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A COOPERATIVE VALUE FOR BAYESIAN GAMES

ADAM TAUMAN KALAI∗ AND EHUD KALAI†,§

Abstract. Selfish, strategic players may benefit from cooperation, provided they
reach agreement. It is therefore important to construct mechanisms that facilitate
such cooperation, especially in the case of asymmetric private information. The
two major issues are: (1) singling out a fair and efficient outcome among the
many individually rational possibilities in a strategic game, and (2) establishing a
play protocol under which strategic players may achieve this outcome. The paper
presents a general solution for two-person Bayesian games with monetary payoffs,
under a strong revealed-payoff assumption.

The proposed solution builds upon earlier concepts in game theory. It coincides
with the von Neumann minmax value on the class of zero sum games and with
the major solution concepts to the Nash Bargaining Problem. Moreover, the
solution is based on a simple decomposition of every game into cooperative and
competitive components, which is easy to compute.

1. Introduction

Selfish players in strategic games benefit from cooperation, provided they come to
mutually beneficial agreements. In the case of asymmetric private information, the
benefits may be even greater, but avoiding strategic manipulations is more subtle.
This paper provides a natural focal point for fair and efficient cooperative play
among strategic players in two-person private-information games with monetary
payoffs.

The unmodified noncooperative solutions obviously miss this point, as illustrated
in the sacrifice game below. The dominant strategy, in which player 1 plays “pass”
and each player nets a $0 payoff, is logical, for example, when the players are pris-
oners in isolated cells.

sacrifice game pass
pass

act
$0, 0
-1,101

Key words and phrases. cooperative game theory, non-cooperative game theory, bargaining, min-
max value.
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But in the many important economic environments where communications, side
payments, and agreements are permitted, other outcomes are appealing. For exam-
ple, an outcome that agrees with real life and experimental observations is for player
1 to act in exchange for a $51 payoff from player 2, so that they each net $50.

However, when we consider more substantial games, in which players possess
many possible strategies and asymmetric private information, the determination
and implementation of optimal cooperative play and associated payoff transfers are
more challenging. The main purpose of this paper is to offer a solution to this
problem in restricted but important classes of such games.

In particular, we focus on two-player cooperative Bayesian games with transfer-
able utility (TU),1 in which players can communicate and make binding agreements
about actions and payoff transfers.2 An important subclass consists of the zero-sum
games studied by von Neumann (1928).

The solution offered is described by a cooperative-competitive value (alternatively,
coco value, or just value for short) that has the following properties: (1) It is Pareto
efficient, fair, robust, and easy to compute. (2) It generalizes the minmax value
from zero-sum to general Bayesian games. (3) It coincides with, and extends, the
major variable-threat bargaining solutions to the case of incomplete information.
(4) It is justified by natural axioms imposed directly on Bayesian games. And
(5) it is implementable by incentive-compatible protocols that resemble real-life
partnerships, under a strong revealed-payoff assumption.

The analysis is centered around a cooperative/competitive (coco) decomposition
of a strategic game into two component games with orthogonal incentives. For a
complete information game with payoff matrices (X,Y ), the decomposition is:

(X,Y ) =
(
X + Y

2
,
X + Y

2

)
+
(
X − Y

2
,
Y −X

2

)
,

and the coco value is defined by

coco-value(X,Y ) ≡
(

max
i,j

xij + yij
2

,max
i,j

xij + yij
2

)
+ minmax

(
X − Y

2
,
Y −X

2

)
.3

We refer to the first component in the decomposition as the cooperative compo-
nent, or the team game. The pair of payoffs associated with this component is the
team value, which is the highest possible pair of payoffs that the players can jointly
arrange under an agreement to share their payoffs equally. We refer to the second
component in the decomposition as the competitive component, the zero-sum game,
or the advantage game. The minmax value of the advantage game may be thought
of as a compensating zero-sum transfer from the player with the weaker strate-
gic position to the player with the stronger one. The body of this paper presents
the Bayesian (incomplete information) version of the decomposition and definition
above.

1For simplicity, we assume that payoffs are in terms of a common currency, such as dollars, and
that players’ utility is ui($x) = x.

2A more restricted earlier use of payoff transfers in strategic games with complete information
is presented in Jackson and Wilkie (2005).

3The decomposition has a straightforward extension to n-person games with n > 2. However,
in such games the minmax value is not defined, and thus the definition of the coco value may have
to be significantly more complex.
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With complete information, the coco value can always be implemented trivially
through an agreement on any play which maximizes the payoff sum, along with a
appropriate side payment. However, the implementation of first-best efficient payoffs
in a Bayesian game is difficult, as illustrated by the Myerson-Satterthwaite (1983)
impossibility result. The coco Bayesian decomposition enables the construction of
partnership protocols that overcome these difficulties in restricted but important
classes of games.

In rough terms, one can replace a given Bayesian game by two strategically-
independent games, one cooperative and one competitive. The play of the cooper-
ative component determines the actual play of the given game, and it leads to an
actual pair of equal payoffs. The equal sharing of payoffs gives the two players incen-
tive to cooperate: to truthfully reveal all relevant information and to act optimally
relative to this information.

The competitive component is played fictitiously. Its purpose is to determine a
compensating zero-sum payoff transfer that reflects the strategic and informational
asymmetries in the given game. Since the play of the competitive component results
in a zero-sum transfer, it does not destroy the efficiency obtained through the actual
play of the cooperative component; it just corrects for the equal division imposed
in the cooperative component.

In order to overcome the Myerson-Satterthwaite impossibility result, we restrict
ourselves to games that satisfy a strong revealed-payoff assumption: After the play
of the game each player knows the realized payoffs of both players, as well as the
entire payoff function. That is, everyone knows how much everyone would have
received had they played any alternative vector of actions.4 In Section 8, we show
that in many specific games, this assumption may be weakened.

1.1. Related literature. Given the elementary nature of the questions addressed
here, it is not surprising that closely related concepts have been studied earlier
in both cooperative and noncooperative (or strategic) game theory. Indeed, the
solution presented here may be viewed as a synthesis and generalization of several
earlier works.

Starting with two-person zero-sum games, which are strictly competitive, the
coco value generalizes von Neumann’s (1928) minmax value to general-sum games.
First, in a formal sense, the coco value of a zero-sum game is the minmax value
of the game. But in addition, our axiomatic characterization of the coco value can
be fully carried out on the restricted class of zero-sum games to yield an axiomatic
characterization of the minmax value. Thus, the coco value may be viewed as an
expansion of the “rationale” of the minmax value to the class of general two person
games.

Moving to games that are not zero-sum, strategic and cooperative game theory
deal with the issue of cooperation in different ways, but neither is fully satisfactory.
The Nash equilibria of a one-shot strategic game in which all binding agreements
are possible span all the outcomes described by the folk theorem of the repeated
game,5 thus “everything is possible.” Under the cooperative approach, one must
first decide on an “artificial bridge” that transforms the strategic game into a coop-
erative bargaining game, to which one may apply one of several unique solutions. It

4See Mezzetti (2004) for an earlier use of revealed payoff assumptions in a different context.
5See for example Fershtman et al. (1991), Tennenholtz (2004) and Kalai et al. (2010).



4 ADAM TAUMAN KALAI∗ AND EHUD KALAI†,§

seems that both the folk theorem and standard bridge resolutions miss some subtle
strategic considerations, which are discussed in Section 9.1.

This paper defines a unique cooperative solution directly for any strategic game.
Motivated by axiomatic bargaining solutions from cooperative game theory, (Nash,
1950b; Kalai-Smorodinsky, 1975; and Kalai, 1977) Nash (1953), Raiffa (1953) and
Kalai-Rosenthal (1978), defined (without axiomatizations) efficient arbitration meth-
ods for general (non TU) two-person normal-form games with complete information.
In the case of TU games all their solutions coincide with each other and with the coco
value presented here. Thus, the coco value may be viewed as a TU generalization
of their solutions to the case of private information.6

Selten (1960, 1964) presented an axiomatic characterization of a cooperative
value, defined on the class of TU extensive form games of complete information.
While his work preceded the definition of incomplete information, the natural ex-
tension of Selten’s work would give a different value for games of incomplete in-
formation.7 Different axiomatic solutions of complete information strategic games,
discussed later in this paper, were presented by Carpente et al. (2005, 2006).

Little work has been done on cooperative solutions for Bayesian games. Staying
in the purely cooperative model, Myerson (1984) offers an extension of the Nash
(1950b, 1953) cooperative bargaining solution to the case of private information, but
this solution has not been studied directly for strategic games. Additional important
directions can be found in Forges el al. (2002), De Clippel and Minelli (2004), Ichiishi
and Yamazaki (2006), Biran and Forges (2009) and references therein.

Finally, observations from experimental game theory suggest that players have a
tendency to play fair, sometimes even if it is against their selfish material interest.
Based on these findings it seems that the coco solution, which is fair in material
value and compatible with individual incentives, may serve as a focal point among all
the equilibria of a bargaining game. For detailed discussion on related experimental
papers we refer the reader to Roth (1979), Rabin (1993) Binmore (1994), Fehr and
Schmidt (1999), Camerer (2003), Chaudhuri (2008) and references therein.

2. Illustrative examples

We begin with a symmetric complete-information hot-dog cart game. Consider
two hot-dog (dog) sellers called P1 and P2, located in a town with two selling venues:
the airport, A, and the beach, B. The demand at A is for 40 dogs, while the demand
at B is for 100 dogs. If they choose different locations, they each sell the quantity
demanded at their respective locations; and if they choose the same location, they
split the local demand equally. Each seller has to choose a location without any
knowledge of the opponent’s choice. Suppose they each net $1/dog sold. The game
is given below.

A B
A 20,20 40,100
B 100,40 50,50

6The TU assumption is made here, among other reasons, to circumvent the need to take positions
on competing bargaining axioms.

7In particular, the extension of Selten’s value would give a solution which does not maximize
expected payoffs sum conditional on the joint information, whereas the coco value does satisfy this
first-best notion of efficiency.
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Unsurprisingly, the coco value of this game is (70, 70), while the unique Nash
equilibrium achieves (50, 50). Although the coco value is unique, this example il-
lustrates that there may be a multiplicity of agreements which all achieve the coco
value; for example, they may play (A,B) with a side payment of $30 from P2 to
P1, or the reverse. They may also achieve this value, on average, without any side
payment: they may agree to flip a coin to decide between playing (A,B) and (B,A),
and in a repeated setting, they may alternate between (A,B) and (B,A).

In the more interesting asymmetric version below, P2 nets $2/dog sold while P1
still nets $1/dog sold. The game is given below on the left, and the decomposition
on the right.

A B
A 20,40 40,200
B 100,80 50,100 =

A B
A 30,30 120,120
B 90,90 75,75 +

A B
A -10,10 -80,80
B 10,-10 -25,25

The team game has value (120, 120), while the zero-sum game has value (−25, 25);
hence the coco value is (95, 145). The coco value achieves the maximum total of
240, which the players can obtain by playing (A,B) followed by a $55 side payment
from player 2 to player 1 ((40, 200) + (55,−55) = (95, 145)).

Whether real-world players would reach agreement at all, and whether such
agreements would involve transfers of approximately $55, are left for further study.
Nonetheless, the coco value is a focal point that may aid in reaching such agree-
ments. The coco decomposition, disentangling the cooperative from the competitive
incentives, offers a rationale for this focal point.

The main body of this paper extends the above analysis to games with asymmetric
private information, as illustrated next.

2.1. Incomplete-information hot-dog cart game. Now, suppose the demand
at B depends on the weather: if sunny, which has probability 1/2, it is for 200
dogs; and if cloudy, which has probability 1/2, there are no customers at the beach.
Furthermore, suppose that player 1 is perfectly informed, a priori, of the weather
and player 2 has no information.

This situation may be described by a Bayesian game with the payoff tables below:

Sunny
prob 1/2

A B
A 20,40 40,400
B 200,80 100,200

Cloudy
prob 1/2

A B
A 20,40 40,0
B 0,80 0,0

The expected payoffs, obtained under three different computational schemes, are
summarized in the table below:8

P1 P2 Total
Noncooperative, Bayesian equilibrium 70 100 $170

Purely cooperative play 20 240 260
The coco value: cooperate & transfer 115 145 260

8In contrast to this example, there are games where the coco payoff of an individual is lower
than her equilibrium payoff, as we discuss in Section ??.
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At the unique Bayesian equilibrium of this game, P1 chooses B when he knows
the weather to be sunny and A when he knows it to be cloudy; having no such
knowledge, P2 simply chooses B. The expected payoffs in the table are computed
to be: (70, 100) = 0.5(100, 200) + 0.5(40, 0).

The purely-cooperative payoffs are obtained by making coordinated optimal use
of their combined information-production resources, in order to maximize the total
payoffs: when it is sunny, P2 goes to B and P1 goes to A, but when it is cloudy, they
do the opposite. The expected payoffs in the table are computed to be: (20, 240) =
0.5(40, 400) + 0.5(0, 80).

Clearly, the players would like to obtain the cooperative total of $260 rather
than the total noncooperative total of $170. But the cooperative solution calls for
substantial sacrifices on P1’s part: he must always disclose his forecast truthfully
and then choose the inferior location.

A natural resolution is to amend the efficient solution with payoff transfers. In
our solution to the example above, on sunny days, when P2 goes to B and P1 to A,
P2 pays P1 $130 out of her $400 payoff. And on cloudy days, when he goes to B
and she goes to A, P2 pays him $60 out of her $80 payoff. The expected payoffs in
the table are computed to be: (115, 145) = 0.5(170, 270) + 0.5(60, 20).

In Section 9.3, we compute the value of information for the two players.

2.2. Overview. The rest of the paper is organized as follows. Section 4 presents
the definition of the coco value and the formula for computing it, as done above.
Section 5 presents axioms of fairness and efficiency that justify this value. Section
6 studies implementation. It presents partnership protocols in which the players
have the incentive to disclose their private information and to act optimally in order
to bring about the coco payoffs. Section 7 is devoted to a joint venture example,
relating the coco value approach to the Myerson-Satterthwaite bargaining model.
Additional elaboration and connections to earlier literature are presented in sections
8 and 9.

3. Preliminaries

Unless otherwise specified, we consider games with a fixed set of two players,
N = {1, 2}. A Bayesian game G is defined by: G = (A = ×i∈NAi, T = ×i∈NTi, U =
×i∈NUi, µ) where for each player i, Ai denotes the set of actions, Ti denotes the set
of types, and Ui ⊆ RA denotes the set of payoff functions (utilities), ui : A→ R. All
these sets are assumed to be finite and µ is the prior probability distribution over
T × U . To increase readability, we sometimes write (t, u) ∼ µ to indicate that the
pair (t, u) is drawn from the distribution µ. Notice that in addition to information
types, this formulation also allows for payoff types (for every ti have µ(ui|ti) = 1 for
some ui), and for types that combine the two.

As is standard, we assume that the game and the prior distribution are commonly
known to the players. Game play is as follows. First, the state of the world,
(t, u) ∈ T ×U, is drawn from µ. Each player i then observes her own type ti, on the
basis of which she chooses (simultaneously with her opponent) an action ai ∈ Ai.
The payoff to player i is ui(a), where a = (a1, a2) is the selected action profile.

As is standard, a mixed action for player i is a probability distribution αi ∈ ∆(Ai)
over the set of actions. We also extend the domain of payoff functions, ui, to mixed
actions by the use of expected values. A (pure) strategy for player i, si : Ti → Ai,
is a function that specifies the action that player i would choose if her type were
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ti ∈ Ti; and a (behavioral) mixed strategy for player i, σi : Ti → ∆(Ai), similarly
specifies a mixed action to play based upon her knowledge of own type.

It is also common to refer to ti as the private information of player i. A game is
zero-sum if, with probability 1, u1 = −u2, and it is a team game if u1 = u2, with
probability 1. Finally, we use the standard convention that a−i and u−i represent,
respectively, the actions and payoffs of player i’s opponent. A coordinated strategy
is a function c : T → A from type profiles to action profiles.

As mentioned, we assume that the players have additive transferable utility for
money (TU), i.e., they can make arbitrary monetary side payments (or their equiv-
alent) from one to another at a one-to-one rate.

3.1. Revealed-payoff assumptions. The revealed-payoff assumption requires that,
after play of the game, the payoff vector u(a) is revealed to all players. The strong
revealed-payoff assumption requires that, after play of the game, the entire payoff
function u is revealed to all players. That is, each player then knows how much each
player would have received had they played any other action profile.9

One example that satisfies the strong revealed-payoff assumption is the hot-dog
sellers game. Provided that payoffs resulting from any location choices depend only
on the weather, and that the weather is observed by all players after the play, one
can compute the payoffs for any hypothetical location choices. Notice that strong
revealed-payoff assumption continues to hold in all games in which payoffs depend
entirely on a state of nature which is observable after the play of the game.

We should point out, however, that the payoff-revelation assumptions do not
require that the types of the players be revealed. As an example of where this
distinction is meaningful, consider again a game in which the payoffs depend on the
weather, and the players’ types consist of imperfect individual weather forecasts. If
the weather is observed by all players after the play of the game, then the revealed-
payoff assumption holds even if the forecasts are not revealed.

But nevertheless, there are important games in which the revealed payoff assump-
tion does not hold. One example is an auction in which the payoff of the winner
depends on his private value of the item, which is not verifiable.

4. The coco value: a formula for fair and efficient expected payoffs

The coco value is a unique pair of numbers for each game G = (A, T, U, µ). It
is Pareto efficient, which in such a TU game means that it maximizes the sum of
payoffs, and reflects the strategic positions and contributions of the players fairly.
In the case of complete-information games, it coincides with earlier variable-threat
bargaining solutions (i.e., those of Nash, Raiffa, and Kalai-Rosenthal), as described
in the introduction.

For the extension to Bayesian games and for the construction of the noncoopera-
tive protocols that follow, it is better to use a different definition of this value (even
in the complete-information case) than the ones used in the earlier formulations.
Our definition uses a natural decomposition of a strategic game into a cooperative
component and a competitive one.

9Mezzeti (2004) used similar revealed-payoff assumptions in a study of auctions.
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4.1. Complete information. For clarity of exposition, we first give a definition
for the case of a complete-information bimatrix game (X,Y ), where matrices X,Y ∈
Rm×n represent the payoffs, i.e., u(i, j) = (xij , yij) for (i, j) ∈ {1, 2, . . . ,m} ×
{1, 2, . . . , n} = A1 × A2. As discussed in the introduction, (X,Y ) can be uniquely
decomposed as the sum of an equal-payoff team game E and and a zero-sum payoff-
advantage game Z:

(X,Y ) = (E,E) + (Z,−Z) ≡
(
X + Y

2
,
X + Y

2

)
+
(
X − Y

2
,
Y −X

2

)
.

The coco value of (X,Y ) is defined by

κ(X,Y ) = (e∗, e∗) + (z∗,−z∗),

where e∗ = maxij eij is the natural team value for a game of the form (E,E), and
z∗ = min max(Z,−Z) is the classical von Neumann value for a zero sum game.

Since (e∗, e∗) is efficient and (z∗,−z∗) is a zero-sum transfer, the coco value is
efficient. The (z∗,−z∗) transfer is a (positive or negative) correction transfer that
reflects the asymmetries in the original game, which are ignored by the equal payoff
component (e∗, e∗).

The following is a direct consequence of the above definition.

Observation 1. For any game of complete information the following conditions
hold.

(1) For any zero sum game, κ(A,−A) = minmax value(A,−A).
(2) For any team game, κ(A,A) = team value(A,A) = (maxij aij ,maxij aij).
(3) The coco value is feasible and does not require the use of mixed strategies:

there is always a simple agreement consisting of a pair of (pure) actions and
a monetary transfer, which yields net payoffs equal to the coco value.

4.2. Incomplete information. Proceeding to the general case of Bayesian games,
we first define two auxiliary payoff functions.

Definition 1. For any u : A→ RN , define ueq, uad : A→ RN as follows:

(1) The equal, or average payoff is ueq
1 (a) = ueq

2 (a) ≡ u1(a)+u2(a)
2 .

(2) The payoff advantage of player i is uad
i (a) ≡ ui(a)− ueq

i (a) = ui(a)−u−i(a)
2 .

Although ueq(a) ∈ R2, we sometimes use ueq(a) to denote the single equal payoff
that it allocates to the players, and thus write ueq(a) = ueq

1 (a) = ueq
2 (a).

The cooperative-competitive decomposition presented above for complete infor-
mation extends naturally to incomplete information:

u = ueq + uad.

But unlike the complete-information case, now the players may also improve the
sum (or average) of their expected payoffs by sharing information. To this end, we
define the following notions.

Definition 2. For G = (A, T, U, µ), the team optimum of G is defined by:

team-opt(G) = max
c:T→A

E [u1(c(t)) + u2(c(t))] .

A coordinated (pure) strategy c : T → A is called optimal if E [u1(c(t)) + u2(c(t))] =
team-opt(G).
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In words, an optimal coordinated strategy is a rule c that the players may use
to select, for every pair of realized types t, a pair of actions c(t) that maximizes
the sum of their expected payoffs in G. The team optimum is the maximal sum of
expected payoffs that may be generated by such a rule. Notice that this definition
assumes that they truthfully share all their information and then coordinate their
actions.

Definition 3. The relative advantage of player i is defined to be her minmax value
in the zero-sum game Gad = (A, T, V, µad), where V consists of all payoff functions
v = (v1, v2) with each vi = uad

i for some payoff function ui of G, and µad(t, v) =
µ({(t, u) : vi = uad

i , for i = 1, 2}).

The game Gad is a zero-sum modification of G, which preserves the differences
between the two players’ payoffs. Each player is simply trying to maximize the
difference between her payoff and that of her opponent. Since the advantage game is
a zero-sum Bayesian game, it has a unique minmax expected value, which we denote
by minmaxi(Gad). We refer to this value as the player’s competitive advantage,
relative advantage, or just advantage.

Definition 4. The coco value of G to player i, denoted by κi(G), is defined by,

κi(G) =
1
2

team-opt(G) + minmaxi(Gad).

In parallel to the complete-information case above, one may define a cooperative
component of G, Geq, in which the players share both the information they have
coming to the game and the payoffs resulting from any play.10 The team-opt(G)
equals the highest possible (common) expected payoff that may result from any pure
strategy of Geq, which may be thought of as the team-value(Geq). Thus, in parallel
to the complete-information case, one may think of the coco value of a private-
information game as the sum κ(G) = team-value(Geq)+ minmax-value(Gad).

Note that the coco value is feasible and Pareto optimal for every t (in conditional
expectations over T ), i.e., the sum of the payoffs is the maximum (expected) sum
that the players can achieve with coordination and sharing of information. We now
argue that it is the “right” value by the axiomatic approach.

5. Axiomatic characterization of the coco value

We define a value to be a function from the set of all finite two-person games to
R2, i.e., v(G) ∈ R2 where vi(G) is the value to player i. To better understand the
axiomatization, the reader may benefit from first examining the axioms in the case
of complete-information games, given in Figure 1. These five simple axioms can be
shown to be uniquely satisfied by the coco value. We omit the analysis, which is a
direct simplification of that of Theorem 1 below.11

Moving to the general case of games of incomplete information, the coco value
satisfies a large number of appealing properties inherited from the minmax value of
zero-sum games. Some of these are discussed in the concluding sections of this paper.
But a justification of a value is more convincing if it is unique even in satisfying a

10Geq = (A, T̂1× T̂2, V, µ̂) defined by T̂1 = T̂2 = T1×T2, V = {v : v = ueq for some u ∈ U} and
µ̂((t, t), v) = µ({(t, u) : ueq = v}).

11As mentioned earlier, Selten (1960, 1964) gave a more involved axiomatization of the analogous
value for extensive-form games with complete information. We are grateful to Moshe Tennenholtz
and Dov Monderer for pointing us to Selten’s work.



10 ADAM TAUMAN KALAI∗ AND EHUD KALAI†,§

1. Pareto efficiency. Players maximize total payoff: v1(X,Y ) + v2(X,Y ) = maxij xij + yij .
2. Shift invariance. The shifting of payoffs by the same constants in every cell leads to a
corresponding shift in the value: v(X + c1, Y + c2) = v(X,Y ) + (c1, c2).
3. Monotonicity in actions. Removing an action cannot increase a player’s value, e.g., for player
1, v1(X ′, Y ′) ≤ v1(X,Y ) where (X ′, Y ′) are formed by removing a row of (X,Y ).
4. Payoff dominance. If xij > yij for all i, j, then v1(X,Y ) ≥ v2(X,Y ). Similarly for player 2.
5. Invariance to redundant strategies. An action which is equivalent, in expectation, to a
mixed action, may be removed without changing the value: if the ith rows of X and Y equal a
convex combination α of other rows, with αi = 0, then the ith rows may be removed without
changing the value. Similarly for player 2.

Figure 1. The coco value is unique in satisfying the above set of axioms for com-
plete information games X,Y ∈ Rm×n.

small number of weak reasonable requirements. The following properties, or axioms,
are sufficient for our axiomatization theorem.

(1) Pareto efficiency. Players achieve the maximum (first-best) total ex-
pected payoff possible, v1(G) + v2(G) = maxc:T→A E [u1(c(t)) + u2(c(t))],
with shared information, i.e., team-opt(G).

(2) Shift invariance. The shifting of payoffs by constants in every cell leads to
a corresponding shift in the value. Formally, fix c = (c1, c2) ∈ R2. For any
u, let u′(a) = u(a) + c. Then v(G′) = v(G) + c where G′ = (A, T, U ′, µ′),
with U ′ = {u′ : u ∈ U} and µ′(t, u′) = µ({(t, u)}).

(3) Monotonicity in actions. Removing an action of a player cannot increase
her value. Formally, let A′1 ⊆ A1 and u′ be the restriction of any u to A′1×A2.
Then v1(G′) ≤ v1(G) where G′ = (A′1 × A2, T, U

′, µ′), in which U ′ consists
of the restricted payoff functions from G, and µ′ is the induced distribution
over (t, u′) (i.e., µ′(t, u′) = µ({(t, u) : u|A1 = u′})). Similarly for Player 2.

(4) Payoff dominance. If, under any coordinated pure strategy, a player’s
expected payoff is strictly larger than her opponent’s, then her value should
be at least as large as the opponent’s. In particular, if minc:T→A E[u1(c(t))−
u2(c(t))] > 0, then v1(G) ≥ v2(G). Similarly for player 2.

(5) Invariance to redundant strategies. Let a1 ∈ A1 and A′1 = A1 \ {a1}.
We say a1 is redundant (in expectation) if there exists σ1 : T1 → ∆(A′1) with
the property that for every t ∈ T, and every a2 ∈ A2 Eµ

[
u(a1, a2) | t

]
=

Eµ

[
u(σ1(t1), a2) | t

]
. Then removing such a redundant action a1 does not

change the value of the game for either player. Similarly for any redundant
action of player 2.

(6) Monotonicity in information. Giving player i strictly less information
cannot increase her value. In particular, v1(G′) ≤ v1(G), where G′ is de-
fined by replacing player 1’s information t1 by some function f(t1). For-
mally, take an arbitrary function f : T1 → T1 and G′ = (A, T, U, µ′) with
µ′((t′i, t−i), u) = µ({((ti, t−i), u) : f(ti) = t′i}). Similarly for player 2.

Theorem 1. The coco value is the only value that satisfies axioms 1-6 above.

Before turning to the proof of the theorem, we first offer some intuition through
a sketch of the proof for complete information games. Specifically, for any value v
that satisfies the Axioms of Figure 1, v(G) = κ(G) for any complete information
game G. Shift invariance implies that it suffices to consider the special case of



A COOPERATIVE VALUE FOR BAYESIAN GAMES 11

games G with κ(G) = (0, 0). Moreover, it suffices to show that v1(G) ≥ 0, because a
similar argument would show that v2(G) ≥ 0, and Pareto efficiency would imply that
v(G) = (0, 0) to complete the proof of this special case. Now, when κ(G) = (0, 0),
the minmax value of Gad must also be zero. Let σ∗1 be any minmax strategy of player
1 in Gad. By the coco decomposition, in the game G this strategy guarantees player
1 an expected payoff at least as large as that of player 2. Now consider the game H
in which player 1 is forced to play σ∗1 (a new pure action is created corresponding
to σ∗1 and all other actions are deleted). By axioms 3 and 5, v1(G) ≥ v1(H). By
payoff dominance (see the proof of Theorem 1 for how to address the weak vs. strong
inequality), v1(H) ≥ v2(H). If the team optimum of H were the same as G, i.e.,
v1(H) + v2(H) = 0, then these three facts would imply that v1(G) ≥ 0, and we
would be done.

However, forcing player 1 to play σ1 may decrease the team optimum. To over-
come this difficulty in this complete-information case, before we force player 1 to
play σ∗1, we augment the game G as follows: we add to player 2 a new simple action
that yields the constant payoffs (0, 0), no matter what player 1 plays. This does
not change the coco value, and axioms 1 and 3 imply that this new strategy cannot
increase player 1’s value (in particular, player 2 is no worse off while the team-opt
remains 0). Furthermore, when player 1 is now forced to play σ1, player 2’s new
action guarantees that the team optimum remains 0, and hence the argument in the
previous paragraph goes through.

In the case of incomplete information, the approach of the proof above fails for
two reasons. First, the addition of a constant (0, 0) action for player 2 could very
well change the team optimum and the value of the advantage game, because this
action may be taken based upon the player’s information. Second, in order to apply
the payoff-dominance axiom, we remove all of player 1’s information, which might
decrease the team optimum. We now show how to address these subtleties.

Lemma 1. Let G be a finite two-person Bayesian game such that κ(G) = (0, 0).
Then axioms 1-6 above imply that v1(G) ≥ 0.

Proof. We will construct a sequence of games and argue that v1(G) ≥ v1(G′) ≥
v1(G′′) ≥ v1(H) ≥ 0.

To construct G′, we add a new action b2 (6∈ A2) to player 2’s set of actions, so
that the sets of actions of G′ are A′1 = A1 and A′2 = A2 ∪ {b2}. Next we define the
possible payoff functions U ′ of G′. We fix any action a∗2 ∈ A2 for player 2, we fix
some team-optimal coordinated strategy c : T → A in G (see Definition 2), and we
define the gain from cooperation at (a1, a

∗
2) and t to be g = u1(c(t)) + u2(c(t)) −

u1(a1, a
∗
2) − u2(a1, a

∗
2). Every payoff function of G is extended in up to |T | payoff

functions in G′ so that when player 2 selects the new action b2, their payoffs are
those of G at (a1, a

∗
2) plus the gain g divided equally between the two players.

Formally, for any t ∈ T and u : A→ R2, define f tu : A′ → R2 by

f tu(a) =

{
u(a) if a2 6= b2,
u(a1, a

∗
2) +

(g
2 ,

g
2

)
if a2 = b2,

with g = u1(c(t)) + u2(c(t))− u1(a1, a
∗
2)− u2(a1, a

∗
2).

Now the prior probability distribution ofG′ is the one induced by µ, i.e., µ′(t, u′) =
µ({(t, u) : f tu = u′}).
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It is easy to see that the team optimum of G′ is still zero, because the total
achieved by any coordinated strategy in G′ can also be achieved in G, so v1(G′) +
v2(G′) = 0. By monotonicity in actions, v2(G′) ≥ v2(G). Hence, v1(G′) ≤ v1(G).

Next, because κ(G) = (0, 0), the value of the advantage game Gad must be
(0, 0). Hence, there must exist a mixed strategy for player 1, σ∗1, which guarantees
player 1 at least as much as player 2, in expectation, i.e., Eµ[u1(σ∗1(t), σ2(t)) −
u2(σ∗1(t), σ2(t))] ≥ 0 for any σ2. In particular, fix any such σ∗1 which is a minmax
optimal strategy for player 1 in Gad. Note that σ∗1 also guarantees player 1 at least
as much as player 2 in G′, because b2 is equivalent to a∗2 in terms of the difference
in the players’ payoffs.

Now, using σ∗1 defined above, we define a new action b1 6∈ A1; we then consider the
game G′′, obtained from G by restricting the actions of player 1 to be A1

′′ = {b1},
with payoffs u′′(b1, a2) = u′(σ∗1, a2). Hence, in G′′ player 1 must play like σ∗1 in G′

(in expectation). By monotonicity in actions, this means that v1(G′′) ≤ v1(G′). (To
see this formally, one must first consider the game with actions (A1 ∪ {b1}) × A′2,
which has the same value as G′ because b1 is redundant by axiom 5; then remove
all remaining actions for player 1.) Finally, team-opt(G′′) = 0, since when player 2
plays b2, they achieve the same expected total as when they play c in G.

Now, by design, b1 guarantees player 1 at least as much as player 2, in expecta-
tion. However, to apply payoff dominance, we must argue that, even if the players
coordinate, player 1 gets strictly more than player 2, in expectation. Even though
player 1 has only one action in G′′, he may have information that can help player 2
achieve an advantage.

To address this coordination problem, we remove all information from player 1. In
particular, fix any t∗1 ∈ T1 and define the game H by changing only the set of types
of G′′ so as to obtain TH1 = {t∗1} with µH((t∗1, t2), u′′) = µ′′({(t1, t2), u′′) : t1 ∈ T1}).

By axiom 6, v1(H) ≤ v1(G′′). Also, the team optimal of H remains zero, because
player 2 still has the option of playing the fixed action b2. Finally, notice that player
1 is guaranteed an expected amount at least as large as that of player 2, due to our
choice of b1. Coordination is impossible since player 1 has only one action and one
possible type.

We are almost ready to apply Axiom 4. The remaining issue is that we have a
weak inequality rather than a strong one. To complete the proof, imagine translating
the payoff of player 1 up by any constant ε > 0. By Axiom 2, this would only
shift his value up by ε. However, once his payoff has been shifted, Axiom 4 does
apply, in which case player 1’s value is at least as large as that of player 2. Hence,
v1(H) + ε ≥ v2(H). Since this holds for every ε > 0, it follows that v1(H) ≥ v2(H).
Combining this with v1(H)+v2(H) = 0 implies that v1(H) ≥ 0, and we have already
argued that v1(G) ≥ v1(G′) ≥ v1(G′′) ≥ v1(H).

We now prove Theorem 1.

Proof of Theorem 1. First, we argue that the coco value satisfies axioms 1-6. Pareto
efficiency is trivially guaranteed by the fact that the advantage game is zero-sum
and the team game value maximizes the expected sum of payoffs. Second, a payoff
shift of (w1, w2) corresponds to a shift of

(
w1−w2

2 , w2−w1
2

)
in the advantage game and

to a shift of w1 + w2 in the team-opt. Since the value of zero-sum Bayesian games
satisfies shift invariance, this corresponds to a shift of (w1, w2) in the coco value.
Monotonicity in actions and information clearly holds for zero-sum games and the
team-opt value, and hence also for the coco value. Similarly, removing a redundant
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action for i in G corresponds to removing the redundant action in the zero-sum and
team games, which does not change their value. Removing a redundant state also
does not change the value of a team game or a zero-sum game.

The proof of the converse, namely that the only value v that satisfies the axioms
is v(G) = κ(G), follows easily from Lemma 1. Specifically, translate the payoffs of
G by −κ(G) to get game G′ where κ(G′) = (0, 0). Lemma 1 states that v1(G′) ≥ 0.
Since the axioms are symmetric, the same reasoning implies v2(G′) ≥ 0. Pareto
efficiency then implies that v(G′) = (0, 0). Finally, axiom 2 implies that v(G) =
v(G′) + κ(G) = κ(G).

6. Noncooperative implementation of the coco value

Solutions to strictly-cooperative and to strictly-competitive games deal with pri-
vate information easily, but in opposite ways. In Bayesian team games (where the
players’ payoffs are identical), the obvious incentive is to fully disclose all private
information, enabling the players to choose the mutually best pair of actions. Con-
versely, in every Bayesian zero-sum game (where one player’s gain is the other’s
loss), the obvious incentive is not to disclose any private information, keeping the
opponent from gaining any advantage. It follows that through the decomposition
of a Bayesian game into the sum of a team game and a zero-sum game, the coco
value can also deal with private information easily, provided that the incentives in
the play of each component are independent of the play of the other component.
This idea is exploited in this section, where we study the implementability of the
coco value.

Would unobligated strategic players choose to use the coco value? In the case
of complete-information games, it is simple to implement the coco value through
the use of individual commitments and binding agreements. But in the case of
incomplete information, implementation is more difficult due to the need to share
and to make a coordinated use of private information.

We use the term protocol to describe a two-person procedure that involves com-
munication and simple commitments, without the use of joint randomization devices
(other than the original choice of types and payoff functions in the game being imple-
mented). We say that a protocol implements the coco value if it admits a Bayesian
Nash equilibrium with expected payoffs that match the coco value.

As readers familiar with the implementation literature know, achieving first-best
efficiency in general Bayesian games may be impossible, even if we do not insist on
simultaneously achieving the other properties (such as fairness) of the coco value.
We overcome such difficulties by restricting ourselves to applications that satisfy the
revealed-payoff assumptions discussed in Section 3.1. Under the weaker assumption
– that the realized payoff vector u(a) is revealed after the play of the game – ex-
ante Bayesian implementation of the coco value is possible. And under the stronger
assumption – that the entire realized payoff function u is revealed after the play of
the game – an interim Bayesian implementation of the coco value is possible. The
latter implementation is more realistic because it is interim; thus, the decision of
whether to adopt the coco value takes place after the players know their types, and
its protocol does not require knowledge of the prior probability of the game being
implemented. Further discussion about the merits of and the need for of these
assumptions is deferred to later in this section.
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Our protocol mirrors some of the methods used in the formation of real-life part-
nerships. When two partners agree to share equally the total (net) realized profits
of a joint venture, they create individually monotonic payoff functions: the payoff
of each increases if the total realized profit increases.12 This monotonicity property
gives each partner the incentive to truthfully share information and to take actions
that are optimal for the success of the project.

But if the situation is not symmetric – for example, if there are differences in
information, resources, and opportunity costs – the partners may agree up-front to
make a compensating payoff transfer. If the size of the transfer is independent of
their performance in the joint venture (for example, they commit to the size of the
transfer before the actual play), then the partnership should still be able to achieve
first-best efficiency in an incentive compatible manner.

The observation above can be used to achieve efficiency in different ways. In
subsections 6.1 and 6.2 we use it to construct specific incentive-compatible protocols
that implement the coco value in some restricted but important classes of games.

Throughout the remainder of this section, G = (A, T, U, µ) is assumed to be an
arbitrary, fixed two-player finite Bayesian game as discussed above.

6.1. Ex-ante implementation. We make two assumptions in this subsection: (1)
both realized payoffs are revealed to both players after the game is played, and
(2) the players commit to the protocol before observing their types. The protocol
is simple. The players form a partnership in which they split the total payoffs
(positive or negative) equally. This can always be achieved by a side payment, and
it incentivizes them to coordinate by revealing information and playing actions that
maximize the total payoff. However, to make up for the imposed equal division of
the payoffs when the game is not symmetric, a second side payment is made from
the weaker player to the stronger one. When the two side payments are combined,
the coco value is achieved at equilibrium. A direct consequence of this protocol is
that the coco value is ex-ante individually rational.

Ex-ante partnership protocols for an arbitrary, finite, two-player Bayesian
game G = (A, T, U, µ).

Fix any optimal coordinated strategy c : T → A.13

(1) Players simultaneously choose whether to commit to participate or not.
• If either one does not agree to participate, then they play G unmodified,

they collect their respective G-payoffs, and the protocol ends.
• Otherwise, they have made a binding agreement to continue, as follows.

(2) A triple, (t1, t2, u), is drawn by the prior distribution µ, and each player i is
informed of her realized type ti.

(3) Players i = 1, 2 simultaneously declare their supposed types t̃i ∈ Ti.
(4) The players are committed to play the pair of actions a = c(t̃), after which

the pair of payoffs u(a) is revealed.
(5) A side payment is made so that the net payoff to player i is ueq(a)+vali(Gad).

In other words, she is paid one-half of the total payoffs obtained through the
actual play in stage 4, plus her minmax value (positive or negative) of the
advantage component-game of G, computed without knowledge of the types.

12The use of such monotonicity conditions is common in cooperative game theory; see, for
example, Kalai (1977) and Myerson and Thomson (1980).

13Recall that for every other coordinated strategy, c′ : T → A, Et,u [ueq(c(t))] ≥ Et,u [ueq(c′(t))].
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Theorem 2. The coco value κ(G) of any finite two-player Bayesian game G =
(A, T, U, µ) is the expected payoff vector of a Nash equilibrium in any ex-ante part-
nership protocol of the game.

Proof. Consider the following equilibrium strategy for each player i:
• Choose to participate.
• If mutual participation fails, play the (mixed) minmax strategy of Gad, i.e.,

play G as if you were playing Gad.
• If mutual participation holds, truthfully reveal your realized type, i.e., t̃i =
ti.

Observe first that no player can benefit by declaring a false type t̃i 6= ti (given
that the other player is being honest), because t̃ = t simultaneously maximizes each
player’s expected payoff (it maximizes u1(a)+u2(a)

2 and has no effect on vali(Gad)).
Next, observe that player i cannot increase her payoff by not participating. Say

that she does not participate, and instead plays a mixed strategy σ′i, while her
opponent plays his minmax strategy of the game Gad, σ−i. We can nonetheless
compute her expected payoffs via the coco decomposition. In particular, player i’s
expected payoff is the sum of the expected payoffs in Gad and Geq. The expected
payoff in Gad is at most the (minmax) value of Gad, and the expected payoff of σ
in Geq is at most the (team) value of Geq; hence, her total is at most the coco value
for i.

In addition to its direct implementation message, the theorem above serves as an
easy way to establish the following.

Corollary 1. The coco value is individually rational (ex-ante).

Proof. Notice that a player may decline to participate, and choose to use her G
minmax strategy in the ex-ante protocol above, guaranteeing herself her minmax
value of G as the payoff in the protocol. Thus, the minmax values of the protocol
are at least as high as the minmax values of G. Moreover, being equilibrium payoffs
of the protocol game, the coco payoffs must be at least as high as the minmax values
of the protocol. Thus, the coco payoffs are at least as high as the minmax payoffs
of G.

While the protocol above illustrates the individual rationality of the coco value,
it may be unsatisfactory for two reasons:

• The players must not know their own types before committing to play. If
either player knows some information about their own type before step 1, it
may no longer be in their best interest to participate. Hence, the protocol
is not interim incentive-compatible.
• Wilson (1987) advocates the use of mechanisms with rules and payoff func-

tions that do not depend on the prior probability distribution of the game
being implemented. The mechanism above violates the Wilson doctrine in
two respects. First, in order to compute the optimal coordinated strategy
c used in the definition of the protocol, one must know the prior distribu-
tion. Second, in order to compute the value of Gad used in allocating the
protocol’s payoffs, one must know the prior as well.

In the next section, we show how these deficiencies may be overcome by imposing
a further restriction on the environment.
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6.2. Interim implementation. In this section we make the strong revealed-payoff
assumption: The realized payoff function u : A → R2 (equivalently, the state of
nature if it is incorporated into the model) becomes known after the play of the game,
and the players can compute what the realized payoffs u(a) would have been for every
chosen pair of actions a. In Section 8, we give examples where this assumption does
not hold but the coco value can be implemented nonetheless.

For an example of an environment that fits this assumption, think again of the
hot-dog sellers game from the introduction, and assume that both sellers receive
weather forecasts (their types) before deciding on a location. The payoffs in this
example depend on the weather and not on the forecasts, and once the weather is
observed the profit in each location (whether chosen or not) is known. In other
words, the entire payoff table for the realized state of nature becomes known, even
if the types (the weather forecasts) remain unknown.

Under the above assumption, one can design effective interim protocols to imple-
ment the coco value.

Interim partnership protocol for an arbitrary, finite, two-player Bayesian
game G = (A, T, U, µ).

(1) A triple (t1, t2, u) is drawn by the prior distribution µ, and each player i is
informed of her realized type ti.

(2) Simultaneously, each player selects one strategy from the following two
choices:

DO NOT PARTICIPATE: she declares NO and selects an action ãi ∈ Ai,
to serve as her noncooperative action; or

PARTICIPATE: she declares YES and submits a sealed envelope con-
taining a reported type t̃i ∈ Ti and a selected action ãi ∈ Ai, to serve as her
noncooperative action.

The YES/NO declarations are revealed to both players and then:
• If either player declares NO, then the noncooperative pair of actions

(ã1, ã2) selected above is played, the game stops, and the players collect
their respective G-payoffs, u(ã).
• But if both declare YES, then the reported types t̃ are revealed to both

players, who are committed to continue as follows.
(3) Simultaneously, the players choose “cooperative” actions ai ∈ Ai and play G

using a. Both u(a) ∈ R2 and the realized payoff function u : A → R2 are
then revealed.

(4) Based upon the cooperative actions ai from stage 3 and the noncooperative
actions ãi from stage 2 (the envelopes are now opened), side payments are
made so that the net payoff to each player i is ueq

i (a) + uad
i (ã).

Note that in the protocol above the participation decision is voluntary, and that
by choosing not to participate, each player can force the play of the unmodified
game. However, this also means that any Nash equilibrium of G can be converted
to a nonparticipatory equilibrium of the interim partnership protocol. (In some
games, such as Prisoner’s Dilemma, participation is a dominant strategy.) While it
is possible to employ refinements and “implement away” these equilibria,14 we feel
that it is also reasonable to model the possibility that players may choose not to

14One difficulty is evident even in a pure coordination game, such as
1,1 0,0
0,0 2,2

, where there is

a (1,1) equilibrium. However, a team game refinement, which is natural among cooperative players,
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participate and to play noncooperatively. Before stating our theorem, we point out
two practical considerations regarding the protocol.

(1) In stage 3 above, one might allow extra communication, in the form of cheap
talk, to aid the players in selecting the same coordinated optimal strategy
c. However, since Nash equilibrium allows for coordinated selection when
multiple equilibria are available, this is not necessary for the formal theorem
below. Similarly, for many games one might consider protocols with lower
communication complexity (see, e.g., Kushilevitz and Nisan, 1996), which is
defined as the number of bits transmitted in a binary communication. In
many games, an optimal c may be computed using significantly less commu-
nication than when players reveal all of their private information.

(2) The definition of the protocol above is in no way dependent on the prior.
Moreover, the implementing strategies rely on very solid solution concepts:
to determine the pair ã, the players use the minmax solution (as opposed to
just a Nash equilibrium); and to determine the actual action pair a, they use
simple one person optimization. Hence, the resulting solution inherits some
appealing stability and polynomial-time computability properties from these
more robust solution concepts.15 These issues are discussed in the concluding
section.

In the equilibrium discussed in this theorem, players choose to truthfully share
information and to optimally coordinate, with threats defined through the relative-
advantage game.

Definition 5.
(1) A strategy πi of the partnership protocol above is participatory, if it declares

YES (with probability one) for every ti; and it is honest, if t̃i = ti for every
ti.

(2) For an optimal coordinated strategy (see Definition 2) c : T → A of the
game G, a profile of strategies π in the partnership protocol is c-coordinated
if:

A. In stage 2 each player declares YES, uses a minmax strategy of Gad to
choose ãi, and truthfully selects t̃i = ti.

B. In stage 3 each player selects ai = ci(t̃), provided that she had reported
truthfully (t̃i = ti), as planned in stage 2. If she failed to report truthfully in
stage 2 (t̃i 6= ti, which is a probability zero event), then she selects ai which
maximizes Eu

[
ueq
(
ai, c−i(t̃)

)
|(ti, t̃−i)

]
.16

A c-coordinated strategy is clearly participatory, honest, and ex-post efficient;
and also enjoys the additional properties specified in the following theorem:

Theorem 3. Consider the interim partnership protocol of a given finite two-player
Bayesian game G = (A, T, U, µ):

(1) Any c-coordinated strategy profile is a sequential Nash equilibrium of the
partnership protocol with expected payoffs that equal the coco value of G,
κ(G).

could rule out such equilibria. A suitable implementation may then have all equilibria yielding the
coco value in expectation.

15We thank Robert Wilson for pointing out the solution’s stability.
16It is necessary to specify how to act under such zero-probability events in order to argue, as

we do below, that we have a sequential equilibrium.
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(2) For any participatory Nash equilibrium of the partnership protocol, the ex-
pected payoffs are κ(G)− (x, x) for some x ≥ 0. In other words, all partici-
patory equilibria are Pareto dominated by the coco payoffs.

(3) However, the equilibria of G also remain equilibria of the partnership proto-
col: for any mixed-strategy Nash equilibrium σ = (σ1, σ2) of G, it is also a
Nash equilibrium of the partnership protocol for both players to declare NO
and select ãi according to σi.

Proof of Theorem 3. For part 1 assume, for example, that player 2 uses her c-
coordinated strategy. Notice first that by definition, in every one of player 1’s
stage-3 information sets, player 1 acts optimally, since his opponent tells the truth
and follows the c-optimal selection.

So, for part (1), it remains to be shown that player 1 acts optimally at his first
information set, namely, in stage 2. Suppose that instead of the above, he chooses
not to participate, and to play b̃1. By the decomposition, his expected payoff,
conditioned on t, is:

Eu

[
uad

1 (̃b1, ã2) + ueq
1 (̃b1, ã2) | t

]
.

But by switching his strategy to a c-coordinated one, player 1’s payoff may be
written as:

Eu

[
uad

1 (ã1, ã2) + ueq
1 (c(t)) | t

]
,

where ã1 is chosen by his advantage-game minmax strategy against player 2’s ã2,
chosen according to her minmax strategy. Hence, it is easy to see that the switch
to the c-coordinated strategy can only increase both terms in the above two ex-
pectations. We can also easily see, using the same decomposition argument above,
that under participatory strategies, player 1 cannot obtain a higher payoff than by
following any other c-coordinated strategy. Thus, part (1) of the theorem holds.

For part (2) the decomposition implies that at any equilibrium the players’
first payoff terms must equal their corresponding first payoff terms under the c-
coordinated equilibrium. On the other hand, their second (equal) payoff terms can
only be smaller than under the c-coordinated equilibrium, and by the same amount.

Part 3 is obvious, since either player can declare NO, forcing the game to be the
original game G.

6.3. Interim individual rationality and conditional values. Part (1) of Theo-
rem 3 offers a positive equilibrium answer to the question of whether the unobligated
players would choose to participate after they know their types. For any pair of pri-
vately known types, if one player participates, it is a best response for the opponent
to participate. For complete-information games, this means in particular that the
coco value is individually rational; as we already discussed, the coco value is also
individually rational ex-ante, before the players know their types.

One may ask whether the coco value is also individually rational interim, that
is, after the players have observed their types. A related question is: what is the
conditional coco value, i.e., how much should a player expect, conditioned on her
type? In fact, this latter question is not well-defined, but it is not a deficiency par-
ticular to the coco value. As we demonstrate below, even among minmax strategies
of a zero-sum game, there may be no unique payoff that a player may expect, con-
ditioned on her type. Hence, a good definition of interim individual rationality is
subtle. To illustrate, consider the following zero-sum Bayesian game:
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wp .5
0, 0 1,-1
0, 0, 0, 0

wp .5
0, 0 -1, 1
0, 0 -1, 1

Now, suppose player 1 is completely informed, knowing which payoff table is being
used, while player 2 is completely uninformed. Clearly the (minmax and coco) value
of the game is (0, 0). However, when player 1 knows the payoff table is the one on
the left, player 1 must play up but it is not clear what he should expect. Player
2 may be playing left, in which case player 1 should expect zero. Or player 2 may
be playing right, in which case player 1 should expect one. And all strategies are
minmax strategies for player 2.

Furthermore, player 1’s strategy of always playing down does meet the following
tempting definition of conditional individual rationality: it guarantees him the most
he can guarantee, given each type. This is because player 1 can only guarantee a
payoff of 0 in the left payoff table. Similarly, in the right payoff table, player 1 can
only guarantee a payoff of -1. The strategy of playing down does guarantee player 1
these minimal values. However, down is clearly an unsatisfactory strategy and does
not even meet the definition of ex-ante individual rationality. Hence, the natural
criterion of guaranteeing the most one can guarantee, conditioned on one’s type, is
a poor definition of individual rationality.

The following threat-based definition of individual rationality is preferable.

Definition 6. Let G = (A, T, U, µ) be a finite two-person Bayesian game. A payoff
function, p : T → R2, is interim individually rational for player i if there exists
an opponent’s threat strategy σ−i such that, for any type ti ∈ Ti and any ai ∈ Ai,
Eµ[ui(ai, σ−i(t−i)) | ti] ≤ pi(ti).

That is, player i would rather receive pi(ti) than face the threat of playing against
σ−i, for any type ti. Theorem 3, in particular the existence of a participatory
equilibrium that achieves the coco value, implies that there are individually rational
payoff functions that achieve the coco value in expectation. In particular, fix any
c-coordinated strategy profile. Letting p : T → R2 be the expected payoff pair for
any type profile, since each player has the option of not participating and the players
are at Nash equilibrium, p must be individually rational for both players.

Remark 1. In certain cases, the conditional value of a zero-sum game is well-
defined. For example, this is clearly the case when there are unique minmax strate-
gies. The same is true for the coco value. In particular, when the advantage game
admits unique minmax strategies, the conditional coco value is well defined.

7. Joint venture example: efficiency in the Myerson-Satterthwaite
model

A manufacturer M can produce a certain item at cost $C, and a distributor D
can sell this item with a return of $R. The pair of parameters (C,R) is generated
by a known prior probability distribution π on the integers in [0, 100]2; M knows the
realized value of C and D knows the realized value of R. Under the simple monetary
function used in this paper, if M manufactures the item, and sells it to D at a price
P , who in turn sells with the return R, then M nets the payoff P − C and D nets
the payoff R− P .

The well-known impossibility result of Myerson and Satterthwaite implies that,
in general, there is no mechanism that guarantees efficient outcomes: under any
negotiation procedure, M and D would fail to agree on a price P in some situation
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with C < R. However, under the strong revealed-payoff assumption in this paper,
the coco value offers an efficient and fair solution that can be implemented in the
interim sense discussed above.

For a strategic description of the situation above, we use a double-auction nonco-
operative Bayesian game G defined as follows: M submits a demanded price P dem,
and D simultaneously submits an offered price P ofr. If P ofr < P dem, then there is no
deal and each nets zero payoff. But if P ofr ≥ P dem, then the item is manufactured
by M and sold to D at the price Pmid ≡ (P ofr +P dem)/2; M’s payoff is then Pmid−C
and D’s payoff is R− Pmid.

To compute the coco value of G, observe that when the types are (C,R), the
payoff ueq((P dem, P ofr)) is (R−C)/2 if P ofr ≥ P dem, and it is zero otherwise. Thus,
the team-opt(G) = E[max{R− C, 0}].

As for the advantage component, consider the constant strategies P dem = 100
and P ofr = 0 played by M and D, respectively, regardless of their values of C and R.
Under these strategies in the game G, each player guarantees two things: (1) his own
payoff is at least zero, and (2) the opponent payoff is not greater than zero. This
means that in the advantage game, they guarantee themselves payoff advantages of
zero, and (0, 0) is the minmax value of the advantage component game.

Under the definition of the coco value, the two paragraphs above imply the fol-
lowing:

Proposition 1. The coco value of the joint venture game above is:(
1
2
E[max{R− C, 0}] , 1

2
E[max{R− C, 0}]

)
.

To illustrate the interim implementation of the coco payoffs above, consider the
following strategies in the partnership game. After learning their true individual
parameters, C and R, both players declare YES, submit the noncooperative strate-
gies P dem = 100 and P ofr = 0, and report their individual parameters truthfully:
C̃ = C and R̃ = R. If the reported cost is greater than the reported return, C̃ >

R̃, the item is not produced, and each nets a zero payoff. But if C̃ ≤ R̃, then M
produces the item (at a cost C), D sells it (with a return of R), and a transfer is
made so that they each net (C −R)/2. Notice that the computation of the transfer
requires ex-post monitoring of the actual production cost of M and the actual return
collected by D.

In general, it is difficult to compute a Bayesian-Nash equilibrium of a bargaining
game, like the one above, especially when it involves an asymmetric prior probability
distribution over dependent types. In contrast, the computation and implementation
of the coco solution above is simple. The next example further illustrates the solution
and ease of computation, by breaking the structural symmetry of the joint venture
game.

7.1. One-sided outside options. Assume that M has an option to produce the
item and sell it to some outside buyer at an alternative price a. How does this
affect the coco value of M and D? To keep the illustration simple, we also assume
complete information, i.e., C, R, and a are common knowledge; and that trade is
possible, i.e., C < R. Figure 2 illustrates how the coco payoffs of M and D vary as
we increase a.
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C R 

a 

(R-C)/2 

(R-C) 

Manufacturer payoff 

Distributor payoff 

Coco payoffs, when M has an outside option to sell at price a 

slope=1 

slope=1/2 

slope= -1/2 

When the outside option is useless, a < C, it has no effect on the coco value.
And when the outside option is sufficiently high to make D useless, M collects all
the benefits and D is out. But in between, the coco value changes in a continuous
(and piecewise linear) manner. Every extra dollar above the cost adds 50 cents to
M and takes away 50 cents from D.

8. Weakening the strong revealed-payoff assumption

For the purpose of achieving a general result, the interim implementation theorem
uses sufficient conditions that are stronger than needed for many games. Moreover,
the assessment of the player’s relative advantage can sometimes be achieved in
manners different from the interim protocol above. The following examples illustrate
such situations.

• Joint venture example: weak revealed payoffs suffice. While the in-
terim implementation theorem requires knowledge of the entire payoff func-
tion, implementation is possible under the (weak) revealed-payoff assump-
tion. In general, revealing the entire payoff function serves only to assess
the minmax value of the advantage game. So in games like the one above,
where the minmax values can be assessed by easier means, the strong re-
vealed payoff assumption is no longer needed. As was illustrated above, it
is clear that the value of the advantage game is 0, hence the two players can
simply form a partnership and share their net profits equally, after verifying
the cost C of M and the revenue R collected by D. Furthermore, the same
holds in the case of imperfect private information, where the players only
have forecasts of their cost and revenue: when trade occurs, it is sufficient
that the realized C and M (but not the forecasts) are revealed.
• Hot-dog example with weak revealed payoffs. Consider the hot-dog

seller example from the beginning of the paper, in which it is known that
the per-hot-dog profit of one player is twice the other’s. However, for any
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distribution over the number of buyers at the beach and airport, and any
forecasts that these players have, the (weak) revealed-payoff assumption suf-
fices. The strong revealed-payoff assumption requires that if both players go
to the beach or airport, they would still know how many buyers were at
the other location, which may be unreasonable. Note, however, that in our
implementation one player will be at either location, thus the revealed pair
of profits will reveal the number of buyers at each location.
• Professional wrestling game. Two professional wrestlers are about to

participate in a match for which $1000 will be awarded to the winner and
nothing to the loser. Moreover, an extra $500 bonus will be awarded to
the two players, divided evenly, if the match is “a good show.” We refer
to this option as dancing since the sequence of moves must be carefully
choreographed. A high-level approximate model of this game is the following:

Fight Dance
Fight 1000p, 1000(1-p) 1000, 0

Dance 0, 1000 750, 750

Here p is the probability that player 1 would win if the two fought, and
the above are the expected payoffs. It is clear that it is a dominant strategy
to fight. A simple calculation shows that the coco value of the above game is
(1000p+ 250, 1000(1− p) + 250). In the case where p is common knowledge
and there is no relevant private information, the players might adopt one of
two simple agreements yielding the coco value. (For example, they might
agree that p ≈ 1/2, i.e., they have roughly equal chances of winning, and
each agrees to dance.) While this may not be a legally binding contract,
such an agreement may be enforced through reputation, repeated play, or
various threats.

However, in the case of private information, the players may not agree
upon p. (For example, each player may have slept well the previous night
and woken up feeling especially strong.) Instead, they could agree to en-
gage in, say, a scrimmage wrestling match beforehand, whose sole purpose
would be to determine the side payment in the real match. Presumably, the
probabilities of winning in the scrimmage and the real match would be the
same. The agreement would be that they would both dance in the actual
match, but a side payment would be such that the winner of the scrimmage
would get a payoff of 1250 and the loser would get a payoff of 250. This
has the property that it matches the coco value, in expectation. Note that
this equality holds for any type space and any distribution over prior in-
formation. Moreover, the protocol is simple enough to be understood by
professional wrestlers.

Also note that they may choose any other means of determining a side
payment, as long as they both agree to it. For example, it may be a conven-
tion that the two players merely arm wrestle rather have a full scrimmage
match. Similar in spirit, such proxy’s for determining the winner of a war
are exhibited in animals in nature and in the story of David and Goliath.

An interesting feature of some of the examples above is that the protocols may
make sense even if the players do not have a common prior. For example, when two
wrestlers fight, the private information is in fact quite involved, including knowledge
of what moves they are themselves particularly good at, beliefs about the opponent,
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and higher-order beliefs. The assumption that all of these probabilities are derived
from a common prior is certainly questionable in such situations. Nonetheless, in
the real world, it is perfectly plausible to tell two wrestlers to “go wrestle.”

9. Further remarks

9.1. On security levels, threats, and externalities. A common indirect ap-
proach to determine a cooperative value of a strategic game is through a “bridge”
that connects the strategic theory with the cooperative theory. To every strategic
game G, one associates a cooperative game V G and adopts some appropriate coop-
erative solution ϕ(V G) to yield cooperative values for the G players. When dealing
with TU games, as we do in this paper, the associated cooperative game is described
by a characteristic function V G = (V G(S)), in which each V G(S) is a real number
that describes the “worth” of the coalition of players S in the game G.

While the coco solution offers direct cooperative values for the players of strategic
games, without the need for a bridge, it can still be interpreted as a special case
of the bridge approach. We now proceed to explain how the coco bridge compares
to another common bridge, used early on by Aumann (1961). For more recent
examples and additional references, see Forge, em et al. (2002), and Carpente et al.
(2005,2006).

For a two-person bimatrix game G = (A,B), an associated characteristic func-
tion is determined by three numbers: V12, V1 and V2. To have a unique value
ϕi associated with each player of G, we consider here the Shapley (1953) value:
ϕi ≡ Vi + 1

2 [V12 − (V1 + V2)] = 1
2V12 + 1

2(V1 − V2). Thus, to determine cooperative
values for G, the only question is how to determine the worth of the coalitions V12,
V1, and V2.

The worth of the two-player coalition, V12, is naturally defined to be the highest
total cooperative payoff that the players may be able to obtain in the game G, i.e.,
the team-opt of G in the language of this paper. But how should we define the worth
of singleton coalition Vi? On this issue, the coco value differs from the alternative
method used by the Aumann and the authors mentioned above.

The alternative bridge computes the individual-worth quantities to be V Alt
1 =

minmax(A,−A) and V Alt
2 = minmax(BT ,−BT ), i.e., the highest payoff that a

player can secure for herself, assuming that her opponent’s goal is to minimize
her payoff. Under the coco value, one computes V κ

1 = minmax
(
A−B

2 , B−A2

)
and

V κ
2 = minmax

(
(B−A)T

2 , (A−B)T

2

)
, i.e., the highest relative payoff advantage (over

her opponent) that she can secure, assuming that her opponent would act to mini-
mize her payoff advantage.

Substituting these individual-worth values into the Shapley formula above, for
example for player 1, we can see clearly the contrasts between the two methods.
For the Aumann alternative approach, we have ϕAlt

1 = 1
2V12 + 1

2(min max(A) −
min max(BT )), whereas for the coco value, we have κ1 = 1

2V12 + 1
2 min max(A−B).

The following two 2×1 games illustrate the difference between the two solutions.
Notice that the right-hand-side game (rhs) differs from the left-hand-side game (lhs)
only in the boldface entry.
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1,1
1, 0

coco value = (1.5,.5)
alt. value = (1.5,.5)

1,1
-100, 0

coco value = (1,1)
alt. value = (1.5,.5)

In both games V12 = 2 is obtained by player 1 playing up. Notice, however,
that the two games show substantial differences in player 1’s ability to threaten and
extract side payments from player 2. In the lhs game, player 1 can bring player 2’s
payoff down from 1 to 0 at no cost to himself, unlike the rhs game. In other words,
the punishment has different externality on player 1’s own outcomes.

Should such a difference be reflected in the solution of the game? The coco value
reflects this difference by giving player 1 a payoff of 1.5 in the lhs game and only 1
in the rhs game, while ϕAlt

1 treats the two games identically.
The minmax(A−B2 ), used by the coco value, reflects the difference in such ex-

ternalities, whereas the individual minmax values, minmax(A) and minmax(BT ),
cannot do so because they look at the two payoff tables separately.

The example above also sheds light on the role of the payoff-dominance axiom,
used to characterize the coco value. Consider the rhs game above, with -100 being
replaced by any negative number −M . No matter how large M is, the alternative
value rewards player 1 an extra $0.5, due to his ability to threat player 2. This is
true even if the cost of carrying out the threat to player 1 is bigger than the damage
to player 2. In effect, the axiom of payoff dominance puts a bound on the level of
such extortion. In this particular example, player 2 gets to keep her $1 payoff, if
−M < 0.

The two games above motivate an additional important observation. Since the
individual minmax values of the two games are the same, the feasible payoffs de-
scribed by folk theorems are the same. In other words, considering the conclusions
of the folk theorem, the lhs and rhs games are the same. Nevertheless, the strategic
threat possibilities seem significant to us. Thus, going straight to a folk-theorem
analysis, and then using any (bargaining) method of selecting a feasibly point from
the individually rational feasible set, is bound to miss the effect of such externalities.

9.2. On dominant strategies, commitments and fairness. Consider the fol-
lowing 2× 1 up/down game.

0,0
1,5

coco value = (3,3)

At first look, it seems strange that P2 would be willing to settle for the coco payoff
of 3, rather than the payoff of 5 that she can get by cutting out communication with
P1 and letting him play his dominant strategy. While this intuition is clear in purely
strategic environments, where communication, threats, side payments, and binding
agreements are limited, in cooperative environments the outcome (3,3) may be more
reasonable. To see why, consider the following example.

Example 1. The sprinkler game.

Two neighbors, each having to decide whether or not to water a shared lawn, play
the following game:
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water not
water 0,0 5,1
not 1,5 0,0

coco value = (3, 3)

In this payoff table, it seems fair and efficient that one of them will water and the
other will compensate her with a transfer of 2, to obtain the coco value (3,3).

But what if Player 2’s sprinkler breaks, so that she cannot water? Then we are
back in the one-player up/down game above. And if the solution of the up/down
game were (1,5), it would present two problems. First, there is a fairness issue,
where the player who cannot water the lawn gets a higher benefit than the one
who can. Second, there is the issue of incentives, where each of the two neighbors
would have the incentive to break her sprinkler first, in order to increase her payoff.
When deciding on a solution for cooperative play in games, it is desirable for each
player to have the incentive to fully reveal their options. This is captured by the
“monotonicity in actions” axiom discussed earlier.

Commitment is another issue that may represent a challenge to the (3,3) coco
solution of the up/down game above. Wouldn’t Player 2 be better off by simply
walking away (making herself unaccessible for the purpose of making side payments)
in order to obtain the payoff 5, under the assumption that Player 1’s response would
be to water?

In this regard, it is important to note that the implicit game with commitments
and communication is substantially richer than the one summarized by the up/down
payoff table. And in particular, what may be a dominant strategy in the up/down
game may not be a dominant strategy in the implicit cooperative game. For example,
in the larger game, Player 1 may walk away first, after leaving publicly observed
irrevocable instructions to his gardener to water if and only if Player 2 gives the
gardener $4.

pay $4 don’t pay
5,1 0,0

By doing so, P1 creates the one-row game above, in which Player 2’s dominant
strategy is to make the payment.

Finally, it is worth noting that a cooperative solution is inappropriate in certain
contexts. For example, if the lawn is owned by P1, and P2 simply enjoys looking at
it, then it may be inappropriate for P1 to demand a payment for watering his own
lawn, and the noncooperative solution may be preferred. However, this is mainly
a criticism of the bimatrix representation of a game for failing to capture such
information. Any of the above three games could considered a model of a situation
in which player 1 owns the lawn (player 2 may volunteer to water his neighbor’s lawn,
especially if his neighbor does not have a sprinkler). Hence, external factors should
be used to determine whether a cooperative or noncooperative solution should be
applied to a particular game.

9.3. The value of information. One feature of the coco value, is that it makes op-
timal use of information, and compensates players for providing it, as was illustrated
in the hot-dog seller example from Section 2.1.

The valuation of information has long been studied in game theory. (See, for
example, Kamien, Tauman, and Zamir (1990), and the more recent references in De



26 ADAM TAUMAN KALAI∗ AND EHUD KALAI†,§

Meyer, Lehrer, and Rosenberg (2009)). A natural measure of the value of informa-
tion may be developed through the coco value, by considering how the coco value
of the players change, as you change the information of one or both players. Such a
measure is fairly sophisticated, since it takes into account interactive aspects of the
information: its provisions, its use, and the direct and indirect benefits that it may
provide through the coco value.

In the hot-dog sellers game of Section 2.1, consider the possibilities that each
player is either completely informed of the weather, or has no information about the
weather. This gives rise to four different games. The coco values of these games,
rounded to the nearest integers, are as follows.

P2 uninformed P2 informed
P1 uninformed 95, 145 85,175

P1 informed 115,145 100,160
Starting from the case of no information at all, the respective values of perfect

weather information (PWI) acquired by player 1 are (20,0), whereas the respective
values of PWI acquired by player 2 are (-10,30). Notice that player 2’s PWI lowers
player 1’s value, while player 1’s PWI does not lower player 2’s value. This is a
result of the tradeoff between how much the information increases the team total
and how much it increases one player’s advantage over the other.

9.4. Computational complexity. In the case of complete information, the coco
value can be computed in polynomial time, that is, time which is polynomial in the
size of a natural representation of the game. In the case of incomplete information,
where each player has at most m types, the coco value can be computed in time
(size)O(m). More formally, suppose that a game is represented as follows. Let |S|
denote the size of finite set S. The sets of types and actions for each player are
taken to be the set Ai = {1, 2, . . . , |Ai|} and Ti = {1, 2, . . . , |Ti|}, respectively. The
prior distribution µ is represented by a list of triples, t, u, µ(t, u), where t is a type
profile, u is a matrix, and µ(t, u) is in (0, 1]. As is standard, we assume that all
these numbers are rational numbers encoded as the ratios of binary integers. The
size of the game, |G|, is simply the total number of bits used to describe the game.

Observation 2. There is a constant c > 0 and an algorithm such that, given any
two-player Bayesian game G = (A, T, U, µ), the algorithm computes the coco value
in time |G|c|T |.

It is possible that there are faster algorithms.

Proof. Computing the decomposition is algorithmically trivial – constructing the
two games requires a few additions and divisions per payoff cell. Computing the
value of the team game is also easy, since Eµ[u(a)|t] is straightforward to evaluate,
and the team optimal is:∑

t∈T
Pr
µ

[t] max
a∈A

Eµ[u1(a) + u2(a)|t].

Hence, both the decomposition and team-game value can be computed in time
polynomial in the size of G. For the zero-sum Bayesian game Geq, one first does the
standard expansion into a complete-information game. Specifically, one constructs
the |A1||T1| × |A2||T2| bimatrix game in which each strategy (a function from types
to actions) in G is an action in the new game, and the payoffs of the actions in
the new game are the expected values of the payoffs in G from using the respective
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strategies. Computing this expected value in any particular cell can be done in time
polynomial in |G|, but one must perform this computation |A1||T1| × |A2||T2| times.
Finally, once one has constructed such a game, the value of a zero-sum bimatrix game
is well-known to be computable by linear programming. Theoretical algorithms for
linear programming are known to take time polynomial in the size of the input (see,
e.g., Grötschel et al., 1988). (Algorithms that work fast in practice are also well-
studied.) Hence, the total run-time of the algorithm is |A1||T1| × |A2||T2|poly(|G|),
which implies the observation.

9.5. Composability. Composability of protocols has become increasingly recog-
nized as an important topic in computer science and specifically within cryptogra-
phy. While cryptographic protocols have typically been shown to be secure when run
in isolation (such as encrypting a single message or signing a document), Canetti
(2000) proposed that cryptographic protocols should be universally secure when
executed concurrently in an environment with many other protocols running simul-
taneously. That is, a secure program for encrypting messages and a secure program
for signing documents are of limited utility if the two of them are not secure when
they are both used. Similarly, an analysis of a single game is arguably of less value if
it does not apply when the game is played in a larger context. Repeated games are
a classic illustration of how behavior in a composed setting differs from behavior in
a one-shot setting, e.g., cooperation can be achieved in Nash equilibria of repeated
prisoner’s dilemma but not in the one-shot form.

Two-person zero-sum games have exhibit universal composability. First, optimal
play in a repeated zero-sum game is simply optimal play in each stage. Moreover,
suppose two players are to play m fixed zero-sum games G1, G2, . . . , Gm, either in
parallel or serially, or by some combination thereof. This can be viewed as one large
extensive-form game G, where moving in G corresponds to moving in some subset
of the constituent games, and the payoffs in G are the sums of the payoffs achieved
in the constituent games. The minmax value of G, regardless of the particular order
in which moves in Gi’s are played, is equal to the sum of the minmax values of the
constituent games. Put another way, suppose you were to play a game of tic-tac-toe,
a game of chess, and a game of poker, all against the same opponent. Ignoring time
constraints and concerns of bounded rationality, the order in which you make your
moves in the various games is irrelevant: optimal play is simply to play each game
optimally.

Similarly, optimal play in the composition of team games is simple. The coco
value inherits the appealing composability properties of both team and zero-sum
games. Suppose a Bayesian game is played repeatedly, with types drawn freshly
each round. Then the coco value of the infinitely repeated game is equal to the
value of G.

10. Conclusion

While strictly competitive (zero-sum) and strictly cooperative (team) games rep-
resent opposite extremes in strategic interactions, both have beautiful game-theoretic
solutions with a great number of desirable properties, even in the presence of incom-
plete information. Every Bayesian zero-sum game has optimal strategies in which
players do not reveal any of their information. Every Bayesian team game has
optimal cooperative play in which players share all relevant information. The coco
solution to Bayesian games, via a simple decomposition of any game into its zero-sum
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and team components, inherits many of these desirable properties. Moreover, under
a strong revealed payoff assumption, it may be implemented by simple partnership
protocols in which the two games are played separately. First, the zero-sum game
is played fictitiously; this determines a “fair” compensation which can be viewed
as a measure of the strategic and informational advantage that one player has over
the other. In this phase, they have no incentive to share information. Then, the
two form a partnership and play cooperatively, sharing all information and dividing
payoffs equally.

It is interesting that cooperation is most often associated with other game rep-
resentations: coalitional studies usually employ the characteristic form, and bar-
gaining and implementation studies generally consider feasible sets of allocations or
outcomes. These representations miss important strategic considerations and ex-
ternalities that are captured by the normal-form representation and by Bayesian
games. The setting we study is appealing, since it combines desirable elements from
cooperative game theory, where binding agreements are possible; and from strategic
game theory, where strategic and informational details of the environment are taken
into consideration. And despite (or perhaps because of) the fact that we look at
both types of issues, the formula and computations in our approach are relatively
simple.

In complex negotiations with incomplete information, it is useful to have a pro-
grammatic way to determine a “fair” agreement in order to make sure that an
agreement is reached. While the solution here may not be immediately suitable
for every such negotiation, it may shed light on how people should and do reach
agreements in the presence of asymmetric private information.

Our justification of the coco solution is both axiomatic, based on principles of
fairness and efficiency; and strategic, showing that, through the use of a partnership
type of protocol, it can be implemented as required by the Nash program. It can
even be implemented in the interim sense, after players acquire private information.
While axiomatization and strategic implementation are standard methods of jus-
tifying solutions in cooperative and strategic game theory, respectively, there are
synergies in having both justifications for the same solution concept.

It is worth pointing out that the coco value is intended for games where cooperation
makes sense. Of course, there are many situations in which a cooperative approach
is inappropriate. For example, suppose your neighbor threatened to paint your
house pink. The coco value of such a game would have you paying your neighbor
not to paint your house. His threat is probably not credible, and possibly illegal as
well. For such a game, a noncooperative solution makes more sense.

Finally, this work suggests several directions for future directions. First, is there
a natural coco value for games with more than two players? Even the case of three
players is interesting, and it is not clear whether there will be a single solution
that possesses the great number of appealing properties shared by two-player zero-
sum and team games. Second, can the coco value of two (or more) players be
extended to the general case of (NTU) strategic games? This direction may require
a substantially more refined discussion of the various axioms, as suggested by the
conflicts among the many bargaining solutions in NTU cooperative games. But this
direction is important if we wish to study applications where cooperation involves the
optimal allocation of risk in Bayesian environments. Third, it would be interesting to
consider applications of the proposed solution, which is very general, to cooperation
in specific types of two-player games where players may benefit from cooperation
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but suffer from not having a principled method for finding a mutually satisfactory
agreement. Finally, perhaps the most interesting research direction would be to
experimentally test the solution across a number of two-player games, as well as
to try to identify experimentally which axioms are most violated in real-world or
experimental play.
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