
Cogley, Timothy; Matthes, Christian; Sbordone, Argia M.

Working Paper

Optimal disinflation under learning

Staff Report, No. 524

Provided in Cooperation with:
Federal Reserve Bank of New York

Suggested Citation: Cogley, Timothy; Matthes, Christian; Sbordone, Argia M. (2011) : Optimal
disinflation under learning, Staff Report, No. 524, Federal Reserve Bank of New York, New York, NY

This Version is available at:
https://hdl.handle.net/10419/60829

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/60829
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


www.newyorkfed.org/research

Number 524, November 2011

Timothy Cogley
Christian Matthes
Argia M. Sbordone

Optimal Disinfl ation under Learning



Federal Reserve Bank of New York
Staff Reports

This paper presents preliminary fi ndings and is being distributed to economists 
and other interested readers solely to stimulate discussion and elicit comments. 
The views expressed in this paper are those of the authors and are not necessarily 
refl ective of views at the Federal Reserve Bank of New York or the Federal
Reserve System. Any errors or omissions are the responsibility of the authors.

Staff Report No. 524
November 2011

Timothy Cogley
Christian Matthes

Argia M. Sbordone

Optimal Disinfl ation under Learning



Optimal Disinfl ation under Learning
Timothy Cogley, Christian Matthes, and Argia M. Sbordone
Federal Reserve Bank of New York Staff Reports, no. 524
November 2011
JEL classifi cation: E31, E52

Cogley: New York University (e-mail: tim.cogley@nyu.edu). Matthes: Universitat Pompeu 
Fabra and Barcelona GSE (e-mail: christian.matthes@upf.edu). Sbordone: Federal Reserve Bank 
of New York (e-mail: argia.sbordone@ny.frb.org). For comments and suggestions, the authors 
thank Martin Ellison, George Evans, Boyan Jovanovic, Thomas Sargent, Michael Woodford, and 
seminar participants at the Banque de France, the Centre for Dynamic Macroeconomic Analysis 
Conference at the University of St. Andrews, the European Central Bank, Duke University, the 
Federal Reserve Banks of Atlanta, Philadelphia, and Richmond, the Board of Governors of the 
Federal Reserve System, the Hungarian Central Bank, the London Business School, the National 
Bank of Poland Conference “DSGE and Beyond,” Norges Bank, the Norwegian School of 
Management, New York University, the University of Oxford, Universitat Pompeu Fabra, Rutgers 
University, the 2011 Meetings of the Society for Computational Economics, the 2011 Meetings 
of the Society for Economic Dynamics, the Toulouse School of Economics, and Université du 
Québec à Montréal. Appendixes to this paper are available at http://fi les.nyu.edu/tc60/public/. The 
views expressed in this paper are those of the authors and do not necessarily refl ect the position 
of the Federal Reserve Bank of New York or the Federal Reserve System.

Abstract

We model transitional dynamics that emerge after the adoption of a new monetary policy 
rule. We assume that private agents learn about the new policy via Bayesian updating, 
and we study how learning affects the nature of the transition and the choice of a new 
rule. Temporarily explosive dynamics can emerge when there is substantial disagreement 
between actual and perceived policies. These dynamics make the transition highly vola-
tile and dominate expected loss. The emergence of temporarily explosive paths depends 
more on uncertainty about policy-feedback parameters than about the long-run infl ation 
target. For that reason, the central bank can at least achieve low average infl ation. Its abil-
ity to move feedback parameters away from initial beliefs, however, is more constrained.
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1 Introduction

We examine the problem of a newly-appointed central bank governor who inherits
a high average in�ation rate from the past. The bank has no o¢ cial in�ation target
and lacks the political authority unilaterally to set one, but it has some �exibility
in choosing how to implement a vague mandate. We assume the new governor�s
preferences di¤er from those of his predecessor and that he wants to disin�ate. We
seek an optimal Taylor-type rule and study how learning a¤ects the choice of policy.
Sargent (1982) studies an analogous problem in which the central bank not only

has a new governor but also undergoes a fundamental institutional reform. He argues
that by suitably changing the rules of the game, the government can persuade the
private sector in advance that a low-in�ation policy is its best response. In that case,
the central bank can engineer a sharp disin�ation at low cost. Sargent discusses a
number of historical examples that support his theory, emphasizing the institutional
changes that establish credibility. Our scenario di¤ers from Sargent�s in two ways. We
take institutional reform o¤ the table, assuming instead just a change of personnel.
We also take away knowledge of the new policy and assume that the private sector
must learn about it. This is tantamount to assuming that the private sector does not
know the new governor�s preferences.1

Our scenario is more like the Volcker disin�ation than the end of interwar hy-
perin�ations. Erceg and Levin (2003) and Goodfriend and King (2005) explain the
cost of the Volcker disin�ation by pointing to a lack of transparency and credibility.
Erceg and Levin contend that Volcker�s policy lacked transparency, and they develop
a model in which the private sector must learn the central bank�s long-run in�ation
target.2 In their model, learning increases in�ation persistence relative to what would
occur under full information, thereby raising the sacri�ce ratio and producing output
losses like those seen in the early 1980s. Goodfriend and King claim that Volcker�s
disin�ation lacked credibility because no important changes were made in the rules
of the game. Because the private sector was initially unconvinced that Volcker would
disin�ate, the new policy collided with expectations inherited from the old regime
and brought about a deep recession.
The analysis of Erceg, Levin, Goodfriend, and King is positive and explains why

the Volcker disin�ation was costly. In contrast, we address normative questions, viz.
what policy is optimal when the private sector learns the new policy and how learning
alter the central bank�s choice. We study these questions in the context of a dynamic
new Keynesian model modi�ed in two ways. Following Ascari (2004) and Sbordone
(2007), we assume that target in�ation need not be zero. We also replace rational
expectations with Bayesian learning. We assume the central bank follows a simple
Taylor-type rule and chooses its coe¢ cients by minimizing a discounted quadratic

1We also assume that the distribution from which preferences are drawn is unknown.
2See also Orphanides and Williams (2005) and Milani (2007).
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loss function. The private sector learns the new policy via Bayesian updating, and
the central bank takes learning into account when solving its decision problem.
When the private sector learns about the policy rule, the equilibrium law of motion

can be a temporarily-explosive process, i.e. one that is asymptotically stationary but
which has unstable autoregressive roots during the transition. When locally-unstable
dynamics emerge, the transition is highly volatile and dominates expected loss. The
central bank�s main challenge is to �nd a way to manage this potential for explosive
volatility.
For this reason, the bank�s choice di¤ers substantially from the full-information

optimum. Uncertainty about the in�ation target is not much of a problem. In our
examples, the bank always achieves low average in�ation, though sometimes it stops
short of zero � the optimum under full information3 �because the transition cost
would be too great.
Uncertainty about policy feedback parameters is more problematic because this

is what creates the potential for temporarily-explosive dynamics. Locally-unstable
dynamics emerge when there is substantial disagreement between actual and per-
ceived feedback parameters. It follows that one way for the bank to cope is to adopt
a policy that is close to the private sector�s prior. By choosing feedback parameters
su¢ ciently close to the private sector�s prior mode, the bank can ensure that the
equilibrium law of motion is nonexplosive throughout the transition, sacri�cing bet-
ter long-term performance for lower transitional volatility. For the model described
below, this approximates the optimal strategy. Thus the bank�s choice of feedback
parameters is more constrained by the private sector�s initial beliefs.
Our approach to learning di¤ers from much of the macro-learning literature, in

particular from the branch emanating from Marcet and Sargent (1989a, 1989b), Cho,
Williams, and Sargent (2002), and Evans and Honkapohja (1998, 200, 2003). Models
in that tradition typically assume that agents use reduced-form statistical represen-
tations such as vector autoregressions (VARs) for forecasting. They also commonly
assume that agents update parameter estimates by recursive least squares. In con-
trast, we assume that agents update beliefs via Bayes�s theorem. The agents who
inhabit our model utilize VARs for forecasting, but their VARs satisfy cross-equation
restrictions analogous to those in rational-expectations models. As a consequence,
there is a tight link between the actual and perceived laws of motion (ALM and PLM,
respectively). In our model, agents know the ALM up to the unknown monetary pol-
icy parameters, and their PLM is the perceived ALM (i.e., the ALM evaluated at
their current estimate of the policy coe¢ cients). Because agents know the functional
form of the ALM, they can use Bayes theorem to update beliefs. Nevertheless, the
assumption that agents are Bayesian is not critical. We also examine whether our
insights are robust to alternative forms of learning, and we �nd that they are.

3We abstract from the zero lower bound on nominal interest.
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2 A dynamic new-Keynesian model with positive
target in�ation

We begin by describing the timing protocol, a critical element in learning models.
Then, taking beliefs as given, we describe the model�s structure and our approxima-
tion methods. A discussion of how beliefs are updated is deferred to section 3.

2.1 The timing protocol

Private agents enter period t with beliefs about policy coe¢ cients inherited from
t � 1. They treat estimated parameters as if they were known with certainty and
formulate plans accordingly. The central bank sets the systematic part of its in-
strument rule at the beginning of the period based on information inherited from
t � 1. Then period t shocks are realized. Agents observe the central bank�s policy
action and from that infer a perceived policy shock ~"it: They also observe realiza-
tions of the private-sector shocks. Current-period outcomes are then determined in
accordance with beginning-of-period plans. After observing those outcomes, private
agents update estimates and carry them forward to t+ 1.

2.2 The model

Our model is a dynamic new Keynesian model in which agents take expecta-
tions with respect to subjective predictive distributions. Monetary policy is deter-
mined according to a Taylor-type rule that allows target in�ation to di¤er from zero.
Private-sector behavior is characterized by two blocks of equations, a conventional
intertemporal IS curve and an Ascari-Sbordone version of the aggregate supply curve.
The model features habit persistence in consumption and staggered price setting. A
log-linearized version is presented in this section. For details on how we arrived at
this representation, see web appendix A.

2.2.1 Monetary policy

We assume that the central bank commits to a Taylor rule in di¤erence form,

it � it�1 =  �(�t�1 � ��) +  y(yt�1 � yt�2) + "it; (1)

where it is the nominal interest rate, �t is in�ation, yt is log output, and "it is an i.i.d.
policy shock. The timing assumption follows McCallum (1999) and �ts conveniently
within the timing protocol described above.4 The policy coe¢ cients are collected in

4McCallum (1999) contends that monetary policy rules should be speci�ed in terms of lagged
variables, on the grounds that the Fed lacks good current-quarter information about in�ation, out-
put, and other right-hand side variables. This is especially relevant for decisions taken early in the
quarter.
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a vector  = [��;  �;  y; �i]
0; where �� represents the central bank�s long-run in�ation

target,  � and  y are feedback parameters on the in�ation gap and output growth,
respectively, and �i is the standard deviation of the policy shock.
We adopt this form because it seems promising for environments like ours. For

instance, Coibion and Gorodnichenko (2011) establish that a rule of this form ame-
liorates indeterminacy problems in Calvo price-setting models with positive target
in�ation. Orphanides and Williams (2007) demonstrate that it performs well under
least-squares learning.5 More generally, a number of economists have argued that the
central bank should engage in a high degree of interest smoothing (e.g. Woodford
(1999)). In addition, Erceg and Levin (2003) contend that output growth, rather
than the output gap, is the appropriate measure to include in an estimated policy
reaction function for the U.S.
We assume that private agents know the form of the policy rule but not the policy

coe¢ cients. At any given date, their perceived policy rule is

it � it�1 =  �t(�t�1 � ��t) +  yt(yt�1 � yt�2) + e"it; (2)

where  t = [��t;  �t;  yt; �it] represents the beginning-of-period t estimate of the vector
 , and

~"it = "it + ( � �  �t)�t�1 + ( y �  yt)�yt�1 +  �t��t �  ���

is a perceived policy shock that depends on the actual policy shock "it and on esti-
mation of policy coe¢ cients. Private agents believe that ~"it is white noise, but in fact
it involves undetected feedback onto lagged state variables.
The perceived law of motion depends on the perceived policy (2). The actual law

of motion depends on actions taken by the central bank and decisions made by the
private sector. Hence the actual law of motion involves both the actual policy (1)
and the perceived policy (2).
Finally, we assume that the central bank chooses  by minimizing a discounted

quadratic loss function,

L = E0
P

t �
t[�2t + �y(yt � y)2 + �i(it � i)2]; (3)

taking private-sector learning into account.6 In addition to penalizing variation in
in�ation and the output gap, the loss function includes a small penalty for deviations
of the nominal interest rate from its steady state. The central bank arbitrarily sets
�i and optimizes with respect to ��;  �; and  y:

5Orphanides and Williams (2007) postulate that neither the agents nor the central bank know the
true structure of the economy, and replace rational expectations with least-squares learning. They
show that an optimized Taylor rule in di¤erence form dominates an optimized standard Taylor rule
when learning and time-varying natural rates interact.

6Gaspar et al (2006) distinguish between an unsophisticated central bank - one that accounts for
the beliefs of the public but not the dynamic process of learning �and a sophisticated central bank
that also takes the learning process into account. Our setting corresponds to the latter assumption.
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2.2.2 Approximation methods

We use two approximations when solving the model. As usual, the �rst-order
conditions take the form of non-linear expectational di¤erence equations. We follow
the standard practice of log-linearizing around a steady state and solving the resulting
system of linear expectational di¤erence equations. However, we expand around the
agents�perceived steady state in period t rather than around the true steady state.
The true steady state �x is the deterministic steady state associated with the

true policy coe¢ cients  :We de�ne the perceived steady state �xt as the long-horizon
forecast associated with the current estimate  t: The private sector�s long-run forecast
�xt varies through time because changes in the central bank�s in�ation target have
level e¤ects on nominal variables and also on some real variables (Ascari 2004). Since
perceptions of �� change as agents update their beliefs, so do their long-run forecasts.
We chose to expand around �xt instead of �x because the plans of consumers and

�rms follow from their �rst-order conditions, and �xt better re�ects their state of mind
at date t. The perceived steady state �xt converges to the full-information steady
state �x if private agents learn the true policy coe¢ cients, but the two di¤er along the
transition path.
Our second approximation involves the assumption that agents treat the current

estimate  t as if it were known with certainty. Kreps (1998) calls this an �anticipated-
utility�model. In the context of a single-agent decision problem, Cogley and Sargent
(2008) compare the resulting decision rules with exact Bayesian decision rules, and
they demonstrate that the approximation is good as long as precautionary motives
are not too strong. Like a log-linear approximation, this imposes a form of certainty
equivalence, for it implies that decision rules are the same regardless of the degree
of parameter uncertainty. This approximation is standard in the macro-learning
literature.

2.2.3 A new-Keynesian IS curve

As usual, we assume that a representative household maximizes expected utility
subject to a �ow budget constraint. The household�s period-utility function is

Ut = bt log (Ct � �Ct�1)� �t
H1+�
t

1 + �
;

where Ct is consumption of a �nal good, Ht is hours of work, bt and �t are preference
shocks, and � measures the degree of habit persistence in consumption. The �rst-
order condition is a conventional consumption Euler equation. After log-linearizing,
we obtain a version of the new Keynesian IS curve,

yt � yt = �t � � � E�t
�
�t+1 � � � (yt+1 � yt)�

�
t+1 � 

�
+ it � �t+1 � r

�
; (4)
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where �t is a transformation of the marginal utility of consumption, de�ned as

�t�� � �1 (yt � yt)+�2
�
yt�1 � yt � (t � ) + �E�t

�
yt+1 � yt + t+1 � 

��
+"yt: (5)

The parameter � is a subjective discount factor, r is the steady-state real interest
rate,  is the steady-state growth rate for technological progress, and yt is the pri-
vate sector�s beginning-of-period long-run forecast for output. The coe¢ cients �1
and �2 are combinations of preference and technology parameters, and t and "yt re-
�ect technology and preference shocks, respectively. See web appendix A for further
details.
This equation di¤ers in a number of ways from a standard IS equation. One

di¤erence concerns the choice of the expansion point. As mentioned above, we ex-
pand around the perceived steady state yt instead of the actual steady state y: In
addition, our anticipated-utility assumption implies that E�t �yt+1 = yt; explaining the
appearance of yt on the right-hand side of equations (4) and (5).
A second di¤erence concerns the expectation operator E�t ; which represents fore-

casts formed with respect to the private sector�s perceived law of motion. In contrast,
the central bank takes expectations with respect to the actual law of motion, which
we denote by Et:7

Finally, two shocks appear, a persistent shock t to the growth rate of technology,

t =
�
1� �

�
 + �t�1 + "t; (6)

and a white-noise shock "yt.

2.2.4 A new-Keynesian Phillips curve

We adopt a purely-forward looking version of Calvo�s (1983) price-setting model.
A continuum of monopolistically competitive �rms produce a variety of di¤erentiated
intermediate goods that are sold to a �nal-goods producer. Firms that produce the
intermediate goods reset prices at random intervals. In particular, with probability
1�� an intermediate-goods producer has an opportunity to reset its price, and with
probability � its price remains the same. Thus we abstract from indexation or other
backward-looking pricing in�uences, in accordance with the estimates of Cogley and
Sbordone (2008). Since pricing and supply decisions depend on the beliefs of private
agents, we again log-linearize around perceived steady states, obtaining the following

7We assume that the central bank knows the private sector�s prior over  : Because the central
bank�s information set subsumes that of the private sector, the law of iterated expectations implies
E�t (Etxt+j) = E�t (xt+j) for any random variable xt+j and j � 0 such that both expectations
exist. Because the central bank can reconstruct private forecasts, it also follows that Et(E�t xt+j) =
E�t (xt+j): But Etxt+j 6= E�t xt+j :
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block of equations,

�t � ��t = �tE
�
t (�t+1 � ��t) + �t(yt � yt) + & t

�
�t � �t

�
� e�t (�t � �) (7)

+1tE
�
t [(� � 1)(�t+1 � ��t) + �t+1] + ut + "�t;

�t = 2tE
�
t [(� � 1)(�t+1 � ��t) + �t+1]; (8)

�t � �t = �1t (�t � ��t) + �2t
�
�t�1 � �t

�
: (9)

This representation di¤ers in four ways from standard versions of the NKPC.
First, a variable

�t � ln
�Z 1

0

(pt (i) =Pt)
�� di

�
; (10)

which measures the resource cost induced by cross-sectional price dispersion, has
�rst-order e¤ects on in�ation and other variables. If target in�ation were zero, this
variable would drop out of a �rst-order expansion.
Second, higher-order leads of in�ation appear on the right-hand side of (7). To

retain a �rst-order form, we introduce an intermediate variable �t that has no in-
teresting economic interpretation and add equation (8). This is simply a device for
obtaining a convenient representation.
Third, the NKPC coe¢ cients depend on deep parameters and estimates of target

in�ation ��t,8

�t = �(1 + ��t);

�t = e�t (1 + �) ;e�t = [1� �(1 + ��t)
��1][1� ��(1 + ��t)

�]=�(1 + ��t)
��1;

& t = �e�t;
1t = ���t[1� �(1 + ��t)

��1]; (11)

2t = ��(1 + ��t)
��1;

�1t = ����t(1 + ��t)
��1=

�
1� �(1 + ��t)

��1� ;
�2t = �(1 + ��t)

�:

The deep parameters are the subjective discount factor �; the probability 1�� that an
intermediate-goods producer can reset its price, the elasticity of substitution across
varieties �; and the Frisch elasticity of labor supply 1=�: As Cogley and Sbordone
(2008) emphasize, even though the deep parameters are invariant to changes in policy,
the NKPC coe¢ cients are not. The latter change as beliefs about ��t are updated.
Finally, we assume two cost-push shocks, a persistent shock ut that follows an

AR(1) process,
ut = �uut�1 + "ut; (12)

and a white-noise shock "�t. The latter is included so that agents face a nontrivial
signal-extraction problem.

8The NKPC parameters collapse to the usual expressions when ��t = 0:
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2.3 Calibration

Parameters of the pricing model are taken from estimates in Cogley and Sbordone
(2008),

� = 0:6; � = 0:99; � = 10: (13)

We calibrate the preference parameters as follows. The parameter � is the inverse
of the Frisch elasticity of labor supply. The literature provides a large range of
values for this elasticity, typically high in the macro literature and low in the labor
literature. We set � = 0:5; which implies a Frisch elasticity of 2 and represents a
compromise between the two. We think our calibration is reasonable, given that the
model abstracts from wage rigidities. The parameter � that governs habit formation
in consumption is calibrated to 0:7, a value close to those estimated in Smets and
Wouters (2007) and Justiniano, Primiceri and Tambalotti (2010).
Parameters governing the shocks are calibrated as follows. We abstract from

average growth, setting  = 0: For the persistent shocks ut and t; we take estimates
from Cogley, Sargent and Primiceri (2009),

�u = 0:4; 100�u = 0:12; (14)

� = 0:27; 100� = 0:5:

For the white noise shocks "yt and "�t we set

�� = �y = 0:01=4 (15)

Finally, we adopt a standard calibration for loss-function parameters. We assume
the central bank assigns equal weights to annualized in�ation and the output gap.
Since the model expresses in�ation as a quarterly rate, this corresponds to �y = 1=16:
We also set �i to 0:1, which implies that the weight on �uctuations of the annualized
nominal interest rate is 10% of the weights attached to �uctuations in annualized
in�ation and the output gap. The results reported below for economies with learning
are not sensitive to the choice of �i.

3 Learning about monetary policy

Everyone knows the model of the economy and the form of the policy rule, but
private agents do not know the policy coe¢ cients. Instead, they learn about them by
solving a signal-extraction problem. If  entered linearly, this could be done via the
Kalman �lter. Because  enters non-linearly, however, agents must solve a nonlinear
�ltering problem. This section describes how that is done. We �rst conjecture a
perceived law of motion (PLM) and then derive the actual law of motion (ALM)
under the PLM. After that, we verify that the PLM is the perceived ALM. Having

8



veri�ed that private agents know the ALM up to the unknown policy coe¢ cients, we
use the ALM to derive the likelihood function. Agents combine the likelihood with a
prior over policy parameters and use the posterior mode as their point estimate.

3.1 The perceived law of motion

By stacking the IS equations, the aggregate supply block, exogenous shocks, and
the perceived monetary-policy rule, the private sector�s model of the economy can be
represented as a system of linear expectational di¤erence equations,

AtSt = BtE
�
t St+1 + CtSt�1 +Dte"t; (16)

where St is the model�s state vector, e"t is a vector of perceived innovations, and
At; Bt; Ct; and Dt depend on the model�s deep parameters (see web appendix B for
details). These matrices have time subscripts because they depend on estimates of
the policy coe¢ cients  t. We conjecture that the PLM is the reduced-form VAR
associated with (16). The reduced form can be expressed as

St = FtSt�1 +Gte"t; (17)

where Ft solves BtF 2t �AtFt+Ct = 0 and Gt = (At �BtFt)
�1Dt: As in a conventional

rational-expectations model, (17) serves two functions, describing how agents forecast
future outcomes and how they make current-quarter decisions.
Because of the anticipated-utility assumption, equation (16) has the same math-

ematical form as a conventional rational-expectations model. It follows that the
conditions for a unique nonexplosive solution are the same. When those conditions
are violated, many nonexplosive solutions exist. We use Sims�(2001) Gensys pro-
gram to solve for (Ft; Gt). His program delivers the unique nonexplosive solution
when outcomes are determinate and one of the many possible nonexplosive solutions
when they are indeterminate.

3.2 The actual law of motion

To �nd the actual law of motion, we stack the IS curve, the aggregate supply
block, and shocks along with the actual policy rule. This results in another system
of expectational di¤erence equations,

AtSt = BtE
�
t St+1 + CatSt�1 +Dt"t: (18)

The state vector is the same as in (16), as are the matrices At; Bt; andDt: In addition,
all rows of Cat agree with those of Ct except for the one corresponding to the monetary-
policy rule. In that row, the true policy coe¢ cients  replace the estimated coe¢ cients

9



 t (see web appendix B). To �nd the ALM, substitute E
�
t St+1 = FtSt from the PLM

into (18) and re-arrange terms. After some algebra, we �nd9

St = HtSt�1 +Gt"t; (19)

where
Ht = Ft + (At �BtFt)

�1(Cat � Ct): (20)

The ALM depends on both actual policy coe¢ cients, because that is what governs
central bank behavior, and on perceived policy coe¢ cients, because that is what
guides private-sector behavior.10

When the solution for (Ft; Gt) is unique, so is the solution for Ht:When there are
multiple solutions for (Ft; Gt); there are also multiple solutions for Ht: Our program
delivers one of the many possible solutions in that case, corresponding to the solution
that Gensys selects for (Ft; Gt):

3.3 The PLM is the perceived ALM

The reduced-form ALM and PLM are both V AR(1) processes with conditionally
gaussian innovations. Under the ALM, the conditional mean and variance are11

mtjt�1( true) = Ht( true)St�1; (21)

Vtjt�1( true) = GtV"( true)G
0
t;

9The ALM can also be derived as follows. Outcomes are determined in accordance with agents�
plans,

St = FtSt�1 + (At �BtFt)�1Dt~"t:

A relation between perceived and actual innovations can be found by subtracting (18) from (16),

Dt~"t = Dt"t + (Cat � Ct)St�1:

Substitute this relation into agents�plans to express outcomes in terms of actual shocks,

St = [Ft + (At �BtFt)�1(Cat � Ct)]St�1 +Gt"t:

10Notice that the ALM is a VAR with time-varying parameters and conditional heteroskedasticity,
as in Cogley and Sargent (2005) and Primiceri (2006). An intriguing feature of the equilibrium is
that the drifting parameters  t have a lower dimension than the conditional mean parameters
vec(Ht): This is qualitatively consistent with a �nding of Cogley and Sargent (2005), who reported
that drift in an analog to vec(Ht) is con�ned to a lower dimensional subspace. The form of the
conditional variance in (19) di¤ers from their representations, however, so the model disagrees with
their identifying restrictions. Another di¤erence is that the model involves temporary drift during
a learning transition while their VARs involve perpetual drift.
11According to the timing protocol, Ht and Gt can be regarded either as beginning-of-period t

estimates or end-of-period t� 1 estimates. That is why it is legitimate to use them to calculate the
conditional mean and variance.
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where Ht( true) and V"( true) are the ALM conditional mean and variance arrays
evaluated at the true value  true: If we interviewed the agents in the model and asked
their view of the ALM, they would answer by replacing  true in Cat with  t; thus
obtaining Ct; implying

~mtjt�1( t) = FtSt�1; (22)
~Vtjt�1( t) = GtV"( t)G

0
t:

These expressions coincide with the conditional mean and variance under the PLM.
Hence the PLM is the perceived ALM. This is true not only asymptotically but for
every date during the transition. Among other things, this implies that private-sector
forecasts are consistent with contingency plans for the future. For instance, for j > 0;
log-linear consumption Euler equations between periods t + j and t + j + 1 hold in
expectation at t:

3.4 The likelihood function

We collect the observables in a vector Xt = [�t; ut; yt; t; it]
0; which is a subset of

the state vector St;
Xt = eXSt; (23)

where eX is an appropriately de�ned selection matrix (see web appendix B). The
other elements of the state vector allow us to express the model in �rst-order form
but convey no additional information beyond that contained in the history of Xt:
Using the prediction-error decomposition, the likelihood function for data through
period t can be expressed as

p(X tj ) =
Qt
j=1 p(XjjXj�1;  ): (24)

Since the private sector knows the ALM up to the unknown policy parameters, they
can use it to evaluate the terms on the right-hand side of (24). According to the
ALM, Xt is conditionally normal with mean and variance

mX
tjt�1( ) = eXHt( )St�1; (25)

V X
tjt�1( ) = eXGtV"( )G

0
te
0
X ;

where Ht( ) and V"( ) are the ALM conditional mean and variance arrays evaluated
at some value of  : It follows that the log-likelihood function is

ln p(X tj ) = �1
2

Pt
j=1

n
ln jV X

jjj�1( )j + [Xj �mX
jjj�1( )]

0 �V X
jjj�1( )

��1
[Xj �mX

jjj�1( )]
o
:

(26)
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3.5 The private sector�s prior and posterior

Private agents have a prior p( ) over the policy coe¢ cients. At each date t; they
�nd the log posterior kernel by summing log likelihood and log prior. Because of our
anticipated-utility assumption, their decisions depend only on a point estimate, not
on the entire posterior distribution. Among the various point estimators from which
they can choose, we assume they adopt the posterior mode,

 t = argmax
�
ln p(X tj ) + ln p( )

�
: (27)

Agents take into account that past outcomes were in�uenced by past beliefs.
They are not recursively estimating a conventional rational-expectations model. By
inspecting the ALM and PLM, one can verify that past values of the conditional mean
mX
jjj�1( ) and the conditional variance V

X
jjj�1( ) depend on past estimates as well as

the current candidate  : Past estimates are bygones at t and are held constant when
agents update the posterior mode.12

The estimates are based not just on the policy rule but also on equations for
in�ation and output. The agents exploit all information about  ; taking advantage
of cross-equation restrictions implied by the ALM. How much the cross-equation
restrictions matter is examined below.

4 The central bank�s decision problem

A new governor appears at date 0 and formulates a new policy rule. After ob-
serving the private sector�s prior, the governor chooses the long-run in�ation target ��
and reaction coe¢ cients  �;  y to minimize expected loss under the new policy, with
the standard deviation of policy shocks �i being set exogenously. The disin�ation
commences at date 1.

4.1 Initial conditions

The economy is initialized at the steady state under the old regime. Because we
are interested in a scenario like the end of the Great In�ation, we calibrate the old
regime to match estimates of the policy rule for the period 1965-1979. We assume
that the policy rule had the same functional form as (1) during that period, and
we estimate ��;  �;  y; and �

2
i by OLS. The point estimates and standard errors are

reported in table 1. The point estimate for �� is 0.0116, implying an annualized target-
in�ation rate of 4.6 percent. The reaction coe¢ cients are both close to zero, with the
output coe¢ cient being slightly larger than the in�ation coe¢ cient. Policy shocks
are large in magnitude and account for a substantial fraction of the total variation in
the nominal interest rate. Standard errors are large, especially for ��.
12For that reason, whether the estimator can be expressed in a recursive form is unclear.
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Table 1: The Old Regime
��  �  y �i

0.0116 0.043 0.12 0.0033
(0.013) (0.08) (0.04) (0.01)

Note: Estimates of policy coe¢ cients, 1965-1979. Standard errors in parentheses.

We initialize the state vector at the steady state associated with this policy rule.
This implies �0 = 0:0116; y0 = �0:0732; and i0 = 0:0217; where in�ation and nominal
interest are expressed as quarterly rates.

4.2 Evaluating expected loss and �nding the optimal policy

If the model fell into the linear-quadratic class, the loss function could be evaluated
and optimal policy computed using methods developed by Mertens (2009a, 2009b).
The central bank has quadratic preferences, and many elements of the transition
equation are linear, but learning introduces a nonlinear element. Since that element
is essential, we retain it and use other methods for evaluating expected loss.
We proceed numerically. We start by specifying a grid of values for ��;  �; and

 y: Then, for each node on the grid, we simulate 100 sample paths, updating private-
sector estimates  t by numerical maximization at each date. The sample paths are
each 20 years long, and the terminal loss is set equal to zero, representing a decision
maker with a long but �nite horizon. We calculate realized loss along each sample
path and then average realized loss across sample paths to �nd expected loss. The
optimal rule among this family is the node with smallest expected loss.13

5 A full-information benchmark

To highlight the role of learning, we begin by describing the optimal policy under
full information. When private agents know the new policy, the optimal simple rule
sets �� = 0;  � = 1:45; and  y = 0:2. Figure 1 portrays a disin�ation under this
policy. Recall that the economy is initialized in the steady state of the old regime and
that the disin�ation commences at date 1. The �gure depicts responses of in�ation,
output, and nominal interest gaps, which are de�ned as deviations from the steady
state of the new regime.14

The nominal interest rate rises at date 1, causing in�ation to decline sharply and
overshoot the new target. After that, in�ation converges from below. This rolls back

13An alternative procedure would be to write down a dynamic program and solve it numerically,
as in Gaspar, Smets, and Vestin (2006, 2010). This is feasible in models with a low-dimensional
state vector, but in our model it runs afoul of the curse of dimensionality.
14Values at date 0 represent the di¤erence between steady states of the old and new regimes.

In�ation and nominal interest gaps coincide because the steady-state real interest rate is the same.
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the price level, partially counteracting the e¤ects of high past in�ation. As Woodford
(2003) explains, a partial rollback of the price level is a feature of optimal monetary
policy under commitment. Intuitively, a credible commitment on the part of the
central bank to roll back price increases restrains a �rm�s incentive to increase its
price in the �rst place. The optimal simple rule under full information also has this
feature.
The initial increase in the nominal interest rate causes the output gap to fall below

zero. Since in�ation and output growth are below target at date 1, the central bank
cuts the interest rate at date 2, damping the output loss and initiating a recovery.
Convergence to the new steady state is rapid, with in�ation, output, and interest
gaps closing in about a year. After 4 periods, in�ation is close to its new target,
which is 4.6 percentage points below the old target. The cumulative loss in output
is approximately 2.4 percent. The sacri�ce ratio, de�ned as the cumulative loss in
output divided by the change in target in�ation, is approximately 0.5 percent. The
reason why the sacri�ce ratio is small under full information is that the model has no
indexation. Although prices are sticky, the absence of indexation means that in�ation
is weakly persistent. The absence of indexation also explains why the bank seeks a
substantial rollback in the price level.
Another property of the full-information model is that the economy is highly fault

tolerant with respect to policies away from the optimum. Figure 2 portrays isoclines
for expected loss as a function of ��;  �;  y, and �

2
i : Each panel involves a di¤erent

setting for ��, ranging from 0 to 3 percent per annum. The feedback parameters  �
and  y are shown on the horizontal and vertical axes, respectively. The standard
deviation of the policy shock �i is held constant at 0:001 in all cases. Expected loss is
normalized by dividing by loss under the optimal rule, so that contour lines represent
gross deviations from the optimum. The blue diamond in the upper left panel depicts
the optimal policy under full information. Expected loss increases slowly as policy
moves away from the optimum. For instance, when �� = 0; relative loss remains below
2 for most combinations of  � and  y and rises above 10 only when  � approaches
zero. Later we contrast this with an absence of fault tolerance under learning.

6 An optimal simple rule under learning

Our benchmark model assumes that the private sector initially anticipates a con-
tinuation of the old regime. We calibrate their priors using the estimates of policy
coe¢ cients for 1965-1979 shown in table 1, thus ensuring that the prior encodes in-
formation from the period leading up to the Volcker disin�ation. In particular, we
assume that agents believe that policy coe¢ cients are independent a priori,

p( ) = p(��)p( �)p( y)p(�
2
i ): (28)

15



0 0.01 0.02 0.03 0.04 0.05
0

5

10

15

20

25

30

35

40

0 0.5 1 1.5
0

1

2

3

4

5

6

7

8

ψ
π

0 0.5 1 1.5
0

2

4

6

8

10

ψ
y

0 0.01 0.02 0.03 0.04 0.05
0

50

100

150

200

σ
i

Figure 3: A prior based on the old regime

We also assume they adopt truncated normal priors for ��;  �;  y and a gamma prior
for �2i : For ��;  �;  y; the mean and standard deviation of an untruncated normal
density are set equal to the numbers in table 1. We then truncate at zero to ensure
non-negativity and renormalize so that the truncated prior integrates to unity. For
�2i ; hyperparameters are chosen so that the implied mode and standard deviation
match the numbers in the table.
The results are shown in �gure 3. Priors for  � and  y concentrate slightly to

the right of zero, and little prior mass is assigned to values greater than 0.25. On the
other hand, priors for �� and �2i are spread out and assign non-negligible probability to
a broad range of values.15 According to this speci�cation, private agents are skeptical
that the central bank will react aggressively to in�ation or output, but they are open
to persuasion about �� and �2i .
Figure 4 portrays isoclines for expected loss as a function of ��;  �;  y, and �

2
i : The

�gure is formatted in the same way as �gure 2, but we focus on a narrower range of
feedback parameters. Expected loss is normalized by dividing by loss under the rule

15 �� and �i are measured in quarterly rates.
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Figure 4: Isoloss contours under learning

optimal under learning. The red and blue diamonds in the upper left panel depict
the optimal policy under learning and full information, respectively.
Regions of low expected loss concentrate in the southwest quadrant of each panel,

near the prior mode for  � and  y: Expected loss increases rapidly as the feedback
coe¢ cients move away. Indeed, in the northeast quadrant of each panel, expected
loss is more than 100 times greater than under the optimal policy. The policy that
is optimal under full information lies in the high-loss region and performs very badly
under learning.
The reason why the economy loses fault tolerance under learning is that the

equilibrium law of motion can be a temporarily explosive process, i.e. one that is
asymptotically stationary but which has explosive autoregressive roots during the
transition. The agents in our model want to be on the stable manifold, but they
don�t know where it is. Their plans are based on the PLM, which depends on Ft,
but outcomes are governed by the ALM, which involves Ht: The eigenvalues of Ft
are never outside the unit circle,16 but the eigenvalues of Ht can be explosive even
when those of Ft are not. Thus, actions that would be stable under the PLM can be

16A unit eigenvalue is associated with the constant in the state vector.
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Figure 5: Nonexplosive region for H1

unstable under the ALM.
The matrices Ht and Ft di¤er because of disagreement between the actual policy

 and the perceived policy  t (see equation 20). The eigenvalues of Ht are close
to those of Ft (hence are nonexplosive) when  t is close to  : Explosive eigenvalues
emerge when there is substantial disagreement between  t and  : On almost all sim-
ulated paths, the private sector eventually learns enough about  to make explosive
eigenvalues vanish,17 but the transition is highly volatile and dominates expected loss
when the initial disagreement is large and/or learning is slow.
The gray shaded areas in �gure 5 depict regions of the policy-coe¢ cient space for

which the eigenvalues of H1 are nonexplosive.18 The nonexplosive region is similar

17Since the private sector uses Bayesian inference and an anticipated utility approach to decision
making, standard results for the convergence of estimates formed by Bayesian decision makers (see,
among others, El-Gamal and Sundaram (1993)) are not directly applicable. Therefore, we numeri-
cally check convergence of the agents�learning algorithm. In particular, we calculated deviations of
their parameter estimates from the true values after 40 and 80 periods, both across simulations and
across true parameter values. Histograms for those deviations are indeed centered near 0, and the
variances of those distributions shrink as the learning horizon grows larger.
18The jagged boundary re�ects the coarseness of our grid. The large losses near the origin in
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for all settings of ��; but it is sensitive to  � and  y; concentrating near the prior
mode. It follows that the emergence of explosive roots depends more on the feedback
parameters than on the long-run in�ation target. The central bank can move its
in�ation target far from the private sector�s prior mode without generating locally-
unstable dynamics, but moving  � and/or  y far from their prior modes can make
the transition turbulent.
In this example, the private sector is prejudiced against large values of  � and

 y. If the bank were to reach far outside the nonexplosive region in �gure 5, it would
have to �ght that prejudice, and learning would be slow. Explosive eigenvalues would
remain active for too long, making the transition too turbulent. For that reason, the
optimal policy puts  � and  y only slightly outside. The bank can adjust �� more
freely, however, thereby achieving low average in�ation.
The optimal simple rule for this example sets �� = 0;  � = 0:25; and  y = 0:1:

Figures 6 and 7 portray outcomes under this policy. Figure 6 plots mean responses
of in�ation, output, and nominal interest gaps, averaged across 100 sample paths.
Figure 7 portrays mean estimates of the policy coe¢ cients, again averaged across
100 sample paths. The true coe¢ cients are shown as dashed red lines while average
estimates are portrayed as solid blue lines.
As shown in �gure 6, the transition is longer and more volatile than under full

information. In�ation again declines at impact, overshooting �� and partially rolling
back past increases in the price level. But the response under learning is greater
in amplitude, and in�ation oscillates as it converges to its new long-run target. The
transition now takes about three years, with in�ation remaining below target for most
of that time. There is also a shallow but long-lasting decline in output. The output
gap reaches a trough of -1.1 percent in quarter 5 and remains negative for four years.
The cumulative output gap during this time is -10 percent. Since in�ation falls
permanently by 4.6 percentage points, the sacri�ce ratio amounts to 2.15 percent
of lost output per percentage point of in�ation, four times larger than under full
information. According to Ascari and Ropele (2011), most estimates of the sacri�ce
ratio for the Volcker disin�ation lie between 1 and 3, so our model is in the right
ballpark.
As shown in �gure 7, estimates of  � converge to the true value after about two

years. Rapid convergence of  � is crucial for eliminating locally-explosive dynamics.
In this case, beliefs about  � converge quickly because they don�t have far to go.
The bank sets  � close to its prior mode precisely so that disagreement does not
persist. Estimates of  y also converge quickly, again because the optimum is close
to the prior. Estimates of �� converge more slowly, approaching the true value after
20 quarters. Learning about �i is also slow, but it is also less critical because of our

�gure 4 occur in spite of H1 being non-explosive because for those parameters instability can occur
slightly later in the simulations (but within the �rst 5 periods).
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certainty-equivalent approximations.
To illustrate why a more ambitious reform is suboptimal, we examine an alter-

native policy that holds �� and  y constant but which reacts more aggressively to
in�ation, increasing  � from 0.25 to 0.45. This policy is located to the right of the
optimum in �gures 4 and 5. Figures 8 and 9 depict average outcomes under this rule.
Under this policy, the central bank is �ghting against the private sector�s prior,

which assigns low probability to neighborhoods of the true values. A lot of sample
information is needed to overcome the prior. For the sake of intuition, imagine that
agents were estimating the policy rule by running a regression. Because the prior
assigns low weight to neighborhoods of the true value for  �, the likelihood function
would have to concentrate sharply in order to move the posterior there. For that
to happen quickly, lagged in�ation (the right-hand variable in the regression) would
have to be highly volatile. The bank can create a lot of volatility (see �gure 8), and
those �uctuations do help the private sector learn (see �gure 9). But that volatility
is costly, and the long-run bene�ts associated with a more aggressive reaction to
in�ation do not justify the higher transitional costs.

6.1 Uncertainty about target in�ation when feedback para-
meters are known

Our results suggest that uncertainty about feedback parameters is more important
than uncertainty about target in�ation.19 To show this more explicitly, we deactivate
uncertainty about  �;  y; and �i and study a model in which �� is the only unknown
policy coe¢ cient.20 For ��; we assume the private sector adopts the same prior as
in �gure 3. The results are depicted in �gures 10-13. As before, the gray area in
�gure 10 portrays the region for which the ALM is initially nonexplosive. Because
the feedback parameters are known, this region expands to �ll most of the policy-
coe¢ cient space. Since the ALM is nonexplosive for most policies, the model has
high fault tolerance with respect to rules far from the prior, and the expected-loss
surface is �atter. Furthermore, the private sector learns target in�ation very quickly.
For these reasons, the model behaves much as it does under full information. The
optimal policy is similar, and impulse response functions resemble those shown in
�gure 1.

19Just to be clear, we are not saying that uncertainty about �� is unimportant, only that it matters
less than uncertainty about  � and  y:
20This scenario is analogous to that of Erceg and Levin (2003). Our model di¤ers from theirs in

a number of other ways, so this exercise should not be interpreted as an attempt to replicate their
analysis.
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Figure 10: Nonexplosive region for H1 when �� is the only unknown policy coe¢ cient
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6.2 Uncertainty about feedback parameters when target in-
�ation is known

Next we deactivate uncertainty about �� and reactivate uncertainty about  �;  y;
and �i: We assume that the private sector adopts the same priors for the latter
coe¢ cients as in �gure 3. Results are presented in �gures 14-17. At least qualitatively,
the outcomes are closer to those for the benchmark learning model than to those under
full information. Temporarily explosive paths still emerge when  � and/or  y deviate
too much from prior beliefs. In fact, the initial nonexplosive region is larger than in
the benchmark learning model. Because of concerns about explosive volatility, the
bank chooses a policy close to the prior mode for  � and  y. The transition is volatile,
but learning is rapid because the true policy is close to initial beliefs.

7 Alternative models of learning

In this section, we examine the extent to which policy recommendations derived
from the baseline model are robust to alternative forms of learning. For the most
part, we �nd that they are. This is good news for a central bank because it means
that its choice of policy does not depend sensitively on detailed knowledge about how
agents learn.

7.1 Single-equation learning

Agents in the baseline model are highly sophisticated and exploit cross-equation
restrictions on the ALM when estimating policy coe¢ cients. Here we step back and
consider a less sophisticated form of learning involving single-equation estimation of
the policy rule. The priors are the same as in the benchmark model, but we now
assume that agents neglect cross-equation restrictions and work with the conditional
likelihood function for the policy equation,

ln p(�itj ; �t;�yt) = �1
2

Pt
j=1 '

j

�
ln�2i +

(�ij �  �(�j�1 � ��)�  y�yj�1)
2

�2i

�
:

(29)
The parameter ' discounts past observations. We consider two forms of single-

equation learning, with ' = 1 and ' < 1; respectively, to imitate decreasing- and
constant-gain learning.21 For the discounted case, we set ' = 0:9828 so that the
discount function has a half-life of 40 quarters. We also multiply the log prior by
't on the grounds that date-zero beliefs should also be discounted when agents are
concerned about structural change.

21For background, see Evans and Honkapohja (2001).
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5

10

10
0

ψ
y

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

2.5
5

10

100

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1
1.5

1.
5

1.75
2.5

5

5

10

100

ψ
y

ψ
π

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.05

1.25
1.5

1.75

2.5 5

5

10

100

ψ
π

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

FI

Learning

Figure 15: Isoloss contours when �� is known

26



0 2 4 6 8 10 12 14 16 18 20
0.2

0.15

0.1

0.05

0

0.05

Quarters

Inflation Gap
Nominal Interest Gap
Output Gap

Figure 16: Average responses under the optimal policy when �� is known

5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06
Average Estimate
True Value

5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

ψ
π

5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

ψ
y

Quarters
5 10 15 20 25 30 35 40

0

0.005

0.01

0.015

σi

Quarters

Figure 17: Average estimates under the optimal policy when �� is known
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Although policy-coe¢ cient estimates di¤er, the optimal policies are essentially the
same as those in the baseline learning model (see web appendix C). Hence the choice
of policy does not depend on whether single-equation or full-system estimators are
used.
That results are similar for discounted and undiscounted learning is not surprising

because the samples are short and ' is not far from 1 in the discounted case. That
the results are similar to those for full-system learning is a statement about the in-
formation content of cross-equation restrictions. Evidently those restrictions are less
informative under learning than in a full-information rational-expectations model. In
the latter, private decision rules are predicated on knowledge of the true policy coef-
�cients and therefore convey information about them. In a learning model, however,
private decision rules are predicated on estimates of policy coe¢ cients, not on true
values. Hence non-policy equations in the ALM encode less information about the
true policy. The cross-equation restrictions are informative, especially for policies far
from the optimum, but the two estimators are similar for policies near the optimum.

7.2 Alternative priors

The baseline model also assumes that the central bank knows the private sector�s
prior distribution. While surveys might uncover their prior mode, eliciting informa-
tion about the tails seems more demanding. Here we examine the robustness of the
baseline policy with respect to changes in the private sector�s prior. The bank still
proceeds as if it knew the private sector�s prior, but we now entertain the possibility
that the bank�s assumptions about the prior are mistaken.
We alter the baseline prior by creating a family of mixture priors. We imagine

that agents enter date 0 with beliefs about the old regime pold( ) that are the same
as �gure 3. Instead of assigning probability 1 to that prior, however, we assume they
expect the central bank to continue the old regime with probability 1 � w and to
switch to something else with probability w: Their beliefs about a new regime are
encoded in a conditional prior pnew( ): The marginal prior is a mixture of the two
conditional priors,

pm( ) = (1� w)pold( ) + wpnew( ); (30)

where w measures the public�s beliefs about the prospects for change. A value close
to 0 means that the public weighs past experience heavily and is skeptical about the
prospects for change, while a value close to 1 means that the private sector discounts
the past and looks forward to something new.
For pnew( ); we adopt the same functional forms as for pold( ); and we calibrate

it so that it is loosely centered on policies with lower long-run in�ation and more
aggressive reactions to in�ation and output growth. The details are recorded in table
2. Abstracting from the truncation at zero, the conditional prior mean for �� is 2
percent per year, and a conditional 95 percent con�dence band ranges from 0 to 4
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percent. Similarly, the conditional prior means for  � and  y are 0.5 with conditional
con�dence bands of plus or minus 0.5, and the conditional mode for �i is 0.001 with
a standard deviation is 0.001.

Table 2: Conditional Prior, pnew( )

��  �  y �i
Mean 0:005 0:5 0:5 0:001

Standard deviation 0:0025 0:25 0:25 0:001

Figure 18 depicts a family of mixture priors. The components pold( ) and pnew( )
are illustrated by solid blue and dashed green lines, respectively. Mixtures are shown
as red lines, for weights of w = 0:3; 0:5; and 0:7; respectively. The mixtures di¤er
from pold( ) in two respects. The prior mode for �� is shifted to the left, near the mode
for pnew(��), and the upper tails for  � and  y are fatter. Agents remain skeptical
that the bank will react aggressively to in�ation or output growth, but they are less
strongly prejudiced against that possibility.
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Figure 18: Mixture priors

Tables 3 and 4 report the optimal simple rule and relative expected loss for each
model.22 Table 3 shows that the policy recommendations are broadly similar across
models. All recommend low average in�ation, though not always zero, and feedback

22Detailed results can be found in web appendix D.
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parameters never move far from the private sector�s prior mode. The bank�s main
objective is to mitigate turbulence arising from explosive volatility, and all the policies
accomplish that.
Table 4 records the results of a McCallum-style robustness analysis, reporting

expected loss in the row model under the policy optimized for the column model.
Expected loss is normalized by dividing by loss under the rule optimal for the row
model. By and large, the policies are robust. The policy optimized for the baseline
model (w = 0) works fairly well in all the models (see the �rst column). Policies
optimized for priors with w = 0:5 or w = 0:7 increase expected loss in other models,
sometimes by as much as a factor of 7 or 8, but no disasters occur.

Table 3: Optimal Simple Rules
��  �  y Expected Loss

w = 0 0 0.25 0.1 1.99e-03
w = 0:3 0 0.25 0 1.94e-03
w = 0:5 0.01 0.15 0.2 9.27e-03
w = 0:7 0.01 0.15 0.3 7.73e-03

Table 4: Relative Expected Loss
w = 0 w = 0:3 w = 0:5 w = 0:7

w = 0 1 1:10 1:41 1:28
w = 0:3 1:03 1 7:53 8:56
w = 0:5 3:14 2:66 1 1:05
w = 0:7 1:26 1:4 1:00 1

Relative expected loss in the row model under the policy optimized for the column model

Finally, we also examine models combining mixture priors and single-equation
learning. The results are essentially the same as those reported here and in web
appendix D.

8 Concluding remarks

Locally-unstable dynamics can emerge in equilibrium when private agents learn a
new policy rule. These dynamics make the transition highly volatile and dominate
expected loss. The central bank�s main challenge is to guard against this outcome. For
the model developed here, uncertainty about policy-feedback parameters is critical
because this is what creates the potential for temporarily explosive dynamics. The
bank copes by choosing feedback parameters close to the private sector�s initial beliefs.
Uncertainty about target in�ation is secondary, and the bank can reduce average
in�ation substantially without generating much turbulence.
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In ongoing research, we study the properties of other policy rules, including
monetary-aggregate rules as well as interest-rate rules with other functional forms.
Perhaps we will discover a form of monetary-policy rule for which temporarily-
explosive dynamics are less problematic.
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