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1 Introduction

This paper proposes e¢ cient, regression based estimators for dynamic asset pricing models with

time varying prices of risk. Estimators are developed for both a¢ ne and exponentially a¢ ne pricing

kernel speci�cations commonly used in equity and �xed income applications. The estimators and

associated standard errors that we propose are computationally as simple as commonly used static

cross sectional asset pricing regressions, yet explicitly provide estimates of time varying prices of

risk, as well as estimates of the associated state variable dynamics. Our approach thus allows com-

putationally e¢ cient and robust estimation of dynamic asset pricing models. We present estimation

results for typical asset pricing applications that allow the comparison of various estimators and

provide evidence that dynamic price of risk speci�cations are highly signi�cant relative to constant

price of risk speci�cations. In addition, our dynamic asset pricing approach can be used to improve

inference for predictive regressions due to the presence of cross sectional constraints.

Throughout the paper, we assume that prices of risk are a¢ ne functions of lagged state vari-

ables. We show that by introducing this risk price speci�cation into generic asset pricing models,

one can derive simple regression based estimators for all model parameters which makes our ap-

proach particularly well suited for applications across asset classes. We �rst study regression based

estimators for the a¢ ne pricing kernel speci�cation. We introduce a simple three stage estimator

and show that it is consistent and asymptotically normal under mild conditions. The estimator

can be described as follows. In the �rst stage, shocks to the state variables are obtained from a

time series vector autoregression. In the second stage, asset returns are regressed in the time series

on lagged state variables and their contemporaneous innovations, generating predictive slopes and

risk betas for each test asset. In the third stage, prices of risk are obtained by running a cross

sectional regression of the stacked predictive slopes onto the stacked betas. We show that steps

two and three of our estimator coincide computationally with the two stage Fama and MacBeth

(1973) estimator when two conditions are met. First, the state variables have to be uncorrelated

across time so that the �rst step of the four stage estimator is not necessary. Second, prices of risk

have to be constant. Our approach can thus be viewed as a dynamic version of the Fama-MacBeth

estimator, nesting the popular unconditional estimator as a special case.

We next show that a fourth estimation step in which betas are recomputed by regressing asset

returns on the sum of (time varying) prices of risk and state variable shocks delivers e¢ cient

estimates of betas. This is somewhat surprising as the time series estimates of betas that are

conducted in the second stage are ine¢ cient. We show that the re-estimation of betas yields

e¢ cient betas also in the Fama-MacBeth setting. The three and four stage estimators described so

far are based on OLS regressions which are e¢ cient when the variances of test assets are equal. We

show that both have a straightforward GLS generalization which is e¢ cient in more general cases.

In addition to the OLS and GLS regression based estimators, we also provide a linearized

maximum likelihood (LML) estimator. The LML estimator does not reduce to a direct regression

based approach, but is based on output from regression methods. It is therefore easily programmed
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and does not involve numerical optimization. We show that the LML estimator is asymptotically

equivalent to the four stage GLS regression based estimator for all parameters. However, from the

point of view of intuitive understanding the four stage regression based estimator is preferable.

We next study estimation of dynamic asset pricing models when the pricing kernel has an

exponentially a¢ ne formulation. In this setting, it is common to assume conditionally normal dis-

tributions for innovations. In the exponentially a¢ ne case, the return generating process implied by

no arbitrage has a convexity term which involves a quadratic function of betas. Any asymptotically

e¢ cient estimator has to take the quadratic dependence of the convexity adjustment on the risk

factor exposures into account. As a result, the recomputation of e¢ cient betas in the fourth step

cannot be done and hence the OLS and GLS estimators do not achieve e¢ ciency. We therefore

also provide an LML estimator which is asymptotically e¢ cient for the exponentially a¢ ne case.

As in the a¢ ne pricing kernel speci�cation, this estimator is easily programmed based on outputs

from the regression based approaches and does not involve numerical optimization.

Contributions to the Literature Our approach can be seen as a generalization of the

static Fama and MacBeth (1973) cross sectional asset pricing approach to dynamic asset pricing

models. We preserve the simplicity of the multistep regression based asset pricing set up, but add

the dynamics of the state variables and the dynamics of the prices of risk to our estimation. The

empirical applications of the static Fama-MacBeth approach are too numerous to list, but some of

the seminal work includes Chen, Roll, and Ross (1986) and Fama and French (1992).

The Fama-MacBeth approach has been extended to conditional asset pricing models. Ferson and

Harvey (1991) use Fama-MacBeth regressions to obtain estimates of time varying market prices

of risk which they then regress on lagged conditioning variables. They �nd strong evidence for

predictable variation in prices of risk and associate most of the predictable variation in stock returns

to time variation in risk compensation rather than time variation in betas. Our estimation approach

generalizes the one used in Ferson and Harvey (1991) by explicitly taking the time variation of

prices of risk into account in the estimation of betas. Jagannathan and Wang (1996), Lettau and

Ludvigson (2001) and others use the Fama-MacBeth technology to estimate scaled factor models.

The regression coe¢ cients of such conditional asset pricing models can in principal be used to

recover some of the deeper price of risk parameters that we are estimating with our fully �edged

dynamic approach. However, the scaled factor approaches typically do not take the dynamic

properties of the conditioning variables into account in making inference, which can potentially

lead to ine¢ cient standard errors. Furthermore, they typically do not explicitly provide estimates

for the parameters governing the dynamics of prices of risk. Moreover, the beta representations of

such models are nested in our more general framework.

We are adding a number of results relative to the �nancial econometrics literature, also in the

static case with constant risk prices. The seminal work of Shanken (1992) showed that the two stage

GLS estimator of the constant prices of risk is e¢ cient under normality. We con�rm Shanken�s
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e¢ ciency result, and show how to extend the regression based estimator to an e¢ cient one in the

case of time varying prices of risk. In addition, we show that the betas obtained by regressing

returns on the time series of risk factor shocks is ine¢ cient, but that e¢ cient betas can be obtained

by recomputing betas once prices of risk are obtained. This recomputation is e¢ cient both in the

case where prices of risk are constant and when they are time varying.

In the Fama-MacBeth framework, Jagannathan and Wang (1998) provide standard errors in

a setting where factor and return innovations are not assumed to be conditionally homoskedastic.

As is well known, the Gaussian assumption ensures that conditionally uncorrelated shocks are also

independent. Jagannathan and Wang (1998) show that by relaxing this assumption the asymptotic

standard errors have additional terms that arise due to the potential dependence of the shocks of

the state variables and the asset return innovations. We also extend the results of Jagannathan

and Wang (1998) to a dynamic setting.

We provide regression based estimators for dynamic asset pricing models with exponentially

a¢ ne pricing kernels and conditionally Gaussian shocks. The assumption of an exponentially

a¢ ne pricing kernel and conditionally Gaussian shocks is a special case of the general equilibrium

framework of Merton (1973) and Cox, Ingersoll, and Ross (1985a). It is also commonly used in

a¢ ne dynamic term structure models (e.g., Vasicek (1977), Cox, Ingersoll, and Ross (1985b)). In

practice, the term structure models usually impose additional restrictions deriving from boundary

conditions and are estimated using numerical methods for maximum likelihood estimation (see

e.g., Dai and Singleton (2000), Du¤ee (2002) or Piazzesi (2003)). When no additional restrictions

are imposed, we show how to solve the maximum likelihood problem using an LML estimator,

thus providing closed form solutions to highly dimensional optimization problems. In addition, we

contrast the optimal LML estimation approach to the regression based approach, allowing us to

exactly quantify the asymptotic e¢ ciency loss by using the direct regression estimator relative to

the LML estimator.

We illustrate the usefulness of our approach and associated estimators by applying them to two

well known asset pricing models, the conditional CAPM suggested by Lettau and Ludvigson (2001)

and the ICAPM considered by Campbell (1996). Both models implicitly assume time variation in

risk premia, but have previously been estimated using methods developed for constant price of risk

speci�cations. We demonstrate that the beta representation of the Lettau and Ludvigson (2001)

model can be obtained as a special case of our a¢ ne pricing kernel speci�cation, and that the

unrestricted beta representation of the Campbell (1996) model is equivalent to that implied by our

exponentially a¢ ne pricing kernel when prices of risk are constant. Following the original papers,

we estimate the Lettau and Ludvigson (2001) model for a cross section of size and book-to-market

sorted equity portfolios, and apply the Campbell (1996) model to a cross section of equity and �xed

income portfolios. For both models, we compare OLS, feasible GLS, and the LML estimators. In

both empirical applications, and independently of the estimator used, our results indicate that the

time variation of prices of risk is highly signi�cant, both statistically and economically. We also
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document that the conditional models with time varying prices of risk give rise to economically

important reductions in conditional pricing errors relative to models with constant prices of risk.

Finally, even though the sample sizes are moderate in both models, we �nd that the asymptotically

e¢ cient four stage feasible GLS and LML estimators generally provide smaller conditional pricing

errors than alternative estimators.

Our paper is organized as follows. In Section 2, we introduce and discuss the class of dynamic

asset pricing models used in the paper. In Section 3, we study the large sample properties for the

multistage regression based OLS and GLS estimators with the a¢ ne pricing kernel speci�cation.

In Section 4, we provide the conditions under which the regression based estimator is e¢ cient, and

provide an alternative LML estimator. Section 5 provides the analysis of the exponentially a¢ ne

model. We provide empirical illustrations of our estimators in Section 6, and Section 7 concludes.

All proofs and some additional results are relegated to the Appendix.

Notation: It is convenient to introduce the following notation that will be frequently used
throughout. The symbols 
 and � represent the Kronecker and Hadamard products, respectively.
Let a lower case letter denote the vec (�) operator applied to a matrix (e.g., 
 = vec (�)). For an
m�nmatrix A, de�ne themn�mn commutation matrix �mn which satis�es vec (A0) = �mn vec (A).

bdiag[pq];[mn] (Ai) will denote a p�q block-diagonal matrix (not necessarily square) with ith diagonal
element equal to the m� n matrix Ai. Finally, let Im be the m�m identity matrix and let �m be

a m� 1 vector of ones.

2 The A¢ ne Model

2.1 Pricing Kernel Assumptions and Return Generation

We assume that the dynamics of a K � 1 vector of state variables Xt evolves according to the

following vector autoregressive process:

Xt+1 = � +�Xt + vt+1, t = 1; : : : ; T , (1)

with initial condition X0. This speci�cation can be interpreted as a discrete time analog to the

state variable dynamics of Merton (1973)�s ICAPM or Cox, Ingersoll, and Ross (1985a)�s general

equilibrium setup. Initially, we will not necessarily assume that the shocks vt+1 are conditionally

Gaussian, identical, or independent. Later we will introduce further stochastic assumptions. For

now we only assume that:

E [vt+1j Ft] = 0, V [vt+1j Ft] = �v;t,

where Ft denotes the information set at time t.
We denote holding period returns in excess of the risk free rate RFt of asset i by R

e
i;t+1. We
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assume the existence of a pricing kernel Mt+1 such that:

E
�
Mt+1R

e
i;t+1

��Ft� = 0.
We assume that the pricing kernel is of the following form:

Mt+1 =
1

RFt

�
1� �0t�

�1=2
v;t vt+1

�
, (2)

where �t is a K � 1 vector assumed to be an a¢ ne function of the state variables Xt:

�t = �
�1=2
v;t (�0 + �1Xt) .

With these two elements, we �nd the following beta representation of expected returns:

E
�
Rei;t+1

��Ft� = �C[Mt+1; R
e
i;t+1jFt]

E [Mt+1j Ft]
= �0i;t (�0 + �1Xt) , (3)

where �i;t is a (time varying) K-dimensional exposure vector,

�i;t = �
�1
v;tC

�
Xt+1; R

e
i;t+1

��Ft� , (4)

and (�0 + �1Xt) is the K-dimensional vector of prices of risk. We can then decompose excess

returns into an expected and an unexpected component:

Rei;t+1 = �0i;t (�0 + �1Xt) +
�
Rei;t+1 � E

�
Rei;t+1

��Ft�� .
The unexpected excess return Rei;t+1 � E

h
Rei;t+1jFt

i
can be further decomposed into a component

that is conditionally correlated with the innovations of the states, vt+1 = Xt+1 � E [Xt+1jFt], and
a return pricing error ei;t+1 that is conditionally orthogonal to the state innovations:

Rei;t+1 � E
�
Rei;t+1jFt

�
= 
0i;t (Xt+1 � E [Xt+1jFt]) + ei;t+1.

It is easy to show that 
i;t = �i;t using equation (4). It then follows that excess returns are a

function of lagged state variables Xt, state variable innovations vt+1, and return pricing errors

ei;t+1:

Rei;t+1 = �0i;t (�0 + �1Xt) + �
0
i;tvt+1 + ei;t+1, t = 1; : : : ; T . (5)

The excess return thus depends on the expected return, �0i;t (�0 + �1Xt), a component that is

conditionally correlated with the innovations of the states, �0i;tvt+1, and a return pricing error ei;t+1
that is conditionally orthogonal to the state innovations. Therefore, the innovations to the state

variables are cross sectional pricing factors, and the levels of the states are forecasting variables.

This is in line with Campbell (1996) who argues that innovations in variables that have been shown



Efficient Regression Based Estimation of DAPMs 6

to forecast stock returns should be used in cross sectional asset pricing studies. Note that a similar

return generating process was studied in the context of foreign exchange return predictability in

Hansen and Hodrick (1983) who estimate the model using GMM. In the equity literature, time

variation in risk premia has been modeled in similar ways e.g. in Gibbons and Ferson (1985) and

Campbell (1987). A¢ ne prices of risk are also commonly used in the �xed income literature, see

e.g., Du¤ee (2002), Dai and Singleton (2002), or Ang and Piazzesi (2003).

The system of Equations (5) for i = 1; ::; N embeds the no arbitrage restrictions which were

derived from the assumption about the form of the pricing kernel introduced in equation (2).

Relative to a SUR model where Rei;t+1 = ai;t + ci;tXt + �0i;tvt+1 + ei;t+1, the assumption of no

arbitrage implies ai;t = �0i;t�0 and ci;t = �0i;t�1. For �xed t, these cross equation constraints reduce

the number of parameters to be estimated by (N �K) (K + 1).

The standard static cross sectional asset pricing model as reviewed by e.g., Campbell, Lo, and

MacKinley (1997) and Cochrane (2005) makes two additional assumptions: �1 = 0 in equation (5),

and � = 0 in equation (1). We will consider these special cases in the following sections. However,

the main contribution of this paper is to study the dynamic case where � 6= 0 and �1 6= 0.
While the focus of this paper is the estimation of the beta representation of dynamic asset

pricing models, there is an extensive literature that estimates the SDF representation using GMM.

In that literature, the expression E
h
Mt+1R

e
i;t+1

���Fti = 0 is estimated directly (see Harvey (1989)
and Harvey (1991)). Singleton (2006) provides an overview of dynamic asset pricing estimators,

and Nagel and Singleton (2010) provide a GMM estimator with an optimal weighting matrix.

2.2 Assumptions and Further Notation

In order to analyze the estimation of model (5), we introduce the following assumptions.

Assumption 1 (a) We observe fXtgTt=1 generated by equation (1) where X0 = x0 is �xed; (b)

�i;t = �i for all t and the matrix B = [�1 � � � �N ] has full row rank; (c) All eigenvalues of � have
modulus less than one.

Assumption 2 Put "t = (v0t; e
0
t)
0 and de�ne Gt = � ("t; "t�1; : : :). (a) We have E ["tj Gt�1] = 0,

E ["t"0tj Gt�1] = �, a block diagonal matrix with (1; 1)-element �v and (2; 2)-element �e; (b) �v is a
positive de�nite matrix and �e is both positive de�nite and diagonal; (c) We have E[vtv

0
tjet;Gt�1] =

�v and E[ete
0
tjvt;Gt�1] = �e; (d) supt E[k"tk

4] <1 where k�k is the Euclidean norm.

Assumption 1 (a) states that the factors are observable. In typical pricing applications, such

factors could be macroeconomic variables, aggregate valuation and accounting ratios, or yields.

Assumption 1 (b) states that the risk exposures are the same across time. In principle, our setup

could be extended to allow for time varying conditional betas which we leave for future research.

The requirement that B has full row rank of Assumption 1 (b) ensures that we can identify �.

This requirement is equivalent to the statement that the K columns of the matrix B0 are linearly
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independent vectors. Intuitively, we are assuming away the presence of redundant, uninformative

or unspanned factors. Finally, Assumption 1 (c) states that the dynamics of Xt are stationary.

From an economic perspective, this restriction rules out phenomena such as rational bubbles that

would be associated with exploding risk premia. From a statistical point of view, the assumption

means that we may avoid non-standard asymptotic arguments. Relaxation of this assumption is

beyond the scope of the paper and is left for future work.

Assumption 2 facilitates the asymptotic results presented in the next section. Assumption 2 (a)

and (b) characterize the disturbance terms as a joint martingale di¤erence sequence with associated

variance matrices and zero contemporaneous correlation matrix. The diagonality in Assumption

2 (b) is not vital to our results and may be easily relaxed. We maintain the assumption as it is

implied by the factor structure of our model. Assumption 2 (c) is a conditional homoskedasticity

assumption that is analogous to Assumption 1 in Shanken (1992). Later in the paper we discuss how

our results change by accommodating conditional heteroskedasticity (i.e., analogous to Assumption

1 in Jagannathan and Wang (1998)). Finally, Assumption 2 (d) ensures that the requisite moments

exist for the appropriate central limit theorem to hold.

It will be notationally convenient to introduce the matrix versions of equations (1) and (5),

Re = B0�Z� +B
0V + E (6)

X = 	Z� + V , (7)

where 	 = [� �], � = [�0 �1], X = [X1 X2 � � � XT ], X� = [X0 X1 � � � XT�1] and Z� = [�T X 0
� ]
0.

Re, E and V are matrices which are formed by stacking Rei;t, ei;t and vt in the corresponding

manner.

3 Estimation and Inference in the A¢ ne Model

We start by studying various regression estimators of the a¢ ne model. We compare these estimators

to the Fama-MacBeth approach, and discuss the special cases in which these estimators reduce to

the Fama-MacBeth estimator.

3.1 Three Stage Estimation

We �rst provide a feasible estimation procedure for the parameters of interest in the model. In par-

ticular, we provide consistent and asymptotically normal estimators of the state variable dynamics

	, prices of risk �, and risk factor exposures B.1

1 In the discussion of the a¢ ne model we treat �e as known as a matter of expository and notational convenience.
For instructions on how to implement a feasible GLS estimator see Section A.1 (in the Appendix). Furthermore, in
the Appendix we show that this feasible GLS estimator has the same limiting distribution as the infeasible version
discussed in the main text.
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Theorem 1 Suppose Assumptions 1 and 2 hold and we observe Re generated by equation (6).
Denote MZ = IT � Z 0�

�
Z�Z 0�

��1
Z�. Then the following estimators,

	̂ols = XZ 0�
�
Z�Z

0
�
��1 , B̂ols =

�
XMZX

0��1XMZR
0
e,

�̂ols =
�
B̂olsB̂

0
ols

��1
B̂olsReZ

0
�
�
Z�Z

0
�
��1 , �̂gls =

�
B̂ols�

�1
e B̂0ols

��1
B̂ols�

�1
e ReZ

0
�
�
Z�Z

0
�
��1 ,

satisfy

p
T ( ̂ols �  )

d�! N (0;V ̂;ols),
p
T (b̂ols � b)

d�! N (0;Vb̂;ols),
p
T (�̂ols � �)

d�! N (0;V�̂;ols),
p
T (�̂gls � �)

d�! N (0;V�̂;gls),

where

V ̂;ols =
�
��1 
 �v

�
, Vb̂;ols =

�
�e 
 ��1v

�
,

V�̂;ols = V ̂;ols +
��
�0��1v � +�

�1�
 �BB0��1B�eB0 �BB0��1� ,
V�̂;gls = V ̂;ols +

��
�0��1v � +�

�1�
 �B��1e B0
��1�

,

and � = �(	;�v) = plimT!1
�
Z�Z 0�

�
T
�
.

Theorem 1 can be intuitively summarized as a three stage estimator:2

1. The estimator 	̂ols = XZ 0�
�
Z�Z 0�

��1 is the OLS estimator of the vector autoregression
(VAR) that governs the dynamics of the state variables Xt. The estimated state variable

residuals are the orthogonal complement of the projection of X on Z�, so V̂ols = X�	̂olsZ� =
XMZ . Finally �v may be estimated via �̂v;ols = V̂olsV̂

0
ols

.
T .

2. The estimator B̂ols = (XMZX
0)�1XMZR

0
e =

�
V̂olsV̂

0
ols

��1
V̂olsR

0
e is the (transpose of the)

OLS seemingly unrelated regression (OLS-SUR) estimator of the excess returns across assets

Re onto the estimated state variable innovations V̂ols. Since V is unobserved we cannot regress

Re directly onto V and instead replace it by the estimated residuals based on 	̂ols.

3. Finally, with estimators of 	 and B, we may estimate the prices of risk � by a regression

involving two components: �rst, the OLS-SUR estimator of the quantity B0� in equation (6),

ReZ
0
�
�
Z�Z 0�

��1; second, the estimated risk factor exposures, B̂ols. Regressing the former
onto the latter yields, �̂ols =

�
B̂olsB̂

0
ols

��1
B̂olsReZ

0
�
�
Z�Z 0�

��1. The GLS estimator of the
prices of risk simply weights the estimated risk exposures by the (inverse of the) variances of

the pricing errors so that �̂gls =
�
B̂ols�

�1
e B̂0ols

��1
B̂ols�

�1
e ReZ

0
�
�
Z�Z 0�

��1.
2 It is with some abuse of notation that we label our estimators of � as "OLS" and "GLS"; however, we do so to

remain consistent with standard practices.
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This three stage OLS estimator was previously studied by Adrian and Moench (2008) in an

application to a¢ ne term structure models. Let us make a few further observations about the

results presented in Theorem 1. First, V ̂;ols and Vb̂;ols are the familiar variance formulas for the
OLS-SUR estimator applied to equations (1) and (6), respectively. Notice in particular that the

form of Vb̂;ols shows that the impact on the asymptotic variance of replacing V by an estimate

is negligible. Meanwhile, the asymptotic variance formulas for the estimators of � require further

discussion. For concreteness, let us discuss the asymptotic variance of �̂gls (a similar intuition holds

for that of �̂ols). The asymptotic variance formula for �̂gls is comprised of three terms. The �rst

term in the asymptotic variance formula V ̂;ols arises because we must replace V by an estimate

based on 	̂ols. Unlike in the case of B̂ols the impact of replacing V by an estimate a¤ects the form

of the asymptotic variance. The second term (�0��1v � 
 (B��1e B0)�1) arises because we do not

observe B and so we must replace it by an estimate, namely, B̂ols. If B and V were both known

only the third term, (��1
(B��1e B0)�1), would remain in the formula for the asymptotic variance.

Furthermore, if we examine the form of the asymptotic variances of �̂ols and �̂gls we can see that

they are equivalent when �e is a scalar variance matrix. Moreover, in general, �̂gls is asymptotically

e¢ cient relative to �̂ols.3

3.2 Four Stage Estimation

We next extend the three stage estimator of Theorem 1 to a four stage estimator that involves

the re-estimation of B. In order to motivate this four stage regression estimator of B consider the

situation where � and V are known. Then, if we rewrite equation (6) as

Re = B0 (�Z� + V ) + E, (8)

it is clear that we could estimate B by the regression of Re on (�Z� + V ). Of course, in practice, we

do not observe � and V and so instead we replace (�Z� + V ) by an estimate based on the estimators

introduced in Theorem 1. These alternative estimators ofB are detailed in the following:

Theorem 2 Suppose the assumptions of Theorem 1 hold. Put V̂ols = X � 	̂olsZ�. The following
estimators,

B̂4ols = [(�̂olsZ� + V̂ols)(�̂olsZ� + V̂ols)
0]�1(�̂olsZ� + V̂ols)R

0
e,

B̂4gls = [(�̂glsZ� + V̂ols)(�̂glsZ� + V̂ols)
0]�1(�̂glsZ� + V̂ols)R

0
e,

satisfy

p
T

 
b̂4ols � b
�̂ols � �

!
d�! N

 
0;

"
Vb̂;4ols Cb̂;�̂;4ols
C0
b̂;�̂;4ols

V�̂;ols

#!
,
p
T

 
b̂4gls � b
�̂gls � �

!
d�! N

 
0;

"
Vb̂;4gls Cb̂;�̂;4gls
C0
b̂;�̂;4gls

V�̂;gls

#!
,

3Throughout the paper comparisons between matrices will be understood to be in a positive-de�nite sense.
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where

Vb̂;4ols =
�
�e 


�
���0 +�v

��1�
+
�
B0
�
BB0

��1
B�eB

0 �BB0��1B 
 ����0 +�v��1 ���0��1v � ,
Vb̂;4gls =

�
�e 


�
���0 +�v

��1�
+
�
B0
�
B��1e B0

��1
B 


�
���0 +�v

��1
���0��1v

�
,

Cb̂;�̂;4ols = �
�
B0
�
BB0

��1
B�eB

0 �BB0��1 
 ��1v ���K(K+1),
Cb̂;�̂;4gls = �

�
B0
�
B��1e B0

��1 
 ��1v ���K(K+1).
We make a few further observations about the results presented in Theorem 2. First, we discuss

the intuition behind the form of the asymptotic variance of the four stage estimators of B (again,

we will focus our attention on the GLS asymptotic variance formula). Suppose that 	 is known

(so that V is observed) but � remains unknown. Then it turns out that the asymptotic variance

formula would be exactly the same. Thus, just as in the case of the OLS estimator of B, replacing V

by an estimate does not a¤ect the expression for the asymptotic variance. If we could additionally

observe � then only the �rst term of the asymptotic variance formula, (�e
 [���0+�v]�1), would
remain. The second term, (B0

�
B��1e B0

��1
B 
 [���0 + �v]�1���0��1v ), arises because we must

replace � by the estimate �̂gls.

Second, it is straightforward to show that Vb̂;ols is generally larger than the asymptotic variance
of B̂4gls. In particular, after some algebra we see that

Vb̂;ols � Vb̂;4gls =
��
�e �B0

�
B��1e B0

��1
B
�

 ��1v �

�
��1 + �0��1v �

��1
�0��1v

�
:

The right hand side matrix is positive semi-de�nite.4 There are two noteworthy special cases to

consider. First, when K = N then Assumption 1 (b) implies that the two asymptotic variance

formulas are identical (as the �rst term in the Kronecker product is a zero matrix). In the sequel,

we will ignore this special case as it has limited empirical relevance and instead proceed under the

assumption that N > K. Second, when � = 0 the two asymptotic variance formulas are again

identical. To provide some intuition for this case consider that when � = 0 we are no longer

ignoring information about the parameter B found in B0�Z� since this expression is identically

zero. An alternative way to say this is that when � = 0 equation (8) becomes Re = B0V +E and so

the analogous four stage estimator would be exactly the same formula as B̂ols. When � 6= 0 we are
able to exploit the additional information about the parameter B contained in the term B0�Z�.

Consequently, in general, the four stage estimator B̂4gls will be asymptotically e¢ cient relative to

B̂ols.

Theorem 2 implies that the re-estimation of B sharpens the estimation and inference about

the quantities that are of primary interest from an economic point of view, namely, the estimation

of risk premia B0�Z� and of conditional pricing errors B0V + E. Furthermore, we will see in

4When Vb̂;4gls 6= Vb̂;4ols the di¤erence Vb̂;ols � Vb̂;4ols is non-de�nite.
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the next section that this fourth step in the estimation procedure detailed in Theorem 1 leads

to asymptotically e¢ cient estimates of risk factor exposures when the error terms are normally

distributed.

The re-estimation of B in the fourth step di¤ers from the estimation in the second step only

slightly. While B̂ols =
�
V̂olsV̂

0
ols

��1
V̂olsR

0
e, B̂4ols = [(�̂olsZ� + V̂ols)(�̂olsZ� + V̂ols)

0]�1(�̂olsZ� +

V̂ols)R
0
e. The only di¤erence between the two estimators is the addition of the conditional risk

premium �̂olsZ� to V̂ols in the time series regression. This addition of the mean reduces sampling

errors of B. Note that we can write

�̂olsZ� + V̂ols = X �
�
	̂ols � �̂ols

�
Z�;

so that �̂olsZ� + V̂ols are the estimated innovations to the state variables under the risk neutral

measure.

Remark 1 (Multivariate Predictive Regressions) We provide joint convergence results for
the estimators of B and � in Theorem 2 to facilitate inference on the quantity B0�.5 In particular,

it can be shown that B̂04gls�̂gls is, in general, a (more) e¢ cient estimator than any other combination

from the two sets of estimators:
�
B̂ols; B̂4ols; B̂4gls

�
and

�
�̂ols; �̂gls

�
. We may also estimate the risk

premium, B0� directly. The OLS-SUR estimator of equation (6), ReZ 0�
�
Z�Z 0�

��1, is consistent
and asymptotically normal. This estimator is equivalent to equation-by-equation OLS regressions of

individual asset returns on the lagged forecasting variables. Speci�cally, each equation is a predictive

regression (in general, a multivariate predictive regression.6) The asymptotic variance of this OLS-

SUR estimator is, in general, larger than the asymptotic variance of B̂04gls�̂gls. Thus, there is a

clear sense in which the cross sectional constraints implied by our model may be exploited to improve

inference in (systems of) predictive regressions.

3.3 Comparison to Static Models

It is natural to compare our results to the classical Fama-MacBeth approach. The Fama-MacBeth

model can be nested into our framework when the prices of risk are constant (i.e., �1 = 0) and the

factors are uncorrelated across time (i.e., � = 0). In this case, the usual Fama-MacBeth estimator

and the �GLS�version (see, for example, Shanken (1985), Shanken (1992)) are equal to

�̂0;FM;ols =
�
B̂olsB̂

0
ols

��1
B̂ols �Re,

5Section A.5 (in the Appendix) provides a generic result on the limiting variance of estimators of B0� based on
the (joint) limiting distribution of individual estimators of B and �. Consequently, asymptotic standard errors for
elements of B0� may be constructed using the results from Theorem 2.

6For a discussion of the multivariate predictive regression model and its properties see Amihud, Hurvich, and
Wang (2009).
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�̂0;FM;gls =
�
B̂ols�

�1
e B̂0ols

��1
B̂ols�

�1
e
�Re,

where �Re = Re�T /T is the average across rows of the matrix Re. The form of these estimators

is the same as the estimators of � presented in Theorem 1 with Z� replaced by �T . Thus, our

model may be interpreted as a dynamic version of the classical Fama-MacBeth approach. In direct

agreement with Theorem 2 we may re-estimate B to construct a (more) e¢ cient estimator than

B̂ols. If we let ~Vols = X � �X�0T , �X = X�T /T and de�ne

B̂FM;4ols = [(�̂0;FM;ols�
0
T +

~Vols)(�̂0;FM;ols�
0
T +

~Vols)
0]�1(�̂0;FM;ols�

0
T +

~Vols)R
0
e,

B̂FM;4gls = [(�̂0;FM;gls�
0
T + ~Vols)(�̂0;FM;gls�

0
T + ~Vols)

0]�1(�̂0;FM;gls�
0
T +

~Vols)R
0
e.

We will see in the next section that this re-estimation step, in the form of B̂FM;4gls, produces

asymptotically e¢ cient estimates of the betas.

The results of Shanken (1992), in the Fama-MacBeth setting, were extended in Jagannathan

and Wang (1998). In particular Jagannathan and Wang (1998) relaxed the conditional homoskedas-

ticity assumption made in Shanken (1992). Although we have not made any explicit distributional

assumptions thus far, our conditional homoskedasticity assumption (Assumption 2 (c)) has sim-

pli�ed the form of our asymptotic variance formulas. If we were instead to relax this assumption

(analogous to Assumption 1 of Jagannathan and Wang (1998)) and de�ne the following asymptotic

covariance matrices,

�1 = lim
T!1

E
��
vec
�
T�1=2EZ 0�

�
vec
�
T�1=2EV 0

��0�
,

�2 = lim
T!1

E
��
vec
�
T�1=2V Z 0�

�
vec
�
T�1=2EV 0

��0�
,

then the asymptotic variance (and covariance) formulas for the estimators
�
�̂ols; �̂gls; B̂4ols; B̂4gls

�
of Theorems 1 and 2 change. In particular, it can be shown using results in the Appendix that

V�̂;gls becomes V
�
�̂;gls

= V�̂;gls + C�̂;gls + C
0
�̂;gls

, where

C�̂;gls = �
h�
��1 


�
B��1e B0

��1
B��1e

�
�1 +

�
��1 
 IK

�
�2

i �
��1v �
 ��1e B0

�
B��1e B0

��1�
,

and V�̂;ols becomes V
�
�̂;ols

= V�̂;ols + C�̂;ols + C
0
�̂;ols

,where

C�̂;ols = �
h�
��1 


�
BB0

��1
B
�
�1 +

�
��1 
 IK

�
�2

i �
��1v �
B0

�
BB0

��1� .
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By similar steps Vb̂;4gls becomes V
�
b̂;4gls

= Vb̂;4gls + Cb̂;4gls + C
0
b̂;4gls

, where

Cb̂;4gls =
h�
IN �B0

�
B��1e B0

��1
B��1e

�


�
���0 +�v

��1
�
i
�N(K+1)�1�KN �h�

IN 

�
���0 +�v

��1�
+
�
B0
�
B��1e B0

��1
B��1e 


�
���0 +�v

��1
���0��1v

�i
.

The result for B̂4ols follows similarly. Thus, V��̂;ols and V
�
�̂;gls

are an extension of the standard errors

by Jagannathan and Wang (1998), which are valid in the static setting, to our dynamic setting (see

Remark 4 in the Appendix).7

3.4 Constant Prices of Risk

In some applications, prices of risk are assumed to be constant, while risk factors are obtained as

residuals from a vector autoregression (see, for example, Chen, Roll, and Ross (1986), Campbell

(1996) and Petkova (2006)). This case corresponds to � 6= 0 and �1 = 0.8 Equation (6) then

becomes

R�e = B0�0�
0
T +B

0V + E, (9)

while equation (7) is unchanged. We use a superscript � to di¤erentiate this case. Under these

assumptions, the counterpart to Theorems 1 and 2 is,

Theorem 3 Suppose Assumptions 1 and 2 hold and we observe R�e generated by equation (9). Put
�R�e = R�e �T /T and V̂ols = X � 	̂olsZ�. Then the following estimators,

�̂
�

0;ols =
�
B̂olsB̂

0
ols

��1
B̂ols �R

�
e , �̂

�

0;gls =
�
B̂ols�

�1
e B̂0ols

��1
B̂ols�

�1
e
�R�e ,

and

B̂�
4ols = [(�̂

�

0;ols�
0
T + V̂ols)(�̂

�

0;ols�
0
T + V̂ols)

0]�1(�̂
�

0;ols�
0
T + V̂ols)R

�0
e ,

B̂�
4gls = [(�̂

�

0;gls�
0
T + V̂ols)(�̂

�

0;gls�
0
T + V̂ols)

0]�1(�̂
�

0;gls�
0
T + V̂ols)R

�0
e ,

satisfy

p
T

 
b̂�4ols � b
�̂
�

0;ols � �

!
d�! N

0@0;
24 V�b̂;4ols C�

b̂;�̂;4ols

C�0
b̂;�̂;4ols

V�
�̂;ols

351A , p
T

 
b̂4gls � b
�̂
�

0;gls � �

!
d�! N

0@0;
24 V�b̂;4gls C�

b̂;�̂;4gls

C�0
b̂;�̂;4gls

V�
�̂;gls

351A ,
7Note, there is no counterpart to V�

b̂;4gls
in Jagannathan and Wang (1998).

8We could also consider the special case of �1 6= 0 and � = 0. The results would follow by similar steps and so
we omit this case for brevity.
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where,

V�
b̂;4ols

= (�e 

�
�v + �0�

0
0

��1
) + (B0

�
BB0

��1
B�eB

0 �BB0��1B 
 ��v + �0�00��1 �0�00��1v ),
V�
b̂;4gls

= (�e 

�
�v + �0�

0
0

��1
) + (B0

�
B��1e B0

��1
B 


�
�v + �0�

0
0

��1
�0�

0
0�

�1
v ),

C�
b̂;�̂;4ols

= �(B0
�
BB0

��1
B�eB

0 �BB0��1 
 ��1v �0),

C�
b̂;�̂;4gls

= �(B0
�
B��1e B0

��1 
 ��1v �0),

V�
�̂;ols

= �v +
�
�00�

�1
v �0 + 1

� �
BB0

��1
B�eB

0 �BB0��1 ,
V�
�̂;gls

= �v +
�
�00�

�1
v �0 + 1

� �
B��1e B0

��1
.

Again, we may re-estimate the parameter B to obtain B̂�
4gls which is generally more e¢ cient

than B̂ols. The interpretation of each term of V�b̂;4gls and V
�

b̂;4ols
is in perfect analogy with the general

case. The second term re�ects the need to provide an estimate of �0 and neither term is a¤ected

by replacing V with an estimate. Also, when �0 = 0, then all three estimators of B have the exact

same limiting distribution. The last two formulas in Theorem 3 may be recognized as the so-called

�Shanken correction� of Shanken (1992) for the estimators �̂0;FM;ols and �̂0;FM;gls, respectively.

When prices of risk are constant, the asymptotic variability of our proposed estimators of B and

� are una¤ected by the transition from static to dynamic state variables. This stands in stark

contrast to the case when prices of risk vary over time: If we compare Theorem 3 to Theorem

2, we can see that the parameter �, the limiting second moment matrix of the state variables, is

incorporated in all of the asymptotic variance and covariance formulas.

4 E¢ ciency in the A¢ ne Model

4.1 Time Varying Prices of Risk

In order to make precise statements regarding e¢ ciency we make the following distributional as-

sumption.

Assumption 3 We have that "t = (v0t; e
0
t)
0 (t = 1; : : : ; T ) are i:i:d: copies of a vector " � N (0;�).

Under Assumptions (2) and (3) we now have that et and vt are independent. De�ne � =�
 0; b0; �0

�0 and so we may write the log-likelihood (up to a constant) as
` (�; �e;�v) =

T

2

�
log
�����1e ���+ log �����1v ����� 12 vec (E)0 �IT 
 ��1e � vec (E)

�1
2
vec (V )0

�
IT 
 ��1v

�
vec (V ) ,
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where E = E (	; B;�) and V = V (	) are treated as functions of the parameters.9 We suppress

the dependence of the likelihood on the data for notational simplicity. In the following theorem

we provide expressions for the score vector and the inverse of the information matrix for the a¢ ne

model with respect to the parameters ( ; b; �). We may focus exclusively on these parameters

because ( ; b; �) and (�e; �v) are orthogonal in the sense that the (full) information matrix is

block-diagonal. As a consequence, we may work under the "as if" assumption that �e and �v are

known without a¤ecting our conclusions about asymptotic e¢ ciency results.

Theorem 4 Suppose Assumptions 1 and 3 hold and we observe Re generated by equation (6).
Then the (scaled) score vector is _̀ = _̀ (�; �e;�v), the (2K (K + 1) +KN) � 1, partitioned vector
with elements h

_̀
i
1
=

@` (�; �e;�v)

@ 
= T�1 �

�
vec
�
��1v V Z 0�

�
� vec

�
B��1e EZ 0�

��
h
_̀
i
2
=

@` (�; �e;�v)

@b
= T�1 � vec

�
(�Z� + V )E

0��1e
�

h
_̀
i
3
=

@` (�; �e;�v)

@�
= T�1 � vec

�
B��1e EZ 0�

�
Moreover, the information matrix I (�; �e;�v;�), has an inverse, H = H (�; �e;�v;�), which is a
partitioned matrix comprised of the following elements,

[H]11 = V ̂;ols, [H]22 = Vb̂;4gls, [H]33 = V�̂;gls,
[H]12 = 0K(K+1)�NK , [H]13 = V ̂;ols, [H]23 = Cb̂;�̂;4gls.

The inverse of the information matrix yields the lowest attainable bound for regular estimators

under Assumption 3. As a consequence, we may draw explicit conclusions regarding the e¢ ciency

properties of the estimators we have thus far proposed. The �rst diagonal element (the (1; 1)-

element) is exactly equal to the asymptotic variance of the OLS estimator, 	̂ols, given in Theorem

1. This is because 	̂ols is in fact the MLE of 	.10 The second and third diagonal elements con�rm

that �̂gls and B̂4gls are e¢ cient estimators of the parameters � and B. Shanken (1992) shows that

the two pass GLS estimator is e¢ cient when prices of risk are constant and factors are uncorrelated

across time. Thus we extend Shanken (1992)�s result to the case where prices of risk are time

varying and factors follow a �rst order VAR. Furthermore, Theorem 4 shows that the simple, four

stage regression estimator of B proposed in Theorem 2 is also asymptotically equivalent to the

maximum likelihood estimator.

The asymptotic e¢ ciency of the estimators �̂gls and B̂4gls is both a surprising and an appealing

result. It is surprising because �̂gls is based on a generally ine¢ cient estimator of B, namely

9The ordering of parameters ( ; b; �) will be followed for all derivatives of the log-likelihood for the a¢ ne
model. For example, the �rst element of the score is @`=@ and the (1; 2) element of the information matrix is
limT!1�T�1E [@`=@ @b0].
10However, we will show in the next section that this result no longer holds when prices of risk are constant.
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B̂ols and B̂4gls is, in turn, based on �̂gls. It is appealing, because it provides, in a clearly de�ned

sense, optimality properties for our four stage regression procedure. These estimators can all be

implemented just as simply as commonly used cross sectional asset pricing regressions.

We may also construct asymptotically e¢ cient estimators via a linearized maximum likelihood

(LML) approach.11 We appeal to this approach because it does not appear that the maximum

likelihood estimators of the parameters B and � are available without using numerical maximiza-

tion.12 Moreover, this approach is as simple to implement as the four stage regression estimators

and at negligible computational cost since numerical maximization is rendered unnecessary.

Corollary 1 Suppose the assumptions of Theorem 4 hold. In addition assume there exists an

estimator of �, �� which satis�es
p
T
�
�� � �

�
= Op (1) and estimators ��v and ��e which satisfy

��v = �v + op (1) and ��e = �e + op (1). Put �̂ = Z�Z 0�
�
T . Then the estimators formed by

�̂lmle = �� +H
�
��; ��e; ��v; �̂

�
� _̀
�
��; ��e; ��v

�
satisfy p

T
�
�̂lmle � �

�
d�! N (0;H (�; �e;�v;�)) .

Remark 2 When evaluating the score vector _̀ (�; �e;�v) with respect to estimators �� one would
replace V and E in the expressions given in Theorem 4 by �V = X��	Z� and �E = Re� �B0��Z�� �B0 �V ,
respectively.

The LML estimators use pilot estimators of the parameters as inputs and produce asymptot-

ically e¢ cient estimators as outputs. An appealing choice for these pilot estimators are the OLS

estimators of Theorem 1 along with the usual residual based estimators of �v and �e (see Step 1

in the discussion after Theorem 1 and Section A.1). They are simple to compute as they are in

closed form. To provide some intuition for the procedure let us consider the LML estimator of 	.

Recall that 	̂ols is the MLE when prices of risk are time varying. Using the results from Theorem

4 we have,

 ̂lmle =  ̂ols + T
�1 �

�
�̂�1 
 ��v

�
vec
�
���1v

�
X � 	̂olsZ�

�
Z 0�

�
.

However, by construction X � 	̂olsZ� = 0 and so 	̂lmle = 	̂ols. The LML procedure returns the
pilot estimator when that estimator is already the MLE. When the pilot estimator is not the MLE

it returns an estimator that is asymptotically equivalent to the MLE.

11For a detailed discussion of this approach for the Fama-MacBeth setting see Shanken (1992). The method was
introduced in the Econometrics literature in Rothenberg and Leenders (1964).
12Note, when we only assume that �e is positive de�nite then a maximum likelihood solution is available without

appealing to numerical methods (see Section A.2 in Appendix A). Also, in the special case when K = N then
B̂ols and �̂gls are the maximum likelihood estimators. Maximum likelihood estimation has been considered in the
Fama-MacBeth case by Gibbons (1982), Kandel (1984), Roll (1985), Shanken (1985), Shanken (1986), Chen and Kan
(2004), Shanken and Zhou (2007), and Kleibergen (2009).
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4.2 Constant Prices of Risk

In this section, we discuss e¢ ciency when prices of risk are constant. The most noteworthy result

is that the standard OLS estimator of the VAR parameters is no longer the MLE. Despite this, the

GLS estimators of B and �0 (based on 	̂ols) given in Theorem 3 are still asymptotically e¢ cient.

To begin we provide expressions for the score vector and the inverse of the information matrix with

respect to the parameters �� =
�
 0; b0; �00

�0 when prices of risk are constant.
Theorem 5 Suppose Assumptions 1 and 3 hold and we observe Re generated by equation (9).
Then the (scaled) score vector is _̀� = _̀� (��; �v;�e), the K (K +N + 2) � 1, partitioned vector,
with elementsh

_̀�
i
1
=

@`� (��; �v;�e)

@ 
= T�1 �

�
vec
�
��1v V Z 0�

�
� vec

�
B��1e E�Z 0�

��
h
_̀�
i
2
=

@`� (��; �v;�e)

@b
= T�1 � vec

��
�0�

0
T + V

�
E�0��1e

�
h
_̀�
i
3
=

@`� (��; �v;�e)

@�0
= T�1 � vec

�
B��1e E��T

�
where E� = E� (	; B; �0) and V = V (	). Moreover, the information matrix I� (��; �e;�v;�),
has an inverse, H� = H� (��; �e;�v;�), which is a partitioned matrix comprised of the following

elements,

[H�]11 = V
�

 ̂;mle
, [H�]22 = V

�

b̂;4gls
, [H�]33 = V

�

�̂;gls
,

[H�]12 = 0K(K+1)�NK , [H�]13 = V
�

 ̂;mle
(�1 
 IK) , [H�]23 = C

�

b̂;�̂;4gls
,

where

V�
 ̂;mle

=
���
���1�01

�

B��1e B0

�
+
�
�
 ��1v

���1
and �1 is the �rst column of the matrix �.

As we foreshadowed earlier, the most striking result of Theorem 5 is that the �rst diagonal

element is not the same as when prices of risk are time varying, or equivalently, that 	̂ols is not

the MLE, and is instead an asymptotically ine¢ cient estimator. In fact, using parameter values

that would be commonly encountered in empirical �nance applications the loss in e¢ ciency can be

substantial. It is the �rst term,
�
(���1�01)
B��1e B0

�
, a function of parameters of the return

equation, B and �e, which governs the degree of e¢ ciency loss. Fortunately, this is only a concern

if inference on 	 is of interest. Otherwise we again have the appealing result that our four stage

estimation procedure may be used to obtain asymptotically e¢ cient estimators. This is again a

surprising result, perhaps more so in this case, because now both �̂gls and B̂
�
4gls are directly based

on ine¢ cient estimators (B̂ols and 	̂ols, respectively).
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4.3 Comparison to Static Models

Shanken (1992) shows that �̂0;FM;gls is asymptotically equivalent to the MLE of �0 under As-

sumption 3. De�ne �FM =
�
� 0; b0; �00

�0. It can be shown that in the Fama-MacBeth frame-

work (under Assumption 3) the information matrix, IFM
�
�FM ; �e;�v

�
, has an inverse, HFM =

HFM
�
�FM ; �e;�v

�
, which is a partitioned matrix comprised of the following elements,

�
HFM

�
11
= �v,

�
HFM

�
22
= V�

b̂;4gls
,
�
HFM

�
33
= V�

�̂;gls
,�

HFM
�
12
= 0K�NK ,

�
HFM

�
13
= �v,

�
HFM

�
23
= C�

b̂;�̂;4gls
.

This con�rms the Shanken (1992) result and adds the additional result that the four stage estimator

of B, B̂FM;4gls, and the MLE of B are asymptotically equivalent. Thus, as a special case of our

results, we extend the results of Shanken (1992) to show that an asymptotically e¢ cient, multistage

regression estimator for B is also available in the Fama-MacBeth setup.

5 The Exponentially A¢ ne Model

5.1 Pricing Kernel Assumptions and Return Generation

In this section, we maintain Assumption 3 throughout. In addition, we assume the same dynamics

of a K � 1 vector of state variables Xt as in the a¢ ne model (i.e., from equation (1)). In the

exponentially a¢ ne setup, we study the dynamic properties of log excess returns rei;t+1, which we

de�ne as:

rei;t+1 = ln
�
P it+1 +D

i
t+1

�
� lnP it � rFt , (10)

where P i and Di denote the market price and dividend of asset i; respectively, and where the

continuously compounded risk free rate is denoted rFt . We can again decompose unexpected returns

rei;t+1 �E
h
rei;t+1

���Fti into a systematic component �0i;tvt+1 and an idiosyncratic component ei;t+1:
rei;t+1 � E

�
rei;t+1

��Ft� = �0i;tvt+1 + ei;t+1 (11)

where we now denote �i;t = �
�1
v;tC

h
Xt+1; r

e
i;t+1

���Fti. In a term structure model �tted to zero coupon
bonds, the idiosyncractic component would usually equal zero, while the idiosyncratic shock would

correspond to idiosyncratic cash �ow news in an equity model.

The pricing kernel is now assumed to be exponentially a¢ ne:

M �
t+1 = exp

�
�rFt �

1

2
�0t�

�1
v;t�t � �0t�

�1=2
v;t vt+1

�
(12)

where as before �t = �
�1=2
v;t (�0 + �1Xt). We use a superscript of � to di¤erentiate the exponentially
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a¢ ne model.13 With the exponentially a¢ ne pricing kernel, we can write the no arbitrage condition

as

1 = E

�
M �
t+1

�
P it+1 +D

i
t+1

P it

�����Ft� = E

�
exp

�
�1
2
�0t�

�1
v;t�t � �0t�

�1=2
v;t vt+1 + r

e
i;t+1

�����Ft� (13)

Using Assumption 3 and plugging equation (11) into equation (13) gives an expression for expected

returns:

E
�
rei;t+1

��Ft� = �0i;t�0 + �
0
i;t�1Xt �

1

2
vec
�
�i;t�

0
i;t

�0
vec (�v;t)�

1

2
�2i . (14)

If we compare the return generating equation of the a¢ ne model, equation (3), to equation (14), we

see that the exponentially a¢ ne model requires an additional �Jensen�term to adjust for convexity.

This term is proportional to �0i;t�v;t�i;t + �2i , which makes clear that the betas now enter into the

return generating equation in both a linear and quadratic fashion. Excess returns can be written

as:

rei;t+1 = �0i;t�0 + �
0
i;t�1Xt �

1

2
vec
�
�i;t�

0
i;t

�0
vec (�v;t)�

1

2
�2i + �

0
i;tvt+1 + ei;t+1, (15)

If we impose Assumption 1, we can again stack this equation to obtain:

r�e = B0�0�
0
T �

1

2
JB vec (�v) �

0
T �

1

2
de�

0
T +B

0�1X� +B
0V + E, (16)

where JB =
�
vec
�
�1�

0
1

�
� � � vec

�
�N�

0
N

��0 is a N � K2 matrix and de =
�
�21; �

2
2; :::; �

2
N

�0 is the
diagonal of �e. We use r�e to emphasize that this is a N � T matrix of log excess returns.

The assumptions of the exponentially a¢ ne setting are often used in the term structure literature

(see Piazzesi (2003) and Singleton (2006) for overviews). As will be discussed in Section 6, this

return generating process is equivalent to that implied by the unconstrained pricing model of

Campbell (1996) when prices of risk are constant, i.e. when �1 = 0.

5.2 Three Stage Estimators

In direct analogy with the a¢ ne model we may estimate the parameters in equation (16) using

a three stage regression approach. The asymptotic properties of these estimators are detailed in

the following theorem. Note that all of the quantities in the theorem will be fully described in the

discussion after the theorem.14

Theorem 6 Suppose Assumptions 1 and 3 hold and we observe r�e generated by equation (16).

13The superscript "�" on �i;t and �t is suppressed for notational convenience.
14 In the Appendix we also provide all necessary results for the constant price of risk case (�1 = 0).
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Then the following estimators,

�̂�ols =
�
B̂olsB̂

0
ols

��1
B̂ols

�
r�e +

1

2
ĴB;ols vec(�̂v;ols)�

0
T +

1

2
d̂e;sur�

0
T

�
Z 0�
�
Z�Z

0
�
��1 ,

�̂�fgls =
�
B̂ols�̂

�1
e;olsB̂

0
ols

��1
B̂ols�̂

�1
e;ols

�
r�e +

1

2
ĴB;ols vec(�̂v;ols)�

0
T +

1

2
d̂e;sur�

0
T

�
Z 0�
�
Z�Z

0
�
��1 ,

satisfy p
T (�̂

�

ols � �)
d�! N (0;V�

�̂;ols
),

p
T (�̂

�

gls � �)
d�! N (0;V�

�̂;fgls
),

where V�
�̂;ols

and V�
�̂;fgls

are given in equations (21) and (22) in Appendix A.3.1.

Theorem 1 can be intuitively summarized as a three stage estimator:

1. First, exactly as in the a¢ ne case, we estimate the VAR by OLS to obtain 	̂ols and V̂ols. We

may then construct �̂v;ols = V̂olsV̂
0
ols

.
T .

2. Estimate a OLS-SUR regression of r�e on Z� and V̂ols. We can then estimate E via,

Ê�sur = r�e �
h
r�eZ

0
�
�
Z�Z

0
�
��1i

Z� � B̂0olsV̂ols, B̂ols =
�
V̂olsV̂

0
ols

��1
V̂olsr

�0
e .

This yields B̂ols. If we let �̂i;ols be the ith column of B̂ols then we can estimate JB by

ĴB;ols =
h
vec(�̂1;ols�̂

0
1;ols) � � � vec(�̂N;ols�̂

0
N;ols)

i0
. Moreover, the elements of d̂e;sur are equal to

the diagonal elements of the N �N matrix Ê�surÊ
�0
sur

.
T .

3a. Now that we have estimates of B, JB, �v and de we need only estimate the quantity B0�.

This can be achieved by a OLS-SUR regression of the convexity adjusted log excess returns

on the lagged forecasting variables,
h
r�e +

1
2 ĴB;ols vec(�̂v;ols)�

0
T +

1
2 d̂e;sur�

0
T

i
Z 0�
�
Z�Z 0�

��1. Re-
gressing this quantity onto B̂ols yields �̂�ols.

3b. With the estimates obtained from steps 1, 2, and 3a we can now construct

Ê�ols = r�e +
1

2
ĴB;ols vec(�̂v;ols)�

0
T +

1

2
d̂e;sur�

0
T � B̂0ols

�
�̂�olsZ� + V̂ols

�
.

We can then construct the estimator �̂e;ols as a diagonal matrix with diagonal elements equal

to the diagonal elements of the matrix T�1 � Ê�olsM�Ê
�0
ols where M� = IT � T�1 � �T �0T . The

matrix M� de-means the rows of Ê�ols. This is a necessary step because Ê
�
ols�T is not equal to

zero in general. We now have all the ingredients necessary to construct �̂�fgls.
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5.3 E¢ ciency in the Exponentially A¢ ne Model

De�ne �� =
�
�0; �0v; d

0
e

�0 and so we may write the log-likelihood (up to a constant) as
`� (��) � T

2
log
�����1e ���+ T

2
log
�����1v ���� 12 vec (E�)0 �IT 
 ��1e � vec (E�)

�1
2
vec (V )0

�
IT 
 ��1v

�
vec (V ) ,

where E� = E� (	; B;�;�v; de) and V = V (	) are treated as functions of the parameters. We again

suppress the dependence of the likelihood on the data for notational simplicity. In the following

theorem we provide expressions for the score vector and the inverse of the information matrix for

the exponentially a¢ ne model with respect to all of the parameters. The exact expressions are

relegated to Section A.4.1 (in the Appendix) to conserve space.

Theorem 7 Suppose Assumptions 1 and 3 hold and we observe r�e generated by equation (16). Then
the (scaled) score vector is _̀� (��) and the information matrix is I� (��; �), with inverse H� (��; �),

each with partitioned elements as presented in Appendix A.4.1.

Although 	̂ols is still the MLE of 	, it does not appear that closed form expressions exists for

the maximum likelihood estimators of �, B, �v, or de. Moreover, unlike in the a¢ ne model, �̂�gls is

not asymptotically e¢ cient.15 To obtain asymptotically e¢ cient estimators of all parameters we

again utilize a feasible LML procedure.

Corollary 2 Suppose the assumptions of Theorem 7 hold. In addition assume there exists an

estimator of ��, ��� which satis�es
p
T
�
��
� � �

�
= Op (1). Put �̂ = Z�Z 0�

�
T . Then the estimators

formed by

�̂
�

lmle =
��
�
+H�

�
��
�
; �̂
�
� _̀�

�
��
��

satisfy p
T
�
�̂
�

lmle � �
�

d�! N (0;H� (��; �)) .

Remark 3 In Appendix A we provide expressions for the partitioned elements of the information
matrix in the exponentially a¢ ne model. Unlike in the a¢ ne model, not all of the elements of the

inverse of the information matrix are available in a tidy form. However, we provide expressions for

each partitioned element of the inverse information matrix so that it is easy to compute the LML

estimator.

The obvious choice of pilot estimators are 	̂ols, B̂ols, �̂v;ols, d̂e;ols (the diagonal elements of

�̂e;ols) and either �̂�ols or �̂
�
fgls from Theorem 6. With these choices the LML estimator is still

regression based as all the quantities used to construct the LML estimator come directly from

15However, for parameter values generally encountered in �nancial applications, we �nd that the loss of e¢ ciency
is concentrated in the estimation of �0 whereas for �1 the estimator �̂�fglsis very nearly asymptotically e¢ cient.
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standard regression output. Moreover, the appeal of this estimation approach is clear. We may

easily construct asymptotically e¢ cient estimators of (	; B;�;�v;�e) through the LML procedure.

For example, the empirically relevant choice of (N;K) = (20; 3) presents 110 parameters that may

be estimated e¢ ciently based on the output of familiar regression based methods.

6 Applications

We illustrate the estimators in two empirical applications drawn from prominent asset pricing

models. Both applications illustrate the statistical and economic signi�cance of modeling prices of

risk as time varying. We start by showing that the conditional CAPM of Lettau and Ludvigson

(2001) is a special case of our a¢ ne asset pricing speci�cation. In the second application, we show

that the return generating process of the unrestricted version of the ICAPM of Campbell (1996)

is nested in our exponentially a¢ ne model when prices of risk are constant. While both models

implicitly assume time variation in risk premia, they have previously been estimated using methods

designed for constant price of risk speci�cations. We explicitly allow for time varying prices of risk

by applying the estimators suggested above. In both applications, we �nd strong empirical support

in favor of dynamic price of risk speci�cations, as �1 is highly signi�cant, and as pricing errors are

reduced in economically meaningful magnitudes relative to constant price of risk speci�cations.

6.1 Lettau and Ludvigson (2001)

Lettau and Ludvigson (2001) present evidence that conditional versions of the CAPM reduce pricing

errors in the cross section of average size and book-to-market sorted stock returns relative to

unconditional speci�cations. Lettau and Ludvigson (2001) follow Cochrane (1996) in specifying

the parameters of an a¢ ne pricing kernel:

Mt+1 = at + btft+1,

at = a0 + a1zt, bt = b0 + b1zt,

whereMt+1 denotes the pricing kernel at date t+1, ft+1 is a scalar pricing factor, and zt is a scalar

conditioning variable. Lettau and Ludvigson (2001) present a conditional CAPM speci�cation

where the pricing factor is the excess return of the market portfolio, ft+1 = RMt+1 and a consumption

CAPM speci�cation with consumption growth, ft+1 = �ct+1, as pricing factor. We focus on the

CAPM version of Lettau and Ludvigson (2001), which gives rise to the following expected return-

beta representation

E [Rt+1j Ft]�Rft = �t�t

where �t = V
�
RMt+1

��Ft��1C �RMt+1; Rt+1��Ft� is the factor risk exposure and
�t = �Rft V

�
RMt+1

��Ft� bt = �Rft V �RMt+1��Ft� (b0 + b1zt)



Efficient Regression Based Estimation of DAPMs 23

is the market price of risk. Based on previous work documenting that the log consumption-wealth

ratio, measured as the cointegrating residual between consumption, total asset wealth and labor

income and labeled cay, has predictive power for equity premia, Lettau and Ludvigson (2001)

propose to use this indicator as the conditioning variable zt. Consistent with Assumptions 1 and 2,

and Lettau and Ludvigson (2001), we assume that there is no time variation in conditional second

moments, i.e. �t = � 8t and V
�
RMt+1

��Ft� = �M 8t. While Lettau and Ludvigson (2001) assume
a constant risk free rate, we allow it to be time varying. We then obtain the expected return-beta

representation

E [Rt+1j Ft]�Rft = �t�t,

where

�t = ��MRft (b0 + b1zt) ,

i.e., time variation in market prices of risk is due to time varying risk-free rates and time variation in

the log consumption-wealth ratio scaled by the risk-free rate. In our general modeling framework,

the vector of state variables thus becomes

Xt =
�
RMt ; R

f
t ; R

f
t � cayt

�0
.

In what follows, we present results based on the estimation of the pricing model (6)-(7) with X as

de�ned above. Note that our model is more general than the speci�cation estimated by Lettau and

Ludvigson (2001), since we allow time variation in risk premia to emanate from all elements of X

rather than cay alone. We follow Lettau and Ludvigson (2001) and assess the model�s performance

in pricing the cross section of 25 size and book-to-market sorted equity portfolios of Fama and

French (1993).16

We can assess whether the prices of risk associated with the risk factors in the model feature

time variation by testing if the rows of �1 are statistically di¤erent from zero. Given the asymptotic

distributions of the estimators for the a¢ ne model derived in Sections 3 and 4, this can be done

using the Wald test for the null hypothesis that a given row of �1 is equal to zero. In particular,

let �i01 be the i-th row of �1: Then, under the null that �
i
1 = 0k�1; the Wald statistic

W�i1
= �̂

i0
1 V̂�1�i1 �̂

i

1
a� �2(k) (17)

has a chi-square distribution with k degrees of freedom. We compute these Wald statistics for

the di¤erent estimators proposed in Sections 3 and 4 using as inputs point estimates �̂
i0
1 with

corresponding asymptotic variance-covariance matrix V̂�i1 , respectively.
Table 1 reports estimates and corresponding standard errors for the market price of risk para-

meters �0 and �1 in our version of the Lettau-Ludvigson model based on three di¤erent estimators:

OLS, FGLS, and LML. The last column provides the Wald statistics and corresponding p-values

16We use the equity return data from the website of Kenneth French and cay from the website of Sydney Ludvigson.
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Table 1: Lettau-Ludvigson - Market Price of Risk Parameter Estimates

This table reports coe¢ cient estimates and the corresponding standard errors for the market price of risk
parameters �0 and �1 in the conditional CAPM with MKT;Rft , and R

f
t � cayt as pricing factors. Three di¤erent

estimators are shown: OLS, FGLS, and LML. The last column reports Wald statistics and the corresponding
p-values for the null of a respective row of �1 being equal to zero. The sample period is 1952Q1-2010Q2.

�0 �R
M

1 �
Rf
1 �

Rf �cay
1 W�1

OLS

RM 2.274 0.055 -0.801 0.211 11.176
(1.088) (0.066) (0.769) (0.070) (0.011)

Rf -0.078 -0.012 -0.051 0.017 9.310
(0.094) (0.006) (0.058) (0.006) (0.025)

Rf � cay 3.457 0.265 0.689 -0.057 5.736
(1.662) (0.111) (1.037) (0.111) (0.125)

FGLS

RM 2.476 0.063 -0.845 0.230 13.452
(1.079) (0.066) (0.765) (0.070) (0.004)

Rf -0.026 -0.005 -0.070 0.020 13.169
(0.077) (0.005) (0.050) (0.006) (0.004)

Rf � cay 2.992 0.332 0.587 -0.142 12.132
(1.400) (0.098) (0.914) (0.103) (0.007)

LML

RM 2.476 0.063 -0.845 0.230 13.466
(1.078) (0.065) (0.765) (0.070) (0.004)

Rf -0.026 -0.005 -0.070 0.020 13.902
(0.075) (0.005) (0.049) (0.006) (0.003)

Rf � cay 2.992 0.332 0.587 -0.142 14.195
(1.298) (0.091) (0.849) (0.096) (0.003)

for tests of whether rows of �1 are signi�cantly di¤erent from zero.

There are two takeaways from Table 1. First, the upper-right element of �1 corresponding

to the impact of Rf � cay on the price of market risk is strongly signi�cant independently of the
particular estimator considered. This corroborates Lettau-Ludvigson�s �ndings that cay captures

time variation in the market risk premium. Second, individual elements of the remaining two rows

of �1 are also found to be signi�cant across the three estimators considered. Moreover, for both

the FGLS and the LML estimator, the Wald tests strongly reject the null hypothesis that rows of

�1 are equal to zero. This suggests that not only the market risk premium features time variation

but also the prices of risk associated with the additional risk factors Rf and Rf � cay.
When we compare the three di¤erent estimators in Table 1, we note that the point estimates

for the prices of risk are very similar for the LML and FGLS estimators, while the point estimates

for the OLS estimator di¤er marginally. This di¤erence between the OLS and the FGLS and LML

estimators is due to the weighting in the e¢ cient estimation approach. When we compare the

standard errors, we can see that the OLS standard errors are generally larger. The di¤erence in

the size of the standard errors particularly has an impact on the Wald test. We conclude that the

e¢ cient estimators allow for sharper inference.

In sum, the data clearly favor a speci�cation with time varying prices of risk. This can also

be seen in Table 2 which reports the average absolute conditional pricing errors implied by the

Lettau-Ludvigson model based on the di¤erent estimators proposed in Section 3. In particular,
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each row of Table 2 reports the quantity 1
T�1

XT�1

t=1

�
j�̂i;t+1j �

���̂FMi;t+1��� where
�̂i;t+1 = Rei;t+1 � �̂

0
i�̂Zt (18)

and � = �0 and Zt = 1 in the constant price of risk case and � = [�0 �1] and Zt = [1 X 0
t ]
0 in the

time varying prices of risk speci�cation. Meanwhile, each column reports the conditional pricing

errors for the estimators OLS, FGLS, 4FGLS and LML along with their constant price of risk coun-

terparts, OLS�, FGLS�, 4FGLS� and LML�. Here, FGLS denotes the pricing errors corresponding

to B̂ = B̂ols and �̂ = �̂fgls while 4FGLS denotes the pricing errors corresponding to B̂ = B̂4fgls and

�̂ = �̂fgls (and similarly for FGLS� and 4FGLS�). We directly compare the conditional pricing

errors implied by these estimators to those of Lettau-Ludvigson�s benchmark model, denoted �̂FMi;t+1,

and estimated using the Fama-MacBeth method with factors ~Xt =
�
RMt ; cayt�1; R

M
t � cayt�1

�0
.

Based on the results in Table 2, we make the following observations. First, for most portfolios,

the constant price of risk speci�cations with the three risk factors imply average absolute conditional

pricing errors that are of similar magnitude as those given by the Fama-MacBeth estimator of

Lettau-Ludvigson�s CAPM with the scaled market factor. Still, on average across all 25 portfolios,

the e¢ cient 4FGLS� and LML� estimators with constant prices of risk provide a 2 basis point

reduction in average absolute conditional pricing errors relative to the scaled CAPM estimated via

Fama-MacBeth.

Second, independently of the estimator used, the a¢ ne model with time varying prices of risk

consistently yields lower conditional average absolute pricing errors than the a¢ ne model with

constant prices of risk. While the di¤erence between the speci�cations with constant and time

varying prices of risk is relatively small for small growth stocks, it reaches more than 30 basis

points per quarter for large value stocks as captured in the FF51 portfolio. On average across the

25 portfolios, the improvement due to time varying prices of risk is about 13 basis points per quarter

for all four estimators considered here. Hence, there is an economically meaningful advantage of

using the time varying price of risk speci�cation of our model. This is also true when the estimators

are compared to the traditional Fama-MacBeth estimator of the scaled CAPM. Indeed, as columns

2, 4, 6 and 8 of Table 2 reveal, with each of the four considered estimators, the time varying price of

risk speci�cation of the a¢ ne model consistently outperforms the Fama-MacBeth estimator of the

scaled CAPM suggested by Lettau-Ludvigson. As an example, the di¤erence in average absolute

pricing errors between the Fama-MacBeth estimator and the LML estimator ranges from 4 basis

points for the FF12 portfolio to 32 basis points per quarter for the FF51 portfolio, with the average

across the 25 portfolios being about 15 basis points. In sum, while we con�rm that cay captures

time variation in excess returns, we also �nd that our more general price of risk speci�cation implies

considerably lower conditional pricing errors than the empirical speci�cation used by Lettau and

Ludvigson (2001).
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Table 2: Lettau-Ludvigson - Mean Absolute Conditional Pricing Errors

This table reports time series averages of di¤erences of absolute conditional pricing errors in the Lettau-Ludvigson
model implied by our estimators with respect to the Fama-MacBeth estimator. Speci�cally, we report the quantity
1

T�1
PT�1

t=1 j�̂i;t+1j � j�̂
FM
i;t+1j where �̂i;t+1 = Rei;t+1 � �̂

0
i�̂Zt is the conditional pricing error implied by the respective

estimator and �̂FMi;t+1 is the conditional pricing error implied by the Fama-MacBeth estimator applied to the scaled
CAPM. The test assets are the returns of 25 size and book-to-market sorted stock portfolios provided on Ken
French�s website in excess of the risk-free rate also from Ken French�s website. Six di¤erent estimators are
considered. OLS� denotes the OLS estimator of the a¢ ne pricing model with constant prices of risk; OLS denotes
the OLS estimator of the a¢ ne pricing model with time varying prices of risk; FGLS� and FGLS denote the FGLS
estimators of the a¢ ne pricing model with constant and time varying prices of risk, respectively; 4FGLS� and
4FGLS denote the four stage FGLS estimators of the a¢ ne pricing model with constant and time varying prices of
risk, respectively; LML� and LML denote the linearized maximum likelihood estimators of the a¢ ne pricing model
with constant and time varying prices of risk, respectively. The sample period is 1952Q1-2010Q2.

(1) (2) (3) (4) (5) (6) (7) (8)

OLS� OLS FGLS� FGLS 4FGLS� 4FGLS LML� LML

FF11 -0.169 -0.248 -0.144 -0.187 -0.207 -0.215 -0.204 -0.239
FF12 0.020 -0.031 0.024 -0.027 0.010 -0.033 0.010 -0.038
FF13 0.018 -0.092 0.017 -0.092 0.016 -0.079 0.016 -0.082
FF14 -0.037 -0.188 -0.035 -0.186 -0.043 -0.178 -0.043 -0.177
FF15 -0.026 -0.146 -0.025 -0.143 -0.022 -0.130 -0.023 -0.134
FF21 -0.098 -0.201 -0.093 -0.177 -0.103 -0.210 -0.102 -0.206
FF22 0.003 0.015 0.004 0.013 -0.001 -0.051 -0.001 -0.042
FF23 -0.032 -0.170 -0.033 -0.175 -0.055 -0.172 -0.054 -0.172
FF24 -0.004 -0.152 -0.004 -0.151 -0.005 -0.158 -0.005 -0.159
FF25 0.017 -0.078 0.012 -0.083 0.003 -0.089 0.004 -0.089
FF31 -0.014 -0.170 -0.013 -0.194 -0.013 -0.192 -0.013 -0.193
FF32 0.006 -0.151 0.003 -0.149 -0.003 -0.152 -0.003 -0.152
FF33 -0.036 -0.104 -0.038 -0.105 -0.047 -0.105 -0.047 -0.105
FF34 -0.007 -0.167 -0.007 -0.167 -0.019 -0.183 -0.019 -0.181
FF35 -0.012 -0.043 -0.016 -0.047 -0.018 -0.059 -0.018 -0.056
FF41 0.050 -0.121 0.029 -0.162 0.009 -0.174 0.010 -0.176
FF42 -0.069 -0.161 -0.080 -0.163 -0.056 -0.159 -0.057 -0.159
FF43 0.003 -0.146 -0.001 -0.149 -0.004 -0.150 -0.004 -0.150
FF44 -0.004 -0.129 -0.004 -0.130 -0.006 -0.133 -0.006 -0.133
FF45 0.013 -0.134 0.014 -0.120 0.001 -0.134 0.001 -0.134
FF51 0.037 -0.287 0.022 -0.314 0.024 -0.313 0.024 -0.316
FF52 0.059 -0.212 0.038 -0.247 0.021 -0.261 0.022 -0.259
FF53 0.008 -0.228 -0.004 -0.223 -0.013 -0.218 -0.012 -0.218
FF54 0.001 -0.141 0.000 -0.140 0.002 -0.139 0.002 -0.139
FF55 0.008 -0.156 0.000 -0.169 -0.007 -0.193 -0.007 -0.187
Avg -0.011 -0.146 -0.013 -0.148 -0.021 -0.155 -0.021 -0.156

6.2 Campbell (1996)

In this section, we illustrate the usefulness of the proposed estimators for the exponentially a¢ ne

pricing model by applying it to the version of the ICAPM suggested by Campbell (1996). Campbell

combines the log-linear approximation of a representative agents�budget constraint with a log-linear

solution to the consumption Euler equation implied by an Epstein-Zin-Weil utility speci�cation in

order to derive a reduced form expected log excess return equation of the form

E
�
rei;t+1

��Ft�+ 1
2
Vi = �0i�0 (19)

where Vi = V
�
rei;t+1 � E

h
rei;t+1

���Fti� is the unconditional variance of returns, �i denotes a vector
of risk factor exposures for asset i and �0 a vector of factor risk premia. In Campbell�s approxi-
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mate solution, equilibrium expected returns have a multi factor structure. Prices of risk, however,

are constant functions of preference parameters and the parameters governing the state variable

dynamics. In the baseline speci�cation, Campbell (1996) selects �ve factors that forecast future re-

turns, or future labor income: the real return on the stock market index (RVW ), real labor income

growth (LBR), the dividend yield on the aggregate stock market index (DIV ), the yield spread

between long- and short-term government bonds (TRM), and the �relative bill rate�(RTB) which

is given by the di¤erence between the 1-month Treasury bill rate and its 1-year backward moving

average. Campbell�s unrestricted expected return speci�cation from equation (19) is a special case

of our exponentially a¢ ne model (15) when �1 = 0.17 Using the estimators derived in Section 5,

we can thus estimate a version of Campbell�s model which explicitly allows for time varying market

prices of risk.18 Moreover, given the limiting variances of the estimators, we can test whether the

restriction that market prices of risk are constant is borne out by the data.

Before discussing the results, it is important to note that our estimation approach requires the

matrix B to have full row rank (see Assumption 1 (b)). This implies that none of the pricing factors

is redundant, uninformative or unspanned. A factor is redundant if its risk factor exposures are

linear combinations of the risk factor exposures of the remaining factors. Uninformative factors

feature zero risk exposures for all assets and do not predict returns. Unspanned factors also carry

zero factor risk exposures but do drive time variation in risk premia. If the rank condition on B is

not satis�ed, we cannot identify �.19 Therefore, before interpreting market price of risk estimates,

we test whether the estimated risk factor exposures �i are jointly statistically di¤erent from zero.

This can be done using a Wald-type test for rows of B analogous to equation (17). When we

compute such test statistics for the rows of the estimated matrix B̂ in the Campbell model, we

�nd that all factors except the real labor income growth LBR carry strongly signi�cant factor risk

exposures across assets. For labor income growth the OLS and FGLS estimators do not provide

statistical support for the hypothesis that its betas are signi�cantly di¤erent from zero, while the

LML estimator rejects the null of all betas associated with LBR being jointly zero at the 10%

con�dence level. Given these �ndings, we therefore exclude labor income growth from the model

and report results based on a model speci�cation featuring the four factors, RVW , DIV , TRM

and RTB.

We estimate the model using a cross section of size sorted equity, corporate bond, and Trea-

17Note that in our model Vi = V
�
rei;t+1 � Etr

e
i;t+1

�
= V

�
�0i;tvt+1 + ei;t+1

�
= vec (�i�

0
i)
0
vec (�v) + �2i , i.e., the

Jensen adjustment term features squared risk factor exposures. This arises due to the fact that we decompose
return innovations into a spanned part, i.e., a component that is proportional to pricing factor innovations, and an
idiosyncratic return component.
18We construct RVW as the value weighted excess market return from CRSP in excess of monthly CPI in�ation.

We follow Jagannathan and Wang (1996) in constructing LBR using labor income per capita from the Bureau of
Economic Analysis�NIPA Table 2.6. Furthermore, DIV is the dividend yield of the CRSP market portfolio, TRM
is the di¤erence between the 10-year and the 3-month constant maturity Treasury yields as reported in the Federal
Reserve Board�s H.15 Release. Finally, the relative bill rate RTB is constructed using the 1-month Treasury bill rate
obtained from Kenneth French�s website.
19A number of recent papers discuss the identi�ability of factor risk premia in static Fama-MacBeth regressions,

see e.g., Burnside (2009), Burnside (2010), Kleibergen (2009), and Kleibergen (2010).
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sury bond portfolios as test assets, following Campbell (1996).20 Table 3 provides estimates and

corresponding standard errors for the market price of risk parameters for the three estimators of

the exponentially a¢ ne speci�cation: OLS, FGLS, and LML. The last column again provides the

Wald statistics and corresponding p-values for the hypothesis that rows of �1 are zero.

While the three estimators deliver similar point estimates, the FGLS and LML variants generally

feature smaller standard errors and both give rise to the same conclusions about the signi�cance

of individual parameters. Since the LML estimator is asymptotically e¢ cient, we will focus the

interpretation of the results on the third panel of Table 3. According to these, the three factors

RVW , DIV , and RTB feature a signi�cant constant component �0 across all estimators, indicating

that the risks they represent are priced unconditionally. In addition, in the case of FGLS, TRM

is also priced unconditionally. Second, for the factors RVW , DIV , and RTB we reject the null

hypothesis that the corresponding rows of �1 are equal to zero at all conventional con�dence

levels. Hence, we �nd strong statistical support for time variation of risk premia in our version of

Campbell�s ICAPM model. Looking at the individual elements of �1, we see that RVW;DIV; and

TRM contribute to this time variation while the relative TBill rate, RTB; does not seem to a¤ect

intertemporal risk pricing.

We again assess the economic signi�cance of the estimates based on conditional pricing errors.

To facilitate comparison, we report absolute pricing errors of the 20 test assets in excess of the

absolute pricing errors of the OLS constant price of risk speci�cation. That is, Table 4 reports the

quantity 1
T�1

XT�1

t=1

�
j�̂i;t+1j �

���̂OLS�i;t+1

��� where
�̂i;t+1 =

����Rei;t+1 � �̂0i�̂Zt + 12 vec��̂i�̂0i�0 vec��̂v�+ 12 �̂2i
���� (20)

is the absolute value of the conditional pricing error implied by the respective estimator.21

Several conclusions emerge from Table 4. First, as columns 1, 3 and 5 show � for almost all

portfolios� pricing errors for the time varying price of risk speci�cations are smaller than for the

constant price of risk speci�cation. Moreover, for many assets, this di¤erence is sizable, with the

average reduction implied by the OLS estimator being about 10 basis points per month and the in-

dividual improvement reaching 28 basis points per month for the lowest size decile equity portfolio.

Hence, allowing for time variation in prices of risk results in considerably more precise predictions

of excess returns. Second, independently of the price of risk speci�cation chosen, use of the LML

estimator generally lowers pricing errors quite substantially with respect to the OLS and FGLS

estimators. Indeed, as the last two columns of Table 4 show, the LML estimators reduce condi-

tional pricing errors by more than 25 basis points per month on average across all assets in the

20Speci�cally, we use 10 size sorted equity portfolios obtained from Kenneth French�s website, �ve industry and rat-
ing sorted corporate bond portfolios obtained from Barclay�s, and �ve constant maturity government bond portfolios
obtained from CRSP.
21Note that � = �0 and Zt = 1 in the constant price of risk case and � = [�0 �1] and Zt = [1 X 0

t ]
0 in the time

varying prices of risk speci�cation.



Efficient Regression Based Estimation of DAPMs 29

Table 3: Campbell�s ICAPM - Market Price of Risk Parameter Estimates

This table reports coe¢ cient estimates and the corresponding standard errors for the market price of risk
parameters �0 and �1 in the Campbell ICAPM with RVW;DIV; TRM , and RTB as pricing factors. Three di¤erent
estimators are shown: OLS, FGLS, and LML. The last column reports Wald statistics and the corresponding
p-values for the null of a respective row of �1 being equal to zero. The sample period is 1973:01-2010:12.

�0 �RVW1 �DIV1 �TRM1 �RTB1 W�1

OLS
RVW 12.241 0.100 0.329 0.416 0.798 9.387

(1.158) (0.053) (0.177) (0.227) (2.443) (0.052)
DIV -0.720 -0.012 -0.039 -0.082 -0.086 10.908

(0.316) (0.016) (0.019) (0.027) (0.218) (0.028)
TRM 1.524 0.062 0.039 0.077 -0.037 1.836

(1.031) (0.051) (0.062) (0.087) (0.706) (0.766)
RTB -1.093 -0.054 -0.034 -0.034 0.102 6.003

(0.446) (0.022) (0.027) (0.037) (0.300) (0.199)
FGLS

RVW 11.699 0.100 0.306 0.418 0.980 9.660
(1.079) (0.050) (0.177) (0.226) (2.436) (0.047)

DIV -0.687 -0.012 -0.034 -0.096 -0.192 20.991
(0.201) (0.011) (0.016) (0.022) (0.174) (0.000)

TRM 1.175 0.046 0.081 0.005 -0.330 5.514
(0.500) (0.026) (0.040) (0.054) (0.433) (0.239)

RTB -0.887 -0.047 -0.046 -0.019 0.111 10.088
(0.286) (0.015) (0.022) (0.030) (0.233) (0.039)

LML
RVW 10.709 0.100 0.307 0.419 0.978 10.203

(0.997) (0.050) (0.166) (0.212) (2.270) (0.037)
DIV -0.945 -0.013 -0.035 -0.096 -0.192 22.682

(0.184) (0.011) (0.016) (0.021) (0.166) (0.000)
TRM 0.788 0.051 0.087 0.012 -0.324 4.600

(0.535) (0.031) (0.046) (0.060) (0.478) (0.331)
RTB -0.714 -0.051 -0.051 -0.024 0.107 9.829

(0.278) (0.016) (0.023) (0.031) (0.237) (0.043)

constant price of risk speci�cation and by 33 basis points per month in the dynamic speci�cation.

On an annualized basis, this amounts to a cross sectional average reduction of conditional pricing

errors of more than 3 percent. Hence, even in this relatively small sample, the gains from using the

asymptotically e¢ cient LML estimator are economically important. We would like to note that

in some empirical applications, the FGLS and LML estimators give rise to unusually large pricing

errors for some assets. This appears to be driven by the asset speci�c weighting of parameters

implied by these two estimators as the OLS estimator does not have this feature. This notwith-

standing, the results from our illustration of the exponentially a¢ ne pricing kernel speci�cation

and the corresponding estimators show that time variation in prices of risk is pervasive and that

explicitly allowing for it considerably reduces conditional pricing errors.

7 Conclusion

Dynamic asset pricing models are at the heart of modern �nance theory. Moreover, virtually all of

the macro-�nance literature of recent decades is cast in dynamic terms. The goal of this paper is

to provide a unifying framework for estimating generic dynamic asset pricing models which impose

cross sectional no arbitrage restrictions and allow for prices of risk to vary with observable state
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Table 4: Campbell�s ICAPM - Mean Absolute Conditional Pricing Errors

This table reports time series averages of absolute conditional pricing errors implied by our four factor version of
Campbell�s ICAPM. The set of test assets comprises 10 size sorted stock portfolios obtained from Ken French�s
website, �ve industry and rating sorted credit portfolios obtained from Barclay�s Capital, and �ve constant
maturity Treasury portfolios obtained from CRSP. All returns are in excess of the one month Tbill also obtained
from Ken French�s website. Six di¤erent estimators are considered. OLS denotes the OLS estimator of the
exponentially a¢ ne pricing model with time varying prices of risk; FGLS� and FGLS denote the FGLS estimators
of the exponentially a¢ ne pricing model with constant and time varying prices of risk, respectively; LML� and
LML denote the linearized maximum likelihood estimators of the exponentially a¢ ne pricing model with constant
and time varying prices of risk, respectively. The sample period is 1952Q1-2010Q2.

(1) (2) (3) (4) (5)
OLS FGLS� FGLS LML� LML

size1 -0.279 0.566 0.039 -0.055 -0.296
size2 -0.191 0.656 0.303 -0.314 -0.651
size3 -0.112 0.309 0.144 -0.079 -0.220
size4 -0.129 0.259 0.087 -0.140 -0.279
size5 -0.083 0.187 0.072 -0.022 -0.119
size6 -0.057 0.030 -0.030 0.003 -0.058
size7 -0.066 -0.239 -0.273 -0.302 -0.346
size8 -0.048 0.083 0.029 -0.028 -0.065
size9 0.007 -0.044 -0.063 -0.051 -0.048
size10 0.018 -0.044 -0.033 -0.058 -0.049
igind -0.015 0.036 -0.003 -0.030 -0.039
igutil -0.028 0.002 -0.030 -0.017 -0.031
ig�n -0.090 -0.066 -0.132 -0.261 -0.263
aaa -0.021 -0.000 -0.021 0.004 -0.014
baa -0.212 -0.216 -0.355 -0.996 -1.031
cmt1 -0.034 -0.057 -0.066 -0.088 -0.093
cmt2 -0.004 0.014 0.002 -0.014 -0.017
cmt5 -0.167 -0.179 -0.281 -0.773 -0.871
cmt7 -0.175 -0.184 -0.283 -0.763 -0.844
cmt10 -0.250 -0.356 -0.441 -1.069 -1.205
Avg -0.097 0.038 -0.067 -0.253 -0.327

variables. Our approach nests the popular Fama-MacBeth two pass estimator for static pricing

models and dynamic pricing models that do not impose cross sectional restrictions. Alternatively,

one could also view our framework as a system of (multivariate) predictive regressions with cross

equation constraints implied by no arbitrage.

All of the estimators presented in this paper are either directly or indirectly based on standard

regression outputs. As a result, our estimation approach is computationally fast and robust, as well

as e¢ cient under conditions that we discuss. In our empirical illustrations, we have revisited two

in�uential asset pricing models that may be cast as special cases of our generic approach. We �nd

support that time variation of risk premia is present in these models, and that explicitly accounting

for this time variation can substantially reduce conditional pricing errors.
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Appendix A: Additional Results

Here we collect results that are too cumbersome to be placed in the main text.

A.1 A¢ ne Model: Feasible GLS

In this section we provide instructions on how to implement a feasible version of the GLS estimators,

(�̂gls; B̂4gls) (the corresponding steps for (�̂
�
gls; B̂

�
4gls) follow analogously).

(i) Follow steps 1-3 as discussed in the main text after the presentation of Theorem 1. With the output

from these steps we may construct,

Êols = Re � B̂0ols
�
�̂olsZ� + V̂ols

�
.

We may then estimate �̂e;ols by the diagonal elements of the matrix T�1 � ÊolsM�Ê
0
ols where M� =

IT � T�1 � �T �0T (see Step 3b in the discussion of Theorem 6).

(ii) With �̂e;ols we may then construct the feasible GLS estimator of � via,

�̂fgls =
�
B̂ols�̂

�1
e;olsB̂

0
ols

��1
B̂ols�̂

�1
e;olsReZ

0
�
�
Z�Z

0
�
��1

.

A.2 A¢ ne Model: Maximum Likelihood Estimation when �e is Unrestricted

When we relax the diagonality assumption of Assumption 2 (b) and instead only assume that �e is positive

de�nite, then we can easily characterize the maximum likelihood solution. It follows from Theorem 4 that

	̂mle = 	̂ols. This implies that we may replace V by V̂ols = X � 	̂olsZ�. Next note that given (	; B;�),
�̂e;mle =

EE0

T and given � and 	,

B̂mle j	;� =
�
(�Z� + V ) (�Z� + V )

0��1
(�Z� + V )R

0
e.

Thus, if we concentrate the likelihood with respect to �e, B, it is clear that maximizing the likelihood is

equivalent to minimizing the expression jEE0j, where

E = Re �Re
�
�Z� + V̂ols

�0 ��
�Z� + V̂ols

��
�Z� + V̂ols

�0��1 �
�Z� + V̂ols

�
.

By standard properties of determinants,

min
�
jEE0j = min

�

�����ReR0e �Re ��Z� + V̂ols�0
��
�Z� + V̂ols

��
�Z� + V̂ols

�0��1 �
�Z� + V̂ols

�
R0e

�����
= jReR0ejmin

�

jD0YMRY
0Dj

jD0Y Y 0Dj ,
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where MR = IT �R0e (ReR0e)
�1
Re, D = [IK �]

0 and Y is the (2K + 1)� T matrix Y =
h
V̂ 0ols Z

0
�

i0
. Next, if

we de�ne G1 = YMRY
0, G2 = Y Y 0 then the solution to this minimization problem is,

min
�

jD0G1Dj
jD0G2Dj

=
KY
i=1

�i,

where f�i : i = 1; : : : ;Kg are the K smallest roots of the equation jG1 � �G2j = 0. Moreover, the max-

imum likelihood estimator of D is the eigenvectors associated with these K smallest roots. Thus, D̂ =

(a1; : : : ; aK),where ai is the eigenvector associated with the eigenvalue �i. Finally, we need to normalize the

�rst K rows of D̂. First, partition D̂ as

D̂ =

"
D̂1

D̂2

#
,

where D̂1 and D̂2 are K � K and (K + 1) � K, respectively. Then the normalized version is D̂
�
D̂1

��1
which implies that

�̂mle =
�
D̂0
1

��1
D̂0
2.

Given
�
	̂mle; �̂mle

�
,

B̂mle =

��
�̂mleZ� + V̂ols

��
�̂mleZ� + V̂ols

�0��1 �
�̂mleZ� + V̂ols

�
R0e.

A.3 Exponentially A¢ ne Model: Asymptotic Properties of Regression Estima-
tors

A.3.1 Time Varying Prices of Risk

The expressions for the limiting variance of �̂
�

ols and �̂
�

gls of Theorem 6 are given by,

V�
�̂;ols

= V�̂;ols +
�
��1�1�

0
1�

�1 
Q�ols
�
+ C�ols + C�0ols (21)

V�
�̂;fgls

= V�̂;gls +
�
��1�1�

0
1�

�1 
Q�fgls
�
+ C�fgls + C�0fgls, (22)

where

�1 = bdiag[N;N ];[1;1]
�
�2i � �0i�v�i

�
, �2 = bdiag[KN;N ];[K;1]

�
�2i � �v�i

�
,

Q�ols =
1

2
(BB0)

�1
B�2eB

0 (BB0)
�1
+ (BB0)

�1
B�1B

0 (BB0)
�1

+
1

4
(BB0)

�1
BJB (IK2 + �KK) (�v 
 �v)J 0BB0 (BB0)

�1

C�ols = �
�
�0��1v 
 (BB0)�1B

�
�KN�2

�
�01�

�1 
B0 (BB0)�1
�
,

Q�fgls =
1

2

�
B��1e B0

��1
BB0

�
B��1e B0

��1
+
�
B��1e B0

��1
B��1e �1�

�1
e B0

�
B��1e B0

��1
+
1

4

�
B��1e B0

��1
B��1e JB (IK2 + �KK) (�v 
 �v) J 0B��1e B0

�
B��1e B0

��1
C�fgls = �

�
�0��1v 


�
B��1e B0

��1
B��1e

�
�KN�2

�
�01�

�1 
 ��1e B0
�
B��1e B0

��1�
.
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A.3.2 Constant Prices of Risk

De�ne the analogous estimators to those of Theorem 6 as,

�̂�;�ols =
�
B̂olsB̂

0
ols

��1
B̂ols

�
�r�;�e +

1

2
ĴB;ols vec(�̂v;ols) +

1

2
d̂e;sur

�
,

�̂�;�fgls =
�
B̂ols�̂

�1
e;olsB̂

0
ols

��1
B̂ols�̂

�1
e;ols

�
�r�;�e +

1

2
ĴB;ols vec(�̂v;ols) +

1

2
d̂e;sur

�
,

where �r�;�e = r�;�e �T /T and �̂e;ols is constructed assuming constant prices of risk. These estimators satisfy

p
T (�̂

�;�

ols � �)
d�! N (0;V�;�

�̂;ols
),

p
T (�̂

�;�

fgls � �)
d�! N (0;V�;�

�̂;fgls
).

The asymptotic variance formulas are,

V�;�
�̂;ols

= V�
�̂;ols

+Q�;�ols + C
�;�
ols + C

�;�0
ols ,

V�;�
�̂;fgls

= V�
�̂;gls

+Q�;�fgls + C
�;�
fgls + C

�;�0
fgls ,

where Q�;�ols = Q�ols and Q
�,�
fgls = Q�fgls and

C�;�ols = �
�
�00�

�1
v 
 (BB0)�1B

�
�KN�2B

0 (BB0)
�1 ,

C�;�fgls = �
�
�00�

�1
v 


�
B��1e B0

��1
B��1e

�
�KN�2�

�1
e B0

�
B��1e B0

��1
.

A.4 Exponentially A¢ ne Model: Score Vector and Information Matrix

A.4.1 Time Varying Prices of Risk

The (scaled) score vector, _̀� = _̀� (��), is the
�
2K (K + 1) +NK +K2 +N

�
� 1 vector with elements,

h
_̀�
i
1
=

@`� (��)

@ 
= T�1 �

�
vec
�
��1v V Z 0�

�
� vec

�
B��1e E�Z 0�

��
h
_̀�
i
2
=

@`� (��)

@b
= T�1 �

�
vec
�
(�Z� + V )E

�0��1e
�
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�
�vB�

�1
e

�
� (E��T 
 �K)

�
h
_̀�
i
3
=

@`� (��)

@�
= T�1 � vec

�
B��1e E�Z 0�

�
h
_̀�
i
4
=

@`� (��)

@�v
= T�1 � 1

2

�
vec
�
�T � ��1v +��1v V V 0��1v

�
� J 0B��1e E��T

�
h
_̀�
i
5
=

@`� (��)

@de
= T�1 �

�
�T
2
de;inv +

1

2
(de;inv � de;inv)� ((E� � E�) �T )�

1

2
(de;inv � E��T )

�
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where de;inv =
�
��21 ; ��22 ; : : : ��2N

�0
and E� = E (	; B;�;�v; de), V = V (	) (see equations (7) and (16)).

The information matrix, I� (��; �), is the square, symmetric matrix with elements,

[I� (��; �)]11 =
@2`� (��)

@ @ 0
=
�
�


�
B��1e B0 +��1v

��
[I� (��; �)]12 =

@2`� (��)

@ @b0
=
h
��21

��
�1�

0
1�v ���0

�

 �1

�
� � � ��2N

��
�1�

0
N�v ���0

�

 �N

�i
[I� (��; �)]13 =

@2`� (��)

@ @�0
= �

�
�
B��1e B0

�
[I� (��; �)]14 =

@2`� (��)

@ @�0v
=
1

2

�
�1 
B��1e JB

�
[I� (��; �)]15 =

@2`� (��)

@ @d0e
=
1

2

�
�1 
B��1e

�
and

[I� (��; �)]22 =
@2`� (��)

@b@b0
= bdiag[KN;KN ];[K;K]

�
��2i

�
���0 +�v +�v�i�

0
i�v � �v�i�01�0 � ��1�0i�v

��
[I� (��; �)]23 =

@2`� (��)

@b@�0
= � ([I� (��; �)]12)

0

[I� (��; �)]24 =
@2`� (��)

@b@�0v
=

2664
1
2�

�2
1

�
(�v�1 � ��1)�01 
 �01

�
...

1
2�

�2
N

�
(�v�N � ��1)�0N 
 �0N

�
3775

[I� (��; �)]25 =
@2`� (��)

@b@d0e
= bdiag[KN;N ];[K;1]

�
1

2�2i
(�v�i � ��1)

�
and

[I� (��; �)]33 =
@2`� (��)

@�@�0
= � [I� (��; �)]13

[I� (��; �)]34 =
@2`� (��)

@�@�0v
= � [I� (��; �)]14

[I� (��; �)]35 =
@2`� (��)

@�@d0e
= � [I� (��; �)]15

[I� (��; �)]44 =
@2`� (��)

@�v@�0v
=
1

2

�
��1v 
 ��1v

�
+
1

4
J 0B�

�1
e JB

[I� (��; �)]45 =
@2`� (��)

@�v@d0e
=
1

4
J 0B�

�1
e

[I� (��; �)]55 =
@2`� (��)

@de@d0e
=
1

4
bdiag[N;N ];[1;1]

�
2
�
��2i

�2
+ ��2i

�
In the exponentially a¢ ne case, the form of the inverse information matrix is not as straightforward as in

the a¢ ne case. However, we can still characterize the inverse information matrix. For simplicity of notation

de�ne I�ab = [I� (�
�; �)]ab and H�

ab =
h
I� (��; �)�1

i
ab
. The �rst row has the elements,

H�
11 =

�
��1 
 �v

�
, H�

12 = 0K(K+1)�NK , H�
13 = H�

11,
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H�
14 = 0K(K+1)�K2 , H�

15 = 0K(K+1)�N .

Next de�ne Sab = I�ab � I�01a (I�33)
�1 I�1b along with

R15 = S15 � S14S�144 S45, R22 = S22 � S24S�144 S 024
R24 = S24 � S25S�155 S 045, R25 = S25 � S24S�144 S45

R44 = S44 � S45S�155 S 045, R55 = S55 � S 045S�144 S45

Then,
H�
22 =

�
R22 �R25R�1

55 R0
25

��1 H�
25 =

�
�R�1

55 R0
25H�

22

�0
H�
24 =

�
�S�144 (S 024H�

22 + S45H�0
25)
�0 H�

23 =
�
I�133 (I12H�

22 + I14H�0
24 + I15H�0

25)
�0

H�
44 = R�1

44 (IK2 �R0
24H�

24) H�
45 =

�
�S�155 (S 025H�

24 + S 045H�
44)
�0

H�
35 =

�
�R�1

55 (R0
15H�

11 +R0
25H�

23)
�0 H�

34 =
�
�S�144 (S 014H�

11 + S 024H�
23 + S45H�0

35)
�0

H�
33 = I�133 (I11H�

11 + I12H�
23 + I14H�0

34 + I15H�0
35)

H�
55 = I�155 (IN � (I 025H�

25 � I 015H�
35 + I 045H�

45))

Note that the ordering of elements re�ects the dependence on other elements (e.g., to obtain the (2; 3)

element of H� requires the (2; 2), (2; 5), and (2; 4) elements of H�).

A.4.2 Constant Prices of Risk

De�ne ��;� =
�
 0; b0; �00; �

0
v; d

0
e

�0
. The (scaled) score vector, _̀�;� = _̀�;� (��;�), is the (2K +N) (K + 1) � 1

vector with elements,h
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0
T +
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2
de�

0
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and V = V (	) (see equation (7)). The information matrix, I�;� (��;�; �), is the square, symmetric matrix
with elements,
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= bdiag[KN;N ];[K;1]

�
1

2�2i
(�v�i � �0)

�
and

[I�;� (��;�; �)]33 =
@2`�;� (��;�)

@�0@�
0
0

= B��1e B0

[I�;� (��;�; �)]34 =
@2`�;� (��;�)

@�0@�0v
= �1

2
B��1e JB

[I�;� (��;�; �)]35 =
@2`�;� (��;�)

@�0@d0e
= �1

2
B��1e

[I�;� (��;�; �)]44 =
@2`�;� (��;�)

@�v@�0v
=
1

2

�
��1v 
 ��1v

�
+
1

4
J 0B�

�1
e JB

[I�;� (��;�; �)]45 =
@2`�;� (��;�)

@�v@d0e
=
1

4
J 0B�

�1
e

[I�;� (��;�; �)]55 =
@2`�;� (��;�)

@de@d0e
=
1

4
bdiag[N;N ];[1;1]

�
2
�
��2i

�2
+ ��2i

�
As for time varying prices of risk, the form of the inverse information matrix is not as straightforward as in

the a¢ ne case. However, we can still characterize the inverse information matrix. For simplicity of notation
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de�ne I�;�ab = [I�;� (�
�;�; �)]ab and H

�;�
ab =

h
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i
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A.5 A¢ ne Model/Exponentially A¢ ne Model: Inference on B0�

Suppose that we have two generic estimators of B and �, say �B and �� which satisfy,
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Then it may be shown that p
T vec

�
�B0���B0�

� d�! N
�
0; �Vb�

�
,
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When prices of risk are constant,
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B Appendix B: Preliminary Lemmas

We �rst present some preliminary lemmas that will be useful for the proofs of theorems. De�ne 
vz =
V Z 0�

�p
T and similarly for 
ez and 
ev; de�ne 
v� = V �T /

p
T and similarly for 
e�; de�ne 
vv = V V 0/T

and similarly for 
ee. Recall that �̂ = Z�Z
0
�
�
T . Throughout the Appendix let M� = IT � T�1 � �T �0T ,

MZ = IT = Z 0�
�
Z�Z

0
�
��1

Z� and V̂ols = XMZ .

Lemma 1 Suppose Assumptions 1 and 2 hold. Then,

(i) 
vv, 
ee, 
vz, 
ez, 
ev are all Op (1);

(ii) E[�̂] = � + o (1);

(iii) Let
p
T (	̂�	) = Op (1). Put V̂ � X � 	̂Z�. Then, T�1 � V̂ V̂ 0 = 
vv +Op(T�1);

(iv) Let
p
T (B̂�B),

p
T (�̂��) and

p
T (	̂�	) all be Op (1). Put V̂ = X�	̂Z� and Ê = Re�B̂0(�̂Z�+V̂ ).

Then, T�1 � ÊM�Ê
0 = 
ee +Op(T

�1), where M� = IT � T�1 � �T �0T ;

(v)
p
T (	̂ols �	) = �	;ols + op (1) where �	;ols = 
vz��1;

(vi)
p
T (B̂ols �B) = �B;ols + op (1) where �B;ols = ��1v 
0ev.

Proof of Lemma 1. (i) and (ii) follow by Assumption 2 and standard calculations. (iii) follows since,

T�1 � V̂ V̂ 0 = 
vv � T�1=2 �
�
	̂�	

�

0vz � T�1=2 � 
vz

�
	̂�	

�0
+
�
	̂�	

�
�̂
�
	̂�	

�0
,

and using the results from (i) and (ii). For (iv) note that
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�
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Ê � E

�
M�

�
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Then the result follows by (i) and since
�
Ê � E

�
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�
Ê � E

�
�T are Op (1). (v) follows since,

p
T
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0
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0
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��1
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The �rst term is op (1) by (i), (ii), and (iii). The second term is

p
T
�
V̂olsV̂

0
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��1
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0 =
�
T�1 � V̂olsV̂ 0ols

��1
T�1=2V̂olsE

0 = ��1v 
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by (i), (iii), and the continuous mapping theorem.

Lemma 2 Suppose Assumptions 1 and 2 hold. Then,0@!vz!ez
!ev

1A d�! N

0@0;
24(�
 �v) 0 0

0 (�
 �e) 0
0 0 (�v 
 �e)

351A ,
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and

vv

p�! �v, 
ee
p�! �e.

Proof of Lemma 2. These results follow by Assumption 2 and standard properties of martingale di¤erence
sequences, see, for example, White (2001).

For simplicity of notation de�ne �̂ (�) and B̂ (�) as

�̂ (�) =
�
B̂ols�B̂

0
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and similarly for �̂
�
(�) and B̂� (�). For example, �̂ (IN ) = �̂ols and �̂

�
�̂�1e;ols

�
= �̂fgls.

Lemma 3 Suppose Assumptions 1 and 2 hold and �̂ satis�es �̂�� = op (1). Then, if the data are generated
by equation (6),

(i)
p
T (�̂(�̂)� �) = ��;� + op (1) where ��;� = �	;ols + (B�B0)�1B�

�

ez�
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�
,
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p
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�
�
0vzB + (�


0
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0
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�
.

Proof of Lemma 3. For (i) note �rst that

ReZ
0
�
�
Z�Z

0
�
��1

= B̂0ols� + B̂
0
olsV Z

0
�
�
Z�Z

0
�
��1 � �B̂ols �B�0 �

�
�
B̂ols �B

�0
V Z 0�

�
Z�Z

0
�
��1

+ EZ 0�
�
Z�Z

0
�
��1

.

Thus,
�̂ (�) = T�;�;1 + T�;�;2 + T�;�;3 + T�;�;4 + T�;�;5,

where
T�;�;1 = �,

T�;�;2 = V Z 0�
�
Z�Z

0
�
��1

,

T�;�;3 = �
�
B̂ols�̂B̂

0
ols

��1
B̂ols�̂

�
B̂ols �B

�0
�,

T�;�;4 = �
�
B̂ols�̂B̂

0
ols

��1
B̂ols�̂

�
B̂ols �B

�0
V Z 0�

�
Z�Z

0
�
��1

,

T�;�;5 =
�
B̂ols�̂B̂

0
ols

��1
B̂ols�̂EZ

0
�
�
Z�Z

0
�
��1

.

Note that T�;�;2 = 	̂ols �	 and T�;�;4 = op
�
T�1=2

�
by Lemma 1. By Lemma 1 and the assumptions on �̂,

p
TT�;�;3 = �

p
T
�
B̂ols�̂B̂

0
ols

��1
B̂ols�̂

�
B̂ols �B

�0
� = � (B�B0)�1B��0B;ols� + op (1) ,

and p
TT�;�;5 =

�
B̂ols�̂B̂

0
ols

��1
B̂ols�̂EZ�

�
Z�Z

0
�
��1

= (B�B0)
�1
B�
ez�

�1 + op (1) .

Using Lemma 1 again we have, p
T
�
�̂ (�)� �

�
= ��;� + op (1) ,
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where
��;� = 
vz�

�1 + (B�B0)
�1
B�
ez�

�1 � (B�B0)�1B�
ev��1v �.

For (ii) we will suppress the dependence on � of �̂ (�). Note �rst that

p
TB̂

�
�̂
�

=

�
T�1

�
�̂Z� + V̂

��
�̂Z� + V̂

�0��1
T�1=2

�
�̂Z� + V̂

�
R0e

=
h
�̂�̂�̂0 + �̂v

i�1
T�1=2

�
�̂Z� + V̂

� ��
Z 0��

0 + V 0
�
B + E0

�
=

p
TB + TB;�;1 + TB;�;2,

where

TB;�;1 =
h
�̂�̂�̂0 + �̂v

i�1
T�1=2 (�Z� + V )

��
Z 0�

�
�� �̂

�0
+
�
V � V̂

�0�
B + E0

�
,

TB;�;2 =
h
�̂�̂�̂0 + �̂v

i�1
T�1=2

��
�̂� �

�
Z� +

�
V̂ � V

����
Z 0�

�
�� �̂

�0
+
�
V � V̂

�0�
B + E0

�
.

By Lemma 1 all of the terms of TB;�;2 are op (1) so we need only consider TB;�;1.

TB;�;1 = TB;�;1;1 + TB;�;1;2 + TB;�;1;3 + TB;�;1;4 + TB;�;1;5 + TB;�;1;6,

where

TB;�;1;1 =
h
�̂�̂�̂0 + �̂v

i�1
T�1=2�Z�Z

0
�

�
�� �̂

�0
B,

TB;�;1;2 =
h
�̂�̂�̂0 + �̂v

i�1
T�1=2�Z�

�
V � V̂

�0
B,

TB;�;1;3 =
h
�̂�̂�̂0 + �̂v

i�1
T�1=2�Z�E

0,

TB;�;1;4 =
h
�̂�̂�̂0 + �̂v

i�1
T�1=2V Z 0�

�
�� �̂

�0
B,

TB;�;1;5 =
h
�̂�̂�̂0 + �̂v

i�1
T�1=2V

�
V � V̂

�0
B,

TB;�;1;6 =
h
�̂�̂�̂0 + �̂v

i�1
T�1=2V E0.

TB;�;1;4 and TB;�;1;5 are op (1) by Lemma 1. By Lemma 1 and (i),

TB;�;1;1 = � [���0 +�v]�1 ���0�;�B + op (1) , TB;�;1;2 = [���0 +�v]�1 �
0vzB + op (1) ,

TB;�;1;3 = [���0 +�v]�1 �
0ez + op (1) , TB;�;1;6 = [���0 +�v]�1 
0ev + op (1) .

Thus, p
T
�
B̂ (�)�B

�
= TB;�;1 + TB;�;2 = �B;� + op (1) ,

where
�B;� = [���

0 +�v]
�1 �

�
0vzB + �

0
ez +


0
ev � ���0�;�B

�
. �

Lemma 4 Suppose Assumptions 1 and 2 hold and that � satis�es the assumptions of Lemma 3. Then,if
the data are generated by equation (9),

1.
p
T (�̂

�

0 (�̂)� �0) = �
�
�;� + op (1) where �

�
�;� = 
v� + (B�B

0)
�1
B�
e� � (B�B0)�1B�
ev��1v �0,

2.
p
T (B̂�(�̂)�B) = ��B;� + op (1) where �

�
B;� =

�
�v + �0�

0
0

��1
(�0


0
v�B + �0


0
e� +


0
ev � �0�

�0
�;�B).
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Proof of Lemma 4. This proof follows by similar steps as in the proof of Lemma 3 and so is omitted to
conserve space.

Appendix C: Proofs of Theorems

Proof of Theorem 1. Let us �rst consider  ̂ols and b̂ols. For  ̂ols by Lemma 1 we have that �	;ols =�
��1 
 IK

�
!vz and so by Lemma 2 and Slutsky�s Lemma �	;ols !d N

�
0;
�
��1 
 �v

��
. Similarly, �B;ols =�

IN 
 ��1v
�
�NK!ev and so by Lemma 2, Slutsky�s Lemma and standard properties of the commutation

matrix �B;ols !d N
�
0;�e 
 ��1v

�
. Next, by Lemma 3 we have,

��;� =
�
��1 
 IK

�
�K(K+1)!zv +

�
��1 
 (B�B0)�1B�

�
!ez �

�
�0��1v 
 (B�B0)�1B�

�
!ev.

By Assumption 2 the covariance terms are zero and so by Lemma 2 and Slutsky�s Lemma, ��;� !d

N
�
0;V�̂;�

�
, where

V�̂;� =
�
��1 
 �v

�
+
�
��1 
 (B�B0)�1B��e�B0 (B�B0)�1

�
+
�
�0��1v �
 (B�B0)�1B��e�B0 (B�B0)�1

�
,

and so the result follows by setting � to IN or ��1e .

Proof of Theorem 2. First we will calculate the asymptotic variance of B̂ (�). By Lemma 3 we have,

�B;� = [���0 +�v]
�1 �

�
0vzB + (�

0
ez +


0
ev)� ���0�;�B

�
= [���0 +�v]

�1
�
�
0ez

�
IN � �B0 (B�B0)�1B

�
+
0ev + ���

0��1v 
0ev�B
0 (B�B0)

�1
B
�
,

or equivalently,

�B;� =
��
IN �B0 (B�B0)�1B�

�

 [���0 +�v]�1 �

�
�N(K+1)!ez

+
h�
IN 
 [���0 +�v]�1

�
+
�
B0 (B�B0)

�1
B�
 [���0 +�v]�1 ���0��1v

�i
�NK!ev.

By Assumption 2 the covariance terms are zero and so by Lemma 2, Slutsky�s Lemma, and standard prop-
erties of the commutation matrix ��;� !d N (0;Vb̂;�), where

Vb̂;� =
��
IN �B0 (B�B0)�1B�

�

 [���0 +�v]�1 �

�
(�e 
�)

��
IN �B0 (B�B0)�1B�

�

 [���0 +�v]�1 �

�0
+
�
IN 
 [���0 +�v]�1

�
(�e 
 �v)

�
IN 
 [���0 +�v]�1

�0
+
�
B0 (B�B0)

�1
B�
 [���0 +�v]�1 ���0��1v

�
(�e 
 �v)

�
B0 (B�B0)

�1
B�
 [���0 +�v]�1 ���0��1v

�0
=

�
�e 
 [���0 +�v]�1

�
+
�
B0 (B�B0)

�1
B��e�B

0 (B�B0)
�1
B 


�
��1v � [���0 +�v]�1

��
and so the result follows by setting � to IN or �e. For the asymptotic covariance between B̂ (�) and �̂ (�)
we need only to calculate

lim
T!1

E
�
�B;��

0
�;�

�
= TB;�;�;1 + TB;�;�;2,
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where

TB;�;�;1 = E
���

IN � �B0 (B�B0)�1B
�0

 [���0 +�v]�1 �

�
vec (
0ez)!

0
ez

�
��1 
 (B�B0)�1B�

�0�
,

TB;�;�;2 = E
hh�

IN 
 [���0 +�v]�1
�
+
�
B0 (B�B0)

�1
B�
 [���0 +�v]�1 ���0��1v

�i
vec (
0ev) �

!0ev

�
�
�
�0��1v 
 (B�B0)�1B�

��0�
.

By similar calculations as above we have that

TB;�;�;1 =
�
�e�B

0 (B�B0)
�1 
 [���0 +�v]�1 �

�
�K(K+1)

�
�
B0 (B�B0)

�1
B��e�B

0 (B�B0)
�1 
 [���0 +�v]�1 �

�
�K(K+1),

and

TB;�;�;2 = �
�
�e�B

0 (B�B0)
�1 
 [���0 +�v]�1 �

�
�K(K+1)

�
�
B0 (B�B0)

�1
B��e�B

0 (B�B0)
�1 
 [���0 +�v]�1 ���0��1v �

�
�K(K+1).

Cancelling the common term, simplifying the resulting expression, and setting � to IN or ��1e yields the
result.

Remark 4 If we relax the conditional homoskedasticity assumption (Assumption 2 (c)), then the asymptotic
covariance between some terms in the asymptotically linear representation of �̂ (�) and B̂ (�) are nonzero.
Including these terms yields the variance formulas discussed in the main text. For concreteness, consider

��;� =
�
��1 
 IK

�
�K(K+1)!zv +

�
��1 
 (B�B0)�1B�

�
!ez �

�
�0��1v 
 (B�B0)�1B�

�
!ev.

We still have that E [!zv!0ez] = 0 but E [!zv!0ev] and E [!ez!0ev] are now nonzero and so we must incorporate
terms involving these expressions in the asymptotic variance formula.

Proof of Theorem 3. This proof follows by similar steps as in the proofs of Theorems 1 and 2 and so is
omitted to conserve space.

Proof of Theorem 4. The results of Theorem 4 follow by standard matrix calculus. The (transpose of
the) �rst element of the score vector is,

@` (�;�e; �v)

@ 0
= � vec (E)0

�
IT 
 ��1e

� @ vec (E)
@ 0

� vec (V )0
�
IT 
 ��1v

� @ vec (V )
@ 0

= � vec
�
B��1e EZ 0�

�0
+ vec

�
��1v V Z 0�

�0
.

By similar steps we may obtain the second and third elements of the score vector. Similarly, the (1,1) element
of the information matrix is,

@2` (�;�e; �v)

@ @ 0
=

@

@ 

�
� vec

�
B��1e EZ 0�

�
+ vec

�
��1v V Z 0�

��
= �

�
Z�Z

0
� 
B��1e B0

�
�
�
Z�Z

0
� 
 ��1v

�
= �T �

�
�̂


�
B��1e B0 +��1v

��
,
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and so by Lemma 1,

lim
T!1

�
� 1
T

�
E
�
@2` (�;�e; �v)

@ @ 0

�
=
�
�


�
B��1e B0 +��1v

��
.

The rest of the elements may be obtained in a similar fashion. Finally, we may utilize standard results on
inverses of partitioned matrices to obtain the inverse information matrix.

Proof of Corollary 1. This follows by Theorem 4 and standard properties of one step estimators. See, for
example, van der Vaart (1998).

Proof of Theorem 5. This proof follows by similar steps as in the proof of Theorems 4 and so is omitted
to conserve space.

Proof of Theorem 6. For simplicity de�ne,

�̂� (�) =
�
B̂ols�B̂

0
ols

��1
B̂ols�

�
r�e +

1

2
ĴB;ols vec(�̂v;ols)�

0
T +

1

2
d̂e;sur�

0
T

�
Z 0�
�
Z�Z

0
�
��1

.

Suppose that �̂ � � = op (1) and note that by similar steps as in the proof of Lemma 1 (iv) we can show
that �̂�1e;ols � ��1e = op (1). Then, similar to the proof of Lemma 3,

�̂�(�̂) = T ��;�;1 + T ��;�;2 + T ��;�;3 + op
�
T�1=2

�
,

where
T ��;�;1 = T�1=2 ���;�,

T ��;�;2 =
1

2

�
B̂ols�̂B̂

0
ols

��1
B̂ols�̂

h
ĴB;ols vec(�̂v;ols)� JB vec (�v)

i
�̂1�̂

�1,

T ��;�;3 =
1

2

�
B̂ols�̂B̂

0
ols

��1
B̂ols�̂

h
d̂e;sur � de

i
�̂1�̂

�1.

Let us deal with T ��;�;2 �rst. The ith row of ĴB;ols vec(�̂v;ols)� JB vec (�v) is

�̂
0
i;ols�̂v�̂i;ols = �0i�v�i +

�
�̂i;ols � �i

�0
�v�i + �

0
i�v

�
�̂i;ols � �i

�
+ �0i

�
�̂v � �v

�
�i +Op

�
T�1

�
.

Thus, T ��;�;2 = T ��;�;2;1 + T ��;�;2;2 + op
�
T�1=2

�
, where

T ��;�;2;1 = (B�B0)
�1
B�

26664
�01�v

�
�̂1;ols � �1

�
...

�0N�v

�
�̂N;ols � �N

�
37775�01��1,

and
T ��;�;2;2 =

1

2
(B�B0)

�1
B�JB vec

�
�̂v � �v

�
�01�

�1.

We will deal with T ��;�;2;2 �rst. By Lemma 1

T ��;�;2;2 =
1

2
(B�B0)

�1
B�JB vec

�
�̂v � �v

�
�01�

�1 =
1

2
(B�B0)

�1
B�JB vec (
vv � �v)�01��1+op

�
T�1=2

�
.
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Next let us deal with T ��;�;2;1. Note that by Lemma 1

p
T�0i�v

�
�̂i;ols � �i

�
= �0i

V Eip
T
+ op (1) ,

where
�
Ei
�0
is the ith row of the matrix E. Thus,

p
TT ��;�;2;1 = (B�B0)

�1
B��ve�

0
1�

�1 + op (1) ,

where

�ve =

2664
�01

V E1
p
T
...

�0N
V EN
p
T

3775 .
Next let us consider T ��;�;3. By similar steps as in the proof of Lemma 1 (iv), we can show that d̂e;sur� de =
�d + op

�
T�1=2

�
where �d is comprised of the diagonal elements of 
ee � �e. Thus,

T ��;�;3 =
1

2

�
B̂ols�̂B̂

0
ols

��1
B̂ols�̂

h
d̂e;sur � de

i
�̂1�̂

�1 =
1

2
(B�B0)

�1
B��d�1�

�1 + op

�
T�1=2

�
.

Combining these results yields

p
T
�
�̂� (�)� �

�
= ���;� + op (1) ,

where

���;� = ��;� + (B�B
0)
�1
B��ve�

0
1�

�1 +
1

2
(B�B0)

�1
B�JB vec (
vv � �v)�01��1

+
1

2
(B�B0)

�1
B��d�1�

�1.

By Lemma 3,
��;� = �	;ols + (B�B

0)
�1
B�
ez�

�1 � (B�B0)�1B�
ev��1v �.

To deal with the variance and sole asymptotic covariance term note that

lim
T!1

E
�
�ve�

0
ve

�
= �1, (23)

and
lim
T!1

E
�
!ev�

0
ve

�
= �KN�2. (24)

From the proof of Theorem 1,
lim
T!1

E
�
��;��

0
�;�

�
= V�̂;�.

The next variance term to consider

vec
�
(B�B0)

�1
B��ve�

0
1�

�1
�

d�! N
�
0;��1�1�

0
1�

�1 
 (B�B0)�1B��1�B0 (B�B0)�1
�
,

by equation (23). Next since
p
T vec (
vv � �v)!d N (0; (IK2 + �K;K) (�v 
 �v)) then,

vec

�
1

2
(B�B0)

�1
B�JB vec (
vv � �v)�01��1

�
d�! N

�
0;V�T ;�;2;2

�
,
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where

V�T ;�;2;2 =
1

4

�
��1�1�

0
1�

�1 
 (B�B0)�1B�JB (IK2 + �KK) (�v 
 �v) J 0B�B0 (B�B0)
�1
�
.

Finally, since
p
T vec (
ee � �e)!d N (0; (IN2 + �N;N ) (�e 
 �e)), then

vec

�
1

2
(B�B0)

�1
B��d�1�

�1
�

d�! N
�
;
1

2
��1�1�

0
1�

�1 
 (B�B0)�1B��2e�B0 (B�B0)
�1
�
.

The sole asymptotic covariance term is,

lim
T!1

E
�
�
�
���1v 
 (B�B0)�1B�

�

ev�

0
ve

�
��1�1 
 (B�B0)�1B�

�0�
= �

�
���1v 
 (B�B0)�1B�

�
�KN�2

�
�01�

�1 
 �B0 (B�B0)�1
�
,

by equation (24).

Proof of Theorem 7. Similar to the proof of Theorem 4, we may rely on standard matrix calculus results.
Note that the �rst and third elements of the score are unchanged from the a¢ ne model. For the second
element of the score,

@`� (��)

@�i
= � 1

�2i

TX
t=1

ei;t (�v�i � (�Zt�1 + vt)) ,

which may be stacked to form

@`� (��)

@b
= vec

�
(�Z� + V )E

�0��1e
�
�
�
vec
�
�vB�

�1
e

�
� (E��T 
 �K)

�
.

By similar steps we may obtain the fourth and �fth elements of the score vector. Similarly, The (1,1), (1,3)
and (3,3) elements of the information matrix are unchanged from the a¢ ne model. The (2,2) element is,

@2`� (�")

@�i@�
0
i

= �
TX
t=1

1

�2i
(�v�i � (�Zt�1 + vt)) (�v�i � (�Zt�1 + vt))

0 �
TX
t=1

1

�2i
e�i;t

@ (�v�i)
0

@�i
,

and
@2`� (�")

@�i@�
0
j

= 0, i 6= j.

Stacking these results and utilizing Lemma 1 yields,

lim
T!1

�
� 1
T

�
E
�
@2`� (B;�;	;�v; �e)

@b@b0

�
= bdiag[NK;NK];[K;K]

�
��2i

�
���0 +�v +�v�i�

0
i�v � �v�i�01�0 � ��1�0i�v

��
.

The rest of the elements may be obtained in a similar fashion. Finally, we may utilize standard results on
inverses of partitioned matrices to obtain the inverse information matrix.

Proof of Corollary 2. This follows by Theorem 7 and standard properties of one step estimators. See, for
example, van der Vaart (1998).



Efficient Regression Based Estimation of DAPMs 46

References

Adrian, T., and E. Moench (2008): �Pricing the Term Structure with Linear Regressions,� Federal
Reserve Bank of New York Sta¤ Reports, 340.

Amihud, Y., C. M. Hurvich, and Y. Wang (2009): �Multiple-Predictor Regressions: Hypothesis Test-
ing,�Review of Financial Studies, 22(1), 413�434.

Ang, A., and M. Piazzesi (2003): �A No-Arbitrage Vector Autoregression of Term Structure Dynamics
with Macroeconomic and Latent Variables,�Journal of Monetary Economics, 50(4), 745�787.

Burnside, A. C. (2009): �The Cross-section of Foreign Currency Risk Premia and Consumption Growth
Risk: A Comment,�Working paper, Duke University, Department of Economics.

Burnside, C. (2010): �Identi�cation and Inference in Linear Stochastic Discount Factor Models,�NBER
Working Paper 16634, National Bureau of Economic Research, Inc.

Campbell, J. Y. (1987): �Stock Returns and the Term Structure,�Journal of Financial Economics, 18(2),
373�399.

(1996): �Understanding Risk and Return,�Journal of Political Economy, 104(2), 572�621.

Campbell, J. Y., A. W. Lo, and A. C. MacKinley (1997): The Econometrics of Financial Markets.
Princeton University Press, Princeton.

Chen, N.-F., R. Roll, and S. A. Ross (1986): �Economic Forces and the Stock Market,� Journal of
Business, 59(3), 383�403.

Chen, R., and R. Kan (2004): �Finite Sample Analysis of Two-Pass Cross-sectional Regressions,�Working
paper, University of Toronto.

Cochrane, J. (1996): �A Cross-sectional Test of an Investment-Based Asset Pricing Model,� Journal of
Political Economy, 104(3), 572�621.

(2005): Asset Pricing. Princeton University Press, Princeton, Revised edition.

Cox, J. C., J. E. Ingersoll, and S. A. Ross (1985a): �An Intertemporal General Equilibrium Model
of Asset Prices,�Econometrica, 53(2), 363�384.

(1985b): �A Theory of the Term Structure of Interest Rates,�Econometrica, 53(2), 385�407.

Dai, Q., and K. Singleton (2000): �Speci�cation Analysis of A¢ ne Term Structure Models,�Journal of
Finance, 55(5), 1943�1978.

(2002): �Expecations Puzzle, Time-Varying Risk Premia, and A¢ ne Models of the Term Structure,�
Journal of Financial Economics, 63(3), 415�441.

Duffee, G. R. (2002): �Term Premia and Interest Rate Forecasts in A¢ ne Models,�Journal of Finance,
57(1), 405�443.

Fama, E. F., and K. R. French (1992): �The Cross-section of Expected Stock Returns,� Journal of
Finance, 47(2), 427�65.

Fama, E. F., and K. R. French (1993): �Common Risk Factors in the Returns on Stocks and Bonds,�
Journal of Financial Economics, 33(1), 3 �56.

Fama, E. F., and J. D. MacBeth (1973): �Risk, Return, and Equilibrium: Empirical Tests,�Journal of
Political Economy, 113(3), 607�636.

Ferson, W. E., and C. R. Harvey (1991): �The Variation of Economic Risk Premiums,� Journal of
Political Economy, 99(2), 385�415.

Gibbons, M. R. (1982): �Multivariate Tests of Financial Models: A New Approach,�Journal of Financial
Economics, 10(1), 3�27.



Efficient Regression Based Estimation of DAPMs 47

Gibbons, M. R., and W. Ferson (1985): �Testing Asset Pricing Models with Changing Expectations and
an Unobservable Market Portfolio,�Journal of Financial Economics, 14(2), 217�236.

Hansen, L. P., and R. J. Hodrick (1983): �Risk Averse Speculation in the Forward Foreign Exchange
Market: An Econometric Analysis of Linear Models,� in Exchange Rates and International Macroeco-
nomics, NBER Chapters, pp. 113�152. National Bureau of Economic Research, Inc.

Harvey, C. R. (1989): �Time-varying Conditional Covariances in Tests of Asset Pricing Models,�Journal
of Financial Economics, 24(2), 289�317.

(1991): �The World Price of Covariance Risk,�Journal of Finance, 46(1), 111�157.

Jagannathan, R., and Z. Wang (1996): �The Conditional CAPM and the Cross-section of Expected
Returns,�Journal of Finance, 51(1), 3�53.

(1998): �An Asymptotic Theory for Estimating Beta-Pricing Models Using Cross-sectional Regres-
sion,�Journal of Finance, 53(4), 1285�1309.

Kandel, S. (1984): �The Likelihood Ratio Test Statistic of Mean-variance E¢ ciency without a Riskless
Asset,�Journal of Financial Economics, 13(4), 575�592.

Kleibergen, F. (2009): �Tests of Risk Premia in Linear Factor Models,�Journal of Econometrics, 149(2),
149�173.

(2010): �Reality Checks for and of Factor Pricing,�Discussion paper, Brown University.

Lettau, M., and S. Ludvigson (2001): �Resurrecting the (C)CAPM: A Cross-sectional Test When Risk
Premia Are Time-Varying,�Journal of Political Economy, 109(6), 1238�1287.

Merton, R. C. (1973): �An Intertemporal Asset Pricing Model,�Econometrica, 41(5), 867�887.

Nagel, S., and K. J. Singleton (2010): �Estimation and Evaluation of Conditional Asset Pricing Mod-
els,�Journal of Finance, Forthcoming.

Petkova, R. (2006): �Do the Fama-French Factors Proxy for Innovations in Predictive Variables?,�Journal
of Finance, 61(2), 581�612.

Piazzesi, M. (2003): �A¢ ne Term Structure Models,�Handbook of Financial Econometrics.

Roll, R. (1985): �A Note on the Geometry of Shanken�s CSR T2 Test for Mean/Variance E¢ ciency,�
Journal of Financial Economics, 14(3), 349�357.

Rothenberg, T. J., and C. Leenders (1964): �E¢ cient Estimation of Simultaneous Equation Systems,�
Econometrica, 32(1), 57�76.

Shanken, J. (1985): �Multivariate Tests of the Zero-beta CAPM,�Journal of Financial Economics, 14(3),
327�348.

(1986): �Testing Portfolio E¢ ciency when the Zero-beta Rate is Unknown: A Note,� Journal of
Finance, 41(1), 269�276.

(1992): �On the Estimation of Beta-Pricing Models,�Review of Financial Studies, 5(1), 1�33.

Shanken, J., and G. Zhou (2007): �Estimating and Testing Beta Pricing Models: Alternative Methods
and their Performance in Simulations,�Journal of Financial Economics, 84(1), 40�86.

Singleton, K. (2006): Empirical Dynamic Asset Pricing. Princeton University Press.

van der Vaart, A. W. (1998): Asymptotic Statistics. Cambridge University Press, New York.

Vasicek, O. (1977): �An Equilibrium Characterization of the Term Structure,�Journal of Financial Eco-
nomics, 5(2), 177�188.

White, H. (2001): Asymptotic Theory for Econometricians. Academic Press, San Diego, Revised edition.


	Introduction
	The Affine Model
	Pricing Kernel Assumptions and Return Generation
	Assumptions and Further Notation

	Estimation and Inference in the Affine Model
	Three Stage Estimation
	Four Stage Estimation
	Comparison to Static Models
	Constant Prices of Risk

	Efficiency in the Affine Model
	Time Varying Prices of Risk
	Constant Prices of Risk
	Comparison to Static Models

	The Exponentially Affine Model
	Pricing Kernel Assumptions and Return Generation
	Three Stage Estimators
	Efficiency in the Exponentially Affine Model

	Applications
	Lettau and Ludvigson (2001)
	Campbell (1996)

	Conclusion
	Affine Model: Feasible GLS
	Affine Model: Maximum Likelihood Estimation when e is Unrestricted
	Exponentially Affine Model: Asymptotic Properties of Regression Estimators
	Time Varying Prices of Risk
	Constant Prices of Risk

	Exponentially Affine Model: Score Vector and Information Matrix
	Time Varying Prices of Risk
	Constant Prices of Risk

	Affine Model/Exponentially Affine Model: Inference on B

	Appendix B: Preliminary Lemmas

