from a firm which is nearest to her. A firm’s

utility is the share to the total market. Note that a firm’s utility level for a certain

location profile depends not only its own location point but also other ones. If

multiple firms locate at the same point, we assume that they equally divide their

share.

Denote linear location game by Gl. The set of players is N = {1, ..., n}, and

player i’s strategy set is Zi = [0, 1]. To describe i’s utility function formally, as

well as to make our analysis mathematically concise, we introduce some notations.

First, for a outcome z = (z1, ..., zn) ∈ Z, let k(z) be the number of distinct values

of (z1, ..., zn), and denote them, in an increasing order, L1(z), L2(z), ..., Lk(z)(z).

Denote a vector of location points by L(z) = (L1(z), L2(z), ..., Lk(z)(z)). Note that

L(z) has finite elements since k(z) ≤ n. Furthermore, for Lj(z) (j ∈ {1, ..., k(z)}),
we denote the number of players locating at Lj(z) by Fj(z), and define F (z) =

(F1(z), F2(z), ..., Fk(z)(z)). Finally, we denote the distance between zi and zj by

∥zi − zj∥ = |zi − zj | where | · | denote absolute value.

We give an example in Figure 1 (left). In this example, z = (3/5, 1/4, 0, 1/4),

k(z) = 3, L(z) = (0, 1/4, 3/5), F (z) = (1, 2, 1), and ∥z1 − z2∥ = 7/20, ∥z2 − z4∥ = 0,

and so forth. i’s utility is defined based on our assumption discussed above. For

instance, the sum of player 2 and 4’s share to the total market is 3/10. Since

they divide this equally, u2(z) = u4(z) = 3/20. We can also check easily that

3More precisely, this standard of behavior is defined as optimistic standard of behavior, which was
originally proposed in Chwe (1994). He also defined conservative standard of behavior and consistent set
which is a set of outcome associated with this standard of behavior.
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u1(z) = 23/40 and u3(z) = 1/8. Note that Gl is constant-sum.

player 3

0 11/4 3/5

player 2,4 player 1

0

player 3,4
1/8

5/8

�

7/8

player 2

player 1

Figure 1: Linear Location Game (Left) and Circular Location Game (Right)

Formally, we define player i’s utility function in Gl as follows;

(1)When k(z) = 1,

ui(z) = 1/n for all i ∈ N

(2)When k(z) = 2,

ui(z) =


1

F1(z)

(
L1(z) +

L2(z) − L1(z)
2

)
if zi = L1(z)

1
F2(z)

(
1 − L2(z) +

L2(z) − L1(z)
2

)
if zi = L2(z).

(3)When k(z) ≥ 3,

ui(z) =



1
F1(z)

(
L1(z) +

L2(z) − L1(z)
2

)
if zi = L1(z)

1
Fm(z)

(
Lm+1(z) − Lm−1(z)

2

)
if zi = Lm(z) (m ̸= 1, m ̸= k(z))

1
Fk(z)(z)

(
1 − Lk(z)(z) +

Lk(z)(z) − Lk(z)−1(z)
2

)
if zi = Lk(z)(z).

In the circular location game, the only difference is that we assume a “circular

city,”which is expressed as a circle with a perimeter 1, instead of a linear city.

Consumers are uniformly distributed on the perimeter, and each firm chooses its
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location point to maximize the share to the total market. We give a number 0 to

an arbitrary point on the perimeter.

Denote the circular location game by Gc. Note that in Gc, player i’s strategy

set is Zi = [0, 1). Furthermore, note that k(z), L(z), and F (z) can be defined in the

same fashion as those in Gl. We define ∥zi − zj∥ as a shorter length among two arcs

formed by zi an zj . An example is shown in Figure 1 (right). z = (7/8, 5/8, 1/8, 1/8),

k(z) = 3, L(z) = (1/8, 5/8, 7/8), F (z) = (2, 1, 1), and ∥z1 − z2∥ = 1/4, ∥z1 − z3∥ =

1/4, and so on. i’s utility is also defined in the same manner as Gl: u1(z) = 1/4,

u2(z) = 3/8, and u3(z) = u4(z) = 3/16. Again, note that Gc is constant-sum.

The formal expression of player i’s utility function in Gc can be expressed as

follows;

(1)When k(z) = 1,

ui(z) = 1/n for all i ∈ N

(2)When k(z) = 2,

ui(z) =
1

2Fm(z)
if zi = Lm(z) (m = 1, 2)

(3)When k(z) ≥ 3,

ui(z) =



1
F1(z)

(
1 − Lk(z)(z) + L2(z)

2

)
if zi = L1(z)

1
Fm(z)

(
Lm+1(z) − Lm−1(z)

2

)
if zi = Lm(z) (m ̸= 1, m ̸= k(z))

1
Fk(z)(z)

(
1 − Lk(z)−1(z) + L1(z)

2

)
if zi = Lk(z)(z).

4 Farsighted Stable Sets in Location Games

In this section, we derive farsighted stable sets in each location game, Gl and Gc.

Before doing so, however, it is useful to mention some properties of indirect domi-

nance relations and farsighted stable sets in general strategic form games.

Remark 4.1

In a strategic form game G, for all x, y, z ∈ Z, if y ≪ z, x →S y and ui(x) < ui(z)

for all i ∈ S, then x ≪ z.
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Remark 4.1 is straightforward from the definition of the indirect dominance.

Remark 4.2

Let G be a strategic form game and V and Ṽ be two different farsighted stable set.

Then neither Ṽ ( V nor V ( Ṽ can be true.

Proof.4 Suppose that Ṽ ( V and pick an outcome x such that x ∈ V and x ̸∈ Ṽ .

From the external stability of Ṽ , there exists x̃ ∈ Ṽ such that x ≪ x̃. However,

since x ∈ V and x̃ ∈ V , it contradicts the internal stability of V . Q.E.D.

Lemma 4.1

Let G be a two-person constant-sum strategic form game and V be a farsighted

stable set in G. Then

ui(x) ≥ max
zi∈Zi

inf
zj∈Zj

ui(z) for all x ∈ V and for all i ∈ N.

Proof. See Appendix.

Lemma 4.1 says that in any stable sets, every outcome in the set assigns every

player equal to or greater than their “maxinf ”value when the number of players is

2 and the game is constant. Note that minzj∈Zj ui(z) is not well-defined since ui(z)

is not continuous. Thus, we consider “maxinf ”value instead of “maxmin.”

4.1 Linear Location Game

Now we derive farsighted stable sets in the linear and circular location games defined

in the previous section. First, we examine farsighted stable sets in Gl.

Theorem 4.1

Let

Ve = {z ∈ Z|ui(z) = 1/n for all i ∈ N},

then Ve is a farsighted stable set in the linear location game Gl.

Proof. The internal stability of Ve is obviously satisfied from the property of Ve. To

check the external stability, pick x0 ̸∈ Ve. Note that k(x0) ≥ 2 (otherwise x0 ∈ Ve )

and we show this statement by using induction on k(x0).

4The proof is basically identical as seen in basic game theory textbooks. See M.Osbone and
A.Rubinstein(1994), for instance.
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First, we show the following;

for every x0 ̸∈ Ve with k(x0) = 2, there exists z ∈ Ve such that x0 ≪ z.

Since x0 ̸∈ Ve and the game is constant-sum, there exists a location point Lm(x0)

(m = 1 or 2) such that ui(x0) < 1/n for all i with x0
i = Lm(x0). Let S0 = {i ∈

N |x0
i = Lm(x0)} and consider z ∈ Z such that (i) zj = x0

j for all j ∈ N \S0 and (ii)

zi = zj for all i ∈ S0. Note that z ∈ Ve and the fact that x0 −→S0 z is possible and

ui(x0) < 1/n = ui(z) for every i ∈ S0 implies x0 ≪ z.

Next, suppose that the following statement is true;

for every x̃0 ̸∈ Ve with k(x̃0) = k̃, there exists z ∈ Ve such that x̃0 ≪ z, (1)

and we must show;

for every x0 ̸∈ Ve with k(x0) = k̃ + 1, there exists z ∈ Ve such that x0 ≪ z. (2)

Pick x0 ̸∈ Ve with k(x0) = k̃+1. Similarly to the previous case, x0 ̸∈ Ve guarantee

the existence of a location point Lm(x0) (m ∈ {1, ..., k̃ +1}) such that ui(x0) < 1/n

for all i with x0
i = Lm(x0). Let S0 = {i ∈ N |x0

i = Lm(x0)} and consider S0’s

deviation from x0 to x̂0 such that (i) x̂0
j = x0

j for all j ∈ N \ S0 and (ii) x̂0
i = x̂0

j for

all i ∈ S0. If x̂0 ∈ Ve, then ui(x0) < 1/n = ui(x̂0) thus x0 ≪ x̂0. Therefore, (2) is

true. If x̂0 ̸∈ Ve, then note that k(x̂0) = k̃ thus there exists z ∈ Ve satisfying x̂0 ≪ z

from (1). Now Remark 4.1 is applied and we conclude that x0 ≪ z. Q.E.D.

Theorem 4.1 says that a stable set Ve always exists in Gl whatever the number of

player is. Note that Ve contains all outcomes such that all players locate at a same

point, each of those reflects MD. Moreover, Ve also contains outcomes in which

every player locates at different point and each of them enjoys its monopoly power

in its own territory. Therefore, we can also see that certain outcomes in Ve describe

LM . Obviously, an outcome representing mixture of MD and LM is also in Ve.

Interestingly, the only required property for an outcome to be an element of Ve

is that the market share has to be divided equally among all players. One possible

interpretation behind this farsighted stable set is that all players’ bargaining powers

are well-balanced thus they agree with a completely equal allocation. In this sense,

Ve can be interpreted as a consequence of grand coalition formation. We will discuss
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this point further in the case of n = 3 after showing Remark 4.3.

Next, we examine some results about uniqueness.

First, we show that when the number of player is 2, Ve is the unique farsighted

stable set in Gl

Theorem 4.2

When n = 2, Ve in Theorem 4.1 is the unique farsighted stable set in Gl.

Proof. Consider Gl and suppose n = 2. Note that maxzi∈Zi infzj∈Zj ui(z) = 1/2

for all i ∈ {1, 2} since

inf
zj∈Zj

ui(zi, zj)

{
= 1

2 when zi = 1
2

< 1
2 when zi ̸= 1

2 .

Therefore, from Lemma 4.1 and since the game is constant-sum, if V is a stable set

in Gl, ui(x) = 1/2 for all x ∈ V and for all i ∈ {1, 2}. This means that if there

exists a stable set Ṽ with Ṽ ̸= Ve, it has to satisfy Ṽ ( Ve but it is impossible from

Remark 4.2. Q.E.D.

When n ≥ 3, the uniqueness of Ve is not guaranteed. Remark 4.3 shows that

when n = 3, multiple stable sets exist in Gl

Remark 4.3

For α such that
1
3

< α <
1
2
, let i, j, k ∈ N and

Vij(α) = {z ∈ Z| uk(z) = α, ui(z) = uj(z) =
1 − α

2
}

then Vij(α) is a farsighted stable set in Gl when n = 3.

Proof. In the following proof, we show V23(α) is a farsighted stable set. The

internal stability of V23(α) is obviously satisfied. Before checking V23(α)’s external

stability, note that:

For 1/3 < α < 1/2, let zL and zR;

zL = (zL
1 , zL

2 , zL
3 ) =

(
2α − 1

2
,

1
2
,

1
2

)
zR = (zR

1 , zR
2 , zR

3 ) =
(

3
2
− 2α,

1
2
,

1
2

)
,

then zL, zR ∈ V23(α). Note that 1/6 < zL
1 < 1/2 and 1/2 < zR

1 < 5/6.
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Now we check the external stability of V23(α). Pick x ̸∈ V23(α) and we will show

that there exists z ∈ V23(α) such that x ≪ z.

First, suppose k(x) = 1. (1)when x1 = x2 = x3 = 1/2, player 1 deviates from

x to z = zL or z = zR. Note that z ∈ V23(α). Since u1(z) = α > 1/3, x ≪ z.

(2)when x1 = x2 = x3 ̸= 1/2, w.l.o.g, suppose that x1 = x2 = x3 = 1/2 + d where

0 < d ≤ 1/2. Assume that player 1 deviates from x to y = (zL
1 , x2, x3), then coalition

{23} deviates from y to z = zL. Note that u2(y) = u3(y) = 1/2{(1/2−d)+1/2(d+

1/2 − 2α + 1/2)} = 1/2(1 − α) − (1/4)d < u2(z) = u3(z) and u1(x) = 1/3 < u1(z).

Therefore, from the definition of indirect dominance relation, we conclude x ≪ z.

Next, Suppose k(x) = 2. We divide this case into the following three cases: (A),

(B), and (C).

(A)Suppose x1 ̸= x2 = x3. (1)When u1(x) < α, consider player 1’s deviation

from x to y = (x2, x2, x3). Since k(y) = 1, there exists z ∈ V23(α) such that y ≪ z.

Furthermore, since u1(x) < α = u1(z), Remark 4.1 implies that x ≪ z. (2)Suppose

u1(x) > α. Since Gl is constant-sum, this is equivalent to u2(x) = u3(x) < (1−α)/2.

Assume that coalition {23} deviates from x to y = (x1, x1, x1). Again, since k(y) =

1, there exists z ∈ V23(α) such that y ≪ z and u2(x) = u3(x) < u2(z) = u3(z), thus

x ≪ z. (3)Note that we don’t need to consider the case u1(x) = α because such x

is in V23(α) from the assumption x1 ̸= x2 = x3.

(B)Suppose x2 ̸= x1 = x3. (1)when u2(x) < (1 − α)/2, consider player 2’s

deviation from x to y = (x1, x1, x3) where k(y) = 1. Same argument holds and it

follows that there exists z ∈ V23(α) such that x ≪ z. (2)Suppose u2(x) ≥ (1−α)/2,

which is equivalent to u1(x) = u3(x) ≤ (1 + α)/4. Note that (1 − α)/2 < (1 + α)/4

from the assumption on α. If u1(x) = u3(x) < (1−α)/2, then consider deviation of

the coalition {13} from x to y = (x2, x2, x2) and note that there exists z ∈ V23(α)

such that y ≪ z. Since u1(x) < (1 − α)/2 < α = u1(z) and u3(x) < (1 − α)/2 =

u3(z), it follows that x ≪ z. If (1 − α)/2 ≤ u1(x) = u3(x) ≤ (1 + α)/4, note that

this is equivalent to (1 − α)/2 ≤ u2(x) ≤ α. Now consider player 1’s deviation

from x to y = (x2, x2, x3) and the coalition {12}’s consecutive deviation from y to

w = (x3, x3, x3). Note that there exists z ∈ V23(α) such that w ≪ z. Now we need

to check whether the sequence of the outcomes (x, y, w, ..., z) satisfies the condition

on x ≪ z. First, u1(x) ≤ (1 + α)/4 < α = u1(z) since α > 1/3. Next, since L(x) =

L(y), u1(y) = u2(y) = u2(x)/2, which implies that (1−α)/4 ≤ u1(y) = u2(y) ≤ α/2.

Therefore, u1(y) ≤ α/2 < α = u1(z) and u2(y) ≤ α/2 < (1 − α)/2 = u2(z) since

α < 1/2. Thus, from Remark 4.1., we conclude that x ≪ z.
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(C)When x3 ̸= x1 = x2, the proof is identical to the case (B).

Finally, suppose that Suppose k(x) = 3. Since x ̸∈ V23(α) and Gl is constant-

sum, there exists i ∈ N such that ui(x) < ui(z̃) where z̃ ∈ V23(α). Take i’s deviation

from x to y satisfying k(y) = 2, and note that we can always take such deviation.

From the previous part, we know that there exists z ∈ V23(α) such that y ≪ z.

From Remark 4.1, x ≪ z. Q.E.D.

Now compare Ve in Theorem 4.1 with Vij(α) in Remark 4.3. First of all, note that

i’s “minsup ”value in Gl is 1/4 when n = 35. Minsup value is i’s payoff which can be

obtained against the other players’ worst joint actions for him, provided that i takes

a best action to it. Thus, minsup value can be regarded as i’s maximum payoff which

can be obtained by his own, when the “worst scenario ”for him happens. In Ve, every

player gets the market share strictly greater than its minsup payoff (1/4 < 1/3) and

completely equal allocations are attained. Therefore, one possible interpretation of

Ve is that players form grand coalition for the purpose to avoid realizing their “worst

scenario ”.

On the other hand, note that in Vij(α), 1/3 < uk(z) < 1/2, 1/4 < ui(z) < 1/3

and 1/4 < uj(z) < 1/3 for every z ∈ Vij(α). Therefore, in Vij(α), all players get

market shares strictly greater than their minsup value. This is a common property

we can observe both in Ve and Vij(α). However, at the same time, note that player

k succeeds to get the share strictly greater than that in Ve, while i and j’s share

is strictly smaller than those in Ve. One possible interpretation of Vij(α) is that

these uneven allocations reflect each player’s bargaining power. Namely, in Vij(α),

player k has “strong”power relative to i and j, while in Ve, each player’s power is

well-balanced. Coalition {ij} convinces player k to accept Vij(α) by giving strictly

greater payoff than what k would get in Ve, and both of the “weaker”players in the

coalition succeed to avoid falling into their minsup values.

5This can be checked as follows: (1)for any pairs (xj , xk) satisfying xj = xk, player i can get at least
nearly to 1/2 by locating close to xj = xk but in the longer halfline formed by xj = xk and the edge of
the market. Then w.l.o.g, suppose xj < xk. (2)when ∥xj − xk∥ > 1/2, i locates in the open set (xj , xk)
and gets strictly more than 1/4. (3)when ∥xj −xk∥ ≤ 1/2 and [xj > 1/4 or xk < 3/4], i gets at least 1/4
by locating close to xj (or xk) but in the halfline between 0 (or 1) and xj (or xk). (4)Finally, suppose
∥xj − xk∥ ≤ 1/2 and [xj ≤ 1/4 and xk ≥ 3/4]. In this case, the only possibility is (xj , xk) = (1/4, 3/4).
For this pair, i’s best response is locating in the closed set [1/4, 3/4] and gets 1/4.

12



4.2 Circular Location Game

Next, we examine farsighted stable sets in Gc.

Theorem 4.3

Let

Ve = {z ∈ Z|ui(z) = 1/n for all i ∈ N},

then Ve is a farsighted stable set in the circular location game Gc.

Proof. The proof is identical to the case of linear location game.

As stated in Theorem 4.1, Theorem 4.3 also shows that Ve always exists in Gc,

and Ve includes outcomes representing both MD and LM . It should be noted that

the characteristics of Ve does not depend on the shapes of the markets, which is

contrast to results obtained by equilibrium analysis (See Eaton and Lipsey (1975)).

Obviously, we can adopt same interpretation of Ve as discussed after Theorem 4.1

in terms of grand coalition formation.

Then, we show that when the number of player is 2, Ve is the unique farsighted

stable set in Gc.

Theorem 4.4

When n = 2, Ve in Theorem 4.3 is the unique farsighted stable set in Gc.

Proof. Consider Gc and suppose n = 2. Note that, in this case, Ve = Z. Since Ve

is a farsighted stable set from Theorem 4.3, Remark 4.2 directly implies that Ve is

the unique farsighted stable set. Q.E.D.

Similarly to Gl, the uniqueness of Ve is not guaranteed when n ≥ 3. We exhibit

multiple stable sets in the case of n = 3 in Remark 4.4.

Remark 4.4

For α such that 0 < α <
1
4
, let i, j, k ∈ N and

Vij(α) = {z ∈ Z| ui(z) =
1
4

+ α, uj(z) =
1
2
− α, uk(z) =

1
4
}

then Vij(α) is a farsighted stable set in Gc when n = 3.
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Proof. In the following proof, we show that V23(α) is a farsighted stable set. The

internal stability of V23(α) is obviously satisfied. Before checking V23(α)’s external

stability, for 0 < α < 1/4 and for (x1, x2, x3) ∈ Z, define a set Z̃(α, x1) such that

Z̃(α, x1) = {z̃ ∈ Z|z̃1 = x1, ∥z̃1 − z̃2∥ = 2α, ∥z̃2 − z̃3∥ = 1/2}.

Note that Z̃(α, x1) contains two elements and note that if z̃ ∈ Z̃(α, x1), then z̃ ∈
V23(α). Now we check the external stability of V23(α). Pick x ̸∈ V23(α) and we will

show that there exists z ∈ V23(α) such that x ≪ z.

First, pick x ̸∈ V23(α) such that k(x) = 1. Pick z̃ ∈ Z̃(α, x1) and note that from

the assumption on α, either u2(z̃) > 1/3 or u3(z̃) > 1/3 is satisfied. (1)Suppose

u2(z̃) > 1/3. Then take player 2’s deviation from x to y = (x1, z̃2, x3) and player 3’s

consecutive deviation from y to z = z̃. Now we need to check whether the sequence of

the outcomes (x, y, z) satisfies the condition on x ≪ z. First, u2(x) = 1/3 < u2(z).

Next, u3(y) = 1/4 < 1/2 − α = u3(z) since 0 < α < 1/4. Therefore, x ≪ z holds.

(2)Suppose u3(z̃) > 1/3. In this case, the sequence of deviations x −→{3} y −→{2} z

such that y = (x1, x2, z̃3) and z = z̃ satisfies the condition on x ≪ z.

Next, suppose k(x) = 2. We divide this case into the following three cases: (A),

(B), and (C).

(A)Suppose x1 ̸= x2 = x3. Consider a deviation of the coalition {23} from x to

z where z ∈ Z̃(α, x1). Since u2(x) = 1/4 < 1/4 + α = u2(z) and u3(x) = 1/4 <

1/2 − α = u3(z), x ≪ z.

(B)Suppose x2 ̸= x1 = x3. Take player 3’s deviation from x to y = (x1, x2, x2)

and coalition {23}’s further deviation from y to z where z ∈ Z̃(α, x1). Since u3(x) =

1/4 < u3(z), u2(y) = 1/4 < u2(z), and u3(y) = 1/4 < u3(z), we conclude x ≪ z.

(C)When x3 ̸= x1 = x2, take the sequence of deviations x −→{2} y −→{23} z

such that y = (x1, x3, x3) and z ∈ Z̃(α, x1). Then as discussed in (B), x ≪ z holds.

Finally, suppose that Suppose k(x) = 3. Since x ̸∈ V23(α) and Gc is constant-

sum, there exists i ∈ N such that ui(x) < ui(ẑ) where ẑ ∈ V23(α). Take i’s deviation

from x to y where k(y) = 2, and note that we can always take such deviation. From

the previous part, we know that there exists z ∈ V23(α) such that y ≪ z. Thus

from Remark 4.1, x ≪ z. Q.E.D.
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Now compare Ve in Theorem 4.3 with Vij(α) in Remark 4.4. First, in Gc, minsup

value is 1/4 when n = 3 6, which is identical to that in Gl. Therefore, Ve gives every

player the market share strictly greater than its minsup payoff, and completely equal

allocations are attained. Thus, we can interpret Ve as a result of grand coalition

formation, as discussed in linear market case.

On the other hand, note that in Vij(α), 1/4 < ui(·) < 1/2 and 1/4 < uj(·) < 1/2.

The common property of Vij(α)s in Gl and Gc is that every player gets more than

his minsup value. One interesting point uniquely lies in Gc comes from the fact

that at least one of ui(·) and uj(·) is always strictly greater than 1/3. Keep this

in mind, we can interpret Vij(α) in Gc as follows. Player i possessing relatively

“strong”bargaining power proposes to form coalition {ij} to player j, guaranteeing

to give j strictly greater share than j’s minsup value. Which α is realized depends

on relative strength of j’s bargaining power over i. For example, when j’s power is

not so much weaker than that of i, i and j are likely to reach an agreement that

both of them get share more than 1/3 (1/12 < α < 1/6 would be realized). On

the other hand, if j’s bargaining power over i is weak, it seems to be natural to

predict that j would be forced to agree with a share greater than minsup value but

less than 1/3 (α > 1/6), which would have been attained if their power were well

balanced.

Recall that when considering Vij(α) in Gl, i and j form coalition and both of

them are assumed to have “weaker”bargaining power. In Gc, contrastingly, we can

interpret that at least one of the members of the coalition can be assumed to have

“strong”bargaining power in Vij(α).

5 Concluding Remarks

In this paper we studied farsighted stable sets in location games when firms act

with farsightedness. We showed that there always exists a farsighted stable set,

which depicts both of two seemingly contrast phenomena; MD and LM . These

phenomena were integrated under the same cause; completely equal allocations

between all players. Then we showed that the stable set exists uniquely when

6Check i’s minsup value. First, if xj = xk i’s best response is to locate any points different from
xj = xk and get 1/2. Next, if ∥xj − xk∥ = 1/2, i gets 1/4 no matter which point he chooses. Finally, if
xj ̸= xk and ∥xj − xk∥ < 1/2, i can get the share strictly greater than 1/4 by locating in the wider arc
of the two formed by xj and xk. Thus note that in this case, “minmax ”value is well defined, instead of
“minsup”one. But here we use the term “minsup ”to keep consistency of our usage of the term.
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n = 2, while other stable sets exist when n = 3. In the case of n = 3, we also

provided a possible interpretation that all of these farsighted stable sets can be seen

as a consequence of players’ coalition formation.

We conclude this paper by pointing out several questions for further research.

First, our approach in this paper reminds us of another notion of farsighted stability

proposed by Chwe (1994), which is called consistent set. As discussed in his paper,

consistent set can be regarded as representation of players’ conservative stable stan-

dard of behavior, while farsighted stable set can be considered as optimistic one. By

applying consistent set to location games, we might obtain some further insights.

Next, in this paper we did not find all farsighted stable sets in location games

in the case of n = 3. Moreover, when n > 3, we did not show any statements about

the uniqueness of Ve. Finding other stable sets in these cases could be an interesting

topic.

Finally, one interesting question is which and how a certain farsighted stable set

is realized corresponding each player’s bargaining power. For example, as discussed

in section 4, we showed that Ve and Vij(α) reflect players’ underling bargaining

powers in each case. Moreover, in a specific Vij(α), a realized α also depends on

their bargaining powers. To answer which α is realized, which coalition formation

are plausible for a certain stable set, and more generally, which stable standard of

behavior would be formed among all players, we need to formulate the dynamic

process of communication or bargaining with farsighted players.

Appendix

Proof of Lemma 4.1. Let G be a two person constant-sum strategic form game

and V a stable set in G. Assume that, in negation, there exists z̃ ∈ V and there

exists i ∈ N such that

ui(z̃) < max
zi∈Zi

inf
zj∈Zj

ui(z),

and we derive contradiction. Let z∗i be i’s “maxinf ”strategy, that is, infzj∈Zj ui(z∗i , zj) =

maxzi∈Zj infzj∈Zj ui(zi, zj). Then, from the assumption,

ui(z̃i, z̃j) < max
zi∈Zi

inf
zj∈Zj

ui(z) = inf
zj∈Zj

ui(z∗i , zj),
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and since infzj∈Zj ui(z∗i , zj) ≤ ui(z∗i , z̃j),

ui(z̃i, z̃j) < ui(z∗i , z̃j). (3)

Therefore, from the definition of indirect dominance relation, (z̃i, z̃j) ≪ (z∗i , z̃j).

Since (z̃i, z̃j) ∈ V , (z∗i , z̃j) ̸∈ V must be true to preserve the internal stability of V .

From the external stability, it follows that there has to exist (w̃i, w̃j) ∈ V such that

(z∗i , z̃j) ≪ (w̃i, w̃j). From the definition of indirect dominance, the following has to

be satisfied;

there exists a sequence of outcomes (w0, w1, ..., wK) with w0 = (z∗i , z̃j) and

wK = (w̃i, w̃j), and there exists a sequence of coalitions (S0, S1, ..., SK−1) such that

for all k ∈ {0, 1, ...,K − 1}, (A)wk −→Sk
wk+1 and (B)ui(wk) < ui(wK) for all

i ∈ Sk. (4)

Now consider a coalition S0 in (4) above.

First, suppose i ∈ S0. Since (z∗i , z̃j) ≪ (w̃i, w̃j), ui(z∗i , z̃j) < ui(w̃i, w̃j). From

the inequality (3) above, it follows that ui(z̃i, z̃j) < ui(w̃i, w̃j). Since (z̃i, z̃j) −→{i}

(z∗i , z̃j) is possible, from Remark 4.1, (z̃i, z̃j) ≪ (w̃i, w̃j). However, since (z̃i, z̃j) ∈ V

and (w̃i, w̃j) ∈ V , it contradicts the internal stability of V .

Next, suppose S0 = {j}. (A) if S1 = · · · = SK−1 = {j} in the sequence of coali-

tion of (4), note that (w̃i, w̃j) = (z∗i , w̃j). In this case, ui(z̃i, z̃j) < infzj∈Zj ui(z∗i , zj) ≤
ui(z∗i , w̃j) = ui(w̃i, w̃j). Therefore, since ui(z̃i, z̃j) < ui(w̃i, w̃j), (z∗i , z̃j) ≪ (w̃i, w̃j)

and (z̃i, z̃j) −→{i} (z∗i , z̃j) is possible, (z̃i, z̃j) ≪ (w̃i, w̃j), from Remark 4.1. Again,

this violates the internal stability of V . (B)Suppose there exists a coalition Sp

(p ∈ {1, ..., K − 1}) such that i ∈ Sp. Let Sp̃ be the first coalition including i in

the sequence of coalitions in (4), that is, if k̃ < p̃, then Sk̃ = {j}. Now consider

(wp̃
i , w

p̃
j ) −→Sp̃ (wp̃+1

i , wp̃+1
j ) in (4). Since z∗i = w0

i = w1
i = ... = wp̃

i , this is equal to

(z∗i , wp̃
j ) −→Sp̃ (wp̃+1

i , wp̃+1
j ). Recall that i ∈ Sp̃ thus from the definition of indirect

dominance, ui(z∗i , wp̃
j ) < ui(w̃i, w̃j). Furthermore, ui(z̃i, z̃j) < infzj∈Zj ui(z∗i , zj) ≤

ui(z∗i , w̃p̃
j ). Therefore, ui(z̃i, z̃j) < ui(w̃i, w̃j). Now recall that (z̃i, z̃j) −→{i} (z∗i , z̃j)

is possible and (z∗i , z̃j) ≪ (w̃i, w̃j). Thus, Remark 4.1 implies (z̃i, z̃j) ≪ (w̃i, w̃j),

which violates the internal stability of V . Q.E.D.

17



References

[1] Beal.S., Durieu.J., and Solal.P. (2008). Farsighted Coalitional Stability in TU-

Games. Mathematical Social Sciences. 56, 303-313.

[2] Chamberlin. (1933). The theory of Monopolistic Competition. Harvard Univer-

sity Press.

[3] M. S. Chwe. (1994). Farsighted Coalitional Stability, Jounal of Economic Theory

63, 299-325.

[4] Dasgupta, P., and E. Maskin (1986). The Existence of Equilibrium in Discontin-

uous Economic Games, II: Applications, Review of Economic Studies 53, 27-42.

[5] Eaton, B. C., and R. Lipsey (1975). The Principle of Minimum Differentiation

Reconsidered: Some New Developments in the Theory of Spatial Competition,

Review of Economic Studies 42, 27-49.

[6] M. Fujita and J.F. Thisse (1986). Spatial Competition with a Land Market;

Hotelling and , Review of Economic Studies 42, 27-49.

[7] J. Greenberg. (1990). The Theory of Social Situations: An Alternative Game

Theoretic Approach. Cambridge Univ. Press, Cambridge.

[8] J. Harsanyi. (1974). An Equilibrium-Point Interpretation of Stable Sets and a

Proposed Alternative Definition., Management Sci 20, 1472-1495.

[9] H. Hotelling. (1929). The Stability of Competition., Economic journal 39, 41-57.

[10] J. Osborne. and A. Rubinstein. (1994). A Course In Game Theory. The MIT

Press.

[11] A. Suzuki and S. Muto. (2005). Farsighted Stability in an n-Person Prisoner’s

Dilemma., International Journal of Game Theory 33, 431-445.

[12] J.von Neumann and O.Morgenstern. (1953). Theory of Games and Economic

Behavior Third Edition. Princeton Univ. Press, Princeton.

[13] L. Xue. (1998). Calitional Stability under Perfect Foresight, Economic Theory

11, 603-627

18


