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Bertrand Delegation Games With Implementability In

Weakly Undominated SPNE

Junnosuke Shino ∗†

Abstract

In this paper we investigate a delegation game in which the underling situation is repre-

sented by a standard Bertrand price competition. In contrast to Fershtman, Judd, and Kalai

([2], hereafter FJK), we employ a weakly undominated SPNE as the equilibrium concept based

on Shino [6] and keep the notion of the implementability unchanged. We first point out that

optimal price setting behaviors derived by the assumption of “mutually rational players ”in

FJK are hard to justify from a standard game theory view in that they are assumed to play a

weakly dominated strategy even when each of them has the weakly dominant strategy. Next,

it is shown that there exists a compensation scheme fully implementing the “most collusive

outcome”in which firms jointly set the monopoly price and equally share the profit.
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1 Introduction

1.1 Introduction

In this paper we investigate a delegation environment in which the underling situation is

represented by a standard Bertrand price competition1. For a delegation game defined in

Fershtman, Judd, and Kalai ([2], hereafter FJK), Shino [6] employs a refined SPNE (weakly

undominated SPNE, U-SPNE) as the equilibrium concept, while keeping the notion of the

implementability unchanged. By applying U-SPNE, he shows that in certain classes of 2 × 2

games - including prisoners’ dilemma, coordination games, and battle of sexes - every efficient

outcome is fully implementable in U-SPNE. This paper first examines the FJK’s assumption

of “mutually rational players”in the Bertrand delegation game. We argue that optimal price

setting behaviors derived by this assumption are hard to justify from a standard game theory

view in that they are assumed to play a weakly dominated strategy even when each of them

has the weakly dominant strategy. Given this observation, we apply U-SPNE to the Bertrand

delegation game and show that there exists a compensation scheme fully implementing the

“most collusive outcome”in which firms jointly set the monopoly price and equally share the

profit.

1.2 Delegation Game

We consider a situation where two principals face a conflict represented by a strategic form

game G = (P, {Si}i=1,2, {ui}i=1,2). Let P = {p1, p2} be the set of players, and pi is called principal i.

Si is the set of strategies of pi, and ui is pi’s utility function, where ui : S ≡ S1 × S2 −→ R. We call

G an underlying game. Denote u ≡ (u1, u2) : S −→ R2.

For G, suppose principal i could delegate agent i and consider the following three-stage

strategic delegation environment. At the first stage, each principal simultaneously proposes

to her agent a compensation scheme. Principal i’s compensation scheme gives a monetary

1Since Shelling [5], a great deal of attention has been paid to analyzing strategic delegation by using game-
theoretic framework. For example, Fershtman and Judd [1] studied a model of Cournot duopoly with delegation
and unobservable efforts by agents. Persson and Tabellini [4] analyzed international monetary policy coordination
by casting central banks as agents acting on behalf of the public. Persson et al. [3] also examined public finance with
a delegation setup.
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reward to agent i, depending on which payoff in G is realized by agents’ interaction in the last

stage. Next, in the second stage, each agent simultaneously decides whether to participate the

game or not, after observing not only his own contract but also his opponent’s. If (at least)

one of agents decides not to participate, the game ends at this stage. In this case, agents obtain

common reservation wage ϵ > 0, while principals get a constant payoff normalized to zero.

If, on the other hand, both of agents decide to participate, the game moves on to the final

stage, and agent i chooses an action si ∈ Si in the underlying game. Then “total payoff ”of

ui(s1, s2) is realized and depending on this, monetary rewards are paid to agent i based on the

compensation scheme. What principal i obtains is the total payoff, ui(s1, s2), minus the reward

for agent i.

Formally, for a underlying game G, its delegation game, denoted by D(G), is defined as

D(G) ≡ (N, {Ci,Li}i=1,2, {Up
i ,U

a
i }i=1,2, ϵ). (1)

• N ≡ P ∪ A is the set of players where P = {p1, p2} is the set of principals and A = {a1, a2} is

the set of agents.

• Ci is the set of strategies of pi where Ci = {ci | ci : R −→ R+, non − decreasing f unction}.

ci ∈ Ci is called a compensation function of pi. Define C ≡ C1 × C2.

• Li is the set of strategies of ai defined as follows. First, let P and NP be an agent choice

of “Participate ”and “Not Participate ”respectively. Then agent i’s participate function is

defined as Di = {di | di : C −→ {P,NP}}. di specifies agent i’s choice of participating or

not, contingent on his observation about C. Next, we define response function Ri where

Ri = {ri | ri : C −→ Si}, which specifies agent i’s an action in the last stage. Finally, agent

i’s strategy set Li is defined as Li ≡ Di × Ri, that is, i’s strategy set is the set of the profile

of the participation function and the response function.
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• Up
i and Ua

i are principal and agent i’s utility functions in D(G) defined as:

Up
i (c1, c2, l1, l2) =


ui(r1(c), r2(c)) − ci(ui(r1(c), r2(c))) if d1(c) = d2(c) = P

0 otherwise
(2)

Ua
i (c1, c2, l1, l2) =


ci(ui(r1(c), r2(c))) if d1(c) = d2(c) = P

ϵ otherwise.
(3)

For the following analysis, we denote a strategy profile of all players (agents and principals)

by (c, l) ≡ (c1, c2, l1, l2) ≡ (c1, c2, (d1, r1), (d2, r2)) .

For a compensation scheme profile c ∈ C, its subsequent game played at the last stage in the

case where both agents participate can be specified. We call it induced game by c and denote by

G(c). For c ∈ C, we say (s∗1, s
∗
2) ∈ S is a Nash equilibrium (NE) in G(c) iff ci(ui(s∗i , s

∗
j)) ≥ ci(ui(si, s∗j))

for all si ∈ Si and for i ∈ {1, 2}.

1.3 The Solution Concept

In this subsection, we give a formal definition of the solution concept applied to the Bertrand

delegation game. For detailed arguments, see Shino [6].

As we will define, the solution concept, called undominated subgame perfect Nash equi-

librium (U-SPNE), is a strategy profile (c∗1, c
∗
2, l
∗
1, l
∗
2) satisfying the conditions of (6), (7), and (8).

As a first step, consider the last stage game played among agents. For a given compensation

profile c, denote set of NEs in G(c) by

EA(c) = {(s1, s2) ∈ S | (s1, s2) is an NE in G(c)} (4)

and define UEA(c) as the set of weakly undominated Nash equilibria in G(c):

UEA(c) = {(s1, s2) ∈ S | (s1, s2) is a N.E. in G(c) and

si ∈ Si (i = 1, 2) is not weakly dominated strategy in G(c)
} (5)

where si is said to be a weakly dominated strategy in G(c) if there is a strategy s̃i ∈ Si such that

ci(ui(s̃i, s j)) ≥ ci(ui(si, s j)) for all s j ∈ S j and ci(ui(s̃i, s j)) > ci(ui(si, s j)) for some s j ∈ S j. We employ
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(5) as the first condition of our solution concept. Noting that UEA(c) can take empty set for

some c, the first condition of U-SPNE is defined as the following:

r∗(c) ∈ UEA(c) ∀c ∈ C with UEA(c) , ϕ

r∗(c) ∈ EA(c) ∀c ∈ C with UEA(c) = ϕ
(6)

Next, given the action profile played at the last stage, we consider agents’ participation choices

at the second stage. For a given strategy profile of (c1, c2, l1, l2), the payoffmatrix at the second

stage can be described as follows:

G P NP
P c1(u1(r1(c), r2(c))), c2(u2(r1(c), r2(c))) ϵ, ϵ

NP ϵ, ϵ ϵ, ϵ

Figure 1: Agents’ payoffmatrix at the second stage by backward induction

Depending on the magnitudes of ci(u1(r1(c), r2(c))) and ϵ, three cases could happen: (A) P

is weakly dominant strategy, (B) NP is weakly dominant strategy, and (C) P and NP are

completely indifferent. For case (A) and (B), it is totally natural to assume that the weakly

dominant strategy would be played. For simplicity, we make the standard assumption that if

the agent is indifferent between participating and not participating, he chooses to participate.

Putting it all together, we introduce the following as the second condition of U-SPNE:

For every c ∈ C, d∗i (c) = P i f f ci(ui(r∗1(c), r∗2(c))) ≥ ϵ. (7)

The last step is to consider the first stage in which principals propose compensation schemes.

The last condition on U-SPNE is the standard one:

Up
1(c∗1, c

∗
2, l
∗
1, l
∗
2) ≥ Up

1(c1, c∗2, l
∗
1, l
∗
2) ∀ c1 ∈ C1 and same f or principal 2. (8)

As a result, our solution concept applied to the delegation game is expressed as the following

definition:

Definition 1.1

(c∗1, c
∗
2, l
∗
1, l
∗
2) is U-SPNE if it satisfies the conditions of (6), (7), and (8)
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Then we define implementation and full implementation.

Definition 1.2

c∗ implements ω ∈ R2 in U-SPNE via l∗ ∈ L iff (c∗, l∗) is a U-SPNE of D(G) with (1) u(r∗(c∗)) = ω

and (2) d∗1(c∗) = d∗2(c∗) = P.

Definition 1.3

c∗ fully implements ω ∈ R2 in U-SPNE via l∗ ∈ L iff c∗ implements ω via l∗ in U-SPNE and the

following holds:

i f c∗ also implements ω̃ ∈ R2 in U − SPNE via some l̃, then ω̃ = ω. (9)

2 Bertrand Delegation Game

This section investigates the delegation game in which the underlying game is a standard

Bertrand price competition. After introducing the model and notations in Subsection 2.1,

Subsection 2.2 points out that price optimal setting behaviors derived by FJK’s assumption of

mutually rational players are hard to justify from a standard game theory view in that they

are assumed to play a weakly dominated strategy even when each of them has the weakly

dominant strategy. Next, in Subsection 2.3, it is shown that there exists a compensation scheme

fully implementing the “most collusive outcome”in which firms jointly set the monopoly price

and equally share the profit.

2.1 The Model

Consider a standard Bertrand game where two firms produce an identical goods thus face the

demand function given by;

D(Pi,P j) =


A − Pi if Pi < P j

1
2 (A − Pi) if Pi = P j

0 if Pi > P j

(10)
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and both firms have common marginal cost MC with A > MC. Thus firm i’s profit πi is

expressed as

πi(Pi,P j) =


(A − Pi)(Pi −MC) if Pi < P j

1
2 (A − Pi)(Pi −MC) if Pi = P j

0 if Pi > P j.

(11)

i’s strategy set is [0,∞). Denote π ≡ (π1, π2) : [0,∞) × [0,∞) −→ R2. Let PNE and πNE be the

price and the profit in the unique equilibrium of the one-shot game respectively, that is,

(PNE, πNE) = (MC, 0) . (12)

On the other hand, if the “best collusion ”is successfully attained, both firms would choose the

monopoly price, maximize the sum of their profits, and equally share them. Such collusive

price and the profit, denoted by Pc and πc, are given by

(Pc, πc) =
(1
2

(A +MC),
1
8

(A −MC)2
)
. (13)

Hereafter we call (πc, πc) the “most collusive outcome.”

2.2 FJK’s compensation scheme

In FJK argument, the most collusive outcome (πc, πc) can be fully implemented with mutu-

ally rational agents when ϵ is small. Particularly, “Folk Theorem ”established in their paper

proposes the following compensation scheme cFJK
i .

cFJK
i (πi) =


ϵ if πi ≥ πc

0 if otherwise.
(14)

In the induced game G(cFJK
1 , c

FJK
2 ) ≡ G(cFJK), (Pc,Pc) is the only action profile which gives ϵ to

both agents. Therefore, given the notion of implementability with mutually rational agents,

the only outcome which can be implemented by cFJK is (πc, πc), and they show that cFJK indeed

fully implements (πc, πc). For their analysis, note that (πc, πc) is implemented by making both
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agents play Pc in G(cFJK), and we first point out some remarks below.

Remark 2.1

In G(cFJK), Pc is a weakly dominated strategy.

Proof of Remark 2.1. See Appendix.

In principle, a weakly dominated strategy can be a (or even the unique) Nash strategy (See

Fig.2). Indeed, in the standard one-shot Bertrand game which we employ as the underlying

game, the unique Nash strategy PNE = MC is in weakly dominated strategies. However, since

this Nash equilibrium is unique, it is reasonable to accept this as the “equilibrium,”even if

PNE is weakly dominated. However, if both weakly dominated Nash and undominated Nash

exist, it may be reasonable to assume that the latter would be chosen. The following remark

shows this point: in G(cFJK), there exists other Nash equilibrium and its Nash strategy is not

weakly dominated. Moreover, the remark has even much stronger implication: in G(cFJK)

there is the weakly dominant strategy. In other words, FJK solution concepts assumes that an

agent “optimally ”plays a weakly dominated strategy even when there is the weakly dominant

strategy in a induced game. Such argument looks unusual in a standard game theory view.

G s21 s22

s11 0, 2 3, 1
s12 1, 1 2, 3
s13 1, 2 1, 1

Figure 2: Weakly Dominated Nash Strategy s13

Remark 2.2

In G(cFJK), there exists the weakly dominant strategy P∗i ≡ 1
2 (A +MC) −

√
2

4 (A −MC).

P∗i is the (smaller) solution of (A−Pi)(Pi−MC) = πc and P∗i < Pc holds. Intuitively, P∗i weakly

dominates Pc as the following reason (see also Fig.3 and 4): since P∗i < Pc, to play P∗i is less

likely to fall into a bad situation where i’s price is higher than j thus i earns zero profit. On the

other hand, as long as Pi < P j satisfies, to play Pc maximize the firm i’s profit to 2πc, while to

play P∗i gives only πcto i. However, agents i is indifferent between these two profits under cFJK
i

because cFJK
i reward ϵ for both of them. Therefore, P∗i is at least “not bad ”compared to Pc.
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C1
FJK( �� ��

1(P*1,P2))

P2

�� ���� ��

�� ��

P*1

�� ��

Figure 3: a1’s compensation under cFJK
1 when P1 = P∗1

C1
FJK( �� ��

1(P
c,P2))

P2
�� ��

�� ��

Pc

�� ��

�� ��

Figure 4: a1’s compensation under cFJK
1 when P1 = Pc

Proof of Remark 2.2. See Appendix.

Remark 2.2 implies that the compensation profile cFJK can not implement (πc, πc) in U-SPNE

because (Pc,Pc) < UEA(cFJK) = {(P∗1,P∗2)}. It might be natural, therefore, to investigate whether

cFJK can implement any outcomes by using our solution concepts. The following remark shows

the negative result to this question.

Remark 2.3

cFJK ≡ (cFJK
1 , c

FJK
2 ) can not implement any outcomes in U-SPNE.

Proof. Suppose that, in negation, cFJK implements ω in U-SPNE via some l∗ = (l∗1, l
∗
2) =

((d∗1, r
∗
1), (d∗2, r

∗
2)) ∈ L. Since both agents have the weakly dominant strategy P∗i in G(cFJK),

UEA(cFJK) = {(P∗1,P∗2)}. Therefore, r∗i (c
FJK) = P∗i must hold for i = 1, 2. However, under cFJK,

cFJK
i (πi(r∗1(cFJK), r∗2(cFJK))) = cFJK

i (πi(P∗1,P
∗
2)) = cFJK

i

( 1
16

(A −MC)2
)
= cFJK

i

(1
2
πc
)
= 0.

From (7), this implies d∗i (c
FJK) = NP, contradicting to Definition 1.2 of implementation.

Remark 2.3 implies that, under the compensation scheme cFJK, when both agents choose

the (unique) weakly dominant strategy P∗i , the reward from the realized profit will be zero.

Given this, both of them choose not participating and obtaining the reservation wage ϵ, rather

entering the delegation game.

Remark 2.3 also implies that, in order to construct compensation scheme which imple-

ments an outcome in U-SPNE, we cannot employ cFJK. Before constructing alternative scheme,
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we check if, in our Bertrand delegation game, there exists at least one undominated Nash

equilibrium for every induced game. The following remark is obvious without proof.

Remark 2.4

Let cαi (πi(P1,P2)) = α(πi(P1,P2)) where 0 < α < 1. Then the only Nash in G(cα1 , c
α
2 ) is weakly

dominated, that is, UEA(cα) = ϕ and EA(cα) = {(MC,MC)}.

Remark 2.4 implies that UEA(c) = ϕ in some G(c). In applying our solution concept,

therefore, the second condition of (6) does matter. This condition requires that players could

play a weakly dominated Nash if there is no weakly undominated Nash ((s13, s21) in Fig.2).

Again, note that exactly same logic works when we employ Nash equilibrium as a solution

concept in the standard Bertrand Nash, and that this additional condition never violates our

methodology to use the notion of weak dominance relationship as equilibrium refinement.

Furthermore, as we will see, under the compensation scheme c∗ which fully implements the

most collusive outcome (πc, πc) ,UEA(c∗) , ϕ. This means that weakly undominated Nash

equilibrium is played on the equilibrium path.

2.3 Full implementability in U-SPNE

Now we look for a compensation scheme which could implement an outcome in U-SPNE. In

the last part of this section, it will be shown that such compensation scheme exists, and the

scheme fully implements the most collusive outcome (πc, πc). First of all, consider the following

compensation scheme:

c∗i (πi) =


2απc if πi = 2πc

(
≡ 1

4 (A −MC)2
)

ϵ if πc ≤ πi < 2πc

0 if πi < πc

(15)

where α satisfies 2απc > ϵ. Note that 2πc is the solution for

max
Pi

(A − Pi)(Pi −MC), (16)
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and arg maxPi(A − Pi)(Pi −MC) = Pc. Namely, 2πc is the maximum profit among those which

can be attained by choosing Pc in the underlying game.

Recall that, under cFJK, π(Pc,Pc) = (πc, πc) cannot be implemented in U-SPNE because Pc is

weakly dominated by P∗i . Intuitively, this weak dominance relation means that P∗i is at least “not

bad ”compared to Pc for every P j from the viewpoint of agent i who faces cFJK
i . On the other

hand, under our compensation scheme c∗i , to play Pc can be a better choice than P∗i (and even

any other choices) for some P j. This is because, different from cFJK
i , c∗i gives the largest amount

of reward 2απc to agent i only when Pc is played and the maximum profit 2πc is realized (see

Fig.5 and 6).

C*1(
�

1(P*1,P2))

P2

�

�� �� �� ��

2 ��� c

�� ��

P*1

Figure 5: a1’s compensation under c∗1 when P1 = P∗1

C*1(
�

1(P
c,P2))

P2

�

�� ��

Pc

�� ��

�� ��
2 ��� c �� ��

Figure 6: a1’s compensation under c∗1 when P1 = Pc

First we establish the following two remark about weakly dominated strategies in G(c∗1, c
∗
2).

Remark 2.5

In G(c∗1, c
∗
2), agent i’s strategy Pc weakly dominates Pi such that (1) Pi > Pc and (2) Pi <

1
2 (A +MC) −

√
2

4 (A −MC).

Proof. First, note that (see also Fig.6)

c∗1(π1(Pc,P2)) =


0 if P2 < Pc

ϵ if P2 = Pc

2απc if P2 > Pc.

(17)
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If P1 > Pc, it is obvious that Pc weakly dominates P1. Now suppose P1 < Pc. Recall that

π1(P1,P2) =


0 if P1 > P2

1
2 (A − P1)(P1 −MC) if P1 = P2

(A − P1)(P1 −MC) if P1 < P2.

(18)

Therefore, from (15), Pc weakly dominates P1 if

1
2

(A − P1)(P1 −MC) < πc and (A − P1)(P1 −MC) < πc. (19)

Obviously the latter implies the former in (19), and the latter is identical to

−P2
1 + (A +MC)P1 −

1
8

(A2 + 6A ·MC +MC2) < 0. (20)

The condition on P1 to satisfy (20) under the assumption of P1 < Pc is given by P1 <
1
2 (A +

MC) −
√

2
4 (A −MC).

The results of Remark 2.5 is depicted in Fig.7.

Pc

-P1
2+(A+MC)P1-(1/8)(A2+6AMC+MC2)

P1
�� ��

Dominated by Pc

�� ��

Dominated by Pc

(1/2)(A+MC)-(21/2/4)(A-MC) (1/2)(A+MC)+(21/2/4)(A-MC)

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

Figure 7: Weakly Dominated Region by Pc under c∗1

Remark 2.6

Let P∗i ≡
1
2

(A+MC)−
√

2
4

(A−MC). In G(c∗1, c
∗
2), P∗i weakly dominates Pi such that P∗i < Pi < Pc.

Proof. First, note that (see also Fig.5)

c∗1(π1(P∗1,P2)) =


0 if P2 ≤ P∗1

ϵ if P2 > P∗1.
(21)
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Pick P1 with P∗i < Pi < Pc. Note that (see also Fig.14 in Appendix):

π1 (P1,P2) =


0 if P2 < P1

1
2 (A − P1)(P1 −MC) (< πc) if P2 = P1

(πc <) (A − P1)(P1 −MC) (< 2πc) if P2 > P1.

(22)

Therefore, for such Pi,

c∗1 (π1(P1,P2)) =


0 if P2 ≤ P1

ϵ if P2 > P1.
(23)

By comparing (23) with (21), we conclude that P∗1 weakly dominates P1

The results of Remark 2.6 is depicted in Fig.8.

Pc

-P1
2+(A+MC)P1-(1/8)(A2+6AMC+MC2)

P1
�� ��

Dominated by Pc

�� ��

Dominated by Pc

(1/2)(A+MC)+(21/2/4)(A-MC)

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / // / / / / / / / / / / / / / / / / / / / / / / /

Dominated by P*1
P*1

Figure 8: Weakly Dominated Region by Pc and P∗1 under c∗1

Remark 2.5 and 2.6 implies that UEA(c∗1, c
∗
2) ⊆
{
Pc,P∗1

}
×
{
Pc,P∗2

}
. First, we show that (Pc,Pc) ∈

UEA(c∗1, c
∗
2) thus UEA(c∗1, c

∗
2) is a non-empty set.

Remark 2.7

In G(c∗1, c
∗
2), (Pc,Pc) is an weakly undominated Nash equilibrium.

Proof. (Pc,Pc) is obviously a Nash equilibrium in G(c∗1, c
∗
2) because for P2 = Pc, c∗1(π1(P1,Pc))

is ϵ if P1 = Pc and never exceeds ϵ (possibly takes 0 or ϵ) for every P1 , Pc. Next, we show

that Pc is a weakly undominated strategy in G(c∗1, c
∗
2). From Remark 2.5, it suffices to show that

Pc is not weakly dominated by P1 with 1
2 (A +MC) −

√
2

4 (A −MC) ≤ P1 < Pc. Now suppose

P1 ∈
[

1
2 (A + C) −

√
2

4 (A − C),Pc
)
. A necessary condition for P1 to weakly dominates Pc in G(c∗1, c

∗
2)

is that (see also Fig.6):

π1(P1,P2) = 2πc ∀P2 with P2 > Pc. (24)

13



However, this is impossible because

max
P1∈
[

1
2 (A+MC)−

√
2

4 (A−MC),Pc
) (A − P1) (P1 −MC) < 2πc. (25)

Remark 2.7 implies that, if c∗ = (c∗1, c
∗
2) implements ω ∈ R2 in U-SPNE, then ω has to be attained

by a weakly undominated Nash equilibrium in G(c∗). Here suppose that agent j chooses Pc.

Then, recalling P∗i < Pc,

πi(P∗i ,P
c) = (A − P∗i )(P

∗
i −MC)

=
1
8

(A −MC)2 = πc

πi(Pc,Pc) =
1
8

(A −MC)2 = πc

Next, suppose that agent j chooses P∗j. Then

πi(P∗i ,P
∗
j) =

1
2

(A − P∗i )(P
∗
i −MC)

=
1

16
(A −MC)2 =

1
2
πc

πi(Pc,P∗j) = 0.

In terms of compensation value, these can be summarized in Fig.9 below:

π(P1,P2) P∗2 Pc

P∗1
1
2π

c, 1
2π

c πc, 0
Pc 0, πc πc, πc

=⇒
c∗(π(P1,P2)) P∗2 Pc

P∗1 0, 0 ϵ, 0
Pc 0, ϵ ϵ, ϵ

Figure 9: π(P1,P2) and c∗(π(P1,P2)) in G(c∗)

Given this, we next show the following remark.

Remark 2.8

If c∗ implements ω ∈ R2 in U-SPNE, then ω = (πc, πc).

Proof. Suppose, in negation, that c∗ implements ω ∈ R2 in U-SPNE via l̃ = ((d̃1, r̃1), (d̃1, r̃1))

such that ω , (πc, πc). Since UEA(c∗) , ϕ from Remark 2.7, r̃(c∗) ∈
{
Pc,P∗1

}
×
{
Pc,P∗2

}
must hold

14



(see Fig.8). Moreover, since ω , (πc, πc), r̃(c∗) ∈
{
(Pc,P∗2), (P∗1,P

c), (P∗1,P
∗
2)
}
≡ Φ must hold (see

the left of Fig.9). However, for every r̃(c∗) ∈ Φ, there exists i = {1, 2} such that (see the right of

Fig.9) c∗i (πi(r̃(c∗))) = 0 < ϵ. From (7), this implies d̃i(c∗) = NP, which contradicts to the second

condition of Definition 1.2.

Now we show the following main theorem.

Theorem 2.1

(c∗1, c
∗
2) defined in (15) fully implements (πc, πc) in U-SPNE.

Proof. From Remark 2.8, it suffices to show that (c∗1, c
∗
2) implements (πc, πc) in U-SPNE (Step 4

is not needed).

Step 1. Consider the strategy profile (c∗1, c
∗
2, l
∗
1, l
∗
2) ≡
(
c∗1, c

∗
2, (d

∗
1, r
∗
1), (d∗2, r

∗
2)
)

such that:

c∗i satis f ying (15), (26)

d∗i satis f ying(7), (27)

and

(
r∗1(c1, c2), r∗2(c1, c2)

)
=


(Pc,Pc) if c = (c∗1, c

∗
2)

(P∗1,P
∗
2) ∈ UEA(c) if UEA(c) , ϕ and c , c∗

(MC,MC) if UEA(c) = ϕ.

(28)

Step 2. π (r∗(c∗)) = π (Pc,Pc) = (πc, πc) is obviously satisfied. From (26), c∗i
(
πi

(
r∗1(c∗), r∗2(c∗)

))
=

c∗i (π
c) = ϵ. Therefore, from (27), d∗i (c

∗) = P.

Step 3. Now we check (6) to (8). But from the construction of r∗i , (6) is directly satisfied. As

a result, it suffices to show that principal i (w.o.l.g, we consider p1) has no strictly preferable

deviation from (c∗1, c
∗
2, l
∗
1, l
∗
2) to (c̃1, c∗2, l

∗
1, l
∗
2).

First of all, note that Up
1(c∗1, c

∗
2, l
∗
1, l
∗
2) = πc − ϵ > 0. If UEA(c̃1, c∗2) = ϕ, (MC,MC) is played

thus such deviation is never profitable to p1. Now suppose UEA(c̃1, c∗2) , ϕ. Noting that the

compensation scheme proposed to a2 is not changed in G(c̃1, c∗2), we derive a2’s best response

function for every a1’s action in G(c̃1, c∗2).
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If 0 ≤ P1 ≤ P∗1, then

c∗2(π2(P1,P2)) = 0 ∀P2 (29)

If P∗1 < P1 < Pc, then

c∗2(π2(P1,P2)) =


0 if P2 ≥ P1

ϵ if P∗2 ≤ P2 < P1

0 if P2 < P∗2

(30)

If P1 = Pc, then

c∗2(π2(P1,P2)) =



0 if P2 > P1

ϵ if P2 = Pc

ϵ if P∗2 < P2 < Pc

0 if P2 < P∗2

(31)

If P1 > Pc, then

c∗2(π2(P1,P2))


= 2απc if P2 = Pc

< 2απc if otherwise
(32)

From (29) to (32), a2’s best response under G(·, c∗2) can be summarized as follows:



Any if 0 ≤ P1 ≤ P∗1

P∗2 ≤ P2 < Pc if P∗1 < P1 < Pc

P∗2 ≤ P2 ≤ Pc if P1 = Pc

Pc if P1 > Pc

(33)

See also the left graph of Fig.10. The shaded area means a2’s best responses for every P1.

Furthermore, since UEA(c̃1, c∗2) , ϕ, a2 must choose a weakly undominated strategy, that is

(See also the right of Fig.10),

r∗2(c̃1, c∗2) ∈



{
P∗2,P

c
}

if 0 ≤ r∗1(c̃1, c∗2) ≤ P∗1{
P∗2
}

if P∗1 < r∗1(c̃1, c∗2) < Pc{
P∗2,P

c
}

if r∗1(c̃1, c∗2) = Pc

Pc if r∗1(c̃1, c∗2) > Pc.

(34)
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P1

P2

P1

P2

�

�

Pc Pc
45° 45°

Pc

P*1

P2=P1 P2=P1

P*1P*1 P*1

P
c

�

� �

P*2P*2

P*2 P*2

Figure 10: a2’s Best responses (left) and weakly undominated best responses (right) in G(·, c∗2)

Given this a2’s “weakly undominated best responses ”expressed as (34), p1 has to construct

c̃1 such that Up
1(c̃1, c∗2, l

∗
1, l
∗
2) > Up

1(c∗1, c
∗
2, l
∗
1, l
∗
2) = πc − ϵ.

First, suppose that 0 ≤ r∗1(c̃1, c∗2) ≤ P∗1. In this case, possibly maximum π1(r∗(c̃1, c∗2)) can be

attained when r∗1(c̃1, c∗2) = P∗1 and r∗2(c̃1, c∗2) = Pc and π1(r∗(c̃1, c∗2)) = πc. For the deviation to c̃1

to be a strictly profitable deviation, the only possibility is that c̃1(πc) = δ with δ < ϵ. However,

this implies d1(c̃1, c∗2) = NP, which results in zero payoff to p1. Therefore, such c̃1 cannot be a

strictly preferable deviation.

Next, suppose that P∗1 < r∗1(c̃1, c∗2) < Pc. Then r∗2(c̃1, c∗2) = P∗2 < r∗1(c̃1, c∗2). Therefore,

Up
1(c̃1, c∗2, l

∗
1, l
∗
2) = 0 − c̃1(0) < πc − ϵ = Up

1(c∗1, c
∗
2, l
∗
1, l
∗
2).

Third, suppose that r∗1(c̃1, c∗2) = Pc. If r∗2(c̃1, c∗2) = P∗2, then Up
1(c̃1, c∗2, l

∗
1, l
∗
2) = 0− c̃1(0) < πc − ϵ =

Up
1(c∗1, c

∗
2, l
∗
1, l
∗
2). On the other hand, if r∗2(c̃1, c∗2) = Pc, that is, r∗(c̃1, c∗2) = (Pc,Pc), then c̃1(πc) = δ

with δ < ϵ has to be satisfied. However, this implies d1(c̃1, c∗2) = NP, which results in zero payoff

to p1. Therefore, such c̃1 cannot be a strictly preferable deviation.

Finally, suppose that r∗1(c̃1, c∗2) > Pc. Then r∗2(c̃1, c∗2) = Pc < r∗1(c̃1, c∗2). Therefore, Up
1(c̃1, c∗2, l

∗
1, l
∗
2) =

0 − c̃1(0) < πc − ϵ = Up
1(c∗1, c

∗
2, l
∗
1, l
∗
2).

Therefore, p1 cannot construct any strictly preferable deviation from (c∗1, c
∗
2, l
∗
1, l
∗
2)
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3 Conclusion

In this paper we investigate a delegation game in which the underling situation is represented

by a standard Bertrand price competition. In contrast to Fershtman, Judd, and Kalai ([2],

hereafter FJK), we employ a weakly undominated SPNE as the equilibrium concept based on

Shino [6] and keep the notion of the implementability unchanged. We first point out that

optimal price setting behaviors derived by the assumption of “mutually rational players ”in

FJK are hard to justify from a standard game theory view in that they are assumed to play a

weakly dominated strategy even when each of them has the weakly dominant strategy. Next,

it is shown that there exists a compensation scheme fully implementing the “most collusive

outcome”in which firms jointly set the monopoly price and equally share the profit.

Our delegation framework can obviously be extended to other IO models which can be

represented by a strategic form game. For example, a delegation game where its underlying

game is Cournot competition could be intriguing.
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Appendices

Proof of Remark 2.1.

We show that agent 1’s action Pc in G(cFJK) is weakly dominated by some P̃1. For P1 = Pc, the

compensation scheme proposed by principal 1 in G(cFJK) is (see also Fig 11):

cFJK
1 (π1(Pc,P2)) =


ϵ if P2 ≥ Pc

0 if P2 < Pc.
(35)

C1
FJK( �� ��

1(P
c,P2))

P2
�� ��

�� ��

Pc

�� ��

�� ��

Figure 11: a1’s compensation under cFJK
1 when P1 = Pc

Now pick P̃1 such that (note: we can pick such price level)

1
2

(A +MC) −
√

2
4

(A −MC) ≤ P̃1 < Pc, (36)

then P̃1 satisfies

(A − P̃1)(P̃1 −MC) ≥ πc. (37)

For any P̂ with P̃1 < P̂,

π1(P̃1, P̂) = (A − P̃1)(P̃1 −MC) ≥ πc. (38)

Thus cFJK(π1(P̃1, P̂)) = ϵ. Furthermore, since P̃1 < Pc, there exists such P̂ satisfying P̃1 < P̂ < Pc

(see Fig 12).

C1
FJK( �� ��

1(p
~

1,p2))

P2
�� ��

�� ��

�� ��

P~
1 P^ Pc

Figure 12: a1’s compensation under cFJK
1 when P1 = P̃1

Consequently, P̃1 weakly dominates Pc
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Proof of Remark 2.2.

Let P∗1 and P
∗
1 be solutions for (A − P1)(P1 −MC) = 1

8 (A −MC)2, that is,

P∗1 =
1
2

(A +MC) −
√

2
4

(A −MC) (39)

P
∗
1 =

1
2

(A +MC) +

√
2

4
(A −MC), (40)

then we will show that P∗1 weakly dominates for all P̃1s with P̃1 , P∗1. First of all,

π1

(
P∗1,P2

)
=


0 if P2 < P∗1

1
2 (A − P∗1)(P∗1 −MC) if P2 = P∗1

(A − P∗1)(P∗1 −MC) if P2 > P∗1.

(41)

Since (A − P∗1)(P∗1 −MC) = πc and 1
2 (A − P∗1)(P∗1 −MC) < πc (see also Fig13),

cFJK
1

(
π1(P∗1,P2)

)
=


0 if P2 ≤ P∗1

ϵ if P2 > P∗1.
(42)

C1
FJK( �� ��

1(P*1,P2))

P2

�� ���� ��

�� ��

P*1

�� ��

Figure 13: a1’s compensation under cFJK
1 when P1 = P∗1

Now pick P̃1 with P̃1 < P∗1 first. Since (A− P1)(P1 −MC) is concave in P1 and P̃1 < P∗1, it follows

that (A − P̃1)(P̃1 −MC) < πc. Thus

cFJK
1

(
π1(P̃1,P2)

)
= 0 ∀ P2 (43)

by comparing (42) and (43), it turns out that P∗1 weakly dominates P̃1.

Next, pick P̃1 with P̃1 > P∗1. Note that (see also Fig 14)
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P*1 P*1Pc

1/8(A-MC)2= �� �� c

(A-P1)(P1-MC)

1/2(A-P1)(P1-MC)

1/4(A-MC)2=2 �� �� c

P1

Figure 14:

1
2

(A − P1)(P1 −MC)


= 1

8 (A −MC)2 if P1 = Pc

< 1
8 (A −MC)2 if P1 , Pc.

(44)

(1) If P∗1 < P̃1 < Pc, then 1
2 (A − P̃1)(P̃1 −MC) < πc and (A − P̃1)(P̃1 −MC) > πc. Therefore,

cFJK
1

(
π1(P̃1,P2)

)
=


0 if P2 ≤ P̃1

ϵ if P2 > P̃1.
(45)

Pc

C1
FJK( �� ��

1(P1
~,P2))

P2

�� ���� ��

�� ��

P*1

�� ��

P1
~

Figure 15: Compensation scheme for P1 = P̃1 with P∗1 < P̃1 < Pc

(2) If P̃1 = Pc, then from (44),

cFJK
1

(
π1(P̃1,P2)

)
=


0 if P2 < P̃1

ϵ if P2 ≥ P̃1.
(46)
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P1
~=Pc

C1
FJK( �� ��

1(P1
~,P2))

P2
�� ��

�� ��

�� ��

P*1

�� ��

Figure 16: Compensation scheme for P1 = P̃1 with P̃1 = Pc

(3) If Pc < P̃1 ≤ P
∗
1, then 1

2 (A − P̃1)(P̃1 −MC) < πc and (A − P̃1)(P̃1 −MC) ≥ πc. Therefore,

cFJK
1

(
π1(P̃1,P2)

)
=


0 if P2 ≤ P̃1

ϵ if P2 > P̃1.
(47)

Pc

C1
FJK( �� ��

1(P1
~,P2))

P2

�� ���� ��

�� ��

P*1

�� ��

P1
~

P*1

Figure 17: Compensation scheme for P1 = P̃1 with Pc < P̃1 ≤ P
∗
1

(4) If P
∗
1 < P̃1, then

cFJK
1

(
π1(P̃1,P2)

)
= 0 ∀P2. (48)

In both cases of (1)∼(4), P∗1 weakly dominates P̃1.
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