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Abstract

A procedure for testing equality across nonparametric regressions is proposed. The proce-
dure allows for any dimension of the explanatory variables and for any number of subsamples.
We consider the case of random explanatory variables and allow the designs of the regressors
and the number of observations to differ across subsamples. The division into subsamples is
defined through a variable C' which can be either fixed or random. In the case of a random
C, our procedure is a general test of significance for qualitative variables in a nonparametric
regression. In the case of a fixed C', our procedure provides a “nonparametric analysis of
covariance.” In both case, the test is a one-sided normal test and is consistent against all

alternatives. We study its small sample behavior through Monte-Carlo simulations.

Keywords: Hypothesis testing, Nonparametric regression, Qualitative variables, Covariance

analysis.

JEL classification: Primary C52; Secondary C14.

Résumé

Une procédure pour tester 1’égalité d’une régression non-paramétrique entre différents
groupes est proposée. La procédure autorise des régresseurs multidimensionnels et un nombre
quelconque de groupes. Nous considérons des variables explicatives aléatoires et envisageons
le cas o les valeurs de ces variables et le nombre d’observations différent suivant les groupes.
La division entre groupes est défini & partir d’une variable C' qui peut étre fixe ou aléatoire.
Lorsque C' est aléatoire, la procédure est un test de significativité de variables qualitatives
dans une régression non-paramétrique. Lorsque C' est fixe, la procédure est analogue a une
analyse de covariance non-paramétrique. Dans les deux cas, nous obtenons un test normal
unilatéral consistent contre toute alternative. Nous étudions son comportement en petits

échantillons par des simulations.

Mots-Clés: Test d’hypothése, Régression non-paramétrique, Variables qualitatives, Analyse

de covariance.



An equality test across nonparametric regressions

Pascal Lavergne

1 Introduction

A classic problem in econometrics is determining whether the form of a regression function re-
mains the same for two or more separate subsamples. Beginning with Chow’s (1960) work, a
lot of attention has been devoted in the econometric literature to testing equality of regression
functions. The related tests have been used in various economic problems. Some instances are
testing for gender or race discrimination in earnings functions, testing for stability over time of
economic relationships, and in particular testing for poolability of panel data, testing of dise-
quilibrium models, testing for switching of firms’ strategies in microeconometric models derived
from game-theory, .... The classical testing procedures assume a parametric form, usually a
linear one, for the regression functions under test. But as is well-known, specifying incorrect
parametric forms can lead to serious errors in inference. Indeed, rejection of the equality hy-
pothesis can be due solely to misspecification of the model. Reversely, overacceptance of the null
hypothesis can appear as a consequence of misspecification. Therefore, it is advisable to use a
testing procedure free of any parametric assumption.

The problem of comparing regression curves in a nonparametric context has been mostly
studied in the particular setup of two subsamples with a one-dimensional regressor. In this case,
it is possible to use the differences in the dependent variable between the two subsamples to
build a test statistic. Hall and Hart (1990) propose a Cramer-von-Mises type statistic while
Delgado (1993) studies a Kolmogorov-Smirnov type statistic. The related procedures require
identical regressor’s designs. Kulasekera (1995) extend Hall and Hart’s procedure to the case of
two curves with different designs of explanatory variables using quasi-residuals, built from use of
a nonparametric regression estimated on the first subsample and applied to the observations of
the second subsample. Alternatively, one can directly use the mean squared differences between

nonparametric regression estimates. This idea has been worked out in the fixed design case, when



the two curves are assumed to be equal up to a known parametric transformation by Héardle
and Marron (1990), and under the assumption of normality of the residuals by King, Hart and
Wehrly (1991). More recently, Young and Bowman (1995) have proposed a test that compares
several regressions depending on a one-dimensional random variable with normal residuals.

However, in applied econometrics, we often consider more than one explanatory variable and
deal simultaneously with more than two subsamples. More crucially, it is scarcely the case that
we have control on the design of explanatory variables. In view of practical use in econometrics,
this paper proposes a general asymptotic joint test of equality across nonparametric regressions
that is consistent against any alternative to the null hypothesis. It extends previous work in
many directions. First, our assumptions does not require normality or homoscedasticity of the
regression errors and residuals are allowed to have different distributions across subsamples.
Second, it allows for any dimension of the explanatory variables. Third, we deal with any number
of subsamples. Fourth, we consider the case of random explanatory variables and allow the
designs of the regressors and the number of observations to differ across subsamples. Fifth, the
division into subsamples is defined through a variable which can be either fixed or random. As
a leading case, we consider the situation where a random qualitative variable defines the split
into different subsamples, as frequently arises in economic applications. Qur procedure is then a
general test of significance for qualitative variables in a nonparametric regression. It supplements
previous work on testing for omitted continuous variables in nonparametric regression, see Ait-
Sahalia, Bickel and Stoker (1994), Fan and Li (1996), Gozalo (1995) and Lavergne and Vuong
(1995). We subsequently extend our procedure to the setup where the split depends on a fixed
qualitative variable. Our procedure here provides a “nonparametric analysis of covariance” that
has numerous potential applications in and outside the field of econometrics.

For designing a general procedure, we formalize the problem as one of comparison of only
two nested models, irrespective to the number of subsamples considered. Thus we can build
a test statistic that compares nonparametric estimators under the null model and under the
alternative. Such a comparison is analogous to the one performed in many consistent testing
procedures for parametric specification of regression functions or significance of continuous co-
variates. However, our work has a distinctive feature with respect to previous work on testing
against a nonparametric alternative. Indeed, tests of a parametric specification using nonpara-

metric estimation use the fact that the parametric estimator in the null model has a faster rate



of convergence than the nonparametric estimator in the alternative model. Similarly, tests for
significance of continuous variables in nonparametric regression crucially rely on the difference
in pointwise rates of convergence of the estimators in the competing models, which is related to
the different dimension of the regressors sets. In contrast, we argue that in the particular test-
ing issue that we address, there is no justification for such discrepancy in rates of convergence.
Moreover there is no need to require it for deriving a consistent testing procedure. Therefore, we
consider equal rates of convergence for estimators in each model and we investigate thoroughly
the implications of this peculiarity.

The paper is organised as follows. In Section 2, we consider the leading case where the
splitting variable is random. We set up our testing framework and derive the basic statistic for
testing equality of nonparametric regression functions. We characterize its asymptotic distribu-
tion, not only under the null hypothesis but also under a sequence of local alternatives. We then
derive a consistent testing procedure and discuss its implementation. In Section 3, we treat the
case of a fixed splitting variable and relate it to a nonparametric analysis of covariance. We
show how the assumptions of Section 2 can be weakened to deal with cross-section and panel
data. Section 4 studies the small sample behavior of our test through some simulations. The

Conclusion summarizes our main findings. All the proofs are relegated to the last Section 6.

2 Case of a random C'

2.1 The testing framework

Let C be a discrete variable on C = {1,...,C}, with corresponding strictly positive probabilities
P1y .-, pa- Let {(C, X, Y5), e =1,...,n} be a sample of i.i.d.s observations from (C,X,Y)

taking values on C x IRP x IR. Consider the general regression model
YZ':R()(Z',CZ')—I—UZ'7 EU|X;,Ci)=0 1=1,...,n, (2.1)

where R(-,-) denotes the regression function of ¥ on X and C. Let K(-) be a kernel on IRF and
h,, a bandwidth. For any ¢, a nonparametric kernel estimator of f.(-), the conditional density of

X given (' = ¢, is

o) = (neht) ™ 3K (96 ;HX) 0Ci=d, Ve,




where n, = Y7, #[C; = ¢]. A nonparametric kernel estimator of R(-, c) is obtained as

HPYTES L VIK (SR MG =
R, (z,¢) = (reh?)™ Y Skl d Vz € IRP.
fae(2)

In the formulas, we use non-smoothing weights for the qualitative variable C'. If there exists a

natural ranking of the modalities of C' that is likely to be relevant in the regression model, non-
smoothing weights can be replaced by smooth ones without changing the estimators’ properties,
see Delgado and Mora (1995).

If we overlook the information concerning the splitting as given by the C;’s, we would

consider instead the regression model
YZ':T‘()(Z')—I—UZ'7 E[ui|Xi]:0, r=1,...,n. (2.2)

Thus we will estimate the function r(-) by its kernel estimate on the whole sample

(nh2) ™t Yoiy VK (52
ful®)

Vo € IRP,

ra(2) =

where

Falz) = (b)) VYK (S Vo € IRP.
@ =LK ()

These estimators converge respectively to r(-) = Zgl pR(-,¢)f:(-)/ f(), the conditional expec-
tation of Y given X, and f(:) = le pof(+), the marginal density of X.

The hypothesis of interest is the constancy of the regression function R(-,C' = ¢) for different
values of ¢, i.e. across the subsamples defined by the variable C'. Equivalently, it means that we
are not loosing any information by disregrading the C;’s and estimating the simpler regression

Model (2.2) instead of (2.1). Thus the null hypothesis can write
Hy: R(X,C)=r(X) as.

This intuitive formulation enables us to deal with the testing problem as a comparison of two
nested models, whatever the number of subsamples is.! Because we aim to compare the unknown
regression functions R(X,C) and r(X), we will rely on their respective estimators R, (X, C)

and r,(X). We are using the same amount of smoothing, as well as the same kernel, for both

!Quade (1982), Young and Bowman (1995) and Koul and Schick (1996) also use a pooling model to built tests
of equality of regression functions. The latters consider only the two samples case and design testing procedures

that are consistent against one-sided alternatives only.



estimators. There are many reasons for this choice. First, from an estimation viewpoint, there
is no reason why we should employ different parameters in each model. The sample size is the
same in both models. Moreover, it is known that a discrete variable does not affect the rate
of convergence of nonparametric estimators and does not create any bias in estimation, see
Bierens (1987) and Delgado and Mora (1995). Similarly, from their definitions, both functions
r(-) and R(-,-) have similar smoothness properties, so that the order of the kernel should be the
same for both models. Therefore, if one wants to select the parameters with respect to some
optimality measure, the resulting bandwidths, while depending on possibly different unknown
constants, should asymptotically follow the same rate of decrease to zero.? Second, from a testing
viewpoint, using different amount of smoothing for each of the two models may lead to incorrect
inferences. Indeed, it is likely to attenuate the discrepancies between the regression functions if
the alternative were to hold. Conversely, it may introduce spurious differences between the two
models when they are in fact equivalent.?

The last point is illustrated by Figure 1. From 200 observations generated as in Section 4
under the null hypothesis, we estimate separate regression functions for the two subsamples and
compare them first (cf. Figure 1a) to the pooled estimated curve with the same bandwidth and
second (cf. Figure 1b) to an oversmoothed pooled estimated curve (pooled estimates are repre-
sented as discontinuous lines). In Figure la, the pooled estimated curve always appears to lie
in between the two separate regression functions. This is because the nonparametric estimators
fulfill r,,(+) = Y, (ne/n)Ry(+, ¢) frc(-)/ fu(+), which is the empirical counterpart of the equality
r() = Y7, pR(-,¢) fo(-)/ f(-). In contrast, when oversmoothing the pooling model, the pooled
estimated curve lie within some intervals either below or above both separate curves. Further-
more, in the tails where only observations from one group are available, the pooled estimated
curve from Figure 1b can markedly differ from the estimator on this subsample, while in Figure
la the two are identical. Therefore, using the same bandwidth and kernel parameters seems to
be the easiest way to put both model on equal footing in the testing procedure. This also con-
stitutes a practical advantage for implementation, because the behavior of estimators under the

null and alternative model are driven by only one free smoothing parameter. By contrast, other

2We could also allow for different bandwidths in our results such that their ratio tends to a non-null constant.

However, the determination of this constant itself would be a difficult issue.

®Young and Bowman (1995) give supplementary justifications for using similar amount of smoothing in the

two models.



testing procedures using nonparametric estimation, i.e. parametric specification tests against a
nonparametric alternative or significance testing of continuous variables in nonparametric regres-
sion, heavily rely on the fact that the estimator in the null model is independently determined
from the competing estimator under the alternative.

As the null hypothesis of interest corresponds to the non-significance of the discrete variable
C', we can built our test statistic in a way similar to Lavergne and Vuong (1995), who deal with
significance testing of a continuous variable. Let u denote the difference between Y and r(X).
For testing Hg and obtaining a procedure consistent against any alternative, we consider an
estimate of F [E?(u|X,C)¥(X,C)] = E {(R(X7 C) - r(X))* (X, C)}, which is zero under Hj
and strictly positive under any alternative to Hy, for any function W(.X, (') that is strictly positive
and non zero on the support of (X, C'). Because of the form of the kernel estimate, it is convenient
to use f2(X)fc(X) as a weighting function. This device is analogous to the one used in other
semiparametric estimation and testing problems, see e.g. Powell, Stock and Stoker (1989), Fan
and Li (1996) and Lavergne and Vuong (1995). If the quantities u; f(X;) were observed, a sample
analog of E [F?(uf(X)|X,C)fe(X)] = Euf(X)E(uf(X)|X,C)fc(X)] would be

1 1 /X—X:
Von = W Za:uzu]f(Xz)f(X])EK ( hn ]) Wi,

where wy;; = nnci;_ll][[Ci = (], 3, denotes summation over the arrangements of m distinct ele-
ments {iy,...,4,} from {1,...,n}, and n("™ = n!/(n—m)!is the number of these arrangements.
Now, because we do not know the u;’s and f(X;)’s, we replace them by their kernel estimates.

Dropping suitable terms as in Lavergne and Vuong (1995), we obtain the statistic

1

Vo= —3 2 (Vi = V) (V) = YD) Ko Kt K i i (2.3)

n!

where I(m']‘ = (1/h%)[§7 [(XZ — X]‘)/hn].4

2.2 Asymptotic behavior of V,

Theorem 1 gives the behavior of V,, under the hypotheses

Hi,:  R(X,C)=r(X)+68,d(X,0),

*Lavergne and Vuong (1995) show that dropping similar indices in the sum does not change the asymptotic
distribution of their statistic but reduces its small-sample bias. In our case; dropping similar indices is essential

to obtain the asymptotic distribution of our statistic.



where {é,,n =1,...} is a sequence of reals from [0, 1]. The fixed alternative corresponds to
5, = 1 V¥n, while the null corresponds to §, = 0 Vn.> Moreover, this general formulation allows
to deal with some local alternatives whose rates of convergence to Hy are given by the rate of
decrease of 4,, to 0.

For stating and commenting our results, we need some definitions and notations. We let
ot (X)= F[u*|X,C]=F {(Y —r(X))?|X, C} and we label it the “conditional variance” (with
respect to both X and C') from Model (2.2). We let weer = i][[C = ("] and define # as the
convolution operator, i.e.

(K % K)(u) = /]Rp K (6K (u— t) dt.

We call U? the class of integrable uniformly continuous functions from IR’ to IR, and DL, the
class of m-times differentiable functions from IR? to IR with derivatives of order m that are
uniformly Lipschitz continuous of order ¢, ¢ € (0,1). Moreover, we define K2, m > 2, as the
class of integrable functions K from IRP to IR with compact support, satisfying [K(s)ds = 1

and

P
/3?1 .57 K(s)ds =0 for0 < Zai <m-1°

=1
Assumption 2.1 : {(C;, X, Y:), i =1,...,n} is ani.i.d sample from a random variable (C, X,Y)
on C x IRP x IR, where C is a discrete variable on C = {1,...,C}, with corresponding strictly

positive probabilities py, ..., ps, and where Y has finite eight moment.

Assumption 2.2 : (i) For each ¢ = 1,...,C, f.(-) and R(-,¢)f.(-) belong to UP N Dy, ., and
also o2(-) fo(-) belongs to UP. (i) K € KB, ., m > 2

m7q’

Theorem 1 : Under Assumptions 2.1 and 2.2, if nh — +oo and nhﬁ/zhi(mﬂ) — 0, then as

n — 400,
(2) nh??v, L N(Ap,w?) if (%nhf/z — A < o0,
(21) nhﬁ/QVn BTN if (%nhf/z — 400,
where 1=  [@(X,C) A(X) fo(X)], w? = 2 [0, (X)02,(X) /' (X) Feer (X)]

Ecer(X) = / [K(t)wccl _ (K % K)(1)

and g*(X) = Z§:1 P f2(X).

SWe let d(X,C) =0 if 6, = 0.

5The unity integral assumption is actually not necessary, but we impose it as it is not restrictive.



We first discuss our assumptions. Assumption 2.1 allows for dependence between (X,Y) and
C'. In particular, the distribution of the regressors can vary across subsamples.” Similarly, the
residuals distributions are not restricted to be identical for different values of C. The residuals
can also be heteroscedastic with respect to X. Assumption 2.2 requires smoothness conditions
on the underlying functions and kernels that are standard in nonparametric estimation. The
compactness of the support of K (-) could be relaxed, but this would lead to more tedious proofs.
Our assumptions on the bandwidth include the usual ones, and specifically imply that h, goes
to zero as the sample size grows, while its rate of decrease is restricted by nhf — +o0. The
last condition relates the rate of convergence of the statistic and its bias rate. When comparing
two nonparametric regression curves, Hardle and Marron (1990) obtain a statistic with a bias of

(m+4q)

order (1/nh?). In our context, the bias is of order he and is controlled through the condition

nhﬁ/zhi(mﬂ) — 0. With respect to the optimal rate for estimating the regression function, i.e.
hy, oc n~VIP+2(m+9)] this implies undersmoothing as is usual in semiparametric estimation, see
Robinson (1988) and Powell, Stock and Stoker (1989) among others.

As shown in the proofs, the behavior of V,, depends on whether the null hypothesis holds or
not. Under the alternative, V,, asymptotically converges to a normal distribution with the usual
V/n-rate of convergence. But under the null, the asymptotic distribution of V,, has both a null
expectation and a zero asymptotic variance. This degeneracy leads us to consider higher-order
terms in the asymptotic expansion of V,,. For this we use a central limit theorem for degenerate
U-statistics, see Fan and Li (1996). Similar situations also arise in other studies of testing
problems, as parametric specification testing using functional estimation or significance testing
of continuous covariates in nonparametric regression. In such procedures, one also compares
two nested models with statistics similar to Vj,, where the elements u; of the null model are
replaced by parametric or nonparametric estimators. But because in the latter cases estimators
of the null regression model have a pointwise faster rate of convergence than estimators in the
alternative general model, plugging-in estimators in Vj,, does not affect its asymptotic behavior.
In contrast, in our case, the estimators in the general Model (2.1) and the restricted Model (2.2)
have similar pointwise rates of convergence. Consequently, the asymptotic behavior of V,, differs
from the one of Vj,. Nevertheless, our results show that in our setup plugging-in estimators of u;

influences the asymptotic variance under the null hypothesis, but affects neither the asymptotic

"See the end of Section 3.1 for a discussion on this point.



expectation nor the rate of convergence under Hy.

2

In writing the asymptotic variance w*, we have adopted the following convention:

E (02 (X)o2 (X)U(X)] = 3 pperE [02(X) 0% (X)W(X)]

c,c!

= 3 pepe / 02 (2)0% (VU (2) [z = '] f.(2) fula’) do de’(2.4)

The asymptotic variance of V,, under the null hypothesis has a quite complicated form. First,
it depends on the cross-products between o2(-) and ¢%(-) for different ¢ and ¢/, that is on
the cross-products of “conditional variances” from Model (2.2) between different subsamples.
Second, it explicitely depends on the difference in the designs between subsamples, through
the ratios f.(-)/f(+) and ¢*(-)/f*(-). The first quantity is the ratio of the conditional density
of X given C' = ¢ to the “average” marginal density f(-) = zle pefo(+). The second equals
(Zle pcff(x)) /f?(-) and can be given the interpretation of a “normalized variance” of f.().
In the case where X is independent of C', both ratios equal one for any z and ¢. But, as we do not
require such an independence assumption, the designs may differ markedly across subsamples.
Hence, in general, these ratios introduce very different weightings across the subsamples and the
values of the explanatory variables. Therefore, even in the simple case with two subsamples with
identical sizes, it seems impossible to find a kernel that would minimize the variance irrespective
of the designs of the explanatory variables.

Had we used different amounts of smoothing in the two models, and specifically imposed
oversmoothing in Model (2.2) with respect to Model (2.1), the results of Theorem 1 would still

hold. But the asymptotic variance of V,; would then reduce to the one of Vj,,, i.e.
W= 2B [oR(X)ob (X) FHX) b / K2(1) dt
c
_ 2/1(%) dt Z/af(X)f4(X)f3(X) dx.
c=1

It is noticeable that the variance w? has none of the features of the variance w?. It does not
depend at all on the cross-products of the conditional variances. It does not explicitely depend
on the differences in the designs (though obviously the different f.(-), c = 1,...,C, play a role in
integration). Moreover, it is also independent of the probabilities p., ¢ = 1,...,C, so that each

value of € plays the same role in the variance whatever its probability of occurence is. These



findings appear as supplementary justifications for not using different amounts of smoothing in
each model.

More generally, one could derive the asymptotic variance when using a specific bandwidth
for each model, with their ratio converging to a finite constant. Varying this constant gives more
or less weight to the different terms in the asymptotic variance. In general, we cannot say which
choice of bandwidths would minimize this variance. Oversmoothing of the pooling model comes
to the specific choice of a bandwidths’ ratio converging to zero. This leads in particular to ignore
some interaction terms in the asymptotic variance, which are however present in finite samples.
Our approach explicitely takes these interaction terms into account and aims to control for them

by imposing identical bandwidths.

2.3 Testing procedure and extensions

2

From a reasoning analogous to the one leading to (2.3), the variance w® can be estimated as

2 .. I .
wy = mo) S i = V) (Y = Vi) (Y = YOV, = Vi) Kpin K it K 1 K i K i i
where
2
) T (X5) N 10,0
B = [, (X)) > b, / K (Dwyi; — 2(K  K) () 2202 ey v k(1) 2 dt,
i = A[fn(X5) = by [ (t)wnij — 2( )(t) 705 ( )()fﬁ(Xi)

gi(z) = zle (ne/n)f2.(x), Yo € IRP, and b, is a trimming parameter such that b, = o(1).

An alternative estimator, which is computationally less demanding but more biased in small

samples, is
2 .
wy = G D uni FR (X o (X ) Ko B (2.5)
where u,; = Y, — r,(X;). The consistency of both forms of w% can be proven using similar

arguments as in the proof of Theorem 1 and as in Part (i) of Theorem 1 of Lavergne and Vuong
(1996) for the treatment of the trimming parameter. In particular, an assumption on b, that
ensures consistency of w? is that b, sup _gpr | fr.c(2) = fo(2)] = 0p(1), for all ¢. In view of our
Assumption 2, sufficient conditions are (b,/nh2)™1 = o(1) and b;1A™T7 = o(1), see Lavergne

and Vuong (1996) for details.®

80ur simulation results indicate that the trimming parameter, though necessary in theory, is not crucial in

practice.

10



Therefore, we can propose nhp/QVn/wn as a test statistic for testing equality across non-
parametric regressions. From Theorem 1, by letting §,, = 0, this test statistic is asymptotically
N (0,1) under the null hypothesis, and by letting 6, = 1, it diverges to +oo under any fixed al-
ternative to Hp. Thus, for implementing the testing procedure, one chooses a critical value from
the standard normal distribution for some significance level. If the value of the test statistic is
larger than this critical value, then one rejects the null hypothesis of equality of the regression
functions. If the value of the test statistic is smaller than the critical value, then one accepts the
null hypothesis, i.e. one concludes to the non-significance of the qualitative variable €' in the
regression function of Model (2.1). The test is therefore a one-sided normal test and is consis-
tent against any fixed alternative. In addition, by Theorem 1, the test has power to detect local
alternatives of the type Hy, approaching the null at a rate slower than (nhp/Q)_l/Q.

Different extensions of the procedure can be proposed. First, as €' is a qualitative random
variable with any fixed number of possible values, the procedure can be applied to test the
significance of any set of qualitative variables in a nonparametric regression. The variable (' is
then used to recover any combination of the values of the initial discrete variables. Second, one
can easily introduce discrete variables in the regressors that are not under test. That is, we can
consider (X, D) instead of X, where D is a set of discrete covariates. In that case, one should
introduce D in the different functions, so that R(X,C) becomes R(X,D,C), r(X) becomes
r(X, D), ... The rate of convergence of V,, will be unaffected as the discrete variables has no in-
fluence on the rate of convergence of nonparametric estimators. The asymptotic null distribution
will be similar to the one of Theorem 1, with the arguments D added in the expression of w?. As
noted before, we can equivalently use either smooth or non-smoothing weights for the discrete
variables in D, as well as for those in ', without affecting the asymptotic properties of our pro-
cedure. Third, as detailled in the next section, both assumptions of independent observations

and identically distributed observations can be relaxed to some extent.

3 Case of a fixed ¢

3.1 Cross-section data

There exist situations where the variable defining the division of subsamples is not random, for

instance when testing for poolability of cross-section data, such as those concerning different
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industries and/or different countries. This is also true for experiments in which one can control
for some factors. The general results from the previous section can be adapted to be used in
this context. Specifically, let C' be a variable taking integer values in {1,...,C'}. For each ¢, we
assume that we have at hand a n. i.i.d. sample from a random variable (X.,Y.) on IRP x IR,
such that X. has marginal density f.(-). We employ similar notations as in Section 2, so that,
for each ¢, the sample from (X,,Y,) is denoted {(Xi,Yi), RTINS nc/} and

Zgzl n. = n. We then consider the general regression model
YZ'IR(XZ',C)—I—UZ' E[UZ’|XZ']:0 1=1,...,n, (3.1)

so that now R(X;,c) denotes the regression function of Y. on X.. For each ¢, nonparametric
kernel estimators of R(-,¢) and f.(-) are defined as in the previous section. Overlooking the
information given by C' and assuming falsely that the observations constitute a i.i.d. sample

leads to consider the regression model
YZ':T‘()(Z')—I—UZ'7 E[ui|Xi]:0, r=1,...,n. (3.2)

Nonparametric kernel estimators of f,,(-) and r,(-) are defined as in the previous section, but their
o

interpretation changes radically. Here f,(-) estimates f(-) = >__ n.f.(-)/n, which is no more
the marginal density of an observed random variable X', but the density of a hypothetical variable
constructed from the different X.’s. Similarly, r,(-) estimates r(-) = ?:1 neR(- ) fo(4)/nf(-),
which is no more a conditional expectation function, but a weighted average of the regression
functions of Y, on X, ¢ = 1,...,C. However, f(-) and r(-) play here exactly the same role as
before, so that we may call them “marginal density” and “restricted regression” by abuse of
language.

While the two models are now interpreted differently, the framework is really similar. The
null hypothesis of interest is still the constancy of the regression function R(-,c) for different
values of c¢. Equivalently, it means that it is possible to pool the data and to estimate the
function R(-,¢) in Model (3.1) through the simpler Model (3.2), even though the densities f.(-)
for different values of ¢ differ. Thus, the null hypothesis of interest can write Hy : R(X,¢) =
r(X) a.s. Ve=1,...,C and the statistic V,, is constructed as in Section 2.1.

Theorem 2 gives our general result for a fixed C'. We let ¢2(X) = F {(Yc —r(X)) X, = X}

and w.s = pic][[c = ('], with p. = (n./n) (which is asumed to be fixed as C'is fixed).
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Assumption 3.1 : Let C be a fized variable taking integer values in {1,...,C}. For ¢ =
1,...,C, each subsample {(XZ'7 Yi)i=1+2 e, ey e nc/} is an i.i.d. sample from a
random variable (X, Y.) on IR? X IR, such that X. has marginal density f.(-) and Y, has finite

eight moment. Moreover, the subsamples are independent.

Theorem 2 : Under Assumptions 3.1 and 2.2, if nh! — 400 and nhﬁ/zhi(mﬂ) — 0, then as

n — 400,
(2) nh??v, L N(Ap,w?) if (%nhf/z — A < o0,

(21) nhﬁ/QVn BTN if (%nhf/z — 400,
where 1 = YL poB [d2(X, ) fA(X) fo(X)], w? = 250, o peper B2 [02(X )0 (X) FHX) Eewr (X)]

FE..(X)= / [K(t)wcc/ — 2(K * K)(t) J;f (())(()) + (K« K+ K)(t) 7

and g*(X) = Zgzl pef2(X).°

Compared to the previous section, we have relaxed the assumption of identically distributed
data across subsamples, but still we assume independent observations across subsamples, which
is typically the case for cross-section data. The proof of Theorem 2 mainly follows the one of
Theorem 1, see Section 6.2 for some brief explanations. From our theorem, it is straightforward
to deduce a testing procedure based on nlﬂ)/QVn/wn7 where w,, is an estimator of the asymptotic

2

variance w* similar to the ones given in the previous section. The test is as before a one-sided

normal test, consistent against any alternative and detects local alternatives of the type Hy,
provided that (%nhﬁ/z — +o0o.
There are some interesting connections between our procedure and analysis of covariance.

The simple analysis of variance model writes
Y: = Be, + Ui, EU] = 0.
For testing the hypothesis 8. = 3,Ve = 1,...,C, the usual testing procedure is built upon

S = (1/71)27% Y. - Y],

°In writing w?, we use the convention in (2.4).
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where Y. = (1/n.) Yl Yil[C; = ¢ and Y = (1/n) 37, Y;. Now S equivalently writes

S = (1/n') 3 (Vi = Vi) (¥; = Yi)—1U[C; = Cj].

iviokel C
Our statistic V,, is analogous to S (with the slight difference that it excludes equal indices in the
sum), but weights the first differences in the dependent variable by quantities that depend on
explanatory variables, namely by K,;; /K, ;K ,;;. Thus our testing procedure provides a "non-
parametric analysis of covariance.” Indeed, it allows to test if there exists any differential effect
of the regressors on the dependent variable across the considered subsamples without imposing
any parametric assumption at the outset.
Three main remarks follow from the interpretation of our procedure as a nonparametric
analysis of covariance. The first remark is related to the choice of weights in the null hypothesis
considered, which writes

>0 peR(X, ¢) f(X) i
21:(7_1 o (X) a.s.Ye=1,...,C.

In the case where the observations constitute a unique random sample, it is meaningful to use

Hy:R(X,c)=

a weighting scheme proportional to p.f.(.). However, in the present setup where C'is fixed, the
use of “frequencies” as weights in writing the null hypothesis is no longer readily interpretable.
Obviously, there exist other equivalent formulations of the null hypothesis of interest, i.e. the
constancy of R(-,c) with respect to ¢, that use different weighting schemes. To each formulation
corresponds a test statistic. The relative merits of the different procedures will generally depend
of the particular data at hand.

The second remark concerns problems in application and interpretation of the procedure.
As noted by Scheffé (1959, p. 198), “it is sometimes said that the analysis of covariance is valid
only if the treatments do not affect the values of the concomitant variables. (...) The dictum
that the analysis of covariance can be used only in this case would thus confine it to a very
restricted situation. (...) The analysis of covariance can be applied to get tests of hypotheses
that have correct significance level, (...) but the sense of using these tests must be considered
separately in each application.” This statement remains true for the nonparametric analysis of
covariance proposed here. Specifically, our analysis allows the density of explanatory variables

to vary across subsamples, so that the “treatments” (i.e. the discrete variable ') may affect
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the explanatory variables.!® Therefore, the procedure is widely applicable, but may give a right
answer to a wrong question. If some of the regressors are “part of the treatment”, e.g. if the
regressors have different supports depending on the values of C', then the null hypothesis Hy is
no longer meaningful. This second remark obviously extends to the case of a random C' treated
in the previous section.

Third, our procedure only applies for testing the strict equality of the whole regression
functions. If one wants to test equality up to some parametric transformations, one should build
a specific test statistic that accounts for this at the outset, as done in Héardle and Marron
(1990). Even in the simple case of testing for parallelism of the regression curves, which is
easily entertained within the linear parametric analysis of covariance framework, adapting our
procedure is not completely straightforward. This and other extensions will be the topic of

further work.

3.2 Panel data

One potential useful econometric application of our test is testing for poolability of panel data.
We consider this problem separately for two main reasons. First, we need to detail the assump-
tions under which our test is applicable. Second, we want to compare our theoretical results
with the ones in Baltagi, Hidalgo and Li (1996), which is to our knowledge the only work to
date that proposes a nonparametric test of poolability for panel data.

Let us consider the panel data model
)/it:Rt(Xit)—l_Uih 1= 17...77”607 t = 17...7T. (33)

At each period t, {Xy,t=1,...,n0} is a i.i.d. sample from X, with density fi(-). The null

hypothesis of interest is the constancy of the regression function R(-) over time, that is

Hy: Ry(X) =r(X) as.

10 A fter the first version of this paper was written, we have discovered an early paper by Quade (1982), who pro-
poses nonparametric analysis of covariance methods. A first analysis, labelled analysis of covariance by matching,
is valid only under the assumption that the distribution of X does not vary conditionally to C. The second one,
named analysis of matched difference, does not require this assumption and is very close in spirit to our analysis,

with the major difference that the bandwidth is considered as fixed.
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where 7(-) = (1/T) YL, fi(-)R:(-)/f(-) and f(-) = (1/T) 2L, f;(-). The statistic V,, here writes

T T (X X\ o (X=X . (X=X
Vi = SO0 = Vi (v = ¥ () g (R ) e (R ) oy

with n = ngT and ), denotes summation over the arrangements of distinct indices {it, jt, kr, [s}.
The results of the previous subsection, where we imposed independence across subsamples, do
not readily apply in this context. Nevertheless, as we argue below, this assumption can be
weakened without changing the results.!’ Thus, the asymptotic behavior of V,, as ng goes to
infinity is given by Theorem 2. Its asymptotic variance is

T T
W= /T 3 X B[ ()R (X) £ B (X))
where

Jt(X)
f(X)

2
Eu = / lT Kt =1t]-2(K * K)(u) + (K * K * K)(u) ‘qu(X)] du
and g(-) = (1/T) Zthl F20)-

The usual way of considering panel data models in econometrics is to see R;(-) as the condi-
tional expectation of Y; given all past explanatory variables { Xy, ..., X;} and a time-independent
latent variable [. This formulation is quite general, and in particular allow for some lagged de-
pendent variable in the regressors, so that further restrictions are usually imposed on the model.
Chamberlain (1984) distinguishes two main restrictions: lack of residual serial correlation and
no structural lagged dependent variables. We here recall the fundamental definitions.

There is residual serial correlation conditional on a latent variable | if Y; is not independent of
{Y1,...,Yi_1} conditional on {X1,..., X, 1}

The relationship of X to'Y is static conditional on a latent variable | if X is strictly exogeneous
conditional on | and if Yy is independent of {X1,..., Xi_1} conditional on X; and l. If the
relationship of X to Y is static conditional on a latent variable [, then there are no structural
lagged dependent variables.

Our analysis imposes the two restrictions of no serial residual correlation and of a static re-
lationship of X to Y (both conditional on a latent variable ). First, though Assumption 3.1

imposes independence between subsamples, inspection of the proofs reveals that we can alleviate

1A brief account of the necessary adaptations of the proof is given in Section 6.3.
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the independence requirement and replace it by the assumption of no serial residual correlation.
This assumption allows for fixed individual effects correlated with the regressors. Indeed, in a
nonparametric context, such effects are included in the regression function, i.e. they are not sep-
arately identifiable.1? Second, the formulation (3.3) assumes that the regression function does
not depend on {Xy,..., X;_1}. This is true when the relationship of X to Y is static conditional
on a latent variable [. But as shown by Chamberlain (1984), there is no restriction to assume a
static conditional relationship in a fully nonparametric context. It is restrictive only when com-
bined with a specific functional form of the distribution. Hence, the restrictions of our analysis
are not as stringent as they may appear at first.

Baltagi, Hidalgo and Li (1996) consider a statistic which is basically built as ours, with the
important difference that they introduce two different smoothing parameters h,, and «a,, using
h,, for the general Model (3.3) and «a, for the model that pools the data. Subsequently, they
require oversmoothing of the null regression model, i.e. the pooling one, relative to the general
alternative one by imposing h,/a? = o(1). As a consequence, the asymptotic variance of the

transformed statistic is
T
2= / K (u) du’3" B [o}(X) £1(X) )]
t=1

Contrary to w?, the variance w3 does not depend neither on the cross-products of conditional
variances between periods nor on the differences in the designs between periods.'® This occurs
because using different amounts of smoothing in the null and the alternative model results in
pulling out any cross-effect between periods in the test statistic. This is also the reason why the
previous authors do not need the assumption of no serial residual correlation. However, as fully
argued in the previous section, such oversmoothing of the pooling model does not seem justified

for testing constancy of the regression functions across the different periods.

120n this topic, see the discussion of Baltagi, Hidalgo and Li (1996).

13The formula of wj corrects a mistake in the formula of the asymptotic variance in Baltagi, Hidalgo and Li
(1996), by replacing f°(-) by f*(-)f:(-). This mistake comes from their implicit assumption that the density of

the regressors remains the same across time.
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4 Small sample behavior

In this section, we investigate the behavior of our test in the case of a random qualitative variable

C taking two values 0 or 1. We generate the data through
Y =aX +bX°+ H[C=0]d(X)+U (4.1)

where conditional on C, X is generated as N(C,1) and U is independently distributed as
N(0,0%). The null hypothesis corresponds to d(X) = 0, and we consider different forms of
alternatives as specified by d(-). We impose the restriction that £'[d(X)|C' = 0] = 0 and we set
parameters ¢ and b to -4 and 1 respectively, so that the conditional expectation of ¥ given C' is
independent of C.

We consider small (n = 100) and moderate (n = 250) sample sizes and run 2000 replications.
For ease of computations, we choose the uniform kernel with support [—1/2,1/2]. The bandwidth

parameter is chosen as h, = a §% n~1/5

, where §% is the estimated standard deviation for
all observations of X. The choice of ¢ = 1 corresponds to the usual rule-of-thumb in kernel
estimation and we let a vary so as to investigate the sensitivity of our testing procedure to the
choice of the bandwidth. Unreported simulations show that the trimming parameter has very
little influence on the results, so that it is arbitrarily set to 0 in all experiments.

The design of the alternatives has been chosen to investigate the power of our test with

respect to the magnitude and the frequency of d(-). For the magnitude, we consider three linear

alternatives of the form

d(X) = alX,

with @ = 0.5,1 and 2 corresponding respectively to DG Py, DG P, and DG Ps. This allows to
compare the performances of our procedure to the standard Chow test based on the true Model

(4.1). Alternatives corresponding to varying frequencies are defined through
d(X) = sin(ar X),

with @ = 2,1,2/3 and 1/2 corresponding respectively to DG Py, DG Ps, DG Ps and DG P;. These
departures from the null are of special interest, as it is known that smooth tests of parametric
specification and nonparametric significance tests for continuous regressors are sensitive to the

frequency of the alternative, see Hart (1997) and Lavergne and Vuong (1995).
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We first consider the case of equal probabilities of C' = 0 and €' = 1, choosing identical
residual variances o2 = o7 = 1. Table 1 reports our results for the null hypothesis (DG Fp) and
the linear alternatives as we let a vary in the grid (0.2,0.5,1,1.5,2). For each case, the first
row gives the mean with standard deviation in parentheses of our test. The second row gives
empirical levels of rejections for our test, the first figure corresponds to a 5% nominal level, while
the second one corresponds to a 10% nominal level. For each sample size, the last row reports
empirical rejection rates of the Chow test for the same nominal levels.

The first column relates to the null hypothesis. The mean of our test statistic is close to
zero for small and moderate bandwidths, then increases as the bandwidth constant goes from
1 to 2. The test is closest to be unbiased with slight undersmoothing with respect to the rule-
of-thumb. The standard deviation of our test statistic grows with the smoothing parameter,
but stays smaller than one. This is due partly to the fact that, to save computations, we use
the simplest estimator of the variance (2.5), which is positively biased in small samples. A
similar feature appears in the simulations performed by Lavergne and Vuong (1995) on their
nonparametric significance test for continuous regressors.!* Under the null hypothesis, empirical
sizes are much higher than the nominal ones for @ = 2 because of the bias of the statistic, and
much smaller than desired for a less than 1, because of the variance estimation bias. It is quite
difficult to draw conclusions about a best choice for the bandwidth in terms of empirical size, as
the variance estimation problem leads to systematic underrejections in our procedure. Because
the same holds true under any alternative, the small sample power performances of our test are
also understated.

Regarding the linear alternatives, we find as expected that power is increasing with the
sample size and the magnitude of the departure from the null, as measured by «. Rough un-
dersmoothing leads to small power, especially for alternatives of little amplitude. Though, our
test can reasonably detect quite small linear alternatives such as DG Py for bandwidths that
are greater than the rule-of-thumb. Furthermore, for alternatives of moderate amplitude, the
power performance of our test can equal that of the Chow test, although the design is ideal
for the latter. Our results also indicate that the highest power is attained for the largest tried
bandwidth, though using an infinite bandwidth should ultimately lead to a trivial power.

'1n the latter study, it has also be observed that better estimators of the variance are obtained by using [(2(~)

instead of K(-) times the integral of K(-). The same is expected to hold in our case.
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Table 2 has the same structure as Table 1 and reports results relative to the sinus alter-
natives. For n = 100, our test has relatively low power against sinus alternatives when the
bandwidth is smaller than the rule-of-thumb. When increasing the bandwidth, its performances
improve except against the high-frequency alternative DG Py, in which case its empirical power
exhibits an inverse U-shape as a function of h,. A different and striking feature appears from
our results for n = 250. The empirical power of our test is only slightly affected by the frequency
of the departure from the null. For all four alternatives it is close to the one observed against the
linear alternative DG P;. This is in sharp contrast with smooth tests for parametric specification
or for significance of continuous regressors, which are very sensitive to the frequency of the alter-
native. For instance, in testing omitted continuous regressors, Lavergne and Vuong (1995) find
that the bandwidth in the general model has to be adapted to the frequency of the alternative,
namely, the higher the frequency, the smaller the bandwidth should be. This occurs because in
the latter test, the behavior of the estimator under the null is idenpendently driven by another
bandwidth parameter. On the contrary, our procedure uses the same smoothing parameter in
the general and the pooling model. Then the bandwidth affects both estimators under the null
hypothesis and under the alternative. As a consequence, our testing procedure appears to be very
robust to the frequency of the considered alternatives for a moderate sample size. Our results
show that h, needs not be adjusted to detect departures from the null of varying frequencies,
and in all considered cases, the maximum power is achieved for the largest tried bandwidth.!®

For comparative purpose, we also provide the empirical rejection rates of the Chow test
assuming a linear specification in X. The lowest frequency alternative DG Py is close to a linear
specification in the range [—1, 1]. Given that X is N(0,1) when C' = 0, the Chow test therefore
performs quite well, while our test has power higher than the latter for bandwidth constants
greater than 1. For higher frequency alternatives DG Py and DGPs, the Chow test has either
trivial or low power irrespective of the sample size, while the empirical power of our test can
exceed 90% for a moderate sample size of 250.

To investigate the properties of the test under varying circumstances, we consider two
different variations of the initial setup. We first study a case where there is a large discrepancy
in the population with respect to values of C' by letting py = 0.2. In the second variation,

we investigate the influence of residual variances by letting 0? = 2. (In both cases, the other

!5 Unreported results show that the bandwidth needs be very large to observe a decrease in empirical power.
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characteristics of the data generating process are unchanged with respect to the initial setup.)
Relying on what we have learned from the previous simulations, we focus on the null and linear
alternatives for n = 250 and choose values of @ among (1, 1.5,2). Table 3 reports results relative
to these two situations. In the first variation and under the null hypothesis, the test statistic has
roughly similar mean as in the initial setup, but has less variation, so that the test has smaller
empirical size. The empirical power of the test is adversely affected with respect to the initial
results, as could be expected given that only one fifth of the sample, on average, has a different
behavior of the rest of the sample. Still our test enjoys reasonnable power properties against
DGP, and very good ones against the largest alternative DG Ps, for which the percentage of
rejections is always above 80%. In the second variation, the mean and the standard deviation
of the test statistic have decreased with respect to the first set of simulations. Indeed, it could
be expected that the bias in variance estimation is larger when residual variance is greater. The
test is also less powerful against departures from the null of small amplitude, but is roughly

unchanged against DG Ps, with rejection percentages greater than 96% for n = 250.

5 Conclusion

In this paper we propose a general test of equality across nonparametric regressions. It is based
on the comparison of the regression function for each subsample with the general one that
pools all the observations. It applies in a variety of situations, and in particular whether or
not the division into subsamples is defined in a random way. In our presentation, we have
first considered the leading situation where a random qualitative variable defines the split into
different subsamples and where all observations are independent and identically distributed.
Then, by considering the case where the split depends on a fixed qualitative variable, we have
shown how our basic assumptions can be weakened so that our test applies to cross-section and
panel data. In summary, our testing procedure is applicable in any case where the observations
are i.i.d.s within each subsample and under the assumption that the residuals are uncorrelated
across subsamples.

The characteristic feature of our procedure is that it uses a common smoothing parameter
for the pooling estimator and the estimators based on the subsamples. We have justified this
choice and investigated thoroughly its implications. Besides the practical advantage that the

practitioner needs only choose one smoothing parameter, another one is that our test is much
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less sensitive to the frequency of the alternative as shown in our simulations. Though, the
bandwidth choice is clearly a key issue for application of the test. Bootstrap methods could be
a way to bypass this problem, as bootstrap tests usually provide better approximations to the
asymptotic null distribution than asymptotics do and can be much less sensitive to bandwidth
choice, see e.g. Delgado, Dominguez and Lavergne (1998). This possibility should be investigated

both from a theoretical and a practical viewpoint.

6 Proofs

In what follows, u; = V;—r(X;),U; = Yi-R(X;,C)), fi = f(X,),ri = ri( X)), d; = d(X;,C)), 02 =
O'%«i (X;) and Z; stands for (C;, X;,Y;),¢=0,1,...,n. Also h = hy,, Ky,;5 = hPK [(X; — X;) /by,
K = |K|and i,j,k, 1,7, j k', ' refer to indices that are pairwise different unless stated otherwise.
We let ﬁ =(n-1)7"t > ki Knik, and more generally for any index set I not containing ¢ with
cardinality |7], ﬁl =(n—1—=I))"" Zpsi ngr Knik-

6.1 Proof of Theorem 2.1
6.1.1 Outline of the proof

AsY; =Yy = (w; — ug) + (r; — 1), and as K is even, we have from (2.3)

1 - - -
Vo = e Z(Uz — up) (1 — w) Knin K1 K i Waij
2 - - -
+ W Z(Ui — ug)(rj — ) Kpin K i K j
1 - - -
T @ S (ri =) (rj = 1) Kpin K ji K nijwni; = I + 215 + 1,
where
n—2 1 . 2(n—2) 1 ~ i
Il = —n_ sza:uzu]flfjlﬂnwuhmj + n_3 Wza:uz(fl _fl)u]fjlﬁnljwn”
n — 2 1 A] AZ . 2 _ ]
n—3 W Zul(fz - fl)uj(f] - fj)Knijwnij - W Z uifiulknjlkmjwm]‘

2 20 I 1 o
_ W Z QLZ(]CZJ7 — fi)uﬂ(mﬂ(m]‘wm]‘ + W Z Ukulkmkknjlkmjwmj
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1 . . .
) Z Wt I i I i K i Wi
a

-2
= [V0n+2111+11,2] —2h3—2La+ 15— Lig,

I, = Zuzfz ) K i K i wiiy + (1 Z uz(f]’ L) (rj = r)) Kt K i jwni
Z ug(rj — 1) Kk K pjt K pijwnij = Ioq + lag — Iz 3.
Propositions 1 to 12 study each of the above terms. Collecting results, it follows that
nh?!? Vo, — 211 5+ I 5] = Ly + 82nh? 24 6,3/nhP20, (1) + 0,(1),

where Lniﬂ\T(O,wQ)7

nh?? (I — (Vo — 2L 3+ T 5)] = 8onh?0, (1) + 8,/nh?? 0, (1) + 0, (1),

nhP2 Iy = §2nh??0,(1) 4 8,v/nh??0,(1) + §,nh? 2R +D0, (1) + 0,(1),
and nh?/2I; = 0,(1). Therefore
nhPl2 [V, — (Vo — 2L 5+ L1 5)] = 620k 20,(1) 4 8,/nh?/20, (1) 4 8,nh?2h("FD 0, (1) 4 0,(1).
In case (i),

S /mhP? = (82nhP/)2ppt = o(1)
SonhP2p\mta) = (52212 (22t N2 = (1),

ThUS nhp/2 [Vn — (VOn — 2]173 —|— 1175)] = Op(l) and nhp/2 [VOn — 2]173 —|— 1175] i}N(CM,WQ)

In case (ii),

hp/4

So/mhP? = (5§nhp/2)mzo(5§nhp/2)
- nhP/2p2m+a)y1/2
Spnh?/2p(mta) = (5§nhp/2)( (52nhp/2)1/l = o(0inh"1?),

Thus nhp/2 [Vn - (VOn - 2]173 + 1175)] = op((S%nhp/Q) and nhp/2 [VOn - 2]173 + 1175] = 5%nhp/2u +
0, (62nh?/?). Theorem 1 follows. Q.E.D.
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6.1.2 U-Statistics

Let Uy, = (1/n(mk)) Yoa Hin(Ziys ... ka) k = 1,2, be arbitrary U-statistics, where the Z;’s
are identically distributed but the Hk,n are not necessarily symmetric. Then,
min(mi,m2) (5 4mg—s) (s)
1 1 plmiTma
EUinlzn) = —o5—00; D m D DR N RLEY
5=0 |A1 |=s=]As]

min(m1,m2)

- Z O(n™*)&s.s (6.1)

where &, = (1/s!) Z(S) J (A1, Ay), and

EWUL) = (W S I(AL Ay = Zo ~%) (6.2)

!
S.
|Aq1[=s=]Az]

1 2 My n(?ml—s) (s)
) X
0

where & = (1/s) Y (Al, Aj) and E denotes summation over sets Ay and A, of ordered

positions of length s,

J(A1, Ag) = B [Hyy(Ziys 1 7

tmq

)H27n(2j17 . '7ij2)} )

[(Ay, 8g) = B [Hy(Ziys s Zi V1 (Zis s Z)]

and the ¢’s in position Ay coincide with the j’sin position Ay and are pairwise distinct otherwise.
In what follows, we intensively use (6.1) and (6.2) to bound F(U; ,Us,,) and E(U7,). Indeed,

if Z, denotes the vector of common Z;’s, we have by conditioning on Z, that

JHAL D) = R B[Hy o Ziys o Zig V2B a2y s Zi ) 2]
< B[EHy o Ziy, -y Zig W) B[ B o Z, o 25| 23]

by Cauchy-Schwartz inequality, and we have also the similar inequality for I(Aq, Aq).
We will also rely on the following lemma from Fan and Li (1996).

Lemma 1 : Let U, be a U-statistic of order m with symmetric kernel H,, such that

FEH (Z1, ..., Z0)|71] = 0 a.s. and E[HX(Z1, ..., Zp)] < oo for each n.

Let H,,, = E[H,(Z1,....Z.)|(Z1,....Z5)], & = Var[Hy, s(Z1,...,Z;)] for s = 1,...,m and
Gn(Z1,7Z3) = E[Hp2(71, Zo), Hyo(Zay Z0)|(Z1, Z2)). If &5 /€2 = o(n®72) for s =3,...,m and

BG2(Z1, Z)] + ™ B [H} (74, 7))
B2 [H2 (%, 7))

— 0

24



2
as n — oo, then nU, is asymptotically normal with zero mean and variance (1/2) (m(z)) &.

As we consider U-statistics with non-symmetric kernel in our proofs, we briefly explain how
Lemma 1 extends to this case. One first needs to replace H,(Z1,...,7Z,) by the symmetric

kernel

1
H(Zy, ..., 7)) = EZHH(ZH,...,Z%),
o

where 3 denotes summation over the m! permutations of (1, ..., m).If ¥ {f{n(Zl, cos m) |Z1} =
0 a.s., the U-statistic is degenerate and under the assumptions of Lemma 1 converges in distri-

bution to a centered normal distribution. Its asymptotic variance is given by
) @) (1/m1)?
(1/2) (m®)" & = (1/2) () (/m)?* YN B [Ho(Ziys s Zi) Hol(Zig s, Zig ) 21, 2
P p

Hence one needs to determine all the terms in the double summation. Similar expressions are
derived for &,s=3,...,m.
It can also be easily shown that an anologous result holds for two U-statistics of order m; and

my with repective kernels H; , and H . Their asymptotic covariance is then given by

(1/2)mDm (1 /ma 1) (1/ma)) S E [HM(Zil, coos L Y Hon(Zi s oo Ziy, )| 21, ZQ}.

rop
6.1.3 Behavior of V{,
Proposition 1 : nh?/?Vy, = nh?/?Uy, + 62nh?/2p,, + 6,/nh?/?B,,

where p, — I, nhp/2U0ni>N(0,w3) and BniﬂN(O,f — &%), with § = lim,_, 8, and
§ = Eod (X)d*(X,0) fHX) fA(X)].

Proor: Write V()n = U0n‘|‘VV(m—0n7 where Hn(Zi7 Z]‘) = uiu]‘fifjl(mjwm]‘, On =F [Hn(Zl, ZO)L
Won = (2/n) 35 E [H,(Zi, Zo)| 7] and

o = (1) T azz)

i<y
-1
= @ Z {H,(Z:, 7;) — E[H,(Zi, Z0)| Z:) — E[Ho(Zo, 7)) 7] + 0} -
1<J
(i) Limit of 6,:
0, = Elu;fiu; [ Knijwnj]
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= EU;+ 0ud;) fi(Uj + 0nd;) [; Knijwni;]
= 2F[d; fid; f; Kpijwi)]
= 62F[d; frwnij B (dj fj Knij| Xi, Ciy C))]

Now

E[6,d; K| Xi,Ci, C] = /5nd(Xj7Cj)f (X)) Konij fo, (X5) dX;
= ('Snd()(27 C])f (Xz) fC’] (Xz) + 0(57%)

uniformly in X; by Lemma 2, as 6,d(X,C) f(X) fo(X) € UP, YC'. Therefore

b = 2 |d; frwnizd(Xi, C)) F(X0) fo, (X)| + 0(82)
= 82 B [d; frwniid( Xy, C3) F(X3) fo, (Xi)] + 0(82)
= GE {d?ffE (wnif|C3) fo, (Xi)} +0(82) = 821y
with p, — = E [@(X,C) (X) fe(X)].
(ii) Distribution of Wy,:
BB (Ho(Zi, Z0)|Z)| = B [u? F2E (w0 fo K niownio| Z:)|
= 628 [u} 2B (do fo K niowaio| Z:)] = 026,
with €, — € = E [0 (X)d?(X, C) fHX) f2(X)], as 6,d(X,C) F(X) fo(X) € U, YC.
Now E | E[H,(Z;, Z;)| Z;] |'= E | u¥ I EY [uo foK niownio| Z;] |= O(1) = o(n”/z_l) for 2 < v < 4,
as F' | Y2 |< co. Thus, by Theorem 7.1 of Hoeffding (1948),
Vi [Wop — 26,] — 26N (0,5 . 52u2) .
(iii) Distribution of Up,: As F {f{n(Zi, Zj)|Zz} =0, by Lemma 1,

E[G3] + n~ ' B[H})]
E2[H}]

nh?!?Ug, L5 N (0, 72) if = o(1),

where G (Z:, 7;) = B | Hy(Zi, Zo) Hu( 2, %0)| Zi, 7] and 7% = 21im,,_c h? E(112). By definition
of f{n(Zi, Z;), the above is equivalent to

E[GA] + n” E[H,]
E2[H]]

= o(1), (6.3)

26



where G, (Z;, Z;) = E[Hp(Ziy, Zo)Ho(Z, Z0)| Ziy Z;], and 72 = 2lim,—.oo AP E(HZ).
As o (X)) fAX) fE(X) e Ur, vC,

E [Hg(Zan)} =F {Ua (Xi)Ua (Xj)fizszl(gijwznj} = h7Pwi /2,

where w§ ,, — w§ = 2F [0(X)0d, (X)wi o fH(X)] [ K?(t) dt, using the definition (2.4).
Moreover, as E(u|X,C) f4(X) fc(X) € UP, VC,

E {Hﬂ = bk {U??ﬁ fffl(ﬁijwiij} =F {E(uﬂXivCi)f;lE(uﬂXj?Cj)f;‘ll(gijwiij} = O(h_Sp)-
As Go(Z;, Z5) = u; fiu; [ B {O‘%«O (X0) f2(X0) KnioK njowniownjo| Zi, Z]}, we have
E[G)]

= [otsiaisie

= 177 02 f202, (Xi+ 1) f2(X; + It

2
/ 0t Knio K njof*(Xo) fo, (Xo) dXo wniownjol Zi, Z]‘] fifj dXed X dv (C5,C5)

L

/ 02 (Xi — hs)K () K (s + 1) F2(Xi — hs) fo, (X — hs) ds wiownjol Zi, Zj] i

foi (Xi)fO] (XZ + ht) dX;dt dv (CZ, C])
— B [o3 () A(X) J2(X)] / (K % K2 () dt + o(h™")
= O(h),

where v (C;, C;) denotes the distribution of (C;, C;). Thus condition (6.3) holds as A — 0 and

nh? — oco. Collecting results, Proposition 1 follows. Q.E.D.

6.1.4 Behavior of I3

Proposition 2 : nhp/QILg = nh?/2,, + 5n\/ﬁhp/20p(1) +o0,(1) , where nh?/2Uy,, is asymptot-
ically normal with mean 0 and variance 2F [o?(X)ok (X)wee f2(X) f2(X)] [ (K * K)2(¢) dt.

ProoF: We have [} 3 = (1/n(3)) Yoo Wi fiw K 51 K 5w, which is a U-statistic with kernel
H,(Z;, Z, Z1) = ;s fiw K1 K i wai; -

We now compute the corresponding &, s = 0,1,2, 3.
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(i) & = hP2E [02(X) o2 (X) f2(X) f2(X)] [ (K * K)? (t) dt 4 o(h~"). Indeed we have

E(H,|Z,7;) = wifiKnijwei; B (wiKy|Z;) =0,
E(H,\Z, Z) = wifiwl (KoK uweii| Zs, Z7)
E(Hn|Z]‘, Zl) = ulKnﬂE (uifil(mjwmﬂzj‘) = (Snulf(nﬂE (difil(mjwmﬂzj‘) .
Then,
BB\, 7)) = B [0 fPuf B (KoK igwaii Zi, 71)|

= F {U?fEUIQEQ (KnﬂijwmﬂZi, Zl)}
= BB [ ()b (X) 00 S0 [ (8 %K) (@) de+ oh ™),
F {EQ(HTAZ]‘, Zl)} = (SiE {ulzl(gﬂEz (difil(mjwmﬂzj‘)}
= 5721E{012K7%j1d?f]2fa (Xj)}
= S20(h ") E [ul K ud? f2 f2, (X )] = O(@&2h7)
and
F [E(I‘LJZZ'7 ZI)E(HTAZ]‘, Zl)]
= F {uifiUJZKnﬂE (KnjiKnijwnii| 72, Z1) B (w; i K i wai| Z;5) }
= §F {difio-lzl(nle (K1l wnii| 2, Z) E(difil(nijwmﬂzj)}
= S0 PE [dififfzanﬂE (K nijwni| Z:, Z0) B (dz'fz'ijwmﬂZj)}
— 02,

(ii) & = O(82). Indeed we have F (H,|Z;) = F (H,|Z;) = 0 and

E(Hn|Zl) =wyF (uifil(njll(nijwnij|Zl) = d,u (difil(nﬂl(mjwm]‘|Zl) .Then

FE {EQ(HTAZI)} = (SiE {U?Ez (difil(nﬂl(mjwm]‘|Zl)}
= (SiE {U?Ez (I(nﬂE(difiI(m]‘wm]‘|Z]‘, Zl)|Zl)}
— 0.

(ii) £[H,]=0. Thus & = 0.
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(iv) & = O(h™%), as
Bl = Bluduf AR K0l
= O *)E {u uj fan]le]wm]} = O(h™?).
Similarly to Proposition 1, it is easy to show that F {H;%J} = O(h™?") and E [G%] = O(h7P).

Thus Lemma 1 shows that

nhp/zUln = nhp/z(l/n(S)) Z [Hn(sz Zj7 Zl) - E(Hn|Zl)] )

is asymptotically normal with variance 2F [0Z(X)a2,(X)f3(X)f2(X)] [ (K * K)? (t) dt and
2
zero mean. As F {nhp/2 (li3— Uln)} = 62nh?O(1), Proposition 2 follows. Q.E.D.

6.1.5 Behavior of ;5

Proposition 3 : nhp/21175 is 1s asymptotically normally distributed with zero mean and variance

2F [02(X) o2, (X)g*(X)] [ (K x K x K)%(t) dt, where g*(z) = 3. p.f(2).
ProoF: We have [} 5 = (1/n(4)) Yo W K i K 51 K 5wy which is a U-statistic with kernel
H,(Z;, Zj, Zi, Z1) = wpir K i K1 K i Wi

We now compute the corresponding &, s = 0,1,2,3,4.
(i) & = O(h™%"). Indeed we have

E(Hn|ZZ', Z]‘7 Z = ukl(mkl(mjwm]‘E (ull(n]ﬂZ]‘) =

)
(HolZi, 75, 7)) = wK i Konijwnii E (ur Knig| Zi) = 0,
(HolZi, 75, 1) = gt Kt (Kt K i i | 7, 1)
(HolZj, 210 7)) = i K it B (Ko K i wni| 7, Z)
Then,
BB (H,\Z:, 2, 2)| = B [ufuf K23 B (K, K ijwn| 22, 7))
= B wfuf K2 B (Kt K i wag| Ziy 20) B (K i K iy Zis 20)]
= O(h™*")E [Ukuz Kol (K1 K jweis| Zs, Z1) B (ij/wmj/|Zi,Zl)}
= O(h")E [uuf K s K u K iy [2:(X0) | = O(h™),
E|E*Ho\Z;, 21, 2)| = B [udud K2 B (K K ijwai| 2, Z4)] = O(h™).
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(i) & = hP2E [0¢(X)ol.g*(X)] [ (K * K * K)(t) dt + 0,(h™F). Indeed we have
E(H,|Z;, Z;) = E(H,|Z;, Zy) = E(H,|Z;, Z)) = E(H,|Z;, Zy) = E(H,|Z;, Z;) = 0 and

E(H,|Zy, Zi) = wpyw B (K K ji K i wni | Zi, Z7)
so that
BB (Ho| 2, 2)| = B [udud B (Kpig K i K i wnis| 2, 20)]
= E|0}o? B? (KKt Kijwaii| Ze, 1) ]
Now
E(Kpip K1 K i jwnis| 2k, Z0)

= Flwn B (KninKnjKij| Zy, 21, Ci.Cy) | 2y, 23]

= F [wnij/I(nikl(njll(nijfci (Xi) fo, (X;) dXid X ;5| Zy, 7

= F [wmjfci (Xk) fo, (X0) / K@) K (v)h™PK(u—v+h™" (X, — X)) dudv| Zy, Zl]
uniformly in (X;, X;) as fo(-) € UP, VC'. Therefore
BB (H, |2y, 7))

_F [0,30,2152 (wn] Je (X fe, (X)) / K () K (A K (1 — v+ h~' (X5 — X0)) dudv| Zs, Z,)]

= / oio? [/ wni; fo, (Xe) fo, (Xi) / KK (0)h ™K (u — v+ h™ (X}, — X)) dudv dv(C;, Cj)] 2

fo, (Xi) fo, (X7) dXpd Xy dv(Cy, Ch)
_ p / o202, (X — ht) [ / Wi fon (X0 fon (Xe — i) / K () K (0) K (1= v+ 1) dudv dv(Cs, Gj)]
fok (Xk)fcl (Xk — ht) dXdt dl/(C'k7 C[)
= WPE [oB(X)o2(X)g"(X)] / (K % K+ K)2(t) dt + o(h™"),
where g%(z) = >, pef2(2).
(ifi) & = 0, as E (H,|Z:) = E (H,|Z;) = E(H,|Z4) = E(H,|Z) = 0.
(iv) £'[H,] = 0. Thus & = 0.
(v) &= O(h™%), as

= O(h™"E {UiU?KnikKnﬂmeQ } = O(h™?).
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Similarly to Proposition 1, it is easy to show that E {H;;Q} = O(h™?F) and F [G%] = O(h™P).
Thus Proposition 3 follows. Q.E.D.
6.1.6 Behavior of Vy, — 2/, 3+ I 5

Proposition 4 : nh?/? (Vo —2Li 3+ 11 5) i>N(0,w2).

Proor: To determine the asymptotic distribution of Uy, — 2Uy,, + I1 5, we apply the Cramer-
Wold device. We compute the covariances between Uy, Uy, and Iy 5 by using (6.1) and the

formula given at the end of Section 6.1.2.

Covariance between Uy, and U;,: In this case & 5 is determined by

E{u; foug il pawni B2 (w; fowg K 1 K i jwj | 23, Z7)]
= F [U?fizuzzflezwmlE (K1 K i w0451 2, Zl)}
= F {Ufffff;zflelwmlE (K1 K005 23, Zl)}

= WPE [0 (X)od( X )woer f2(X) fo (X)) / K®)(K « K)(t) dt + o(h™P).

Thus Cov(nh?/2Uy,, nh?/2Uy,,) = 2F [02/(X) o2 (X)woe f2(X) fo(X)] [ K (t)(K * K)(t) dt.
Covariance between Uy, and Iy 5: In this case & 5 is determined by

E Tug, fow i K i wnp B (e K i K1 K Wi | 2y Z1)]
= K {uszulzfll(nklwnklE (Kpie K ji K i wiij| 2, Zl)}
= F {szkglzfll(nklwnklE (K pin Kt K i jwi | 2 Zl)}

= LPE [ag (X))o (X)weoer f2 (X)gQ(X)} / K@) (K * K + K)(t) dt + o(h™P).

Thus Cov(nh?/2Up,, nh?/?1, 5) — 2F [02(X) o2 (X)weor f2(X)g*(X)] [ K () (K * K  K)(t) dt.

Covariance between Uy, and Iy 5: In this case & 5 is determined by

EE (ug fywiKnji Ky wnkj| Z, Z1) E (upwi K pin Ky K 01| 2, Z1) |
= F {szkUIQE (KnﬂKnkjwnkﬂZk, Zl) FE (Krnik[(nj’ll(nij/wm’j’|Zk7 Zl)}

= LPE [ag (X)a%,(X)f(X)fg(X)gZ(X)] / (K« K)(t)(K * K « K)(t) dt + o(h™P).
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Similarly £33 =
Thus Cov(nh?/2Uy,, nh?/21} 5) — 2 [0(X) o2, (X) f(X) fo(X)g2(X)] [ (K * K)(t) (K * K * K)(t) dt.

Conclusion:

O(h~").

nhp/? Vo — 2L s+ 15 =

Ly + 820?21 4 5,7/nhP'20,(1) + 82nhP %0,(1),

where L, is asymptotically N (0,w?). Moreover,

w? = Var [nhp/ Uop = 2U1, + I 5)}

with Eeer(X) = / [K(t)wgg/ _ (K« K) (1)

28 [0 (X)

2 4
00/ wcc/f (

X) / K2(1) di + 28 [02(X)o2(X)g*(X)] / (K« K+ K)2(¢) de

o (X)o2(X) PO LX) [ (0 K@) e

ot (X)os(X)weo f2(X) fo(X

6.1.7 The remaining terms

Proposition 5

) / K(0)(K * K)(¢) de

’(x)] / K(6)(K + K  K)(1) dt

fo(X)
f(X)

7’ (X)

PX) dt.

+ (K« K+ K)(t)

:nhP2 g = 82nhP20,(1) + 0,(1).

Proor: We have (n — 3)I1 6 = (1/n(3)) > oq With; Kok K 5 K i jwy;; which is a U-statistic with

kernel

H (Z;, Z;, Z1) = v Ko K i K i wai;

In order to use (6.2), we need to compute the corresponding &, s =0, 1,2, 3.

(i) & =

O(h-

3p) .

Indeed we have

E(H,|Z;, Z;)
E(H,\|Z;, Zy)

uzu]Km]wm]E (I(nikl(njk|Zi7 Z]) )
Wil B (i Ko ik K gy Wi | 22y Zk)

S i K it B (d K i K iy Wi | 21, Z)
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E(Hn|Z]‘, Zk) = u]‘I(n]‘kE (uil(mkl(mjwmﬂzj‘, Zk)
= (Snu]f(n]‘kE (dil(mkl(mjwmﬂzj‘, Zk) .

Then
BB Ho\ %, 7)) = B [uted K2l B (KKl Zi, 7))
= O(h™)E {“?“?KnifwiijEZ (Km'kIZan)} = O(h™7P),
BB Ho| % Z)| = 628 [wf K2 B (4K i K iy wnis Zis Z1)]
= O(2h™) B [u? K yig B (|d; | K i | i, Z2) | = O(h™),
BB H 2, 7)] = 02F [uRK2 B (di K pig K igwnif| 25, 7Z1) | = O(h™7%).

(ii) & = O(h™?F). Indeed we have

E(Hn|ZZ) = wF (UjI(mkl(njkl(nijwnij|Zz’) = du; B/ (djl(nikl(njkl(nijwnij|Zi) ,
E(Hn|Z]‘) = u]‘E (Uil(mkl(njkI(nijwnij|Zj) = (Snu]‘E (dil(mkl(njkI(nijwnij|Zj) ,
E(Hn|Zk) = F (uiu]‘I(Mkl(n]‘kl(mjwm]‘|Zk) = (SiE (didjl(mkl(njkl(nijwm’j|Zk) .

Then by successive application of Lemma 2

BB Ho|Z)| = 020 [0} B2 (d; K it K i K i w1 720)|

= O(B2h)E [W B2 (|dj| K nir K njiwaj| Z:)] = O(h),
BB H\Z)| = 628 (w2 B (dilpin K i K i wis| 75)| = O(h™2),
BB Ho|Z)| = 608 [ B (did; K pig K i K i wiis | Z1) | = O(h™2).

(iii) F [Hn] =F [uinKm;gKnijm]‘wm]‘] = (S%E [didjl(mkl(njkl(nijwm’j] = O((S%h_p)
(iv) & = O(h=7), as

Bl = BludulRE K2 Kl

= O(h_4p)E {U?U?Kkan]kw?m]} = O(h_4p).

Collecting results, F(nh?/?I} 6)? = O(62nh?/?)2(nh?)=2 + O(nh?)~" + O(nh?)~2 + O(nh?)=3.
Q.E.D.

Proposition 6 : nh?/?Iy; = §,/nh?/%0,(1) + §,nh?/2h(" D0, (1) 4 0,(1).
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ProoF: We have [ = (1/n(3)) oo i fi(ry — 1) Ko i wy;, which is a U-statistic with kernel
H(Zi, Z5, Z1) = i fi(r; — 1) Kt K i j Wi

In order to use (6.2), we need to compute the corresponding &, s =0, 1,2, 3.

(i) & = o(h™P). Indeed we have

EH,\Z:,Z;) = wfiKpjwai; B ((r; —r)KnjlZ;),
E(H,|Z, 7)) = w fill ((rj — r)) KnjiKnijwaij| Ziy Z)
E(Hn|Z]‘, Zl) = (T‘]‘ — T‘I)I(nﬂE (uifiijwMAZj)

= (Sn (T‘]‘ — T‘I)I(nﬂE (difiijwMAZj) .

Then using the fact that E [(r; — r)) K| 7Z;] = O(A"+9) = o(1) uniformly in Z;,

nij

BB Ho\ %, Z)| = B [ud fAREGE (r = 1) Knjiwnig Z)]
= O(h_p)E {u?fEKm]‘Ez ((T‘]‘ — T‘I)I(nﬂwmﬂzj‘)} = O(h_p).

Also we have

BB %, 2)| = B [u? fEE((r = r) KoK ijwnis | Zi, Z1) |
= B2 f2E((rj = r) KnjtKnigwnii | Zi 20) B ((rje = ) Ky K s jrwnso| 22, 72) |
= OWVE (w2 f2E(|rj = ril K ui K i wais| Zis 20) E (Irje = 1] K iyl Zi, 20)]
= OB [uf f2lrj = ril K it K wigwaislrs = il fo, (X0)| = o(h77),

BB Ho\ 25, 2| = 62B|(rj = r)* K2 B (di i K i w0nis | 75) |
= 0F {(7‘1‘ — ) K23 fEFE, (Xj)}
= OZh)E[(rj = m) K ojud? f2 2 (X)) = o(h 7).

(il) & = O(h*m+9)) 4 0(52). Tndeed

E[EXHZ)] = B[ 2B (v — ) KujKuijwnii) Z)]

= B} B (Kijwnii B ((r; = m) Kot 2) |21 |

= OB [uf f 57 (K yijwny) | = O(02050),
E {EQ(HMZJ‘)} = b {EQ (uq filr; — rl)l(njll(mjwmﬂzj)} = O (Rl +7)y),
E|E*HA|Z)] = E|E*(wfi(r; = r)KnjKusjwai| 2)|
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= B [EQ((rj — ) K B (g fi Knijwnif| Z5) | Z1 }

= (SiE {Ez((f‘]‘ — T‘I)I(nﬂd]‘f]‘fcj (X]‘)|Zl)} = 0(52)

(iii) E(H,) = Eluwfi(r;—r) Ky Ky;wn;]
= Ellrj = r)Knji B (i fi K nijwni;| Z5)]
= 0B [(rj = r) Knjud; £ 5o, (X))]
= 0B [dif;fo,(X)E((rj = r) Knjil ;)|
= OOV B [d; i fo, (X;)| = O(8,hm+9)).
(iv) &3 = o(h™%), as E'[H}] = E {U?ff("j - rl)nglegijw?ﬂj} = o(h™?).
Collecting results, E(nh?/?I1)? = §2n2h?O(h2("+9)) 4 nh?O(R2"+9) + o(52nh?) + o(1) +
o(nhP)~1. Q.E.D.

Proposition 7 : nh?/2l5 3 = o,(1).

ProoOF: We have I3 = (1/n(4)) Yoa k(1 — i) K K ji K i wyg;, which is a U-statistic with

kernel
H,(Z;, Z;, Zy, Z1) = up(rj — 1) Knin K1 K i wai;
In order to use (6.2), we need to compute the corresponding &, s = 0,1,2,3,4.

(i) & = o(h™%?). Indeed we have

E(Hn|ZZ', Z]‘7 7 = ukl(mkl(mjwm]‘E ((T‘]‘ — T‘I)I(n]‘”Z]‘) ,
E(Hn|ZZ',Z]‘,Zl

k
E(Hn|ZZ7 Zk7 Zl

)

) = (rj = ) Kpjilnijwni I (up Knig| Zi) = 0,
) = wpKuE ((r; — r) Knji Knijwnii) Zi, 20)
)

E(Hn|Z]‘, Zk, Z = Uk (T‘]‘ — T‘I)I(nﬂE (Km;gijwmﬂZj, Zk) .

Then

J nag

BB (Ho|Zi, 73, Zi) |2 [0 K2 20k B2 (g = ) Kol 25) | = o(h™2),

E [E*(H,) Z;, Z, 2)]
= [uil&'gikEz((rj — ) Knji K i jwnis | Zs, Zz)}

=F {uzl(gikE((rj — T‘I)I(nﬂ[(m]‘wmﬂzi, ZI)E((T‘]‘/ — T‘I)I(n]‘/ll(mj/wm]‘/|ZZ', Zl)}
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=0(g™")E {Uif(gikE(V‘j — 1| K1 K i wni | Zs, ZJ)E(V‘]'/ — | K i wnijr| Zi Zl)}
=O(h™)E [} K gl = ril Kyt K il = mil fo, (X3)| = o(h™),

FE {EQ(HTAZ]‘, VA Zl)} =F {uz(f‘]‘ — T‘l)zl(gﬂEz (Km;gijwmﬂZj, Zk)} = O(h_zp).

(ii) &2 = o(h7P). Indeed we have E(H,|Z;, Z;) = E(H,|Z;, Z;) = E(H,|Z;, Z;) =0,

E(Hn|ZZ', Zk) = up K, ;. F ((T‘]‘ — T‘I)I(nﬂl(mjwmﬂzi) ,
E(Hn|Z]‘, Zk) = uipF (I(m'k(f‘]‘ — T‘I)I(nﬂl(mjwmﬂzj‘, Zk) ,
E’(I{TL|Z]§7 Zl) = uipF (I(m'k(f‘]‘ — T‘I)I(nﬂl(mjwmﬂzk, Zl) .

Then
BB (Ho|Zi, Z2) |28 [ K20 B2 ((r) = 1) K i K i 2|
=12 [u} K2 B2 (K ijwnis B ((ry = ) Kl ;) 12:) |
=o(1) B [uf K23 B2 (K i | 2 ) |
=o(h™")E [u} K i f,(X0)| = o(h™7),
BB (H,|Z;, 71,

[E——

=12 [u} B2 (Konik () = 1) Kt K i i 25, 7 ) |
=17 [0} B2 (Kopik K ijwnis B (g = ) Kl 23) 125, Z)|
—o(1)E [qu(KnikKnijwnij|Zj, Zk) E(Km,ka,jwm,ﬂZj, Zk)}
=o(h™#) B [u} B (K i K i wnig 25, 70 ) B (K i\ 25, 71 ) |
=o(h™) B [u} K i K i o, (X)] = o(h77),
BB (H, |2y, 7))
= [u} B2 (K (r; = 1) KK nigwai | 2, 71) |
= [uf B (Knik(rj = 1) Kt K i i Zies 20) B (K i (ryp = 1) K K pirjrwin | Zi, 71|
=0V E [ B (K ixlry — 11| K uji K nijwnis| 2o, 20) E(|rjr = ril Kjn K o jrwninio| 2, 21)|
=o(hP)E [ud K il — 11l K 0 K i | = o(h77).
(iii) & = O(h*"+9). Indeed we have F (H,|7Z;) = E (H,|7;) = E(H,|Z) = 0 and
BB 20| = B [uf B2 (Kpig(rj — 1) Knji K nigwaii | Ze )|
= B u} (K Knijwai B (r; = r) Kol 2)122) | = O(h279),
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(iv) £'[H,] = 0. Thus & = 0.
(V) 54 = O(h_?)p)v as Iy [Hg] =L {uzkmk( - rl)zkz le] m]} - O(h_?)p)'
Collecting results, E(nh?/?I;3)? = nh?O(h*"+9)) 4 o(1) + o(nh?)~! + o(nh?)=2. Q.E.D.

Proposition 8 : nh?/2I; = nh?/20,(h2"+9) + 0,(1).

Proor: We have I35 = (1/n(4)) Yoa(ri =) (r; — i) K K ji I i jwyi, which is a U-statistic with
kernel

Hn(Z27 Z]7 Zk7 Zl) = ( - T‘k)( - rl)lﬁnzklﬁn]llﬁnmwnzy

In order to use (6.2), we need to compute the corresponding &., ¢ = 0,1,2,3,4. Similarly to
the proof of Proposition 7 for I3 3, we can show that & = o(h™%), & = o(h™?F), & = o(h7F),
& = o(h*(m+9). On the other hand,

E[H,) = E[(ri = 1) (rj = r) Knit Kt Kngjwnij] = O(R?m ),
2
so that (nhp/ng) = n2h*O(hHm+9)) 4 o(1). Q.E.D.
Proposition 9 : nh?/?I; 1 = §2nh?/%0,(1) + §,/nh? %0, (1) + 0,(1).

Proof: We denote (ff — fi) by Aff We have [, 1 = (1/n(2)) >oa Uiﬁfgujijmjwmj so that

1 \? ; .
E(Iil) = (W) [Z uiAfZ»]u]‘f]‘Km]‘wm]‘] [Z uZ/Af u]/f] I(m]/wm ,

where the first (respectively the second) sum is taken over all arrangements of different indices
i and j (respectively different indices i’ and j'). In what follows, Ig'm'j = Kyijwyi;. We consider
three situations.

(i) All indices are different: n(?) terms.

B (A LAF Fr b (didydid; K K r o X )|
=638 | A S BALY fydididid ;i R i K|

=638 | iy didididp Ki Kiro B2 (AN | 22, 25, 2, 77|
=N E | i didjdind K i K i

=0(52\,),

37



where X is the o-algebra generated by all the (X;,C;) and A\, = F {A2f5|Zi, VAW Zj/} = o(1)
uniformly by Lemma 3.
(ii) One index is common to {i,;j} and {i’,5'}: 4n(® terms.

(" =i) B [u2Afl iRy A g [ Koy | =B [AF AL [0 (wbujug Ko K X)) |
=GN | firuddid o Konis K
20(5721/\7%)7

=621 |Af] PALIE (diudi K i K| X ) |
=52\, F ‘ PR di K i K j‘
=0(82N,),

(' =3) Bl fi KA up fK i =B [AfGAT frE (uiudug Ko Ko X))
:(S%/\HE ‘f]‘f]‘/diu?djll(mjl(njj/
=0(82),).

The case j' = i is similar to ¢ = j.

(iti) Two indices in common to {4,5} and {i,j'}: 2n(? terms. We have
N 2 - . . -
E [u$u§ (ar) ff[(gij] =O(\/h?) and B [wldAFAFIffRE] = OO /hP).

Therefore,

E(nh?1,)" = 8407 hPO(X,) + 2nhPO(A,) + O(M,).

The proposition then follows from A, = o(1), see Lemma 3. Q.E.D.
Proposition 10 : nh?/?1; 5 = §2nh?/%0,(1) + §,/nh?/?0,(1) + 0,(1).

Proof: The proof is very similar to the proof of Proposition 9 for I; ; and is not reported.
Proposition 11 : nh?/21 4 = 62nh?/?0,(1) + §,/nh?/?0,(1) + 0,(1).

Proof: We denote f»j’l — fi;) by Af»j’l. We have I 4 = (1/n®) uiAf»j’lulKn‘le‘ , so that
7 7 s a 7 J J

1 \? , . - i .
BE(I},) = (W) [ZuiAff’lemanﬁ] lz ws A3 up Ky K e |
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where the first (respectively the second) sum is taken over all arrangements of pairwise different
indices 7, j and [ (respectively pairwise different indices ¢, j* and {’). We consider four situations.

(i) All indices are different: n(®) terms.
B A I w K s A F K o K i |
= B [Af KA K By Ko K o X) |
= OB [AF KA K didididy Koy K iy
= §F [KWKW,didld,dllﬁ'mjﬁ'm,fE (A FUNFIN 74, 75, 2, Zn, 7, Zl,)}
= O(5),

where A\, = F {A2f5’1|Zi, VAN AN ATV AT Zl/} = o(1) uniformly by Lemma 3.
(ii) One index is common to {i,j,1} and {i’, j',1'}: 920> terms.
(i' =) E [qu Flu Ko1K g A f{'v"ulll(mlllﬁ'mjl}
- E [A FUR LA f{'v"l(m,l,E(ugulul,ﬁ'mjkmj,|X)}
= 2B [AF KA Kygouddidy K K |
~ 0@,
Similar computations can be made for the cases j = j, I =1',i=j" (orj=4i'), i =1 (or I =17'),
j =1 (or [ = j'). The corresponding expectations are all O(62),,).
(iii) Two indices are common to {i, 7,1} and {i’, ", I'}: 182 terms.
(i=i'andj=j)  E AR wKg A u kK2
= B [ARK A K B(u?uun K25 X))
= RE[AF K AP K et didi K2 ]
= O /1) = O /19),
The other cases are: (i =¢ and I =1"), (j=j and [ =), (i=j" and j=7'), (i=j"and j =1
(ori=0landl=j)(orj=dandl=j) (orj=0landl=4), (i=j5 and l=7) (ori ="V
and j=), (i=0Uand j=j) (orl=¢and j=j), (i=74and j=1) (ori =1 and [ = j),
(t=Uandl=7),(i=jandl=0)(orj=1iand I =1"), (j =1"and [ = j'). It can be similarly
checked that the corresponding expectations are all O(A,,/h?).
(iv) Three indices are common to {i, j, 1} and {7, j,1'}: 6n(>) terms.
For instance, if (i =4, j=j and I =), E [uf (Afij’l)2 ulzl(gﬂlg'gij] = O(A\,/h?F). The remain-
ing cases are: (i =4 and j =0l"and I =j), (i=j and j=d and [ =1"), (i =5 and j =1
and [ =), (i =1"and j =i and I = j'), (i = and j = j" and [ = ¢'). The corresponding
expectations are all O()\,/h?P).
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Therefore,

E [nh?214]" = 810200 (A,) + E2nhPO(A) + O(A) (1 + (nh?) 7).
The proposition then follows from A, = o(1), see Lemma 3. Q.E.D.
Proposition 12 : nh?/?Iy 5 = §2nh?/%0,(1) + §,/nh?/?0,(1) + 0,(1).

Proof: The proof is very similar to the proof of Proposition 11 for I; 4 and is not reported.

6.2 Proof of Theorem 2

The proof of Theorem 2 is analogous to the proof of Theorem 1. To deal with Vg, [1 3 and I; 5, we
use a straightforward generalization of Lemma 1, which accounts for the fact that observations
may not be identically distributed across subsamples, although they are independent. This result
is not formally stated and shown but one easily check that it holds by looking at the proofs of
Lemma B.4 of Fan and Li (1996) and Theorem 1 of Hall (1984) (the latter proof relies on a
martingale central limt theorem that still applies in this case). To deal with the remaining terms,
one uses analogs of (6.1) and (6.2) for independent but not necessarily identically distributed

random variables.

6.3 Panel data

The difficulty to adapt the proof of Theorem 2 comes from the fact that the observations may not
be independent across subsamples. But under our assumptions, u;; = Y;; —r(X;;) is independent
of Zioq = {Yi,..., Y21, Xa, ..., Xi 41} conditionally on {Xj, [} and Eluy|Ziq, Xi, [] =
R(Xi) — r(Xit), which is zero under Hy. Then Uy, Uy, and [q 5 are degenerate U-statistics
under Hy and a generalization of Lemma 1 can be applied. The remaining terms are dealt with

as in the proof of Theorem 1, using Lemma 4 for the terms Iy 1, I1 2, 114 and I .

6.4 Technical lemmas

Lemma 2 For any function | € UP,

/Z(X)}j—pl( (x _hX) X — i(x)

sup — 0.

erRP
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Proor: This result comes from the well-known Bochner lemma.

Lemma 3 : If the density f.(X) belongs toU? Ve, and nh? — oo, F {A2f5|Zi, Zi, Ly, Zir| =
o(1) and B [A2f3| 7, 7, 71, Zs, Zyn, Zv| = o(1), where Af! = [ = fi and AfF' = FP — f.

ProoOF: From the definition of Af»j,

: o e 2
B[ 12022020 = B|(F - E(R1202,:20.2)) |22 23, 20,2 |
e 2
+ (B (12, 25, 20, Z30)) = £
Because fg—E(ﬁﬂZh Zj Ziny Zyr) = (n=2)"" S yaiiiinin (I(Mk—E(I(mMZi)) , whose summands
are, conditional on Z;, independent with zero mean,

- o~ 2
E[(ff—E(ff|Zi,Zj,Zi/,Zj/)) |Zi,Zj,Zi,7Zj,] < (=27 B[(Kui — B(Kaix 20)) 1 2]
Kt}
< (=277 Y E[K%z] = 0mhr)7
Kt}

As F (]?2]|ZZ7 Z]7 Zi’7 Z]/) = (n — 2)_1 [I(nii’ + I(nij’ + (n — 4)E(I(n2k|Z2)] ,

2 2 I . n—4. . ?
[E (ff|Zn Zj, Lt Z]‘/) - fz} = [n — (Koiir + Kir = fi) + =5 B (Koir = f¢|Z¢)]

< o™ h )+ 0m™) +o()] = o(1),

where we use f; = 3. p.f.(X).
The proof for the second part is similar and is therefore not reported. Q.E.D.

Lemma 4 : The result of Lemma 3 holds for panel data.
ProOOF: The proof follows Lemma 3’s proof, with the difference that

— o~ 2
E|:(f2] _E(fZ]|szz]7ZZ’7Z]’)) |ZZ7Z]7ZZ’7Z]'

< (n—2)72 Z FE (K — E(Kukl2:) (K — E(Kuiw| 20)) 1 73] -
ki g{i,gi 5"}
By conditioning upon (Z;, Zj), one can see that all the terms such that & and &’ correspond to
different individuals are zero. There are at most nl' terms corresponding to same individuals.
These terms are all O(h?)~1 by applying Cauchy-Schwartz inequality. Then the right-hand side
is an O(nh?)~" and Lemma 4 follows. Q.E.D.
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Table 1: Null and Linear Alternatives

n a DGP, DGPy DGP, DG Py

100 0.2 0.042 (0.536) | 0.112 (0.566) | 0.311 (0.642) | 0.864 (0.782)
12%  2.6% | 1.6%  42% | 3.9%  88% | 16.0%  29.5%

0.5 0.027 (0.698) | 0.237 (0.788) | 0.796 (0.968) | 2.189 (1.178)

2.9%  5.9% | 57% 101% | 19.0% 28.7% | 67.3%  77.9%

1.0 0.059 (0.767) | 0.452 (0.959) | 1.438 (1.295) | 3.781 (1.631)

34%  7.0% | 111%  17.5% | 39.8%  50.4% | 90.2%  93.9%

1.5 0.184 (0.833) | 0.708 (1.091) | 1.998 (1.529) | 5.039 (1.966)

52%  9.9% | 17.6%  254% | 54.9%  63.4% | 96.3%  97.8%

2.0 0.607 (0.909) | 1.225 (1.230) | 2.715 (1.727) | 6.219 (2.206)

124%  19.3% | 30.8%  41.0% | 70.5%  77.1% | 98.7% = 99.4%
Chow test | 4.4% 9.6% | 51.2%  64.6% | 98.7%  99.4% | 100.0% 100.0%

250 0.2 0.006 (0.647) | 0.280 (0.729) | 1.023 (0.916) | 2.928 (1.096)
1.6%  35% | 4.9%  95% | 24.1% 35.6% | 87.2%  93.7%

0.5 -0.013  (0.756) | 0.593 (0.952) | 2.185 (1.326) | 6.043 (1.694)

2.9%  5.8% | 13.9%  22.1% | 62.5%  73.2% | 99.8%  99.9%

1.0 0.038 (0.823) | 1.035 (1.208) | 3.588 (1.829) | 9.635 (2.437)

42%  7.7% | 26.0%  36.6% | 86.2%  91.1% | 100.0% 100.0%

1.5 0.188 (0.836) | 1.491 (1.423) | 4.743 (2.239) | 12.408 (2.992)

57%  9.9% | 38.9%  47.6% | 93.8%  96.0% | 100.0% 100.0%

2.0 0.706 (0.890) | 2.250 (1.619) | 6.022 (2.549) | 14.925 (3.374)

13.3%  22.0% | 58.6%  69.3% | 98.0%  98.9% | 100.0% 100.0%
Chow test | 5.3% 9.8% | 92.8%  96.6% | 100.0% 100.0% | 100.0% 100.0%

Each cell contains mean of the test statistic with its standard deviation in parentheses on the first line, and

empirical levels at 5% and 10% nominal levels on the second line.



Table 2: Sinus Alternatives

n a DG P, DG P; DGP; DGP;
100 0.2 0.327 (0.647) | 0.317 (0.641) | 0.326 (0.647) | 0.312 (0.645)
34%  92% | 3.8%  88% | 42%  8.6% | 4.0% 83 %
0.5 0.744 (0.936) | 0.749 (0.994) | 0.803 (1.015) | 0.779 (0.996)
16.9%  25.6% | 18.1% 27.3% | 20.3%  29.3% | 19.4%  28.4%
1.0 1134 (1.071) | 1.239 (1.254) | 1.404 (1.342) | 1.387 (1.324)
28.6%  41.1% | 33.3%  43.5% | 37.3%  47.9% | 38.0%  47.2%
1.5 1215 (1.043) | 1.536 (1.420) | 1.863 (1.553) | 1.890 (1.542)
30.0%  43.5% | 40.9% 50.1 % | 49.6%  59.2% | 51.0%  60.4%
2.0 0.951 (0.962) | 1.897 (1.462) | 2.425 (1.709) | 2.526 (1.720)

21.2%  31.1% | 51.4% 61.6 % | 63.3%  71.6% | 66.3%  74.3%
Chow test | 4.8% 9.5% | 14.8%  21.2% | 74.9%  82.3% | 83.8%  90.9%

250 0.2 1.003  (0.932) | 1.040 (0.938) | 1.068 (0.944) | 1.017 (0.926)
23.7%  36.3% | 24.0%  36.7% | 25.6%  38.1% | 24.3%  35.5%

0.5 2.034 (1.331) | 2.181 (1.399) | 2.276 (1.415) | 2.171 (1.368)

59.0%  68.8% | 61.7%  71.3% | 64.8%  74.4% | 61.8%  71.6%

1.0 3.004 (1.552) | 3.386 (1.818) | 3.666 (1.910) | 3.542 (1.863)

80.8%  87.0% | 82.9%  89.1% | 85.8%  90.7% | 84.9%  90.2%

1.5 3.385  (1.490) | 4.111 (2.070) | 4.695 (2.308) | 4.622 (2.271)

88.8%  93.4% | 90.1%  94.3% | 92.5%  95.3% | 93.0%  95.4%

2.0 3.210 (1.283) | 4.754 (2.218) | 5.727 (2.593) | 5.771 (2.573)

90.7%  95.4% | 94.7%  97.4% | 96.6%  98.1% | 97.1%  98.5%
Chow test | 5.5%  10.1% | 13.4%  21.0% | 93.3%  95.9% | 99.6% 100.0%

Each cell contains mean of the test statistic with its standard deviation in parentheses on the first line, and

empirical levels at 5% and 10% nominal levels on the second line.



Table 3: Null and Linear Alternatives (n=250)
a DGPO DGPl DGP2 DGPg

Po = 0.2

1.0 | 0.065 (0.559) | 0.460 (0.694) | 1.267 (0.823) | 2.410 (0.889)
0.9%  2.9% | 6.0% 12.1% | 30.2% 46.0% | 81.2%  91.9%
1.5 0.161 (0.582) | 0.680 (0.783) | 1.697 (0.951) | 3.067 (1.050)
1.8%  4.3% | 11.3%  20.2% | 49.7%  64.6% | 93.3%  97.9%
2.0 | 0.570  (0.669) | 1.209 (0.939) | 2.364 (1.119) | 3.828 (1.217)
6.7% 13.8% | 28.2%  41.3% | 73.1%  84.4% | 98.4%  99.5%

1.0 | 0.012 (0.770) | 0.375 (0.918) | 1.399 (1.264) | 4.838 (2.041)
3.5%  6.5% | 95% 14.7% | 37.2%  48.3% | 96.3%  97.9%
1.5 0.058 (0.767) | 0.532 (0.999) | 1.838 (1.471) | 6.203 (2.471)
3.8%  6.8% | 12.3%  18.5% | 48.8%  59.7% | 98.7%  99.2%
2.0 | 0.251 (0.780) | 0.814 (1.088) | 2.335 (1.650) | 7.406 (2.803)
53%  8.9% | 187%  27.5% | 61.6%  71.2% | 99.5%  99.7%

Each cell contains mean of the test statistic with its standard deviation in parentheses on the first line, and

empirical levels at 5% and 10% nominal levels on the second line.
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