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Abstract

I study the optimal choice of investment projects in a continuous time moral hazard
model with multitasking. While in the first best, projects are invariably chosen by
the net present value (NPV) criterion, moral hazard introduces a cutoff for project
execution which depends on both a project’s NPV as well as it’s signal to noise ratio
(SN). The cutoff shifts dynamically depending on the past history of shocks, current
firm size and the agent’s continuation value. When the ratio of continuation value to
firm size is large, investment projects are chosen more efficiently, and project choice
will depend more on the NPV and less on the signal to noise ratio.

The optimal contract can be implemented with an equity stake, bonus payments,
as well as a personal account. Interestingly, when the contract features equity only,
the project selection rule resembles a hurdle rate criterion.

1 Introduction

The standard paradigm for firm investment posits a continuous investment decision. Firms
choose investment as a means to regulate their capital stock, which, except for adjustment
costs, is perfectly scalable. While for certain firms, this framework may be reasonable, for
others it is not. When a firm is the host of many disparate activities, we can instead think
of the firm being comprised of a portfolio of potential projects. When these projects are
executed, they provide the firm with risky cash flows, which will depend on the project’s
individual characteristics. Inherently, this choice of projects is discrete, i.e. the firm can
∗I would like to thank Bruno Biais, Janice Eberly, Arvind Krishnamurthy, Alessandro Pavan, Mark

Satterthwaite and Yuliy Sannikov for helpful discussions, and Jeffrey Ely, Mike Fishman and Bruno Strulovici
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either engage in a project at any given point in time or not. Hence, instead of having the
possibility of continuously adjusting future capital according to it’s expectations, the firm
faces a much more difficult problem - to determine the optimal portfolio of projects at any
given time.
Unsurprisingly, while the continuous investment framework has received considerable at-
tention and has spawned a rich literature which attempts to generate realistic investment
dynamics, 1 the literature on project choice has been sparse. This is due to the fact that to
study project choice realistically, one has to consider both discreteness and dynamics.
The goal of my paper is to study the optimal project portfolio in a company which relies on
a manager to execute the projects. I characterize the firm’s optimal project selection policy
which arises when the manager has an incentive to shirk, and show how the firm’s portfolio
of projects evolves over time. Even though both the shareholders and the manager are risk
neutral in my setup, project choice along the optimal path of the dynamic contract will not
be determined by the NPV criterion alone, as would be the case in the first best, but instead
by a project-specific markup over NPV.
This markup will be a function of the manager’s promised continuation utility, as well as the
project’s signal to noise ratio (SN), which can be interpreted as an indicator for how difficult
it is for the shareholders to discern whether or not the manager has been putting in effort.
There is both over- and underinvestment relative to the NPV criterion. While underinvest-
ment is driven by the cost of incentives, which induce shareholders to forgo positive NPV
projects due to their risk, over investment is caused by the firm’s inability to punish the
manager in the presence of a limited liability constraint.
Similar to DeMarzo et al. (2010), I identify the manager’s continuation value with the
firm’s cash balances and the value of the manager’s personal account.2 Thus, holding the
account value constant, when the firm’s cash holdings are small, project choice becomes more
distorted relative to the first best and the firm will forgo positive NPV projects if they have
a low signal to noise ratio, or equivalently, high risk. When the cash holdings are sufficiently
high, first-best efficiency in project execution will be achieved.
The cutoffs for project selection are a function of the entire history of past projects, output
and managerial effort, as well as the noise embedded in the project cash flows. In particular,
as the firm’s cash holdings grow, low NPV but high SN projects are gradually phased out in
favor of high NPV projects and firms with higher cash balances can afford a more risky and
more lucrative project portfolio. Interestingly, this dynamic is entirely driven by the cost of
incentives, which are in turn embodied in the projects’ SN ratios. The intuition is as follows.

1See Abel and Eberly (1994) for a canonical reference.
2The full derivation is given in Section 5.
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Since managers have limited liability, the firm is terminated when the agent’s continuation
value reaches it’s lower boundary. Thus, incentivizing projects comes with an increased
managerial risk exposure, which in turn will increase the shutdown probability. The closer
the agent’s continuation value is to the lower bound, the more costly the additional risk
becomes, to the point where a project’s NPV cannot compensate the principal for the added
risk.
This finding is opposite to the standard risk shifting result found in Jensen and Meckling
(1976), where the possibility of liquidation leads firms to take on excessive risk. Recently,
in a study of pension funds, Rauh (2009) finds that firms with weak credit ratings, which
may be interpreted as a proxy for default, allocate more resources towards safer investments,
while financially sound firms do the opposite, which is in line with my predictions.
I study several extensions of this framework. First, when the shareholders can allocate
internal funds between projects, the fund allocation is distorted away from the projects with
the highest NPVs and towards projects with low signal to noise ratios. Intuitively, a low
SN implies a relatively high cost of exposing the agent to risk. When internal funding can
positively affect the effectiveness of managerial effort, the associated cost of incentives is
lowered. Thus, firms with low cash holdings will distort their allocation of funds.
Further, my model nests DeMarzo et al. (2010) as a special case. Therefore, I can study
the relationship between project choice, aggregate firm investment, and growth. The agency
friction has a similar effect on project choice and aggregate investment, and both will be
either comparatively efficient or inefficient, depending on whether the agent’s continuation
value is large relative to firm size.
As in any study involving multitasking, the question about whether the optimal incentive
scheme can be made contingent on total firm performance alone, as opposed to individual
project payoffs, is important. In my setting, unless all projects have the same characteristics,
incentives based on total output will not implement the second best allocation. Instead,
they make the underinvestment problem more severe, and induce a fundamental change
to the project selection policy. When restricted to output based incentives, project choice
will resemble a hurdle rate. In particular, at any point in time, the NPV of each chosen
project will be above the same threshold, which in turn will be a function of the project
with the lowest NPV in the portfolio. This hurdle rate allocation will not be efficient, since
by conditioning the manager’s incentive contract on total output alone, the firm is unable
to fine-tune the risk exposure of the manager towards individual projects, and hence the
contract will carry excessive risk.
Consequently, my model suggests that hurdle rates, which are widely observed in practice,
are not the outcomes of an optimal contract. Instead, they arise when the firm is unable
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to condition the contract on individual projects, or unable to find incentive schemes which
condition on this information.
Indeed, I show in Section 5, that if the managerial incentive contract is limited to equity, the
hurdle rate allocation arises as the optimal contract. To implement the second best contract,
it is necessary to introduce payments to the manager contingent on the individual project’s
performance. I show that these payments can be interpreted as bonus payments, and hence
the optimal contract can be implemented via an equity stake and boni.
Since the number of projects will change over time, the risk exposure for the manager, and
therefore the optimal equity share will not be static, as in DeMarzo and Sannikov (2006) or
DeMarzo et al. (2010), and it may be necessary to adjust the manager’s equity share when
the project selection changes. However, these equity transfers may also distort incentives,
since if the manager expects to be stripped of shares in the future, he may be less likely to put
in effort. To counter this effect, I show that the implementation features the manager buying
and selling equity at ex-ante agreed on transfer prices, which exactly offset the adversarial
incentive effect from equity purchases and sales. Proceeds from these transactions as well
as the manager’s bonus payments will be escrowed in a personal account, from which the
manager will be paid once a certain condition is met.
The contract I derive shares many features with contracts found in reality. As Murphy
(1999) documents, the vast majority of CEO incentive contracts consist of a wage, which is
normalized to zero in my setup, equity holdings and bonus payments. The latter are set by
shareholders ex ante, and provide payments to the manager depending on his performance
in different categories. The total bonus payment is then a linear function of the boni of the
individual categories. The results in Murphy (1999) suggest that while the equity stake is
needed to provide the manager with a baseline level of incentives, bonus payments are used
to fine-tune the incentive plan, and make sure that the manager puts in the desired amount
of effort into the different projects. I show in Section 5 how this intuition translates into my
setup.
When projects choise is a binary decision, and associated with fixed costs, we are in a real
options framework. My results share many features with the real options literature, although
they are the consequence of very different mechanisms. I explain the connection in Section 6
in detail, and I also provide a discussion on how my model can be viewed as an approximation
to a model which is more in line with the real options literature.
The paper proceeds as follows. Section 2 provides an overview of related literature. Section 3
introduces the model, and illustrates basic results on the incentive scheme and the principal’s
value function. Section 4 is the core of the paper and discusses the optimal project selection
scheme both under output- and project-based incentives. The implementation outlined in
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the paragraph above is derived in section 5. Finally, section 6 provides a discussion how
my setup relates to the real options framework, which also deals with binary investment
decisions, while section 7 concludes.

2 Related Literature

The present model is related to three strands of literature. The techniques employed to
characterize the dynamic contract stem from the literature on continuous time contracting
put forward by Schattler and Sung (1993) and Sannikov (2008). Recent contributions which
share certain features with my setup include Biais et al. (2010), Fong (2007) and He (2009).
For instance, Biais et al. (2010) study optimal investment and downsizing in a firm as a
mean to implement a contract that causes the manager to exert effort in ’accident prevention’,
while He (2009) studies a model in which the agent’s effort affects the firm size. While the
first two focus on implementing a static effort decision, Fong (2007) studies a binary effort
decision in a single task with two agents.
The closest paper to mine is DeMarzo et al. (2010), who study a firm’s investment decisions
based on a continuous time moral hazard framework, and find that the agency friction opens
a wedge between average and marginal Q and distorts investment decisions. The framework
in my model shares some of their features, such an investment-consumption decision by
the principal, and linear utility. In contrast, I allow for multiple projects with different
risk-return profiles which the firm can implement independently of their investment, and
characterize the choice of projects as well as their implications for firm financing. Compared
to DeMarzo et al. (2010), there are two decisions to make in the firm, the first being on scale
and the second on a portfolio of projects to choose from, and the firm’s project portfolio will
vary over time, whereas it is comprised of a single, static project in DeMarzo et al. (2010).
This also has implications for the implementation of the contract, since instead of a constant
equity share, my model will feature equity transfers to and from the manager.
On the microeconomics side, the problem of multitasking has received significant attention
since the seminal article of Holmstrom and Milgrom (1991). As the list of works it too long
to be repeated here, I refer the reader to Bond and Gomes (2009) for a recent contribution
and references. Due to the complex nature of the problem dynamic studies of multitasking
are rare. Manso (2006) studies the trade off between exploration and exploitation of current
discoveries in a two period setting. Miquel-Florensa (2007) considers a setup with two tasks
in a discrete time setting and focuses on the question when, and whether, it is optimal to
execute tasks sequentially or in parallel, which will depend on the strength of externalities
between them. In my model the agent’s effort does not affect project completion, but instead
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the cash flow of the project. Also, projects do not end as they do in Miquel-Florensa (2007).
Instead, the principal in my model decides which and how many projects to execute in
parallel at any given time, when to allocate more projects to the agent, and when to stop
inducing effort in certain projects.
In a very recent paper, Hartman-Glaser et al. (2010) study a contract between a mortgage
underwriter and secondary investors. They consider a multitasking model where the un-
derwriter may exert effort in a subset of mortgages, and find that the agent either exerts
effort in all mortgages or none so that the question of which tasks are allocated to the agent
does not arise in equilibrium. They also find that bundling mortgages is optimal, which is
reminiscent of Laux (2001), who reports a similar result in a static setting.
Finally, my model is related to the literature on optimal investment. Two strands are note-
worthy. The real options literature, as summarized in Dixit et al. (1994), offers a comple-
mentary view on the issue of project choice. Although the real options framework has been
extended to incorporate agency frictions, see p.e. Grenadier and Wang (2005), Grenadier
and Malenko (2010) and Morellec and Schürhoff (2010), only the choice of a single project is
studied. This is due to the fact that characterizing the choice of multiple projects needs to
take into account how taking one project changes the decision maker’s value function with
regard to the other projects, which is difficult to determine in the real options setup. In my
model, the externality between projects is well behaved, and of second order only, allowing
for the characterization of an entire project portfolio.
The literature on capital budgeting which has built on Harris and Raviv (1996) and Har-
ris and Raviv (1998), studies the choice of projects when a division manager has superior
information about project quality and has an incentive to misreport. In Harris and Raviv
(1996) both over-and under-investment relative to the NPV criterion can occur, depending
on whether the project is of low or high quality, and the optimal contract can be understood
of as an allocation of a budget to the manager. In a similar setup, Berkovitch and Israel
(2004) derive an alternative implementation which takes the form of an internal rate of re-
turn, which is similar to my result on the hurdle rate. Finally, Malenko (2011) considers a
dynamic version of the problem, and derives the capital budgeting mechanism in continuous
time.
Since in the capital budgeting literature, projects only have an uni dimensional quality
associated with them instead of risk and return, it is difficult to compare my results. If the
average project payoff in my framework is interpreted as quality, and the relation between
payoff and the SN ratio is positive and sufficiently large, then my model will imply that there
are too many low quality projects and too few high quality projects in the firm’s portfolio,
in line with the above.
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Another related area is delegated portfolio management as found in Cadenillas et al. (2007),
He and Xiong (2008), Ou-Yang (2003) and Makarov and Plantin (2010). The key difference
between my model and the portfolio choice framework, is that, very similar to the real options
literature, project choice is a binary decision. This allows me to characterize selection criteria
as well as the delay in project implementation stemming from the agency friction.

3 Model Setup

3.1 Projects and Investment Technology

Consider a long term contract between the manager of a firm, the agent, and shareholders
who act as the principal. The firm is equipped with a portfolio of N potential projects,
indexed by i ∈ {1, ..., N}. Time t is continuous and infinite, and each project i is charac-
terized by it’s risk-return profile (µi, σi). Projects contribute to the firm’s cash flow, and
their output depends on the agent’s effort decision as well as a Brownian noise component
Bit. The noise components are mutually independent, i.e. Bit ⊥ Bjs for all i 6= j and times
t, s ≥ 0. The agent’s effort decision in project i at time t is denoted as ait. To capture the
discrete nature of project implementation, ait is binary, i.e. ait ∈ {0, 1}. When ai = 1, the
cumulative project cash flow xit evolves according to a Brownian Motion with drift µi and
volatility σi, and the instantaneous cash flow dxit is given by the diffusion

dxit = µiaitdt+ σidBit (1)

σi can be understood either as a measure of the riskiness of project i, or, equivalently, how
difficult it is to infer the agent’s effort ai from observing the outcome path xi of the project,
while µi measures the payoff of the agent’s effort in the task. As shall be seen, the inverse
signal to noise ratio, 1

SNi
= µi

σi
, is proportional to the cost of exposing the manager to the

necessary risk to motivate effort. The event ait = 1 shall be interpreted as project i being
assigned to the manager, or alternatively project i being implemented at time t.
Total cash flow depends on both firm size πt and the total output from all implemented
project. Shareholders receive a total cash flow of πt

∑
i dxit, and decide how much to either

pay out as dividend, leave to the agent as consumption, or use for investment. Given the
investment decision It, firm size is deterministic and follows the law of motion

dπt = (It − δπt) dt (2)
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The principal bears an adjustment cost in investment, πκ
(
I
π

)
, which is deducted from the

firm’s cash flows. Letting i = I
π
be the ratio of investment to current firm size, I assume that

the investment cost κ (i) is increasing and convex with κ (0) = 0.

3.2 Utility Functions and the Contract Space

The vector of project-specific Brownian noise Bt := (B1t, ..., BNt) is defined on a complete
probability space with filtration Ft, which satisfies the usual conditions.3 Each project’s
output can be fully observed by the principal and contracted upon, while effort is unob-
servable. The agent has limited liability so that for all t, Wt ≥ 0. When Wt = 0, the
agent is fired, the firm is shut down and the principal receives a salvage value of γπ.4 Let
τ = inf{t ≥ 0 : wt = 0} denote the random time at which shutdown occurs. The agent is
remunerated with a non-negative consumption process c = {ct ∈ R+ : 0 ≤ t ≤ τ} and the
principal prescribes a vector-valued effort process5 a =

{
(ait)Ni=1 ∈ {0, 1} : 0 ≤ t ≤ τ

}
. Effort

and consumption are both progressively measurable with respect to Ft.
The agent seeks to maximize his discounted lifetime utility W0, which is given by

W0 = E

(ˆ ∞
0

e−γtdct − e−γtπth
∑
i

aitdt |F0

)
(3)

Here, dct is the consumption payment process the manager receives, and the manager’s utility
is the expected discounted consumption payments minus his expected effort cost, h∑i ait,
which is linear in the projects.
Note that on under the optimal contract, the agent’s and the principal’s information sets
are the same. The agent’s effort cost is linear and symmetric in each task effort ait, and
increases with firm size. The principal is risk neutral, and seeks to maximize the following

3See Karatzas and Shreve (1991), p. 10.
4Note that this regime is not renegotiation proof as the value function of the principal will be upward

sloping in the agent’s continuation value when the latter is close to zero. Then, renegotiation would be
beneficial since instead of shutting the firm down, the principal would benefit from giving the agent a higher
continuation value. While allowing renegotiation diminishes the principal’s ability to incentivize the agent,
it does not alter the qualitative properties of the contract.

5The discreteness of the effort process poses a potential problem. If the agent’s effort ait switches between
zero and one for an infinite amount of times in a finite interval of time, the output process xit will not be well
behaved. Although this will not happen on the path of the optimal contract, it is not ruled out that there
may be deviations where such behavior occurs. The problem can be solved by assuming a small positive
switching cost that is incurred whenever effort changes. Then, it will never be optimal to switch effort
infinitely many times in any finite time interval. For the sake of exposition, I omit switching costs from the
initial analysis. Section 6 considers the relationship between the model with and without switching cost and
shows that we obtain the current model as a limiting case when the switching costs go to zero.
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expression

J(W,π) = sup
a,c

E

(ˆ ∞
0

e−rt
((

πt
N∑
i=1

µiait − πtκ (it)
)
dt− dct

)∣∣∣∣∣W0, π0

)
(4)

Here, the first term are the expected discounted cash flows from the projects, conditional on
the manager’s effort. The principal bears the expenses for investment in the firm πtκ (it), as
well as for consumption payments ot the manager.
I assume that principal and agent have different discount factors, and that the principal is
more patient, i.e. r < γ. As noted in DeMarzo and Sannikov (2006), this assumption is
useful for ruling out the case where the agent’s consumption is postponed forever. Finally, I
impose an upper bound on relative investment, i < r+ δ to ensure that the principal’s value
function is bounded.6

3.3 Incentive Compatibility

Given effort and consumption schedules (a, c), the manager’s continuation utility at time t
is given by

Wt = E

(ˆ ∞
t

e−r(s−t)
(
dcs − πth

∑
i

aitds

)
|{as, cs}s≥t,Ft

)
(5)

which is the analog of expression (3) at time t > 0.
Then, the martingale representation theorem implies that the agent’s continuation value
Wt follows diffusion process in the multidimensional Brownian motion Bt, which yields a
tractable representation for the agent’s wealth process.
Intuitively, given any project selection rule a and consumption schedule c, the only source
of uncertainty in the model will be the vector of Brownian noise terms Bt, and therefore at
each point in time the agent’s continuation value must be a function of the realizations of
this uncertainty. For Brownian Motion, this function takes a particularly simple form, as
can be seen below.

Lemma 1. For any progressively measurable effort process a and consumption process c,
there exists a collection of progressively measurable and square integrable stochastic processes{

(ψit)Ni=1 : 0 ≤ t ≤ τ
}
, such that

dWt =
(
rWt + πth

∑
i

ait

)
dt− dct + πt

N∑
i=1

ψitdBit (6)

6If i = r + δ the shareholders’ value of the firm might be infinite, since the firm would grow at a fast
enough rate to negate any discounting.
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The contract is incentive compatible (IC) if and only if

ψit ≥
σi
µi
h (7)

whenever ait = 1.

In the same spirit as Sannikov (2008), I interpret ψit as the sensitivity of the agent’s con-
tinuation value with respect to the risk of project i. Since the principal can control both
consumption and effort, she will be able to implicitly determine how much the agent’s con-
tinuation utility responds to uncertainty, and we can think of ψit being chosen directly by the
principal. When the output of project i features an unexpected jump by dBit, the agent’s
continuation value will change by ψitdBit. To see how this impacts the agent’s decision,
consider a deviation for a short period of time dt, during which the manager is shirking.
Without exerting effort, his utility will rise by hdt. Because the principal would not know
that the agent is shirking, she expects that dBit = 1

σi
(dxit − µidt), while the true process is

dxit = σidBit. Hence, the principal’s expectation of the noise process falls short by −µi

σi
dt,

and by the representation, the manager loses ψi µi

σi
dt in continuation utility. To induce effort,

this loss must be larger than h, which leads to equation (7).
Lemma 1 also illustrates why the signal to noise ratio is important for providing incentives.
When the manager shirks, he affects the principal’s beliefs about the realization of dBit.
For instance, when the project is relatively safe, and the ratio µi

σi
is very large, observing

a shortfall in output by roughly µidt is a very unlikely event, and if the manager exerts
effort this only happens when a large shock dBit hits the project. Therefore, when observing
a shortfall in output, the principal will conclude that tha manager has been shirking, and
punish the manager severely.7

Finally, note that analogous to the discrete time contracting literature, equation (6) should
be interpreted as a promise keeping constraint. Given a continuation value Wt, higher
consumption dct implies that ceteris paribus, the manager’s promised value at the end of a
small interval of time Wt+dt will be smaller, while demanding more effort will imply that the
principal has to promise more to the agent at Wt+dt.

3.4 The Optimal Contract

The with the result of Lemma 1, the optimal contract can be expressed in a choice of
processes

{
(ψit)Ni=1 , ct, it : 0 ≤ t ≤ τ

}
and a firing time τ by the principal. The relevant state

7Formally, in equation (6), the shortfall in output is equivalent to a very large negative realization of dBit

and taking ψit as given will imply that Wt falls by a relatively large amount, while the opposite is true for
when σi is large.
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space will consist of continuation value and firm size pairs (W,π) ∈ R2
+, and the optimal

consumption and effort processes will be functions of the state variables, i.e. c = c (W,π)
and a = a (W,π).
The principal seeks to maximize the firm value, net of consumption payments and investment
costs, subject to the promise keeping constraint (6), the law of motion for firm size and the
incentive compatibility condition (7).

J(W,π) = max
{ψit,ct,τ,it}

E

(ˆ τ

0
e−rt

(
πt

N∑
i=1

µiaitdt− dct − πtκ (it) dt
)

+ e−rτγπt |F0

)
(8)

s.t. dWt =
(
rWt + πth

∑
i

ait

)
dt− dct + πt

N∑
i=1

ψitdBit

dπt = πt (i− δ) dt

ψit ≥
σi
µi
h if ai = 1

Notice that except for the payout to the agent, dct, the principal’s value function J (W,π) is
scalable by πt. The same holds true for the agent’s continuation value dWt, except that now

dWt

πt
=
(
r
Wt

πt
+ h

∑
i

ait

)
dt+

N∑
i=1

ψitdBit (9)

This suggests that if we take wt = Wt

πt
as the relevant state variable, the principal’s value

function can be scaled by πt and expressed in terms of wt alone. Then, the principal’s value
function satisfies a scaled version of the HJB equation and is given by

rj (w) = sup
c,a,i

∑
i

µi − κ (i) + j′ (w) ((r − i+ δ)w + hn) + j′′ (w) 1
2
∑
i

ψ2
i − (i− δ) j (w) (10)

where n = ∑N
i=1 ai is the number of projects.

4 Properties of the Optimal Contract

4.1 Shape of the Value Function

The HJB equation (10) is key to characterizing the optimal contract. To determine the
contract’s properties at all points in the state space, we need to establish how j and it’s first
two derivatives depend on w. This is the purpose of this section.
The solution to equation (10) satisfies the familiar properties from DeMarzo et al. (2010).
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w̄ w
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Figure 1: Shape of j(w) and continuation regions

It features two boundaries, 0 and w̄. At the first, the contract is terminated, while at the
second, the agent is given a consumption payment dct so that the scaled continuation value
process wt reflects at w̄. At this point the smooth pasting and super contact conditions

j′ (w̄) = −1

j′′ (w̄) = 0

are satisfied, while at the shutdown boundary only the value matching condition j (w̄) = L

holds. Throughout the region (0, w̄), we have j′ (w) > −1 and j′′ (w) < 0, that is, the firm
is risk averse.
Hence, the qualitative properties of the value function, as far as it’s shape and shutdown
or payment conditions are concerned is unaffected by having different investment projects.
Note however, that although these qualitative conditions hold, the value function will be
different from the one featured in DeMarzo et al. (2010), since the HJB equation on the
continuation region is different.

Proposition 2. The region (0, w̄) is partitioned into continuation regions Ca on which a
particular project selection a is optimal, and cutoffs w (a, a′) on which the project selection
changes. The value function j is C2 on the entire region (0, w̄) and is C3on Int (Ca) for all
a with j′′′ > 0 wherever it exists and when project selection changes, j′′′ (w) exhibits a jump.

Figure 1 illustrates the results.
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4.2 Project Choice

Having characterized the properties of the principal’s value function, I now turn to the
optimal choice of projects. In the first best benchmark the project is chosen if and only if
µi > h, i.e. whenever the payoff of the project is higher than the effort cost. Hence, in the
first best, project choice follows the NPV criterion, and project assignment is independent
of the agent’s continuation value W or current firm size π.
Under moral hazard, the choice of projects is determined from the scaled HJB equation (10).
At each point w, the principal chooses the agent’s consumption, investment and projects to
maximize the right hand side, taking the function j (w) as given. A convenient feature of
this representation of the problem in (8) is that the function to be maximized is separable
in the individual projects. Therefore, we can calculate the marginal benefit of each project
which is given by

bi (w) = µi + j′ (w)h+ j′′ (w) 1
2ψ

2
i (11)

and which is a function of both the project’s characteristics and the scaled continuation value
w. Due to this separability, projects are executed whenever bi (w) > 0, and we can use the
results in Proposition 2 to characterize each project’s marginal benefit.
Further, we can relate expression (11) to the NPV rule rewriting it as

bi (w) = µi − h+ (j′ (w) + 1)h+ 1
2j
′′ (w)ψ2

i (12)

Since we have j′ (w) ≥ −1, the term (j′ (w) + 1)h will be positive, while 1
2j
′′ (w)ψ2

i will be
negative. Intuitively, 1

2j
′′ (w)ψ2

i measures the cost of providing incentives for the agent, and
(j′ (w) + 1)h ≥ 0 measures the benefit of of moving closer to the efficient boundary w̄.
Since ψ2

i = h2
(
σi

µi

)2
= h2

SN2
i
, we have

bi (w) = NPVi + (j′ (w) + 1)h+ 1
2j
′′ (w) h2

SN2
i

(13)

Hence, the marginal benefit of implementing a project will depend positively on both the
net present value and the project’s signal to noise ratio. While the effect of NPV is obvious,
as higher NPV implies higher expected cash flows from the project, the signal to noise ratio
works though the manager’s incentives. The lower the signal to noise ratio, the harder it is to
detect deviations by the agent, and thus, the stronger the incentives need to be to motivate
the agent to work. Since j′′ (w) < 0, this is costly in the eyes of the principal and the firm
is effectively risk averse, even though all involved parties are risk neutral.
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Figure 2: NPV vs. SN boundary

The reason is that under moral hazard, the manager is fired as the continuation value Wt

reaches zero. Since termination would not occur in the first best, it is inefficient, and the
j′′ (w) indicates exactly how this termination risk is weighted by the firm.
In line with this intuition, the third derivative of the value function j′′′ (w) is positive wherever
it exists, so that j′′ (w) is a strictly increasing process in w. That is, as the manager’s
promised value moves away from the termination boundary, the probability of the firm
being liquidated decreases, and so does the principal’s risk aversion. When the manager
takes on additional projects, the higher volatility in the law of motion for the continuation
value (6) implies that at any Wt the probability of being terminated in the future is higher,
which implies additional costs for the principal.
Setting bi (w) = 0, we can derive the minimal NPV which the shareholders will require to
implement a project.

NPV (SN, w) = − (j′ (w) + 1)h− 1
2j
′′ (w) h2

SN2 (14)

Consequently, all projects with higher than the minimal NPV will be implemented, while all
others will not. This threshold is be a function of both the current scaled continuation value,
as well as the project’s signal to noise ratio. Figure 2 illustrates the non-linear relationship
between NPV and SN and outlines the set of projects which will be chosen for a particular
w.
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4.3 Project Portfolio Dynamics

The choice of projects will evolve over time, as w changes. Since j′′′ > 0, i.e. the ’cost’ of
low SN is decreasing and because of j′′ < 0, the cost of compensating effort is increasing.
We have

∀ w ∈ (0, w̄) j′′ (w) > j′′ (0) and j′ (w) < j′ (0) < 0 (15)

therefore, projects with a sufficiently high NPV relative to their SN will always be chosen.

Proposition 3. If NPVi > −j′′ (0) 1
2

h2

SN2
i

, we have bi (w) > 0 for all w ∈ (0, w̄) and there is
no distortion in from moral hazard in selecting project i.

For all other projects, implementation will be distorted by the agency problem and the
trade off between NPR and SN will become significant. Positive NPV projects may not be
implemented, unless their SN is sufficiently large so that it compensates the principal for
the added risk. As w grows, the termination probability declines, and with it the cost of
exposing the agent to risk, so that holding NPV constant, shareholders will accept a lower
signal to noise ratio.
This effect is captured by the fact that j′′′ (w) > 0 in equation (13). At the same time,
(j′ (w) + 1)h is decreasing, which implies that while the relative cost of risk exposure de-
creases, the cost of compensating the agent for effort is increasing. This generates a non-
trivial dynamic for project selection.

Proposition 4. For any w, and project allocation a, there exist a cutoff SN (w) such that
for all SNi > SN (w), b′i (w) < 0 and for all SNi < SN (w), b′i (w) > 0. Equivalently, we
have,

b′i (w) > 0 if ψ2
i >

1
n

∑
j:aj=1

ψ2
j (16)

and, for two projects i and j,

bi − bj > 0 whenever ∆NPV > −j′′ (w) h
2

2 ∆ 1
SN2 (17)

and
b′i − b′j = j′′′ (w) h

2

2 ∆ 1
SN2 (18)

Hence, at any w, marginally raising the scaled continuation value implies that bi (w), the
value of the project to the principal, rises for projects with sufficiently low signal to noise
ratio. Alternatively, in line with the intuition just outlined, we should expect that as w
rises, the benefit of more risky projects rises as well. The Proposition shows that this will
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be the case when a project required risk exposure ψi is above the mean risk exposure of the
currently chosen portfolio.
Interestingly, the model provides a rationale for why, and when, negative NPV projects are
executed. To see this effect notice that if σi = 0, i.e. the signal to noise ratio is infinite, the
break even NPV satisfies

NPV = − (j′ (w) + 1)h < 0 (19)

Standard explanations for this phenomenon include ’empire building’ as in Jensen (1986),
and private benefits to the manager. In my setup, the reason is rather different and can be
explained due to the interaction of two forces.
If w is relatively close to zero, i.e. j′ (w) > 0 and the termination probability is high,
taking on a very safe negative NPV project will serve to push the agent’s continuation value
up in expectation. Hence the firm benefits from lowering the future expected termination
probability, in exchange for current losses. At the same time, a low continuation value implies
that the effective cost of compensating the agent for effort is lower than the first best. This
is due to the fact that a low w will imply that effectively the principal does not need to
reimburse the entire effort cost to the agent. Instead, payment is made only at the boundary
w̄, and the farther away w is from the payment boundary, the lower the expected present
value of the payment, and hence the lower the expected cost for the principal. Indeed, as
w rises, the minimal NPV will rise as well. Eventually, when w is close to w̄, the relative
importance of the SN criterion will vanish, and only positive NPV projects will be executed,
irrespective of their riskiness. This result is illustrated in figure 3.
The red function shows the project boundary for small w, while the black and blue functions
represent the boundaries for successively larger w. Together with the results from Proposition
4, this implies that as w grows, the composition of the firm’s optimal portfolio will shift
towards more high-NPV, low-SN projects, while more and more negative NPV projects are
sorted out. Finally, as w → w̄, the break-even NPV line will become successively flatter and
approach the x-axis.
Finally we can characterize the externalities between projects induced by the agency problem.
In the first best, project choice is static and projects are chosen independently of each other.
Under moral hazard, taking w as given, bi (w) is still independent of bj (w) for j 6= i. In
this sense, at each point in the state space, the choice of projects is independent. This
is surprising in the light of the literature on static multitasking under moral hazard. For
instance, Laux (2001) shows that in a setting with a risk neutral principal and agent, and
limited liability, bundling projects increases the principal’s payoff, since it allows to extract
more of the agent’s rents by loosening the limited liability constraint. In my setting, there
is no such first order effect of project choice on payoff, since the value function is twice
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Figure 3: Project Cutoffs as a function of w

continuously differentiable.8 Intuitively, there is no hysteresis effect as in the real options
literature and the firm can freely switch between projects.
There is, however a second order effect. Choosing a project generates an externality not on
the current payoff of other projects, but on the rate at which their value changes with w.

Proposition 5. Whenever another project is added, b′i (w) jumps down for all projects and
whenever a project is dropped, b′i (w) jumps up for all projects.

4.4 Output- vs. Project-Based Incentives

In this subsection, I illustrate how the criterion for project choice changes when the agent
cannot be offered incentives based on individual project outputs. Suppose that the contract
can only be conditioned on total output dxt = ∑

i dxit. With these output-based incentives,
repeating the argument from Lemma 1 shows that the agent’s continuation value satisfies

dWt = (rWt + h(at)) dt+ ψ̄tπt
N∑
i=1

σidBit (20)

and the IC constraint becomes

ait = 1⇒ ψ̄t ≥
h

µi
(21)

8If I were to introduce a fixed cost with project implementation, the value function would not be C2

at the cutoffs and hence there would be a first order externality between projects. Implementing another
projects will cause a discrete jump in j′′, and hence in bi for all projects.
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Hence, the firm will choose a certain portfolio of projects, and the project ι with the lowest
NPV will determine ψ̄, the risk exposure required to incentivize all projects in the portfolio.
To see why this needs to be the case, consider a variant of the intuition outlied in Section
3.3. If the manager shirks on project i for a small period of time dt, he saves hdt in effort
cost, but at the same time foregos µidt in payoff, and by the representation (20), will suffer
a reduction in continuation value by −µiψ̄. The deviation is not profitable when ψ̄ ≥ h

µi
,

and since the principal can choose only one ψ̄, it must be high enough to incentivize effort
on all projects in the portfolio. Since j′′ (w) < 0 we will thus have

ψ̄t = max
i:ait=1

h

µi
(22)

Equivalently, given a portfolio and a value for ψ̄, all projects in the portfolio necessarily
satisfy

NPVi ≥ h
ψ̄ − 1
ψ̄

(23)

and therefore the portfolio appears to have been chosen using a hurdle rate or minimum
NPV criterion.
Since the hurdle NPV will depend on both the current scaled continuation value w as well
as the current project selection, it will shift non-monotonically as w changes. It will however
converge to the NPV > 0 criterion when w approaches w̄.
We can deduce further properties of the contract by examining the principal’s value function,
which will now be given by

rj (w) = sup
c,a,i

∑
i

µi−κ (i)+j′ (w) ((r − i+ δ)w + hn)+j′′ (w) 1
2 ψ̄

2∑
i

σ2
i −(i− δ) j (w) (24)

The main difference to equation (10) is the coefficient of j′′ (w). Under project based in-
centives the total risk inherent in the contract is ∑i ψ

2
i = ∑

i σ
2
i

(
h
µi

)2
, while output based

incentives raise the coefficient to ∑i σ
2
i ·maxi:ai=1

(
h
µi

)
. Hence, for any effort profile a with at

least two projects implemented, the agent’s risk exposure is strictly higher under output than
under project based incentives, as long as h

µi
6= h

µi
for some projects i and j with ai = aj = 1,

and in particular the risk exposure on any project is at least as high as under project based
incentives. Therefore, conditioning the incentive contract on total output alone cannot be
efficient, since it exposes the agent to excessive risk.
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4.5 Investment in Projects

I now consider the question how agency conflicts affect the allocation of funds between
competing projects. Suppose that each period, the principal can distribute kπ resources,
with k ∈ (0, 1) among the projects to increase the effectiveness of managerial effort. The
resource allocation satisfies ∑

i

πi ≤ kπ (25)

and is complementary to the agent’s effort, so that

dxit = (πitµiaitdt+ σiπtdBit) (26)

Total instantaneous cash flow will hence follow

dxt = πt

(∑
i

π̃itµiaitdt+ σidBit

)
(27)

where π̃it = πit

πt
is the fraction of resources allocated to project i.

In the first best, the firm will engage in an extreme form of winner picking, since only
the project with the highest NPV will receive all the funds. With agency however, project
funding will not only act to increase the cash flow, but also serve to change incentives. Given
project funding π̃i, the risk exposure required to motivate effort is given by

ψi ≥ h
σi
µi

1
π̃i

(28)

Hence, project funding serves to lower the required risk exposure on the agent’s effort,
because it improves the signal to noise ratio of the project output dxit, and makes shirking
easier to detect. In this sense, funding has an added benefit next to improving the efficiency
of the agent’s effort. The principal’s scaled HJB equation (10) will now change to

rj (w) = sup
c,a,i,π̃i

∑
i

π̃iµi − κ (i) + j′ (w) ((r − i+ δ)w + hn)

+j′′ (w) 1
2
∑
i

(
h
σi
µi

1
π̃i

)2

− (i− δ) j (w)− λ
(∑

i

π̃i − k
)

where λ is the Lagrange multiplier associated with resource constraint (25). Given project i
is implemented, it’s capital allocation will now solve the FOC

µi − λ− j′′ (w) h2

SN2
i

1
π̃3
i

= 0 (29)
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which implies that

π̃i =
(
−j′′ (w)h2

SN2
i (λ− µi)

) 1
3

(30)

Hence, project funding will be decreasing in the project’s SN ratio, and low risk projects
will receive lower funding compared to high risk projects, since for high risk projects, the
marginal value of lowering the costs of incentives is higher. The link between return and
funding remains positive, and higher payoff projects will receive relatively more funds.
As the following Lemma shows, project funding will increase in w only for projects with
sufficiently high NPV. This is intuitive, since as w rises, the costs of exposing the agent to
risk decline, and therefore the motive to distort funds away from high payoff and towards
high risk projects diminishes as well.

Lemma 6. We have λ′ (w) < 0 and project funding will be increasing in w whenever µi−λ >
−λ′(w)
j′′′(w) j

′′ (w)h and decreasing otherwise.

Proof. We have

∂π̃i
∂w

= 1
3

(
j′′ (w)h2

SN2
i (µi − λ)

)− 2
3

h2SN2
i

j′′′ (w) (µi − λ) + λ′ (w) · j′′ (w)
(µi − λ)2 SN4

i

(31)

which is positive whenever the condition holds. To see that λ′ (w) < 0 note that by the
resource constraint ∑

i

∂π̃i
∂w

= 0 (32)

and if λ′ (w) > 0, ∂π̃i

∂w
< 0 for all w and i, so that the equation above cannot hold.

5 Implementation

In this section I discuss how the optimal contract can be implemented. I consider two setups,
one where the firm can issue equity on individual projects, and one where it cannot. In the
first case, the firm will hold cash balances and give the manager equity shares in the projects.
These shares are vested, in the sense that insufficient performance of the manager will lead
to him losing shares, while the manager will be granted new shares for opening projects if
past performance was high.
When only shares in the firm and not the projects can be issued however, equity is not
sufficient to implement the optimal contract. The intuition for this is analogous to Section
4.4, and I show that the hurdle rate allocation from Section 4.4 will be implemented when
equity is issued on the firm level. To achieve the second best, it will be necessary to introduce
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a measure which takes managerial performance in the individual projects into account, and
I discuss how this measure corresponds to bonus structures seen in practice.

5.1 Project-Specific Equity

As a benchmark, I describe an implementation when the firm can issue equity on the indi-
vidual projects, and uses cash holdings to finance it’s operations. Let Mt denote the total
stock of cash, which can be allocated among the projects so that Mt = ∑

iMit where Mit is
the stock of cash associated with project i. We have

dMit = rMitdt+ dXit − dDivit − dcit − αiκ (i) dt (33)

The first term is the interest earned on the current stock of cash at rate r. The cash stock
has inflows in form of the project’s random cash flow dXit each period and outflows in terms
of the dividends paid on the equity issued for project i, as well as the payout for the agent.
The terms dcit are for accounting purposes only. In fact, since we know that the agent must
receive a payout dct when w hits w̄, any assignment of payouts to the projects such that∑
i dcit = dct will yield the same result. The same holds true for the assignment of investment

costs towards projects, which are split according to share αi, with
∑
i:ai=1 αi = 1.

Suppose that the equity holders require a minimal dividend which must satisfy

dDivit = (r − γ)Mitdt− αiκ (i) dt (34)

In addition, the manager is endowed with a personal account9 with balance At, which pays
interest at rate γ and has the following features. At the beginning of the contract, A0 = 0
and the manager is endowed with an equity share Ψit in each project which is executed at
t = 0. Whenever a new project is executed, the manager buys equity in the project at a
pre-determined price and whenever a project is halted, the manager sells the equity share
back to the shareholders at price a certain price. Proceeds from buying and selling shares
are deposited into the personal account.10 Finally, assume that the manager may not access
funds inside the account, except for when a dividend dct is paid.
Then we have the following Proposition.

Proposition 7. Suppose that the firm holds a cash balance Mt which satisfies ∑iMit = Mt

as well as equation (33), and that the minimal dividend process satisfies (34). Further, at
9We can think of the account either in terms of cash or incentive points - the distinction turns out to be

irrelevant.
10I assume that it is possible for the account to have a negative balance.
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time t the manager holds Ψit = ψit

σi
equity shares in project i, is endowed with an personal

account with balance At which pays interest at rate γ and decides on the implementation of
projects as well as the payout policy.
Whenever the sum of personal account and the managerial share of the firm’s cash holdings∑
i ΨitMit+At equals zero, the agent is fired and the firm is shut down, and whenever a project

is started the manager buys shares according to a pre-determined price which corresponds
exactly to Mit and whenever the project is stopped the manager sells his shares at the same
price. Proceeds from the purchase and sales of shares are going towards the personal account.
Then the contract from Section 4.4 will be implemented and the agent’s continuation value
will satisfy Wt = ∑

i ΨitMit + At.

Intuitively, while the equity shares serve to expose the manager to just enough risk to
incentivize effort, the cash balances and dividend policy are ensuring that the manager’s
continuation value grows at exactly the right rate.
In the optimal contract, despite the fact that project choice is discrete, the manager’s contin-
uation valueWt is a continuous function of time. An intuitive, but wrong, implementation of
the contract would be one where if the manager performs badly, and a project is halted, he
gets stripped of the equity share without a compensation. Then, however, given the contract
is implemented with cash and equity only, the continuation value could not be continuous,
since the total value of his equity stake would jump downward. More importantly, the man-
ager would know that his continuation value will undergo a jump in the future, which in
turn may distort his incentives right before being stripped of his share.
To counter this effect, it is necessary to compensate the manager whenever shares are either
awarded or taken away. This leads to the interpretation that the manager will instead be
required to either buy or sell shares to the shareholders at pre-determined transfer prices,
which are set precisely ot the amount at which the transfer does not distort incentives while
ensuring the optimal level of risk exposure to the manager.11

Further, the contract will now depend not only on the cash holdings of the firm, as in
DeMarzo et al. (2010), but on the sum of the value of the personal account At and the
naively calculated value of the managerial share in the firm’s cash stock SCt = ∑

i ΨitMit.
Whenever the sum reaches an upper bound, the firm pays dividends, while when the sum
reaches zero, the firm is terminated.12 When dividend payments dct are made, it is easy to
see that it does not matter whether the money is awarded to the manager from the equity

11Note that in DeMarzo et al. (2010), DeMarzo and Sannikov (2006) and many other works, the agent’s
effort level and therefore the optimal risk exposure is constant. In these works, the optimal contract can be
implemented via an equity share which is constant over time, and changes in the agent’s equity share are
not an issue.

12Note that I interpret either Mit < 0 or At < 0 as the firm taking on short term debt.
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stake, or an equivalent payout from the personal account. Hence the personal account may
serve as another way to reward the manager without paying special dividends on equity.
Finally, note that at the optimal contract the equity shares satisfy Ψit = h

µi
. This is because

the process dMit already carries a Brownian noise component of with volatility σi from the
output process dXit. Therefore, the manager will hold less shares in projects with higher
NPV, independent of their risk.

5.2 Firm Level Equity

In reality, corporations issue stock based on the entire firm’s performance, instead of individ-
ual subdivisions, or even plants or R&D projects and hence the previous discussion is best
understood as a benchmark case. In the following, I describe how to implement the contract
when the equity stake can only be conditioned on the total cash holdings Mt, and the agent
is restricted to a single equity share.
Formally, suppose the agent is granted an equity share Ψ̄t, which grants him a fraction of
ownership in the firm’s total cash holdings Mt = ∑

iMit, as well as any dividend payments,
should they arise. Now, the dividend process satisfies simply

dDivt = (r − γ)Mtdt− κ (i) dt (35)

while the cash holdings process follows

dMt = rMtdt+ dXt − dct − dDivt − κ (i) dt (36)

and again the personal account At is used to escrow proceedings from the manager’s equity
transactions. Since Ψ̄t effectively conditions the managerial equity share on the total output
of the projects, dXt = ∑

it dXit it comes at no surprise that the allocation implemented is
not the optimal contract, but the hurdle-rate contract in Section (4.4).

Proposition 8. Suppose that the firm holds a cash balance Mt which satisfies (36), and that
the minimal dividend process satisfies (35). Further, at time t the manager holds Ψt equity
shares, is endowed with an personal account with balance At which pays interest at rate γ
and decides on the implementation of projects as well as the payout policy.
Whenever ΨtMt + At reaches zero, the agent is fired and the firm is shut down, and when-
ever a project is started the manager buys shares according to a pre-determined price which
corresponds exactly to Mt and whenever the project is stopped the manager sells his shares
according to the same price. Proceeds from the purchase and sales of shares are going towards
the personal account.
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Then the contract from Section 4 will be implemented and the agent’s continuation value will
satisfy Wt = ΨtMt + At.

Building on Proposition 7, we can show intuitively why only the hurdle rate contract will
be implemented. Given an equity share Ψt, the managerial share of the firm’s cash holdings
responds to the manager’s effort decision in project i according to Ψtπtµiaitdt, while at the
same time the manager incurs an effort cost of πthaitdt. Consequently, effort is only optimal
if Ψt ≥ h

µi
. Since this must hold for each project which is implemented, we have that

Ψt = max
i:ai=1

h

µi
= max

i:ai=1
Ψit (37)

and the risk exposure is the same as in Section 4.
Proposition 8 has an interesting interpretation. In Section 4 I have shown that hurdle
rates can arise as a suboptimal outcome. Thus, when the manager’s contract consists pre-
dominantly of an equity share, the inefficient hurdle rate contract is the only one that is
implementable. Therefore, my results suggest that the widespread use of hurdle rates may
not be optimal, as for example Berkovitch and Israel (2004) suggest, but instead the result
of flawed incentive contracts.

5.3 Firm Level Equity and Bonus Contracts

In order to implement the optimal contract, it is necessary introduce a project-dependent
component into the implementation. There are of course are many ways to achieve this. For
instance, the firm could set up an incentive point account which is designed to exactly mimic
the evolution of the manager’s continuation value in equation (6).
My implementation features an equity share and bonus payments to the manager, which
are made contingent on his performance in the different projects. In a survey on managerial
compensation Murphy (1999) finds that indeed the majority of managerial incentive contracts
feature a mix of equity and boni, and that the total bonus is a sum of boni in individual
categories, which are generally specified by the shareholders. Hence, my model serves as a
rationalization of these practices.
Suppose that in addition to the instruments in Proposition 8, the firm makes payments dPt
to the manager’s personal account according to the performance of the individual projects,
and that the amount of equity issued Ψt satisfies Ψt = mini:ai=1 Ψit.
To implement the optimal contract, suppose now that the investor can pay a bonus directly
to the agent contingent on his performance in each project. In particular, the payment
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process follows
dPt =

∑
i

(Ψit −Ψt) dXit (38)

which is dependent on Ψit, the equity stake in project i that would be optimal if equity on
the individual projects could be issued. In this implementation, the bonus payments thus
act towards providing the manager with additional project dependent incentives in excess of
those already provided by the equity stake.

Proposition 9. Suppose that the managerial incentive contract is just as in Proposition
8 with the exception of a bonus payment process dPt which satisfies equation (38) and is
escrowed in the manager’s personal account, and the managerial equity share satisfies Ψt =
mini:ai=1 Ψit. Then the optimal contract is implemented.

Since the shareholders prefer to fine-tune the manager’s risk exposure, the equity share
needs to be low enough to not provide unnecessary risk exposure, which is achieved exactly
by setting it to the minimal equity stake the manager would hold if project specific shares
could be issued. Although the manager does not receive the bonus payment immediately, it
raises the balance on his account, and thus brings him closer to the payout boundary, raising
his expected continuation value as a response to past performance.

6 Relations to Real Options

6.1 Overview

It is worth comparing my model and it’s predictions with the theory of real options13, which
next to NPV analysis is the canonical framework used to evaluate investment decisions. In
the real options framework, an investor needs to decide whether, and when, to undertake
a project that carries a fixed cost and whose value changes stochastically over time. The
main insight of real options theory is that simply following the NPV criterion, i.e. investing
whenever NPV>0 is not optimal. This is due to the fact that there exists an ’option value’
to investment, and exercising that option entails a loss of option value. Similarly, if starting
a project gives access to follow-up projects, investing may be associated with acquiring an
option value. Since the NPV criterion does not take this into account, investment decisions
will be suboptimal.
Superficially, my model provides similar results to the ones obtained by the real options
literature. For instance, projects are not executed if NPV>0 but if it is above a threshold

13See, e.g. Dixit et al. (1994) or Abel and Eberly (1994).
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depending on the project’s riskiness, and there will be ’delay’ in the sense that positive NPV
projects will not be started. Note however, that the mechanisms which drive the results
in both frameworks are entirely different. With real options, not exerting a positive NPV
project simply means that the current NPV is not enough to compensate for the loss of
option value, and hence the delay is in fact efficient, whereas in my model, delay relative
to the NPV criterion stems from the fact that moral hazard induces an additional cost the
principal has to take into account when implementing projects, and would not occur in the
first best. My model generates this pattern entirely without relying on irreversibility or sunk
costs, which is crucial in the real options literature, and without which the option value
would necessarily be zero.
Further, in a real options framework, it is well possible that a negative NPV project is
executed, a fact that is generally attributed to issues such as empire building and private
benefits to managers which cannot be remedied by contractual arrangements. This happens
exactly when starting the project gives access to another option, p.e. for follow up projects,
which compensates for both the negative NPV and the loss of the original option, which
is shown by Baldwin (1982) and Roberts and Weitzman (1981) in the contexts of product
market competition and sequential investment.
My framework provides a different rationalization for this phenomenon. Due to limited
liability, if the firm is close to termination, the principal cannot drive the continuation
value up, and thereby effectively punish the agent for past failures, by demanding cash
payments. In this situation, the only way to lower the agent’s current utility is to mandate
more projects. For the principal, this will come at a benefit since it will push the agent’s
continuation value away from the termination boundary and thereby lower the termination
probability. Alternatively, a low w implies that in expectation, the principal does not need
to reimburse the agent for his entire effort cost. In this sense, the principal values the cost
of effort differently under moral hazard, and will undertake projects whose NPV is negative,
since he does not expect to pay the full amount of the accrued effort costs.
Finally, real options models carry an inherent difficulty when it comes to characterizing the
simultaneous choice of projects. This is because the fixed costs of starting, and potentially
terminating projects will in general imply that the marginal benefit of each project depends
on the entire chosen portfolio in ways which are difficult to characterize unless an explicit
solution to the decision maker’s value function can be obtained.
The following Section illustrates how my model can serve as an approximation to a real-
options framework with multiple projects.
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6.2 Project Choice under Fixed Costs

To study the relation between a real options framework and my setup, I introduce fixed costs
of project execution. In particular, assume that projects can be started and shut down at will
as before, but executing, or re-starting, a project carries a fixed cost ke > 0, whereas shutting
the project down entails cost ks > 0. Therefore, whenever a project is not being executed,
the firm holds a real option to start the project, while when the project is implemented, the
firm holds an option to halt it.14

Let {τ i,en }
∞
n=1 denote the sequence of stopping times at which project i is started or re-started,

and let {τ i,sn }
∞
n=1 denote the analog for when project i is halted. Finally, the total fixed cost

of switching from portfolio a to portfolio a′ is

k (a, a′) =
∑

i:ai=1∧ai′ =0
ks +

∑
i:ai=0∧ai=1

ke (39)

Under the optimal policy, the principal’s value function will be now given by

J(W,π) = E

(ˆ τ

0
e−rt

(
πt

N∑
i=1

µiaitdt− dct − πtκ (it) dt
)

+ (40)

+ e−rτγπt −
N∑
i=1

∞∑
n=1

e−rτ
i,s
n ks −

N∑
i=1

∞∑
n=1

e−rτ
i,e
n ke

∣∣∣∣∣F0

)

and the principal will face the same constraints as in (8) of Section 3.
Introducing fixed costs affects the project selection policy in two important ways. First,
project selection will not be linearly independent anymore. Thus, the currently chosen
project portfolio will have a first-order effect on the marginal benefit of all projects. Second,
the simple HJB equation approach is no longer valid for characterizing the value function.
Proposition 10 describes the structure of the optimal contract in the real options case.

Proposition 10. Let Li,a denote the second order differential operator when the investment
is i and project portfolio a is chosen, i.e. for any function φ ∈ C2

Li,aφ (w) =
(

(r − i+ δ)w + h
∑
i

ai

)
φ′ (w) + φ′′ (w) 1

2
∑
i

ψ2
i (41)

The solution to problem (40) is determined by the following system of quasi variational
14Note that none of my proofs rely on this specification, and the results will hold for any cost function

k (a, a′) > 0 for a 6= a′.
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inequalities for all a and w.

min
{
rja − Li,aja −

∑
i

µi + κ (i)− (i− δ) ja, ja −max
a′ 6=a

ja′ − k (a, a′)
}

= 0 (42)

For any w and a, ja ∈ C1 will satisfy the above equation in a viscosity sense.
Further, let w (a, a′) denote the threshold at which project choice switches from a to a′. Then
for any a 6= a′ and w (a, a′) the following conditions hold

ja (w (a, a′)) = ja′ (w (a, a′)) (43)

j′a (w (a, a′)) = j′a′ (w (a, a′))

And
j′′a (w (a, a′)) ≥ j′′a′ (w (a, a′)) (44)

Due to the fixed costs of setting up and scrapping projects, the value function is dependent
on the current project portfolio a, which is expressed by the notation ja(w). Equation (42)
encodes the optimal choice of a as a function of w. A particular project selection a will be
optimal for some range of w, in which case

ja (w) > max
a′ 6=a

ja′ (w)− k (a, a′) (45)

In line with the previous notation, I label this open set the continuation region Ca, and it’s
complement the switching region Sa. Equation (42) implies that on Ca, the analog of the
HJB equation without fixed costs, equation (10), will hold, albeit under a different set of
boundary conditions, which are given by (43).
Note that equation (45) does not imply

ja (w) > max
a′ 6=a

ja′ (w) (46)

so that we have a hysteresis effect. Hence, the firm may stick to a locally suboptimal project
portfolio, which happens exactly when the potential benefit of changing the portfolio does
not outweigh the fixed costs.
An important feature of the contract under switching costs is that the principal’s value
function will not be C2 at the thresholds w (a, a′). Recall that in the case without fixed
costs, the project portfolio had a simple structure. Only projects with positive marginal
benefit bi (w) were chosen, and for a particular w, the level of the benefit for each i is
independent of whether or not other projects are chosen. Equation (13) implies that the
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marginal benefit of each project will be in part determined by the amount of risk exposure
ψi, which is needed to incentivize effort. In the eyes of the principal, the additional risk
exposure is weighted by j′′ (w), which now may be discontinuous, and in particular

j′′a (w (a, a′)) ≥ j′′a′ (w (a, a′)) (47)

Whenever the inequality is strict, changing the project portfolio implies a spillover effect.
Immediately after the change, the firm becomes more risk averse, which implies a down-
ward jump in the valuation of all projects, whether executed or not. Therefore, in the real
options case, the optimal portfolio of projects has to be determined jointly and the linear
decomposition that underlied equation (13) breaks down.
Nevertheless, it is possible to recover the previous analysis as a limiting case when fixed costs
are relatively small.

Proposition 11. Let ŵ (a, a′) and w (a, a′) denote the threshold at which the optimal action
changes from a to a′ in the case without15 and with fixed costs respectively, and let j and ja
denote the value functions for both cases. Then as max {ke, ks} → 0 we have ŵ (a, a′) →
w (a, a′), ja (w)→ j (w) ∀w and

∣∣∣j′′a+ (w)− j′′a− (w)
∣∣∣→ 0 ∀w.

Proposition (11) specifies in which sense we may take the model in Section 3 as an approxi-
mation to a real-options style model with fixed costs. When these costs are small, the value
functions will converge towards j, the value function without costs and the marginal benefit
function bi will be continuous. This implies that in the limit the same criterion can be used
for determining the project selection portfolio as in Section 4 and that the cutoffs for optimal
project choice will coincide. Therefore, when the fixed costs are small enough we can ignore
the direct spill-over effects between projects and determine the project portfolio as in the
previous case.
Finally, it is noteworthy that Proposition 10 implies an interesting caveat. Suppose that the
new portfolio has strictly more projects than the old one, that is ∀i ai = 1⇒ ai′ = 1 and ∃j
such that aj = 0 and ai = 1. Then the optimality conditions around the threshold w (a, a′)
imply

∑
i: added

(
NPVi + (j′a′ (w) + 1) + j′′a′ (w) 1

2
h2

SN2
i

)
= (j′′a (w)− j′′a′ (w)) 1

2
∑

i:ai=ai′ =1

h2

SN2
i

+
∑

i: added
ke

15Note that without fixed costs we have the symmetry ŵ (a, a′) = ŵ (a′, a).
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which we can interpret as

∑
i: added

bi,a′ (w) = Risk Aversion Spillover+ Fixed Costs (48)

Thus, whenever the firm adds more projects, the total marginal benefit of the projects added
must, from the viewpoint after the addition, exceed not only the fixed costs, but also the
spillover effect on existing projects.

7 Conclusion

I analyze a continuous time moral hazard problem in which the manager’s effort is distributed
among different projects. Unlike past studies, project choice is simultaneous, and the possible
feedback effect between projects is explicitly considered. The model sheds light on the
optimal choice of projects in a firm under moral hazard, as well as the distribution of funds
among projects and the persistence of bonus contracts in CEO compensation. Further, it
explains the use of different criteria to evaluate projects aside from the NPV criterion, which
is broad practice in companies, as Graham and Harvey (2001) shows.
The optimal project selection policy implies that projects are selected whenever their NPV
is above a cutoff depending on the firm’s current free cash flow, as well as the project’s
risk-return ratio. This cutoff will change stochastically over time, and depend on the agent’s
cumulative past performance. Firms with a large free cash flow relative to firm size will
feature a relatively efficient investment portfolio, comprised of high-risk, positive return
projects, whereas firms with a low cash flow will suffer from an inefficient choice of investment
projects, passing up positive NPV projects when their risk is too high. At any given point
in time, the absolute benefit of projects with above-average risk increases with the free cash
flow, and decreases whenever projects are relatively safe. The first best project selection
schedule is attained whenever the free cash flow is large enough. The manager is assigned
more and riskier projects after a history of sufficiently good performance, while a poorly
performing manager will see the number of projects assigned to him diminished. There is a
negative externality between projects, which, unlike in the static multitasking literature is
of second order only, and affects the rate at which a project’s benefit changes with the state
variable. If the firm can allocate funds between projects, fund allocation is distorted away
from the most profitable to the most risky projects. This inefficiency diminishes as the free
cash flow grows. Finally, the contract can be implemented using an equity share, as well as
a bonus payment contingent on performance in the individual tasks.
As described in the introduction, the model can be applied to investment situations whenever
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the choice of projects is discrete. This allows studying issues such as R&D efforts, the opening
of new manufacturing plants, natural resource exploration, and diversification into different
markets, to name a few. The empirical literature on firm investment has overwhelmingly
focused on a firm’s aggregate investment, which is treated as a continuous variable. My
model constitutes a theoretical benchmark which makes predictions on a firm’s entire project
portfolio, and may be used to test against data, once estimates of the individual projects’
risk and volatility have been obtained, instead of providing insights into the choice of one
investment project in isolation.
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A Proofs

A.1 Scaling

Given the combined stopping and control problem in (8), the principal’s HJB equation
satisfies the following HJB variational inequality.

0 = max
{

sup
(c,a,i)

−rJ + π
∑
i

µiai − dc+ Jw

(
rW + πh

∑
i

ait

)
+ 1

2Jwwπ
2∑

i

ψ2
i

+Jππ (i− δ) , γπ − J (W,π)

(49)

That is, there will be a continuation region C ⊂ R2
+ such that for values (W,π) ∈ C, the firm

will continue to operate, and shutdown will occur on the boundary of C. When the firm is
shut down, the principal’s value satisfies γπ = J (W,π), and on C, we have the HJB equation

rJ (W,π) = sup
(c,a,i)

π
∑
i

µiai−πκ (i)−dc+Jw

(
rW + πh

∑
i

ait

)
+ 1

2Jwwπ
2∑

i

ψ2
i +Jππ (i− δ)

(50)
Taking a guess and verify approach, let w = W

π
and πj (w) = J

(
W
π

)
. Using Jπ = j (w)−w ·

j′ (w), Jw = j′ (w) and Jww = 1
π
j′′ (w), the HJB equation (50) can be converted to equation

(10). Since both laws of motion (2) and (6), as well as the termination value γπ obey the
same scaling, this implies that the control problem in (8) is equivalent to the scaled control
problem in w alone. Finally, since dct is an impulse control, there will be a region on (0,∞)
such that dct = 0, and w will reflect on the boundary of this region.

A.2 Properties of the Value Function

In this section I will show the main properties of the value function. Since the smooth
pasting and value matching properties of the value function at w̄ are well known, I shall
focus on establishing these properties at the cutoffs at which the project choice changes.
That the value function is twice continuously differentiable for stochastic control problems
with a continuous action space is well established, and the standard sources in control theory
Oksendal (2003), generally make no distinction between control with continuous or discrete
actions. My proof here is general, in the sense that the same argument can be applied to
any control problem with discrete actions, without having to recourse to arguments specific
to the problem at hand.. I use the viscosity solution approach, and the first two Lemmata
are based on the literature on optimal switching, see, p.e. Pham et al. (2009).
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Lemma 12. Assume that for all admissible investment policies i, there exists an ε > 0 such
that for all t, it < r + δ − ε. Then, for all (W,π),J (W,π) ∈ C.

Proof. I actually prove a stronger condition, Lipschitz continuity. Consider an arbitrary
policy (a, i, τ) consisting of project choice a, investment i and termination time τ .
Consider the policy a. We can equivalently express project choice as an impulse control
process. In particular, each policy a will induce a sequence of stopping times {τi}∞i=0 with
τ0 = 0 which index the times at which project choice changes as well as a sequence of
vector stopping times {ηi}∞i=0 with ηi ∈ {0, 1}N and η0 = a (w0) which indicates the project
allocation policy just after τi. That is, for any t, at = ∑∞

i=1 1{τi−1 ≤ t < τi}ηi.
Then we can express the process wt as

wt = w0 +
ˆ t

0

(
γws + h

N∑
i=1

as

)
dt+

ˆ t

0

N∑
i=1

σ2
i h

2

µ2
i

aitdBit (51)

and for Wt and πt we have
πt = π0 +

ˆ t

0
πs (is − δ) ds (52)

and
Wt = W0 +

ˆ t

0

(
γWs + hπs

N∑
i=1

as

)
ds+

ˆ t

0
πs

N∑
i=1

σ2
i h

2

µ2
i

aitdBs (53)

And under the policy, the value function is

J (W,π) = E

(ˆ τ

0
e−rtπt

(∑
i

µiait − κ (it)
)
dt

)
(54)

Take two pairs (W,π) and (W ′, π′) under the same policy, but where the Laws (53) and (52)
exhibit W0 6= W ′

0 and π0 6= π′0. Then we have

|J (W,π)− J (W ′, π′)| ≤ sup
i,a,τ

E

(ˆ τ

0
e−rt

∣∣∣∣∣(πt − π′t) ·
(∑

i

µiait − κ (it)
)∣∣∣∣∣ dt

)

≤ sup
i,a,τ

E

(ˆ τ

0
e−rt |πt − π′t| ·

∣∣∣∣∣∑
i

µiait − κ (it)
∣∣∣∣∣ dt
)

≤ sup
i,a,τ

E

(ˆ τ

0
exp

(
−rt+

ˆ t

0
(is − δ) ds

)
·
∣∣∣∣∣∑
i

µiait − κ (it)
∣∣∣∣∣ dt
)
|π − π0|

By is < r + δ − ε for all policies, we have

|J (W,π)− J (W ′, π′)| ≤ sup
i,a,τ

E

(ˆ τ

0
exp (−εt) ·

∣∣∣∣∣∑
i

µiait − κ (it)
∣∣∣∣∣ dt
)

(55)
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Similarly, since κ′ (i) > 0
ˆ τ

0
e−εtκ (it) dt <

ˆ τ

0
e−εtκ (r + δ − ε) dt (56)

It is then easy to see that the transversality condition holds for equation (55), and hence

|J (W,π)− J (W ′, π′)| ≤ C · |π − π0| (57)

for some constant C <∞. Since j (w) = E
´ τ

0 e
−rt∑

i µiai− κ (it) dt, we can apply the same
logic go get Lipschitz continuity in j.

Lemma 13. j ∈ C1 on (0, w̄).

Proof. Take two continuation regions Ca and Ca′ with sup {w ∈ Ca} = inf {w ∈ Ca′} := wn+1.
We know that on both Ca and Ca′ , j solves the HJB equation (10), and is C2 on these regions.
Suppose that j′− (wn+1) 6= j′+ (wn+1) and assume j′− (wn+1) < j′+ (wn+1). Take any number
x ∈

(
j′− (wn+1) , j′+ (wn+1)

)
and let

φε (w) = rj (wn+1) + x (w − wn+1) + 1
2ε (w − wn+1)2 (58)

Note that φε ∈ C2, φε (wn+1) = j (wn+1) and that for all ε there exists a neighborhood
Bδ (wn+1) such that j > φε on Bδ (wn+1). Then by the viscosity supersolution property of j,
it must be the case that for w ∈ Bδ (wn+1) and w < wn+1

(r − i+ δ) · j (wn+1)− x · ((γ − i+ δ)wn+1 + hn)− 1
2ε
∑
i

ψ2
i ai ≥ 0 (59)

But sending ε→ 0 yields the contradiction. Hence j′− (wn+1) ≥ j′+ (wn+1).
Now suppose j′− (wn+1) > j′+ (wn+1) and take again x ∈

(
j′+ (wn+1) , j′− (wn+1)

)
and consider

the function
φε (w) = rj (wn+1) + x (w − w0)− 1

2ε (w − wn+1)2 (60)

For any ε > 0 there exists a neighborhood Bδ (wn+1) such that φε > j on Bδ (wn+1) and
again φε (wn+1) = j (wn+1). Hence, by the subsolution property of j, we must have

(r − i+ δ) · j (wn+1)− x · ((γ − i+ δ)wn+1 + hn) + 1
2ε
∑
i

ψ2
i ai ≤ 0 (61)

and letting ε → 0 yields the contradiction again. Hence, j′+ (w) = j′− (w) for all w ∈
(0, w̄).
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Lemma 14. j ∈ C2 on (0, w̄).

Proof. I only show that j′′ is continuous at points where the project choice shifts. Continuity
on ⋂a Int (Ca) is shown in Lemma 15 and is independent of the results obtained here. Let

Ha (w) := sup
i
− (r − i+ δ) j (w) +

∑
i

µi−κ (i) + j′ (w) ((r − i+ δ)w + hn) + j′′ (w) 1
2
∑
i

ψ2
i

(62)
and by the HJB equation, Ha (w) ≤ 0 ∀w < w̄. Consider wlog two continuation regions Ca
and Ca′ with sup {w ∈ Ca} = inf {w ∈ Ca′} := wn+1.
We have

sup
i
− (r − i+ δ) j (w)+

∑
i

µi−κ (i)+j′ (w) ((γ − i+ δ)w + hn)+j′′ (w) 1
2
∑
i

ψ2
i = 0 (63)

if and only if

j′′ (w) = inf
a,i

1
1
2
∑
i ψ

2
i

(
(r − i+ δ) j (w)−

∑
i

µiai + κ (i)− j′ (w) ((γ − i+ δ)w + hn)
)

(64)

since ∑i ψ
2
i > 0 on all paths.

Let

j̃a (w) := inf
i

1
1
2
∑
i ψ

2
i

(
(r − i+ δ) j (w)−

∑
i

µiai + κ (i)− j′ (w) ((γ − i+ δ)w + hn)
)
(65)

Clearly, j′′ (w) = j̃a (w) on Ca and j′′ (w) = j̃a′ (w) on Ca′ . Also, by the properties of the
inf-operator, j̃a (w) < j̃a′ (w) on Ca and j̃a′ (w) < j̃a (w) on Ca′ . Taking limits again we have

j̃a,− (wn+1) ≤ j̃a′,−
(
wn+1

)
(66)

and
j̃a,+ (wn+1) ≥ j̃a′,+

(
wn+1

)
(67)

But note that for fixed a, j̃a (w) is a continuous function in w and hence j̃a,+ (wn+1) =
j̃a,− (wn+1). Then we have the following series of inequalities

j′′− (wn+1) = j̃a,− (wn+1) = j̃a,+ (wn+1) ≥ j̃a′,+
(
wn+1

)
= j′′+ (wn+1) (68)

and hence
j′′− (wn+1) ≥ j′′+ (wn+1) (69)
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To obtain the reverse inequality, use equation (66) to get

j′′− (wn+1) = j̃a,− (wn+1) ≤ j̃a′,−
(
wn+1

)
= j̃a′,+

(
wn+1

)
= j′′+ (wn+1) (70)

Thus it must be the case that j′′+ (wn+1) = j′′− (wn+1) and j ∈ C2. Note that the case when
one less project is executed is analogous.

Lemma 15. j′′ (w) is negative for all w ∈ (0, w̄).

Proof. The proof is exactly analogous to DeMarzo et al. (2010), with the additional com-
plication of having continuation regions, which is easliy resolved. First we note that for w
close to w̄, we have that w will be in some continuation region and hence

j′′′ (w) = 1
2

1∑
i ψ

2
i

(γ − r) > 0 (71)

Therefore, since j′′ (w̄) = 0 we have j′′ (w) < 0. Now consider a w̃ such that j′′ (w̃) = 0
and j′′ (w̃ + ε) < 0. We notice that w̃ is again in some continuation region and that j′′ is
continuous at w̃, so that a version of the HJB equation will hold. Then the remainder of the
argument in DeMarzo et al. (2010) goes through, and we have j′′ (w) < 0 everywhere.

Lemma 16. j′′′ (w) exists on int (Ca) for every a and if γ − r is small, we have j′′′ (w) > 0
∀w ∈ (0, w̄).

Proof. Rewriting the scaled HJB equation (10),

j′′ (w) = inf
c,a,i

1
1
2
∑
i ψ

2
i

(
(r − i+ δ) j (w)−

∑
i

µiai + κ (i)− j′ (w) ((γ − i+ δ)w + hn)
)
(72)

By the envelope theorem,

j′′′ (w) = 1
1
2
∑
i ψ

2
i

((r − γ) j′ (w)− j′′ (w) ((γ − i+ δ)w + hn)) (73)

and we can see that j′′′ (w) ≶ 0 whenever

(r − γ) j′ (w)− j′′ (w) ((γ − i+ δ)w + hn) ≶ 0 (74)

Note that whenever j′ (w) < 0 it must necessarily be the case that j′′′ (w) > 0, since j′′ < 0
and r < γ. Therefore, the only case of concern is when j′ (w) > 0.
Suppose that j′′′ (w) < 0. For any γ, w will be in some continuation region, so that some
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version of the HJB equation will hold, and therefore

j′′ (w)
(

1− (γ − i+ δ)w + hn

(γ − r)∑i ψ
2
i

1
2

)
<

(r − i+ δ) j (w) + k (i)−∑i µiai∑
i ψ

2
i

1
2

(75)

Since for γ → r, the term multiplying j′′ (w) will tend to negative infinity, it must be negative
for γ close enough to r. In this case,

j′′ (w) > (r − i+ δ) j (w) + k (i)−∑i µiai∑
i ψ

2
i

1
2

·
(

1− (γ − i+ δ)w + hn

(γ − r)∑i ψ
2
i

1
2

)−1

(76)

Note that as γ → r, the RHS goes to zero.
By a similar agrument we have

j′ (w) < (r − i+ δ) j (w) + k (i)−∑i µiai∑
i ψ

2
i

1
2

(
(γ − i+ δ)w + hn∑

i ψ
2
i

1
2

+ r − γ
(γ − i+ δ)w + hn

)−1

(77)
which will converge to

j′ (w) ≤ (r − i+ δ) j (w) + k (i)−∑i µiai
(γ − i+ δ)w + hn

(78)

as γ → r. Let K = (r − i+ δ) j (w) + k (i) −∑i µiai. Hence, if j′′′ (w) < 0 and K > 0 we
have that for small γ, j′′ (w) > 0, which is a contradiction. Similarly, for K ≤ 0 we must
have that j′ (w) ≤ 0. But then since j′′ (w) < 0 we can’t have j′′′ (w) < 0. Therefore we
must have j′′′ (w) ≥ 0 everywhere.

Lemma 17. The contract is optimal in the class of contracts with square integrable payout
policies and firm sizes.

Proof. Take any arbitrary contract which satisfies the agent’s IC constraint. Then, define
the auxiliary gain process Gt as

Gt =
ˆ t

0
e−rs

(∑
i

dXis − πsκ (is) dt− dcs
)

+ e−rtJ (Wt, πt) (79)

37



By Ito’s Lemma,

dGt = e−rt
(
πt
∑
i

µitdt+
∑
i

dBit − πtκ (it) dt− dct
)

+e−rtπt
(
j′ (wt)

(
γwtdt+ hntdt− dct + πt

∑
i

ψidBit

)
+ j′′ (wt)

1
2
∑
i

ψ2
itdt

)
+e−rtπt (it − δ) (j (wt)− j′ (wt)wt) dt− rπtj (wt) dt

By the scaled HJB equation (10), it has to be the case that for any contract,

−(r − i+ δ) j (w)+
∑
i

µi−κ (i)+j′ (w) ((γ − i+ δ)w + hn)+j′′ (w) 1
2
∑
i

ψ2
i−(i− δ) j (w) ≤ 0

(80)
Similarly, for any consumption payout policy, −dct (1 + j′ (w)) ≤ 0 on (0, w̄). Hence, the
drift of the auxiliary gain process is non positive and the principal’s expected time-zero profit
is less than J (W0, π0).

A.3 Proofs On Project Choice

The proof of Proposition 3 follows directly from equation (13) and the arguments outlined
in the text. The proof for Proposition 4 is below.

Proposition 18. For any w, and project allocation a, there exist a cutoff SN (w) such that
for all SNi > SN (w), b′i (w) < 0 and SNi < SN (w), b′i (w) > 0.

Proof. I first establish the cutoff SN (w). We have b′i (w) = j′′ (w)h + j′′′ (w) 1
2

1
SN2

i

, hence

SN (w) =
√
− j′′′(w) 1

2
j′′(w)h . Note that, − j′′′(w) 1

2
j′′(w)h = 1

2
(γ−i+δ)w+hn

h
∑

i
ψ2

i
so that

dSN (w)
dw

∝ (γ − i+ δ)− i′ (w) · w = (γ − i+ δ) + j′′ (w)w2

κ′′ (i) (81)

so dSN(w)
dw

> 0 when i′ (w) is relatively small.
Further, we have

b′i (w) = j′′ (w)
(
h− 1

2
1∑
j ψ

2
j

ψ2
i ((γ − i+ δ)w + hn)

)

∝ j′′ (w)
h

∑
j

ψ2
j − ψ2

i n

− (γ − i+ δ)w
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using (??) and hence a sufficient condition is 1
n

∑
j ψ

2
j −ψ2

i < 0. A sharp sufficient condition
can be obtained as

ψ2
i >

1
n

∑
j

ψ2
j −

1
hn

(γ − i+ δ)w (82)

Proposition 19. Whenever another project is added, b′i (w) jumps down for all projects and
whenever a project is dropped, b′i (w) jumps up for all projects.

Proof. Let ∆j′′′ (w) = j′′′+ (w)− j′′′− (w) denote the jump in j′′′. Suppose one more project is
implemented right of the cutoff w, and denote that project by i+ 1. Then

∆j′′′ (w) = −j′′ (w) ((r − i+ δ)w + h (n+ 1))
1
2 (∑i ψ

2
i + ψ2

i+1) + j′′ (w) ((r − i+ δ)w + hn)
1
2
∑
i ψ

2
i

= −
(
j′′′+ (w) 1

2ψ
2
i+1 + j′′ (w)h

) 1∑
i ψ

2
i

Hence, ∆j′′′ (w) < 0 whenever j′′′+ (w) 1
2ψ

2
i+1 + j′′ (w)h > 0. Equivalently,

∆j′′′ (w) = − 1
1
2 (∑i ψ

2
i + ψ2

i+1)

(
j′′′− (w) 1

2ψ
2
i + j′′ (w)h

)
(83)

and ∆j′′′ (w) < 0 whenever j′′′− (w) 1
2ψ

2
i+1 + j′′ (w)h > 0.

Now suppose ∆j′′′ (w) > 0, which is equivalent to

j′′′± (w) < −j
′′ (w)h
1
2ψ

2
i+1

(84)

and note that this implies b′i+1,± (w) < 0. But if i+ 1 is added, it must be the case that bi+1

crosses 0 at w and hence b′
i+1,± (w) > 0. Hence, it must be the case that

j′′′± (w) > j′′ (w)h
1
2ψ

2
i

= j′′ (w)
1
2h

SN2
i+1 (85)

and ∆j′′′ (w) < 0. Hence, for all projects i, ∆b′i = 1
2ψ

2
i ∆j′′′ < 0.

Similarly whenever a project is dropped, we have

∆j′′′ (w) = 1
1
2
∑
i ψ

2
i

(
j′′′− (w) 1

2ψ
2
i+1 + j′′ (w)h

)

= 1
1
2 (∑i ψ

2
i + ψ2

i+1)

(
j′′′+ (w) 1

2ψ
2
i+1 + j′′ (w)h

)
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and if ∆j′′′ (w) < 0, we have

j′′′± (w) > −j
′′ (w)h

1
2ψ

2
i+1

= −j
′′ (w)
h1

2
SN2

i+1 (86)

which implies b′
i+1,± > 0 at w. But then bi+1 cannot cross zero from above. Hence, ∆b′i (w) =

1
2ψ

2
i ∆j′′′ (w) > 0 whenever a project is dropped.

A.4 Proofs on Implementation

The proof of Proposition 7 is below. The proof of Proposition 8 proceeds is exactly analogous
and is therefore omitted.

Proof. I use a guess and verify technique. First consider the process SCt ≡
∑
i ΨitMit,

which I interpret as the share of the firm’s cash holdings the manager has at time t. Mit

follows the process in equation (33) and I assume that some policy Ψit with finite variation
is implemented.
I posit that the decomposition Wt = SCt + At holds, where At is the current balance in
the manager’s personal account. At the optimal contract, Lemma 1 implies that Wt is
a diffusion and hence continuous in t. From equation (33) it is clear that SCt will be
continuous whenever no change is made in the project portfolio, and exhibit a jump of
ΨitMit when project i is added, and −ΨitMit when project i is dropped.16 Now, define
dAt = γAtdt whenever SCt is continuous and dAt = γAtdt − ΨitMit whenever project i is
implemented and dAt = γAtdt + ΨitMit whenever it is stopped. It is clear that then Wt is
indeed continuous. Hence the manager either sells or buys shares at the price of Mit per
unit, which corresponds exactly to their naive value in terms of the firm’s cash holdings.
To verify that the manager’s continuation value indeed satisfies Wt = SCt + At, by Ito’s
Lemma for semi martingales17 we have

dWt =
∑
i

(ΨitdMit + dΨitMit) + dAt (87)

Further, sinceWt is a diffusion at the optimal contract we can use the HJB equation approach
16Thus, the process SCt is a semi martingale.
17See He et al. (1992), p. 245, Th. 9.35
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to get

γWt = sup
ai

∑
i

Ψi

(
rMit + πtµiai − αiκ (i)− (r − γ)Mit + αiκ (i)− dc

dt

)
(88)

= +
∑
i

Ψi
dcit
dt
− πth

∑
i

ai +
∑
i

dΨi

dt
Mit + dAt

dt

= sup
ai

∑
i

Ψi

(
rMit + πtµiai − αiκ (i)− (r − γ)Mit + αiκ (i)− dc

dt

)

+
∑
i

Ψi
dcit
dt
− πth

∑
i

ai + γAt

From the above equation we see that if we let the optimal equity share satisfy Ψit ≡ ψit

σi
= h

µi

we see that
γWt = γ

(∑
i

ΨiMit + At

)
(89)

and the optimal contract is indeed implemented.

The proof of Proposition (9) is below.

Proof. The agent’s continuation utility is assumed to satisfy Wt = ΨtMt + At, and the
personal account balance now satisfies

dAt = γAtdt+ dPt + SCt − SCt− (90)

where SCt− = lims↑t SCt.
Analogous to the previous proof, the manager’s HJB equation satisfies

γWt = sup
a

Ψt

(∑
i

(
γMit + πtµiai −

dcit
dt

))
+ Ψt

dct
dt
− πth

∑
i

ai +

+πt
∑
i

(Ψit −Ψt)µiait + dAt + dΨt

dt
Mt

= ΨtγMt + sup
a

(
πt
∑
i

(Ψtµi − h+ (Ψit −Ψt)µi) ai
)

+ γAt

= ΨtγMt + γAt
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A.5 Proofs on the Model with Fixed Costs

The proof of Proposition 10 consists of proving the validity of equation (42) together with
the conditions at the cutoffs (43). It is easy to show that Lemma 12 and Lemma 13 still
hold We can therefore follow a similar procedure as in A.2 to prove the representation in
Proposition 10.
In general, the part of Lemma 14 which establishes the C2 property at the cutoffs where
project selection changes will not hold, since it relies on the same HJB equation being valid
on both sides of the threshold.
The following Lemma establishes equation (44).

Lemma 20. Consider a cutoff w (a, a′) such that wlog for some ε > 0, (w − ε, w) ⊂ Ca and
(w,w + ε) ⊂ Sa. Then j′′a′ (w (a, a′)) ≥ j′′a (w (a, a′)).

Proof. For notational convenience define

fa (w) =
∑
i

µi + κ (i)− (i− δ) ja (91)

First we note that for any x ∈ Ca′ we have

rja′ − Laja′ − fa − rk (a, a′) ≥ 0 (92)

which can be established using φa′ = ja− k (a, a′) as a test function and verifying that φa′ is
a supersolution to ja for any w ∈ Ca′ . Then, the supersolution property immediately implies
the above equation.
Since we have k (a, a′) > 0 and k (a′, a) > 0 it must be the case that actually w (a, a′) ∈ Ca′

and therefore j′′a′ ∈ C on some neighborhood of w (a, a′) and in particular on some region of
Ci. By the above equation,

rja′ (w)− fa (w)−
(

(γ − i+ δ)w + h
∑
i

ai

)
j′a′ (w)− 1

2j
′′
a′ (w)

∑
i

ψ2
i ai − k (a, a′) ≥ 0 (93)

for all {w : w ≥ w (a, a′) , w ∈ Ca′} which can be rewritten as

j′′a′ (w) ≤ 1
1
2
∑
i ψ

2
i ai

(
(r − i+ δ) ja′ (w)−

∑
i

µiai + κ (i)− j′a′ (w)
(

(γ − i+ δ)w + h
∑
i

ai

))

Notice that because the conditions in equation (43) which are the value matching and the
smooth pasting conditions hold the RHS of the equation is continuous around w (a, a′).
Therefore, the right limit of the right hand side will correspond to the left limit. But since
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for all ε > 0, w (a, a′) − ε ∈ Ca the HJB equation for ja must hold with equality left of
w (a, a′) and therefore

j′′a′ (w (a, a′)) ≤ lim
w↑w(a,a′)

1
1
2
∑
i ψ

2
i ai

(
(r − i+ δ) ja (w)−

∑
i

µiai + κ (i)

−j′a (w)
(

(γ − i+ δ)w + h
∑
i

ai

))
= j′′a− (w (a, a′))

which is the relation to be proven.

The proof of Proposition 11 relies mostly on the HJBQVI in equation (42).

Proof. Take any a and note that for any w either ja > maxa′ 6=a ja′ − k (a, a′), or there exists
an a′ such that ja = ja′ − k (a, a′). Therefore, we have that for all a 6= a′ and all w,
ja ≥ ja′ − k (a, a′). Then by analogy

k (a′, a) ≤ ja − ja′ ≤ k (a, a′) (94)

for all w and especially

sup
w
|ja (w)− ja′ (w)| ≤ max {k (a′, a) , k (a, a′)} (95)

and as k (a, a′) → 0 it must be the case that ja → ja′ for all a, a′. Therefore the functions
ja converge uniformly to a continuous function j̃, and the remainder of the proof consists of
verifying that indeed j = j̃.
First, denote with Cka the closure of the continuation regions given cost function k (., .) and
recall that on Cka , both ja ≥ maxa′ 6=a ja′ − k (a, a′) and the HJB equation

rja − fa − Laja = 0 (96)

hold. As k (a, a′)→ 0 we have that ja ≥ maxa′ 6=a ja′ − k (a, a′) holds for all w and therefore
each set Cka will converge in the Hausdorff distance to a set C̃a, on which the above HJB
equation must hold for the limit of ja, which is exactly j̃. Therefore

C̃a =
{
w : rj̃ − fa − Laj̃ = 0

}
(97)

Notice that for all k we must have that ⋃a Ca covers the entire range of w, since by optimality
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of the set of functions ja there must be always some action that will be optimally chosen for
all w. In particular, this implies that whenever w ∈ Cka but w /∈ Ck′

a for some k′ < k then
there exists an a′ such that w ∈ Ck′

a′ . Therefore, for all w ∃a such that w ∈ C̃a. Note that
the fact that j̃ ∈ C implies that the value matching condition must hold whenever there is
a cutoff w̃ (a, a′) where the project choice switches from a to a′.
Further, it is easy to show that since j̃ is a viscosity solution to the HJB equation on C̃a, as
well as value matching conditions on the boundaries of C̃a, it must indeed be C2 on C̃a.18

With continuity of j̃ and the C2 property on the continuation regions, we can then repeat
the steps of Lemma 13, which continues to hold in the presence of fixed costs.
To conclude, note that if j̃ ∈ C2 everywhere, it will satisfy exactly the same conditions as j,
and then j = j̃ by the uniqueness of solutions to the HJB equation (10).
To show this, consider some a and a′ so that the cutoffs w (a, a′) and w (a′, a) converge to a
cutoff w̃ (a, a′). Assume wlog that for k > 0 we have that a is optimal left of w (a, a′) and a′

is optimal right of w (a′, a).
For k > 0 we have on Sa,a′ ,

rja − La′ja′ − fa′ + rk (a, a′) = 0 (98)

and hence taking w ↓ w (a, a′) and using the value matching and smooth pasting conditions
in (43) we have

rk (a, a′) +
(
h
∑
i

ai − h
∑
i

a′i

)
j′a + 1

2

(∑
i

ψ2
i aij

′′
a− −

∑
i

ψ2
i a
′
ij
′′
a′+

)
+ fa − fa′ = 0 (99)

at w+ (a, a′). Rearranging terms and expanding this implies

1
2
∑
i

ψ2
i ai

(
j′′a− − j′′a′+

)
= −rk (a, a′)− (fa − fa′)

−j′a′

(
h
∑
i

ai − h
∑
i

a′i

)
− 1

2

(∑
i

ψ2
i ai −

∑
i

ψ2
i a
′
i

)
j′′a+

By equation (44), the LHS is greater or equal to zero. By analogy, we can obtain a similar
expression at the cutoff w (a′, a)

18The result is an immediate application of Friedman (1975), p. 134, Theorem 2.4, since the HJB equation
on C̃a together with the value matching conditions will define a Dirichlet problem and in my setup the
volatility coefficient in the HJB equation is bounded strictly above zero.
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1
2
∑
i

ψ2
i ai

(
j′′a− − j′′a′+

)
= rk (a, a′)− (fa − fa′)

−j′a′

(
h
∑
i

ai − h
∑
i

a′i

)
− 1

2

(∑
i

ψ2
i ai −

∑
i

ψ2
i a
′
i

)
j′′a+

and from equation (44), we have that the LHS is non positive. Suppose that indeed ∃ε > 0
such that j′′a− (w (a, a′)) − j′′a+ (w (a, a′)) ≥ ε and j′′a− (w (a′, a)) − j′′a+ (w (a′, a)) ≤ ε even as
k → 0. Then we have

lim
|k|→0

j′′a− (w (a, a′))− j′′a+ (w (a, a′)) > lim
|k|→0

j′′a− (w (a′, a))− j′′a+ (w (a′, a)) (100)

which is a contradiction to |w (a, a′)− w (a′, a)| → 0.
Therefore, j̃ ∈ C2 everywhere and hence the boundary conditions on theC̃a are exactly the
same as on the Ca in the case without fixed costs, and the uniqueness of solutions to HJB
equations implies that indeed j̃ = j.
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