
Härdle, Wolfgang; Huet, Sylvie; Mammen, Enno; Sperlich, Stefan

Working Paper

Semiparametric additive indices for binary response
and generalized additive models

SFB 373 Discussion Paper, No. 1998,95

Provided in Cooperation with:
Collaborative Research Center 373: Quantification and Simulation of Economic Processes,
Humboldt University Berlin

Suggested Citation: Härdle, Wolfgang; Huet, Sylvie; Mammen, Enno; Sperlich, Stefan (1998) :
Semiparametric additive indices for binary response and generalized additive models, SFB 373
Discussion Paper, No. 1998,95, Humboldt University of Berlin, Interdisciplinary Research Project 373:
Quantification and Simulation of Economic Processes, Berlin,
https://nbn-resolving.de/urn:nbn:de:kobv:11-10060660

This Version is available at:
https://hdl.handle.net/10419/61236

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10060660%0A
https://hdl.handle.net/10419/61236
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Semiparametric additive indices for binary response

and generalized additive models

Wolfgang H�ARDLE

Institut f�ur Statistik und �Okonometrie� Wirtschaftswissenschaftliche Fakult�at�

Humboldt�Universit�at zu Berlin� D ����� Berlin� Germany

Sylvie HUET

Institut de Recherche Agronomique� Centre de Recherches de Jouy�en�Josas

F ����	 Jouy�en�Josas Cedex� France

Enno MAMMEN

Institut f�ur Angewandte Mathematik� Ruprecht�Karls�Universit�at Heidelberg

Im Neuenheimer Feld 	
�� D �
�	� Heidelberg� Germany

Stefan SPERLICH

Institut f�ur Statistik und �Okonometrie� Wirtschaftswissenschaftliche Fakult�at�

Humboldt�Universit�at zu Berlin� D ����� Berlin� Germany

November �� ����

Abstract

Models are studied where the response Y and covariates X�T are assumed

to ful�ll E�Y jX�T � � GfXT� � � � m��T�� � � � � � md�Td�g� Here G is a

known �link� function� � is an unknown parameter� andm�� � � � �md are unknown

functions� In particular� we consider additive binary response models where the

response Y is binary� In these models� given X and T � the response Y has

a Bernoulli distribution with parameter GfXT� � ��m��T�� � � � ��md�Td�g�

The paper discusses estimation of � andm�� � � � �md� Procedures are proposed for

testing linearity of the additive components m�� � � � �md� Furthermore� bootstrap

uniform con�dence intervals for the additive components are introduced� The

practical performance of the proposed methods is discussed in simulations and

in two economic applications� �
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� Introduction

Many problems in applied econometrics and other elds require estimating the con�

ditional mean of a random response Y given random covariates� Assume that the

covariate vector is decomposed in two components �X� T �� This paper is concerned

with estimating the conditional mean m�x� t� � E�Y jX � x�T � t�� We will assume

that the in�uence of X is linked linearly tom�x� t�� The in�uence of T will be described

by additive nonparametric functions of the components of the vector T �Generalized

Additive Regression�� We will discuss construction of tests and condence bands for

these nonparametric functions�

A traditional estimation approach for m�x� t� begins by assuming that m belongs to

a known nite�dimensional parametric family in the class of generalized linear mod�

els� That is� m�x� t� � G�xT� � � � tT�� for a known link function G and a linear

parametric index �xT� � � � tT�� � If the true relationship between �X� T � and Y is

given by such a generalized linear model then the parameters can be estimated with

OP �n
����� rates of convergence� The estimated parameter� though� can be misleading

if m�x� t� is misspecied� The possibility of misspecication may be eliminated by a

non� or semiparametric approach at the cost of less precise statistical estimation and

additional numerical burden� Bierens ��
���� H�ardle ��

�� provide overviews over

the nonparametric estimation methods and discuss the issue of rates of convergence�

An excellent introduction into semiparametrics in econometrics is given in Horowitz

��

��� The nonparametric rate of convergence decreases rapidly as the dimension of

the covariables increases �Stone ��
���� Silverman ��
��� Table ��	���� The rate of

convergence may be improved through the use of dimension reducing methods� One

popular method is the assumption of additivity for the nonparametric components�

The subject of this paper are tests and condence bands in generalized additive re�

gression where the in�uence of the X variable is kept linearly and the in�uence of T

is modelled in an additive nonparametric way� In these models the response Y and

covariates X� T are assumed to fulll

E�Y jX�T � � GfXT� � � �m��T�� � � � ��md�Td�g�

Here G is a known �link� function� � is an unknown parameter� and m�� � � � � md are

unknown functions� This model is a semiparametric generalisation of the generalized

linear model where the conditional expectation of the response depends on all covariates

via the link function G in a linear way� i�e� E�Y jX�T � � GfXT� � �� T T�g with an

additional parameter �� Models of this type are logit and probit models that are widely

used in mobility analysis� employment studies� marketing analysis� credit scoring and

many other elds� They are often applied because they allow a simple interpretation

of a �linear index� and software is routinely widely accessible�

Appropriateness of linearity in these index models has been questioned in recent ap�

plications� Burda ��

�� analysed East � West migration in Germany� Fahrmeir and

	



Hamerle ��
���� Fahrmeir and Tutz ��

�� used logit models in credit scoring and

found nonlinear in�uences in the predictor variables� Bertschek ��

�� and Horowitz

and H�ardle ��

�� analysed innovative behavior of rms and proposed non� and semi�

parametric approaches which are shown to be a valuable alternative to linear index

modelling� Severini and Staniswalis ��

��� Ai ��

��� Ai and McFadden ��

�� demon�

strated how parametric and nonparametric components can be estimated e�ciently in

case of one nonparametric component� Their approach is based on an iterative appli�

cation of smoothed local and un�smoothed global likelihood functions� For a related

model with semiparametric index see Carroll� Fan� Gijbels and Wand ��

��� A non�

parametric bootstrap test for the parametric index can be found in H�ardle� Mammen

and M�uller ��

��� In this paper we improve upon this earlier work by considering

several additive nonparametric components and by constructing condence bands for

these components�

The additive modelling has been analysed theoretically for high�dimensional regression

data� see Stone ��
��� �
���� Andrews and Whang ��

��� Newey ��

��� It helps

to circumvent the curse of high dimension� �i� The model can be estimated at a rate

typical for one dimensional explanatory variables� �ii� The resulting curves are one�

dimensional and can be inspected graphically with the aid� e�g� of uniform condence

bands� Two practical proposals exist for the estimation of additive components in

regression models� Projection smoothers using backtting techniques have been con�

sidered in Buja� Hastie and Tibshirani ��
�
�� Asymptotic theory for this iterative

technique is rather complicated� see Linton� Mammen and Nielsen ��

��� Opsomer

��

�� and Opsomer and Ruppert ��

��� Tools �e�g� tests and condence bands� for

statistical inference based on the estimates are rare and there is no complete mathemat�

ical knowledge on the choice of the bandwidth� Recently� an �integration� technique

of additive components has been introduced by Tj�stheim and Auestad ��

��� Lin�

ton and Nielsen ��

��� The technical treatment of this method is simple and allows

an asymptotic distribution theory� This approach has been applied in regression by

Fan� H�ardle and Mammen ��

��� Severance�Lossin and Sperlich ��

�� and in time

series analysis by Masry and Tj�stheim ��

���

��� For generalized additive models

this method has been discussed in Linton and H�ardle ��

��� Linton ��

�� proposed

a modication that achieves certain oracle bounds� For a simulation comparison of

both approaches see Sperlich� Linton and H�ardle ��

��� Horowitz ��

�� provides an

estimation technique for a purly additive index with unknown link�

In this paper we study bootstrap tests and condence bands that are based on inte�

gration estimates� The paper is organised as follows� In the next section we introduce

integration estimates for additive binary choice models� Section � generalizes this

discussion to generalized additive models and it states asymptotics for integration es�

timates� Typically� the bias of the integration estimate depends on the shape of all

additive components� This complicates the data analytic interpretation of estimated

nonparametric components� We will show how bootstrap can be used to correct for

�



the bias� Section � introduces bootstrap tests for testing linearity of additive compo�

nents� The tests are modications of an approach of Hastie and Tibshirani ��

���

They proposed to use the likelihood ratio test and to take critical values of a �� ap�

proximation� The test of this paper di�ers from this proposal by three modications�

Instead of comparing the nonparametric estimate with a linear t we propose to com�

pare the nonparametric t with an bootstrap estimate of its expectation �under the

hypothesis of linearity�� Without this bias correction the test does not behave like an

overall test� see H�ardle and Mammen ��

�� for a similiar discussion in a simple re�

gression model� Our second modication takes care of the fact that di�erent likelihood

functions �smoothed and unsmoothed likelihood functions� are used in the construction

of the parametric and nonparametric estimates� Furthermore� we propose using the

bootstrap for the calculation of critical values� Consistency of bootstrap is shown by

asymptotic theory� Section � presents theory for uniform condence bands of nonpara�

metric additive components� Again� their construction uses bootstrap� In Section �

the presented methodology is applied to a migration problem and to a labour market

problem� This section also includes a small simulation study� Assumptions and proofs

are postponed to the appendix�

� Estimation in additive binary response models

In an additive binary response model i�i�d� tuples �Yi� Xi� Ti� are observed �i � �� � � � � n��

where Ti is a random variable in IRd� Xi is in IR
p and Yi is a binary response� Condition�

ally given �Xi� Ti� the variable Yi is distributed as a Bernoulli variable with parameter

GfXT
i ����m��Ti���� � � ��md�Ti�d�g where G is a known �link� function� � is an un�

known parameter in IRp� and m�� � � � � md are unknown functions IR� IR� The param�

eter � is in IR� For identiability of this model it is assumed that E w��Ti��� m��Ti��� �

�� � � � � E wd�Ti�d� md�Ti�d� � � for weight functions w�� ��� wd� Given �Xi� Ti�� the �con�

ditional� likelihood of Yi is

Q��i�Yi� � Yi log�i � ��� Yi� log��� �i���	���

where �i � GfXT
i ����m��Ti���� � � ��md�Ti�d�g� The conditional likelihood function

is given by

L�m�� �� �
nX
i��

Q��i�Yi��	�	�

where m��t� is the additive function ��m��t�� � � � ��md�td��

We discuss now how the additive components m�� � � � � md can be estimated� Without

loss of generality� we will do this only for the rst component m�� Dene the smoothed

likelihood

LS�m�� �� �
Z nX

i��

Kh�t� � Ti���Lg�t�� � Ti����Q
h
GfXT

i � �m��t�g�Yi
i
dt��	���

�



where for a vector u � IRd we denote the vector �u�� � � � � ud�
T by u��� Similarly� Ti��� �

�Ti��� � � � � Ti�d�
T � For a kernel function L dened on IRd�� put Lg�v� � g��d���L�g��v�

and for a kernel function K dened on IR put Kh�v� � h��K�h��v�� for L take the

product kernel L �
Qd��
j�� Lj� The bandwidth g is related to smoothing in direction

of the �nuisance� covariates� The relative speed of g to h and the choice of these

bandwidths will be presented later� We dene now an estimate of � and a preliminary

estimate of m�� Following Severini and Wong ��

	�� Severini and Staniswalis ��

��

and H�ardle� Mammen and M�uller ��

�� these estimates are based on an iterative

application of smoothed local and un�smoothed global likelihood functions� We dene

for � � B

cm��t� � argmax
�

nX
i��

Kh�t� � Ti���Lg�t�� � Ti����Q
h
GfXT

i � � �g�Yi
i
��	���

b� � argmax
��B

L�cm�� ����	���

cm � cmb���	���

Equation �	��� may be written as cm� � argmax
m

LS�m� ��� The result cm is a multivari�

ate kernel estimate of m� which makes no use of the additive structure of m�� Thiscm will be used in an additional step as an auxiliary quantity for obtaining estimates

���cm�� � � � �cmd of the additive components ��m�� � � � � md� The nal additive estimate of

m��t� will then be given by ���cm��t���� � ��cmd�td�� For the estimation of the nonpara�

metric component m� the marginal integration method is applied� It is motivated by

the fact that up to a constant� m��t�� is equal to f
R
w���v�dvg��

R
w���v�m

��t�� v�dv

or f �
n

Pn
i��w���Ti����g�� �

n

Pn
i��w���Ti���� m

��t�� Ti���� for a weight function w��� An

estimate of m� is achieved by marginal integration or summation of an estimate of m�

In particular� this method does not use iterations so that the explicit denition allows

a detailed asymptotic analysis� A weight function w�� is used here for two reasons�

Firstly� it may be useful to avoid problems at the boundary� Secondly� it can be chosen

to minimize the asymptotic variance� In particular� for a regression model �without

link function� it has been shown in Fan� H�ardle and Mammen ��

�� that after appro�

priate choice of w�� a component m� can be estimated with the same asymptotic bias

and variance as if the other components m�� � � � � md were known� For a weight function

w�� dene

m��t�� �
�
n

Pn
i��w���Ti����cm�t�� Ti����

�
n

Pn
i��w���Ti����

��	���

which estimates the function m� up to a constant� An estimate of the function m� is

given by norming with a weight function w�

cm��t�� � m��t���
�
n

Pn
i��w��Ti���m��Ti���
�
n

Pn
i��w��Ti���

��	���

The additive constant � is estimated by

�� �
�
n

Pn
i��w��Ti� �cm�Ti��cm��Ti���� � � ��cmd�Ti�d��

�
n

Pn
i��w��Ti�

��	�
�

�



Again� the weight functions w� and w� may be useful to avoid problems at the bound�

ary� The remaining nonparametric components are estimated analogously� The nal

additive estimate of m is given by

cm��t� � �� �cm��t�� � � � ��cmd�td���	����

Asymptotics of cm� will be discussed in the next section for the general case of general�

ized additive models� We come back to binary choice models in Section � where some

simulations will be presented and where the methods will be applied to economic data�

� Estimation in generalized additive models� asymp�

totics� bootstrap bias correction

We come now to the discussion of the more general case of a generalized additive

model� Suppose that we observe an independent sample �Y�� X�� T��� � � � � �Yn� Xn� Tn�

with E�YijXi� Ti� � GfXT
i � � m�Ti�g� Additional assumptions on the conditional

distribution of Yi will be given below� For a positive function V the quasi�likelihood

function is dened as

Q��� y� �

yZ
�

�s� y�

V �s�
ds�����

where � is the �conditional� expectation of Y � i�e� � � GfXT� �m�T �g� The quasi�

likelihood function has been introduced for the case that the conditional variance of

Y is equal to ��V ��� where �� is an unknown scale parameter� The function Q can

be motivated by the following two considerations� Clearly� Q��� y� is equal to ��
�
���

y��v�� where v�� is a weighted average of �	V �s� for s between � and y� Maximum

quasi�likelihood estimates can thus be interpreted as a modication of weighted least

squares� Another motivation comes from the fact that for exponential families the

maximum quasi�likelihood estimate coincides with the maximum likelihood estimate�

Note that the maximum likelihood estimate b
� based on an i�i�d� sample Y�� ���� Yn from

an exponential family with mean ��
� and variance V ���
��� is given by

nX
i��

�

�

Q���
��Yi� � ��

We consider three models�

Model A �Y�� X�� T��� � � � � �Yn� Xn� Tn� is an i�i�d� sample withE�YijXi� Ti� � GfXT
i ��

m�Ti�g�
Model B Model A holds and the conditional variance of Yi is equal to V ar�YijXi� Ti� �

��V ��i� where �i � GfXT
i � �m�Ti�g and where �� is an unknown scale param�

eter�

�



Model C Model A holds and the conditional distribution of Yi belongs to an expo�

nential family with mean �i and variance V ��i� with �i as in Model B�

The quasi�likelihood function is well motivated for Models B and C� The more general

Model A is included here because we want to discuss the case of a wrongly specied

�conditional� variance in Models B and C� If not otherwise stated all of the following

remarks and results treat the most general Model A� The quasi�likelihood function and

the smoothed quasi�likelihood function is now dened as in �	�	� and �	��� with �	���

replaced by ������ The estimates cm�� ��� cm� m�� cm�� cm� and �� are dened as in �	���

� �	���� Asymptotics for cm� are presented in the following theorem� The assumptions

can be found in Appendix A��

Theorem ���

Suppose that the assumptions �A�� � �A�� apply� Then if h and g tend to zero and

nhg��d����logn��� tends to in�nity�

p
nhfcm��t���m��t��� ��n�t��g

converges to a centered Gaussian variable with variance

��
��t�� �

Z
K��u� du

f��t��

fEw���T���g� E
�
Z�

Z�

����T� � t�

�
�

where fT��
and fT are the densities of T�� or T � �T�� T���� respectively� �For a

vector �v�� � � � � vd we denote the vector �v�� � � � � vj��� vj��� � � � � vd� by v�j�	 Z� and Z�

are de�ned in the following way


Z� � w�
��T���

Z�

V �GfXT� �m��T �g�f
�
T��

�T���V ar�Y jX� T ��

Z� � E
h
Z�
���T� � t�� T��

i�
f �
T �t�� T����

Z� �
G��XT� �m��T ���

V �GfXT� �m��T �g� �

For the asymptotic bias ��n�t��� one has

��n�t�� � d�n�t���
Z
d�n�v��w��v��fT��v�� dv� 	

Z
w��v��fT��v�� dv� � oP �h

� � g���

where

d�n�t�� � g�
Z
IRd��

E

��a��X� t�� u� dX
j��

��
L�jbj�X� t�� u� jT � �t�� u�

�� fT��
�u�du

�h�
Z
IRd��

E
h
a��X� t�� u� �

�
Kb��X� t�� u� jT � �t�� u�

i
fT��

�u�du�

�



Here fT� denotes the density of T�� We write f �Tj�v� �
�
�vj

fT �v�� Furthermore� ��
L�j �R

s� dLj� �
�
K �

R
s� dK and

a��x� v� �
w���v���G

��xT� �m��v��

E�w���T����E�Z�jT � v�fT �v�V �G�xT� �m��v���
�

bj�x� v� �
�

	

h
G���xT� �m��v���m

�

j�vj��
� �G��xT� �m��v��m

��

j �vj�
i
fT �v�

�
h
G��xT� �m��v��m

�

j�vj�
i
f �Tj�v��

Under the additional assumption of �A��� the rest term oP �h
� � g�� in the expansion

of ��n�t�� can be replaced by OP �h
� � g���

The optimal rate of convergence for twice di�erentiable functions m� is n����� As

long as second order kernels K and L are used this rate can be achieved under the

assumptions of Theorem ��� only for d � 	� For higher dimensions d� one can see

from our expansions that the n���� rate can be achieved by using higher order kernels

L�� � � � � Ld��� Furthermore� it can be shown that Theorem ��� holds under weaker

conditions on the bandwidths g and h� However� an essential generalization would

require complex higher order stochastic expansions of the pilot estimate cm�

The estimation of the other additive components mj for j � 	� � � � � d can be done as

the estimation of m� in Theorem ����If assumptions analogous to �A�� � �A
� ��A����

hold for the other components� then the corresponding limit theorems apply for their

estimates� �In the assumptions h denotes always the bandwidth of the estimated com�

ponent and g is chosen as bandwidth of the other components�� One sees that under

these conditions the estimates cm��t��� � � � �cmd�td� are asymptotically independent� This

leads to a multidimensional result� The random vector

p
nh

�BB�
cm��t���m��t��� ��n�t��

���cmd�td��md�td�� �dn�td�

	CCA
converges to a centered Gaussian variable with covariance matrix�

�

���t�� � � � � �
���

� � �
���

� � � � � �d�td�

���� �

The variance of the estimate cm��t�� can be estimated by

���
��t�� � nh

nX
i��

� �i ����	�

where

�i �

�� �
n

nX
j��

w��Tj����

����
�

n

nX
j��

w��Tj�����j�t�� Ti����

�



�
�

n

nX
l��

G��XT
l
�� �cm��Tl��

V �GfXT
l
�� �cm��Tl�g�

�l�t�� Tj����


G��XT

i
�� �cm��t�� Tj�����

V �GfXT
i
�� �cm��t�� Tj����g�

�si�

�j�t� �
Kh�t� � Ti���Lg�t�� � Ti����

�
n

Pn
j��Kh�t� � Tj���Lg�t�� � Tj����

�����

�s�i �

�������
�Yi � ��i�

� in case of Model A�

�s�V ���i� in case of Model B�

V ���i� in case of Model C

with

�s� �
�

n

nX
i��

�Yi � ��i�
�

V ���i�

and

��i � GfXT
i
�� � �� �cm��Ti��� � � � ��cmd�Ti�d�g�

Theorem ��� shows that if the bandwidths h and g are of the same order� the bias ofcm��t�� depends on the shape of the other additive components m�� � � � � md� This may

lead to wrong interpretations of the estimate cm�� The bootstrap bias estimates help

here to judge such e�ects�

Three versions of bootstrap will be considered here �see also Mammen and van de Geer

��

��� H�ardle� Mammen and M�uller ��

���� The rst version is Wild Bootstrap which

is related to proposals of Wu ��
���� Beran ��
��� and Mammen ��

	� and which was

rst proposed by H�ardle and Mammen ��

�� in nonparametric setups� Note that in

Model A the conditional distribution of Y is not specied besides the conditional mean�

The Wild Bootstrap procedure works as follows�

Step �� Calculate residuals ��i � Yi � ��i�

Step 	� Generate n i�i�d� random variables ���� � � � � �
�
n with mean �� variance � and

which fulll for a constant C that j��i j � C �a�s�� for i � �� � � � � n�

Step �� Put Y �
i � ��i � ��i�

�
i for i � �� � � � � n�

Under the additional model assumption

V ar�Y jX� T � � ��V �G�XT�� �m��T ���

�Model B� one may use a resampling scheme that takes care of this relation� For this

reason� we propose to modify Step � above by putting Y �
i � ��i � ��V f��ig�����i for

i � �� � � � � n� Here ��� is a consistent estimate of ��� In this case the condition that j��i j
is bounded can be weakened to the assumption that ��i has sub�exponential tails� i�e�

for a constant C it holds that E�e	j�
�

i j�C
� � C for i � �� � � � � n �compare �A	���






In the special situation of Model C �semiparametric generalized linear model�� Q�y���

is the log�likelihood� Then the conditional distribution of Yi is specied by �i �

G�XT
i � � m��T ��� In this model we propose to generate n independent Y �

� � � � � � Y
�
n

with distributions dened by ��i� respectively� In the binary response example that we

considered in Section 	� Yi is a Bernoulli variable with parameter �i � G�XT
i ��m

��T ���

Hence� here it is reasonable to resample from the Bernoulli distribution with parameter

��i�

In all three resampling schemes� one uses the data �X�� T�� Y
�
� �� � � � � �Xn� Tn� Y

�
n � to

calculate the estimate cm�
�� This is done with the same bandwidth h for the component

t� and with the same g for the other d� � components� The bootstrap estimate of the

mean of cm��t�� is given by E�cm�
��t��� where E

� denotes the conditional expectation

given the sample �X�� T�� Y��� � � � � �Xn� Tn� Yn�� The bias corrected estimate of m��t��

is dened by cmB
� �t�� � cm��t��� b��n�t���

where b��n�t�� � E�cm�
��t�� � cm��t��� The next theorem shows that the bias terms of

order g� are removed by this construction�

Theorem ���

Assume that Model A � Model B or Model C hold and that the corresponding version of

bootstrap is used� Furthermore suppose that assumptions �A�� � �A��� apply and that

assumptions analogous to �A�� and �A� hold for the estimation of the other additive

components mj for j � 	� � � � � d �h being always the bandwidth used for the estimated

component mj and g the bandwidth for the nuisance components	� Furthermore� sup�

pose that h and g tend to zero and that nhg��d����logn��� tends to in�nity� Then it

holds that cmB
� �t���m��t�� � Opfh� � g� � �nh�����g������

For application of bootstrap in nonparametric regression it has been proposed to gen�

erate the bootstrap samples from another estimate of the regression function� Suppose

e�g� that in the third step of the bootstrap algorithm ��i is replaced by GfXT
i
�� � �� �cmO

� �Ti��� �cm��Ti��� � � � ��cmd�Ti�d�g� where cmO
� is dened as cm� but with bandwidth

hO instead of h� Then if hO	h � � one can show that the left hand side of �����

is of order Opf�hO�� � g� � �nhO�����g� Under weak conditions on hO and g this is

of order oPf�nh�����g� i�e� cmB
� �t�� has no bias of rst order� Using this fact it can

be shown that under the assumptions of Theorem ��	 the unconditional distribution

of cm��t���m��t�� and the conditional distribution of cm�
��t��� cmO

� �t�� have the same

normal limit� i�e� the distribution of cm��t�� �m��t�� is consistently estimated by the

bootstrap�

The estimation of the nonparametric components yields also an estimate of the pa�

rameter �� We show that under certain conditions a rate of order OP �n
����� can be

��



achieved� This is a consequence of the iterative application of smoothed local and

un�smoothed global likelihood function in the denition of b�� Our conditions imply

that d � �� Again this constraint can be weakened by assumption of higher order

smoothness of m�� � � � � md and by use of higher order kernels�

Theorem ���

Suppose that the assumptions �A�� � �A�� apply� Then� if hgd��n����logn��� tends to

in�nity and h and g � o�n������ it holds that


n���f b� � �g

converges in distribution to N��� I��� where Z� is de�ned as in Theorem ��� and where

I � EZ�fXfXT with

fX � X � fE�Z�jT �g��E�Z�XjT ��

� Bootstrap tests for linearity of additive compo�

nents�

Interesting shape characteristics may be visible in plots of estimates of additive com�

ponents� The complicated nature of the model may make it di�cult to judge the

statistical signicance of such ndings� A rst test would be a comparison of the

nonparametric estimates with linear functions� Deviance of the estimates from linear

functions may give an indication on the signicance of appearing shape characteristics�

The hypothesis of interest is therefore�

m��t�� � �� t� for all t� and a scalar ��������

Our test is a modication of a general test approach described in Hastie and Tibshirani

��

��� In semiparametric setups they propose to apply likelihood ratio tests and to

use �� approximations for the calculation of critical values� Approximate degrees of

freedom are derived by calculating the expectation of asymptotic expansions of the

test statistic under the null hypothesis� For this approach only heuristic justication

has been given� Here we propose modications of this approach that give better ap�

proximations for degrees of freedom� First we correct for the bias of the nonparametric

estimate� Secondly� we modify the test statistic for the reason that di�erent likelihoods

�smoothed or unsmoothed likelihood� respectively� have been used in the calculation of

the nonparametric or parametric components� For this modied test statistic asymp�

totic normality �see �Theorem ����� is established� The convergence to the normal limit

is very slow� Therefore we propose using the bootstrap for the calculation of critical

values� Consistency of bootstrap is shown in Theorem ��	�

��



The bias correction is used because also on the hypothesis the estimate cm��t�� may

have a non�negligible bias� For this reason in our test� cm��t�� is compared with a boot�

strap estimate of its expectation under the hypothesis� For this purpose we calculate

semiparametric estimates in the hypothesis model �����

E�YijXi� Ti� � GfXT
i � � �� ��Ti�� �m��Ti��� � � � ��md�Ti�d�g�

The � occurring in the preceeding equation is di�erent from the � dened in Section 	�

because Xi is now replaced by �Xi� Ti���� Estimation of the parametric components ��

� and �� and of the nonparametric components m�� � � � � md can be done� as described

in Section 	� This denes estimates ��� ��� ����fm�� � � � �fmd� Put

��i � GfXT
i
�� � �� � ���Ti�� �fm��T��i� � � � ��fmd�Ti�d�g�

For the bootstrap proceed now as follows� generate independent samples �Y �
� � � � � �

Y �
n � as in the last section but with �i replaced by ��i� Furthermore� using the data

�X�� T�� Y
�
� �� � � � � �Xn� Tn� Y

�
n � calculate our estimate cm�

�� The bootstrap estimate of

the mean of cm��t�� is given by E�cm�
��t��� where E

� denotes the conditional expectation

given the sample �X�� T�� Y��� � � � � �Xn� Tn� Yn�� Dene the following test statistic�

R �
nX
i��

w�Ti�
�G�fXT

i
b� �cm��Ti�g��

V �GfXT
i
b� �cm��Ti�g�

fcm��Ti���� E�cm�
��Ti���g� �

Here� cm��t� � �� � cm��t�� � � � � � cmd�td�� The weights �G�f� � �g��	V �Gf� � �g� in the

summation of the test statistic are motivated by likelihood considerations� see H�ardle�

Mammen and M�uller ��

��� It should be remarked that in the denition of the test

statistic R the bootstrap estimate E�cm�
� should not be replaced by a semiparametric

estimate of the function m�� say fm��Ti��� � e��Ti��� This can be deduced from the

discussion in H�ardle and Mammen ��

�� and H�ardle� Mammen and M�uller ��

��

who considered a similar test in another setup�

The following theorem states that the test statistic R has an asymptotic normal dis�

tribution�

Theorem ���

Assume that Model A � Model B or Model C hold and that the corresponding version

of bootstrap is used� Furthermore suppose that assumptions �A�� � �A��� hold with

Xi replaced by �Xi� Ti���� Then� if additionally� hgd��n����logn��� � � and h and

g � o�n������ on the hypotheses ����� it holds that

v��
n �R� en�

D�� N��� ��

with

en � h��
Z
K�u�� duE�AfT��T����

�	



v�n � h��
Z
K����u�� duE

n
E�AjT��

�fT��T��
�
o
�

A �
�

E�w���T����

w���T���w�T �Z
�f �

T��
�T���

E�Z�jT ��f �
T �T �

V ar�Y jX� T �
V fXT� �m��T �g �

where K����u� �
R
K�u� v�K�v� dv is the convolution of K with itself�

The quantities en and vn can be consistently estimated� So� critical values for the test

statistic can be calculated using the normal approximation� Because in similar cases

the normal approximation does not perform well �see H�ardle� Mammen and M�uller�

�

�� we propose using the bootstrap for the calculation of critical values of the test

statistic R� The bootstrap estimate of the distribution of R is given by the conditional

distribution of the test statistic R�� where R� is dened as follows�

R� �
nX
i��

w�Ti�
�G�fXT

i
b� �cm��Ti�g��

V fXT
i
b� �cm��Ti�g

fcm�
��Ti���� E�cm�

��Ti���g� �

The quantities b� and cm� are not recalculated in the resampling �using the bootstrap

samples�� This has been done to save computation time� The conditional distribution

L��R�� of R� �given the original data �X�� T�� Y��� � � � � �Xn� Tn� Yn� � is our bootstrap

estimate of the distribution L�R� of R �on the hypotheses �������

Consistency of bootstrap is the content of the next theorem�

Theorem ���

Under the assumptions of Theorem ��� it holds that

dKfL��R���L�R�g P�� �

where dK denotes the Kolmogorov distance� which is de�ned for two probability mea�

sures � and � �on the real line� as

dK��� �� � sup
t�IR

�����X � t�� ��X � t�
����

The results of this section can be easily extended to tests of other parametric hypotheses

on m�� e�g�

m��t�� � m��t�� for all t� and a parameter 
�

where fm� � 
 � �g is a parametric family� In particular� one could consider the simple

hypothesis that m� � ��

��



With similar arguments as in H�ardle and Mammen ��

�� one can show that the

test R has nontrivial asymptotic power for deviations from the linear hypothesis of

order n����h����� This means that the test does not reject alternatives that have

a distance of order n����� However� the test detects also local deviations �of order

n����h����� that are concentrated on shrinking intervals with length of order h� The

test may be compared with overall tests that achieves nontrivial power for deviations

of order n����� Typically� such tests have poorer power performance for deviations

that are concentrated on shrinking intervals� For our test� the choice of the bandwidth

determines how sensitive the test reacts on local deviations� For smaller h the test

detects deviations that are more locally concentrated� at the cost of a poorer power

performance for more global deviations� In particular� as an extreme case one can

consider the case of a constant bandwidth h� This case was not covered by our theory�

It can be shown that in this case R is a n���� consistent overall test�

� Uniform bootstrap con	dence bands�

In this section we propose using the bootstrap for the construction of uniform condence

bands� We dene

S � sup
t�

w��t��jcm��t���m��t��� ��n�t��j����
� �t���

where ���
��t�� is the estimate of the variance of cm��t��� dened in ���	�� For the es�

timation of the distribution of S we use again bootstrap� as introduced in Section �

for Model C� This denes the statistic S� � suptw��t��jcm�
��t�� � E� cm�

��t��j����
� �t���

In the denition of S� the norming ���t�� could be replaced by �����t��� We write

S�� � supt w��t��jcm�
��t�� � E� cm�

��t��j���������t��� Here �����t�� is an estimate of the

variance of cm�
��t��� that is dened similarly as ���t�� but that uses a bootstrap resam�

ple instead of the original sample� The rst norming may help to save computation

time� for the second choice bootstrap theory from other set ups suggests higher order

accuracy of bootstrap�

Both bootstrap procedures can be used to construct valid uniform condence bands

for additive components� This follows from the following theorem�

Theorem ���

Assume that Model A � Model B or Model C hold and that the corresponding version

of bootstrap is used� Furthermore suppose that assumptions �A�� � �A��� apply� that h

and g are of order o�n����� and that ng��d���h�logn��� ��� Then it holds that

dKfL��S���L�S�g P�� ��

dKfL��S����L�S�g P�� ��

��



From Theorem ��� we see that critical values of S can be consistently estimated by

bootstrap� This gives uniform condence intervals for m��t��� ��n�t��� For condence

bands for m� we need a consistent estimate of ��n�t��� Estimation of ��n�t�� can be

done by plug�in or bootstrap� Both approaches require oversmoothing� i�e� choice

of a bandwidth hO with hO	h � �� see also the remark after Theorem ��	� For

related discussions in nonparametric density estimation and regression see Bickel and

Rosenblatt ��
���� Eubank and Speckman ��

��� Neumann and Polzehl ��

���


 Simulations and applications

The following model was used to simulate data from a binary response model

E�Y jX � x� T � t� � P �Y � �jx� t� � Gf�Tx �m��t�g������

where G is the Logit distribution function and m��t� � � �
P�

j��mj�tj�� The ex�

planatory variables X�� X�� T� and T� are independent� The variables X� and X� are

standard normal and T� and T� have a uniform distribution on ��	� 	�� The sample

size was n � 	��� the number of replications in the bootstrap resampling was B � 	�
�

For all computations in this section the quartic kernel K�u� � ��
�
�� � u���I�juj � ��

was used� Figure � shows plots of m�� m� and of their estimates� This is done for

� � ����������T � m��t�� � 	 sin��	t��� m��t�� � t�� � E�T �
� � and � � �� The chosen

bandwidths are h� � ����� ����T � h � ��
 and g � ���� Here� h� was used for the

estimation of �� For the estimation of m� �� � ��� 	�� the bandwidth h was applied

for m� and g for the other nonparametric component mj �j �� ��� In Figure � the

estimates re�ect well the shape of the functions m� and m��
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Figure �� Plots of the nonparametric components m��t�� � 	 sin��	t���
m��t�� � t�� � E�T �

� � and their estimates�

Consider now the testing problem ����� H� � m��t�� is linear� As discussed above

the normal approximation of Theorem 	�� is quite inaccurate for a small sample size

of n � 	��� This can be seen from Figure 	� There a density estimate for the test

��



statistic R� based on ��� Monte Carlo replications� is plotted together with its limiting

normal density� The parameters are chosen as � � ����������T � m��t�� � t�� m��t�� �

t�� � E�T �
� � and � � �� This distribution lies on the hypothesis� The density estimate

for R is a kernel estimate with bandwidth according to Silverman�s rule of thumb�

i�e� ����� 	��	�n���� times the empirical standard deviation for the quartic kernel� For

better comparison� the normal density has been convoluted with the quartic kernel

�with the same bandwidth�� In a simulation with ��� replications the level of the

bootstrap test was estimated� The result was a relative number of rejections of ����

for � � ���� and ���� for � � ���� i�e� the bootstrap test keeps its level� Figure �

plots the power of the test �thick line� for the levels ���� and ���� The power has been

plotted for the alternatives m��t�� � ��� v�t� � vf	 sin��	t��g� � � v � �� The other

parameters were chosen as above� For comparison� we made the same simulations for

a parametric Likelihood Ratio Test �LRT� of H� versus

P �Y � �jX � x� T � t� � G��x� ��t� � ��f	 sin��	t��g� ��m��t�� � ����

Clearly� this comparison is far away from being fair since for the parametric test the

alternative as well as m� are assumed to be known� The better performance of the

parametric test �see Figure �� is mainly due to the fact that the test R is conservative�

see above� �Compare the power of R in the right plot with the power of the Likelihood

Ratio Test in the left plot��
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Figure 	� Standardized density estimate of the test

statistic �thin line� and standard normal density �thick

line��
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Figure �� Power functions for theoretical levels ���� and ��� � for the non�

parametric bootstrap test �thick line� and the likelihood ratio test �thin line��

We have considered two applications of our methods� For �

�� one year after the uni�

cation of East and West Germany� Burda ��

�� investigated the impact of various

possible determinants on the intention of East�Germans to migrate from East to West

Germany� The original data set contains ���� East Germans who have been surveyed

in �

� in the Socio�Economic Panel of Germany� see GSOEP ��

��� Here we con�

sider the datasets from two East German countries� the most northern �Mecklenburg�

Vorpommern� n � ��	� and the most southern �Sachsen� n � 
��� country of East

Germany� We use the following explanatory variables� family friend in West� unem�

ployed job loss certain� middle sized city ������������� habitants� and female �dum�

mies �� � if yes� � � if no�� age �Age� and household income �HhIncome� �continuous

variables�� The response is � if the person is willing to migrate and � otherwise� Figures

� and � give plots for the densities of Age and HhIncome for both countries� Tables

� and 	 contain descriptive statistics�
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Figure �� Density plots for Mecklenburg�Vorpommern� Age on the left� HhIn�

come on the right�
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Figure �� Density plots for Sachsen� Age on the left� HhIncome on the

right�

Mecklenburg�Vorpommern

sample size n ��	

min� max� mean stdev�

response y � � ���
���� ��������

family friends in West x� � � ������� ��������

unemployed job loss certain x� � � ��	����� �������

city size �������������� x� � � �����	�
 ��������

female x� � � ����	��� ��������

age t� �� �� �
�
��� �	��
��

household income t� ��� ���� 		�	�		 ��
��		

Table �� Descriptive statistic for our data of Mecklenburg�Vorpommern�

Sachsen

sample size n 
��

min� max� mean stdev�

response y � � ���
���	 ����
	��

family friends in West x� � � ���	���� �����
��

unemployed job loss certain x� � � �����	�� ��������

city size �������������� x� � � ��	�
��� ������
	

female x� � � �����	� ���



�

age t� �� �� ������� �	��
�	

household income t� 	�� ���� 	������ ������


Table 	� Descriptive statistic for our data of Sachsen�

��



In the following� the variables Age and HhIncome have been standardized to ��� ���

In a rst step we tted a parametric generalized linear regression model with logit link�

The results are presented in Table � for both countries� Mecklenburg�Vorpommern and

Sachsen�

Parametric estimation results

Mecklenburg�Vorpommern Sachsen

Coe�� stdev� P � jzj Coe�� stdev� P � jzj
family friends West ����
� ����	� ���	� ������ ���
�	 ������

unemployed ��� ����

 ��	��
 ����� ������ ������ �����

middle sized city ���	�� ��	�	� ����� ��	�
� ������ �����

female ������� ��	��� ���
� ������� �����	 �����

age �standardized� ���
		� ������ ������ ������� ����	� ������

hh� income �stand�� ��	��� ���		� ����� ���
�� ������ �����

constant ������� ��	
�
 ����� ����
	� ��	��� ������

Table �� Results of a generalized linear regression�

The variable Age is by far the most signicant variable� This holds true for both

countries� Obviously people behave quite di�erently in the two countries� especially

concerning X� �relatives or friends in West Germany� and for X� �their status of em�

ployment� and X� �city size��

In a second step we tted a semiparametric generalized additive model for both data

sets� We present the results for di�erent smoothing parameters� see the captions of

Figures � and �� We choose h � ��� and h � ��	� for Mecklenburg�Vorpommern and

h � ����� h � ��� for Sachsen� The other bandwidths have always been h� � g � ����h�
In Figures � and � the additive components for Age and HhIncome are plotted�

Table � gives the parametric estimates of the semiparametric model for both choices

of the bandwidth� The estimates do not seem to depend strongly on the bandwidth�

Furthermore they are simliar to the values of the parametric model� compare Table ��

So the qualitative interpretation of these coe�cients does not change� In the gures

the in�uence of Age in Mecklenburg�Vorpommern does not di�er strongly from the

in�uence of Age in Sachsen� except that the curve from Sachsen is more �at in the

middle part� For HhIncome the curves from both countries have a totally di�erent

shape�

�




Coefficients of the linear part

Mecklenburg�Vorpommern Sachsen

semi� a semi� b semi� a semi� b

family friends West ���
	� �����
 ������ ���	�


unemployed ��� ������ ���

	 �����
 ������

middle sized city ������ ����	� ������ ��	���

female ������
 ������� �����
� �������

constant ������� ������� ������� �������

Table �� Results for the pure parametric estimation �par� � and for the parametric

part of the generalized additive partially linear regression model
 semi� a �with

bandwidth h � ����� semi� b �h � ��	�� for Mecklenburg�Vorpommern� semi� a

�h � ����� and semi� b �h � ���� for Sachsen�

In a third step we applied the bootstrap test procedure to the variables Age and

HhIncome� We always used �

 replications in the bootstrap resampling� The band�

widths have been chosen as above� For the input Age� linearity has always been

rejected for the � percent level� for all bandwidths in both countries� For the variable

HhIncome� the observed p�values are ��� �for h � ���� Mecklenburg�Vorpommern��

��� �for h � ��	�� Mecklenburg�Vorpommern�� ��	 �for h � ����� Sachsen�� and ��� �for

h � ���� Sachsen�� So the deviations of curves for Age from linearity are much more

signicant� At rst sight� this seems to be surprising because the plots for HhIncome

di�er more from linearity� The reason is that the estimates for HhIncome have a

larger variance�
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Figure �� The semiparametric estimates for the in�uence of Age �left� and

HhIncome �right� in Mecklenburg�Vorpommern� The upper plots were esti�

mated with h � ���� the lower plots with h � ��	��
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Figure �� The semiparametric estimates for the in�uence of Age �left� and

HhIncome �right� in Sachsen� The upper plots were estimated with h � �����

the lower plots with h � ����

As a second example we considered a data set on the probability that an apprentice

becomes unemployed directly after nishing his apprenticeship� The data set has al�

ready been discussed by Proen!ca and Werwatz ��

��� They considered a sample of

��	 individuals from the rst nine waves ��
�� to �

	� of the GSOEP �German socio

	�



economic panel� only West Germany�� All people who had completed an apprentice�

ship between �
�� and �

� were included in the sample� We give a brief description

of the data� The dependent variable takes on the value "�� if an individual is regis�

tered as unemployed in the year following the completion of the apprenticeship� The

explanatory variables are summarized in Table ��

Variable Denition Comments

Sex Sex of the respondent� It takes the value "�� if the respon�

dent is female� "�� if male�

Age Age of the respondent in the year the apprenticeship was

completed�

Schooling Years of schooling �
 � ����

Earnings Gross monthly earnings as an apprentice�

Big City "�� if the city where the respondent lived at end of his ap�

prenticeship has between 	�� ��� and ��� ��� inhabitants�

Huge City "�� if the city has more than ��� ��� inhabitants�

Degree Percentage of people apprenticed in a certain occupation�

divided by the percentage of people employed in this occu�

pation in the entire economy�

U�Rate Unemployment rate in the state the respondent lived in dur�

ing the year the apprenticeship was completed�

Table �� Explanatory variables�

In Figure � we present the nonparametric regression curves for Age� Earnings and

Degree using bandwidths h � �T � � ����� ���� ����T � g � �T � � �	��� 	��� ����T � Here

�� means elementwise multiplication and �T is the vector of standard deviations of

T � In the parametric logit t of Proen!ca and Werwatz ��

�� all variables except the

constant and Urate have been not signicant� We wanted to check if the reason

for insignicance could be the assumption of linearity in their model� The plots in

Figure � show very strong nonlinearities� However� the �jumps� in the plots could be

caused by boundary e�ects and data sparseness� So we applied our bootstrap linearity

test for these three covariates� All observed critical levels were more than 	� percent�

Therefore the nonlinearities in the plots are not signicant� A plausible explanation

for the nonlinearities is data sparseness� We conclude that our test safeguards against

an overinterpretation of observed shapes of nonparametric smoothers�

		



Age

20 25 30 35
age

-9
-6

-3
0

m
1

Degree

0 100 200 300 400
degree

-6
-4

-2
0

m
3

Earnings

500 1000 1500 2000
earnings

-1
2

-9
-6

-3
0

m
2

 

 

Linear Effects:

----------------------

Sex (female=1) -0.4742

Schooling       0.0616

Big City        1.0341

Huge City      -0.2497

U-Rate          0.2616

Constant       -4.3536

Figure �� Estimates of the additive components in the reduced model and the

coe�cients for the linear part�

A� Assumptions

We state now the assumptions used in the results in Sections 	 and �� We use the

notation

hmax � maxfh� gg�
hprod � hgd���

�� � h�max � �nhprod�
�����

�� � h�max � �logn�����nhprod�
�����

Furthermore� we put

�i�u� � QfG�u��Yig�
��u� � QfG�u��Y g�

Then we have

��i�u� �
Yi �G�u�

V �G�u��
G��u���A����

���i �u� � fYi �G�u�g
�
G���u�

V �G�u��
� V ��G�u�� G��u��

V �G�u���


� G��u��

V �G�u��
�

	�



For the asymptotic expansions we make the following assumptions�

�A�� �X�� T�� Y��� � � � � �Xn� Tn� Yn� are i�i�d� tuples� Ti takes values in IRd� Xi is IR
p

valued� and Yi is IR valued�

�A	� E�Y jX� T � � GfXT� � m��T �g with � � IRp� Here m� denotes the function

m��t� � ��m��t��� � � ��md�td�� with E mj�Ti�j� � � for j � �� � � � � d� The con�

ditional variance V ar�YijTi � t� has a bounded second derivative� Furthermore

the Laplace transform E exp tjYij is nite for t � � small enough�

�A�� Xi and Ti have compact support SX � ST � The support ST is of the form ST�� 	
ST��� with ST�� 
 IR and ST��� 
 IRd��� T has a twice continuously di�erentiable

density fT with inf
t�ST

fT �t� � ��

�A�� For compact sets B 
 IRp and H 
 IR we dene

b� � argmax
��B

L�cm�� ���

where� as above�

L��� �� �
nX
i��

QfG�XT
i � � ��Ti��Yig�

cm��t� is dened as

cm��t� � argmax
��H

nX
i��

Kh�t� � Ti���Lg�t�� � Ti����Q
h
GfXT

i � � �g�Yi
i
�

For � � B we put

m��t� � argmax
��H

E
h
��XT� � ��jT � t

i
�

We assume that m��t� lies in the interior of H for all t � ST and � � B� This

implies Ef����TX � m��t��jT � tg � �� We assume also that E����f�TX �

m��T �gjT � t� �� � for all t � ST and � � B and that for all � � � there exists a

� � � such that for all � � H� t � ST � � � B���E h
���XT� � ��jT � t

i��� � �

implies that

j� �m��t�j � ��

�A�� There exists an � � � such that G�k��u�� k � �� � � � � � and G��u��� are bounded

on u � S� � fxT b � � � � � x � SX � b � B and � � H� � � IR with j�j � �g�
Furthermore V ��� V � and V �� are bounded on G�S	��

	�



�A�� m�� � � � � md are twice continuously di�erentiable on IR� The weight functions w�

w�� and w� are positive and twice continuously di�erentiable� To avoid problems

on the boundary� we assume that for a � � � we have that w���t� � �� w��t� � ��

and w�t� � � for t � S�T��� � fs � there exists an u �� ST��� with ks � uk � �g�
t � S�T�� � fs � there exists an u �� ST�� with ks � uk � �g or t � S�T � fs �

there exists an u �� ST with ks�uk � �g� respectively� Furthermore� the weight

function w� is such that
R
ST��

w��t��m��t��fT��t��dt� � �� where fT� denotes the

density of T��

�A�� The kernel L is a product kernel L�v� � L��v�� � � � � � Ld���vd���� The kernels

Lj are symmetric probability densities with compact support ����� ��� say�� j �

�� � � � � d � �� The kernel K is a symmetric probability density with compact

support �e�g����� ����too�

�A�� E
h
����fXT

� �� �m��T��gjT� � t
i
and E

h
����fXT

� �� �m��T��gX�jT� � t
i
are twice

continuously di�erentiable functions for t � ST �

�A
� The matrix E Z�fXfXT is strictly positive denite� The random vectors Z and fX
have been dened in Theorems ��� and ���� respectively�

This assumption implies that X does not contain an intercept� Note that if the

rst element of X would be constant� a�s�� e�g� Xi� � �� then fXi� � ��

�A��� m�� � � � � md are four times continuously di�erentiable on IR�

�A��� The kernels K and L are twice continuously di�erentiable�

A� Proof of Theorem ���

We start by showing consistency of the estimate b��
b� � �� � oP �����A	���

For the proof of �A	��� we show rst that

sup
t��

jcm��t��m��t�j � op�����A	�	�

Proof of �A����� For the proof of claim �A	�	� we show rst that�

sup
��t��

j#�m��t�� t� ��j � Op������A	���

	�



where the following notation has been used�

#��� t� �� � #���� t� ���#���� t� ���

#���� t� �� �
�

n

X
i

��i�X
T
i � � ���i�t��

#���� t� �� � E
h
���XT� � ��jT � t

i
�

�i�t� �
Kh�t� � Ti���Lg�t�� � Ti����

�
n

nP
j��

Kh�t� � Tj���Lg�t�� � Tj����
��A	���

For the proof of �A	��� we remark rst that

E#��� t� �� � O�h� � g���

This can be seen by standard smoothing arguments� Furthermore� #���� t� �� is a sum

of i�i�d� random variables with bounded Laplace transform� see �A	�� By standard

application of exponential inequalities we get for every �� � � that for C � large enough

Pfj#��� t� ��j � C ���g � o�n�
����A	���

We consider now the partial derivatives of the summands of #��� t� �� with respect to

�� t and �� They are bounded by C ��n
� for C �� and �� large enough� Together with

�A	���� following the same argument as for example in H�ardle and Mammen ��

���

this shows �A	����

For the proof of �A	�	�� one can conclude from �A	��� that� with probability tending

to one� cm��t� lies in the interior of H� see �A��� This gives

#��cm��t�� t� �� � ���A	���

Because of �A	��� this shows

sup
t��

j#��cm��t�� t� ��j � Op�����

Because of assumption �A�� this implies �A	�	��

We apply now �A	�	� to prove �A	��� i�e� that b� is a consistent estimator of ��� We

proceed similarly as in the proof of Proposition � in Severini and Wong ��

	��

Proof of �A����� Let k��� � E�QfXT� �m��T ��Y g�� We will show that

sup
��B

�����nL�cm�� ��� k���
����� � �in probability���A	���

This implies claim �A	��� because

k������ � E

�����fXT�� �m��T �g
�
X �

�m�

��
���� T �

��
X �

�m�

��
���� T �

�T
��

� �E�Z� �X �XT �

	�



is strictly negative denite and k���� � sup��H k����

It remains to prove �A	���� This follows from the following two properties�

sup
��B

���� �nL�m�� ��� k���
����� � �in probability���A	���

sup
��B

���� �nL�cm�� ��� �

n
L�m�� ��

����� � �in probability���A	�
�

Claim �A	��� holds because L�m�� ��	n converges to k��� by the law of large numbers

and because fL�m�� ��	n� � � Bg is tight� For the proof of tightness note rst that���� �nL�m��� ����
�

n
L�m�� � ���

���� � Tn��k�� � ��k� Tn�� sup
t
jm���t��m���t�j

� Tn��k�� � ��k� Tn�� sup
t��

�����
����� ���m��t�

�����
����� k�� � ��k�

where

Tn�� � sup
���

�

n

nX
i��

���XT
i � � ��kXik�

Tn�� � sup
���

�

n

nX
i��

���XT
i � � ���

It is easy to see that� under our conditions� Tn�� and Tn�� are bounded in probability�

To see that �
��
m��t� is uniformly bounded in � and t note that

�m�

��
��� t� � �E����f�TX �m��T �gXjT � t�

E����f�TX �m��t�gjT � t�
��A	����

Equation �A	���� follows by di�erentiation of Ef����TX �m��t��jT � tg � �� This

shows �A	����

Claim �A	�
� follows from

sup
�

���� �nL�cm�� ��� �

n
L�m�� ��

���� � sup
���

j���XT� � ��j sup
t��

jcm��t��m��t�j�

Thus claim �A	��� is shown�

Now� we show the following uniform stochastic expansions of b� and cm�t��

b� � � � fE�Z�fXfXT �g�� �

n

nX
i��

fXi �
�
ifXT

i � �m��Ti�g�Op��
�
����A	����

sup
t�S�

T

�����#�t�

����� � Op��
�
����A	��	�

	�



with

#�t� � cm�t��
�
m�t�

�fE�Z�jT � t�g��E�Z�XT jT � t� fE�Z�fXfXT �g���A	����

	 �

n

nX
i��

fXi �
�
ifXT

i � �m��Ti�g
�
�

m�t� � m��t� � fE�Z�jT � t�g�� �

n

nX
i��

�i�t��
�
ifXT

i � �m��t�g��A	����

S�T � ft � ST � t� � � ST

for all � with j��j � g and j�jj � h �j � 	� � � � � d�g�
fXi � Xi � fE�Z�

i jTi�g��E�Z�
iXijTi���A	����

Z�
i �

G��XT
i � �m��Ti��

�

V �G�XT
i � �m��Ti���

��A	����

Equations �A	���� and �A	��	� follow from a slight modication of Lemma A��� and

Corollary A��� in H�ardle� Mammen and M�uller ��

��� There it has been assumed

that the likelihood is maximized for � in a neighborhood of �� with radius ��� see

assumption �A�� in H�ardle� Mammen and M�uller ��

��� In our set up we have that

for a sequence ��n with ��n � � with probability tending to one

b� � arg max
��k����k�	�n

L�cm�� ���

Using the same arguments as in H�ardle� Mammen and M�uller ��

��� one can show

that

b� � � � fE�Z�fXfXT �g�� �

n

nX
i��

fXi �
�
ifXT

i � �m��Ti�g�Op��
�
�� � jj b� � �jj�Op����

This shows �A	����� Equation �A	��	� can be shown similarly�

With the help of �A	��	� we arrive at

m��t�� �

Pn
i��w���Ti����m�t�� Ti����Pn

i��w���Ti����
�OP ��

�
� � n������A	����

� m��t�� �R� �#��t�� �OP ��
�
� � n������

where

R� �
�Pn

i��w���Ti����

nX
i��

w���Ti���� �m��Ti��� � � � ��md�Ti�d��

#��t�� �
�Pn

i��w���Ti����

�

n

nX
i�j��

w���Ti�����j�t�� Ti����

E�Z�
i jTi�� � t�� Ti����

��jfXT
j � �m��t�� Ti����g�

	�



where ��j� �j and Zi are dened by equations �A����� ����� and �A	���� respectively�

Given Zn � ��X�� T���� � � � � T��d�� � � � � �Xn� Tn��� � � � � Tn�d��� the term #��t�� is a sum of

independent variables� For the conditional variance the following convergence holds in

probability

nhV ar�#��t��jZn�

�
Z
L��u� du E

h w��T���

fEw���T���g�
E�Z�jT� � t��

E�Z�jT� � t�� T����
f �
T��

�T���

f �
T �t�� T���

i
�

For this convergence� one uses for instance���� sup
t��t��t����S

�

T

n��
nX

k��

Kh�t� � T��k�Lg�t�� � T���k� � fT �t�� t���
���� � oP ����

n��
nX

k��

Kh�t� � T��k� � fT��t�� � oP ����

Asymptotic normality of #��t�� � E�#��t��jZn� follows from the convergence of the

conditional variance and from

P �dK

�
L
�
#��t��� E�#��t��jZn�

�
� N��� V ar�#��t��jZn��

�
� ��� ��A	����

for all � � �� Here dK is the Kolmogorov distance� which is for two probability measures

� and � �on the real line� dened as

dK��� �� � sup
t�IR

�����X � t�� ��X � t�
����

For the proof of �A	���� one shows that a conditional Lindeberg condition holds

with probability tending to one� It remains to study the conditional expectation

E�#��t��jZn�� This can be done by showing rst that

E�#��t��jZn� �
�

n

nX
i��

Z
Kh�t� � v��Lg�Ti��� � v����A	��
�

E
hn
G�XT� �m��v���G�XT� �m��t�� Ti�����

o
a��X� t�� Ti����jTi�� � t�� Ti���

i
fT �v�dv � rn

where the function a� is dened in Theorem ���� rn � OP ��
�
� � n����� � oP �h

� � g���

Furthermore� rn � OP ��
�
� � n���� � h� � g�� under the additional assumption �A����

The proof of �A	��
� follows by standard� but tedious calculations� The asymptotic

form of E�#��t��jZn� can be easily calculated from �A	��
�� Note that the asymptotic

bias of cm��t�� is asymptotically equal to

E�#��t��jZn��
Z
E�#��v��jZn�w��v��fT��v�� dv�	

Z
w��v��fT��v�� dv�

because we assumed that
R
w��v�� m��v�� fT��v��dv� � �� Furthermore� note that up

to rst order� cm��t�� and fm��t�� have the same asymptotic variance�

	




A� Proof of Theorem ���

The statement of the theorem follows from

	cm��t��� E�cm�
��t���m��t�� � OP �h

� � g� � �nh��������A����

Claim �A���� follows from

	m��t��� E� m �
� �t���m��t�� � R� � �R� �OP �h

� � g� � �nh��������A��	�

�

n

nX
i��

w��Ti��� �	m��Ti���� E� m �
� �Ti����m��Ti�����A����

�
h
R� � �R�

i �
n

nX
i��

w��Ti��� �OP �h
� � g� � �nh�������

where

�R� �
�Pn

i��w���Ti����

nX
i��

w���Ti���� �cm��Ti��� � � � ��cmd�Ti�d��

and where R� has been dened after �A	�����

We give only the proof of �A��	�� Claim �A���� follows similarly� Because of �A	����

we have that

m��t�� � m��t�� �R� �D��t�� �OP �h
� � g� � �nh�������

where

D��t�� �
�Pn

i��w���Ti����

�

n

nX
i�j��

w���Ti�����j�t�� Ti����

E�Z�
i jTi�� � t�� Ti����

G�fXT
j � �m��t�� Ti����g

V �GfXT
j � �m��t�� Ti����g�h

GfXT
j � �m��Tj�g �GfXT

j � �m��t�� Ti����g
i
�

Similarly� one gets

E� m �
� �t�� � m��t�� � �R� � �D��t�� �OP �h

� � g� � �nh�������

where

�D��t�� �
�Pn

i��w���Ti����

�

n

nX
i�j��

w���Ti�����j�t�� Ti����

E�Z�
i jTi�� � t�� Ti����

G�fXT
j
�� �cm��t�� Ti����g

V �GfXT
j
�� �cm��t�� Ti����g�h

GfXT
j
�� �cm��Tj�g �GfXT

j
�� �cm��t�� Ti����g

i
�

For claim �A��	� it su�ces to show

D��t��� �D��t�� � OP �h
� � g� � �nh��������A����

This can be done by lengthy calculations� We do not want to give all details here� In

a rst step one shows that

D��t��� �D��t�� �
nX

i�j��

Wi�j

h
GfXT

j � �m��Tj�g �GfXT
j � �m��t�� Ti����g

�GfXT
j
�� �cm��Tj�g�GfXT

j
�� �cm��t�� Ti����g

i
�A����

�OP �h
� � g� � �nh�������

��



where

Wi�j �
�Pn

i��w���Ti����

�

n

w���Ti�����j�t�� Ti����

E�Z�
i jTi�� � t�� Ti����

G�fXT
j � �m��t�� Ti����g

V �GfXT
j � �m��t�� Ti����g� �

The left hand side of �A���� can be treated by using Taylor expansions of G and the

stochastic expansions of cmj given in �A	����� Consider e�g� for k �� �

Ck�t�� �
nX

i�j��

Wi�jG
�fXT

j � �m��Tj�g �mk�Tj�k��mk�Ti�k�

�cmk�Tj�k� �cmk�Ti�k�� �

Then by using the expansions of cmk given in �A	���� and the expansion of the bias ofcmk �see Theorem ���� one can show

Ck�t�� � Ck��t�� � Ck��t�� �OP �h
� � g� � �nh�������

where

Ck��t�� �
nX

i�j��

Wi�jG
�fXT

j � �m��Tj�g
h
��kn�Tj�k� � �kn�Ti�k�

i
�

and where

Ck��t�� �
�

n

nX
i��

�i�n�Zn� t���i

with some uniformly bounded constants �i�n�Zn� t���

sup
��i�n

sup
t��S

�

T��

�i�n�Zn� t�� � OP ����

It can be easily seen that

Ck��t�� � OP �h
� � g� � n�����

and

Ck��t�� � OP �n
������

We have discussed this term because it shows how the terms of order g� cancel incmB
� �t���m��t��� By similar calculations for the other terms one can show the theorem�

A� Proof of Theorem ���

The conditions on h and g imply ��� � o�n������ Therefore the statement of Theorem

��� can be followed from �A	�����

��



A� Proof of Theorem ���

We consider the statistic

U �
nX
i��

Wi fcm��Ti���� E�cm�
��Ti���g� �

where

Wi � w�Ti�
�G�fXT

i � �m��Ti�g��
V fXT

i � �m��Ti�g �

Note that

R �
nX
i��

�Wi fcm��Ti���� E�cm�
��Ti���g�

with

�Wi � w�Ti�
�G�fXT

i
b� �cm��Ti�g��

V fXT
i
b� �cm��Ti�g

�

We will show that

U � V � op�h
�������A����

R � U � op�h
�������A��	�

where

V �
nX
i��

Wi

ncmAPPR�
� �Ti���

o�
�

cmAPPR�
� �t�� �

�

n

nX
i��

a��Xi� t�� Ti����fT��
�Ti����Kh�t� � Ti����i�

�i � Yi � ��Xi� Ti��

��x� t� � G
h
xT� � � � ��t� �m��t�� � � � ��md�td�

i
�

The function a� has been dened in the statement of Theorem ���� Asymptotic nor�

mality of V can be shown as in H�ardle and Mammen ��

	�� In particular� one gets

�with pairwise di�erent indices i� j� k and l�

EV � E
n
Wia

��Xj� Ti��� Tj����fT��
�Tj����

�K�
h�Ti�� � Tj���V ar�YjjXj� Tj��

o
�O�n��h���

� en �O�h� n��h����

V ar�V � � E
n
WiWla

��Xj� Ti��� Tj����a
��Xj� Tl��� Tj����a

��Xk� Ti��� Tk����

a��Xk� Tl��� Tk����f
�
T��

�Tj����f
�
T��

�Tk����

Kh�Ti�� � Tj���Kh�Tl�� � Tj���Kh�Ti�� � Tk���

Kh�Tl�� � Tk���V ar�YjjXj� Tj�V ar�YkjXk� Tk��g
�O�n��h���

� v�n �O�h� n��h����

�	



Because v�n is of order h�� for the proof of the theorem it remains to show �A���� and

�A��	��

Proof of �A����� Because ��� � o�n������ it follows from �A	��	� �compare �A	����� that

uniformly for t� in S�T���

m��t�� � m��t�� �R� �#��t�� �
E �w���T���M�t�� T����

E �w���T����
Bn � oP �n

������

where

M�t� �
�

E �Z�jT � t�
E
h
Z�XT jT � t

i
E
h
�X �XT jT � t

i��
�

Bn �
�

n

nX
i��

�Xi�
�
i�X

T
j � �m��Tj���

Furthermore� for #��t�� one can show the following uniform expansion�

#��t�� �
�

n

nX
i��

a��Xi� t�� Ti���Kh�t� � Ti����Yi � ��Xi� t�� Ti����� � oP �n
������

By similar expansions as in the proof of Theorem ��� one can show that this implies

the following uniform expansion of cm��

cm��t�� � ��t� �cmAPPR�
� �t�� �cmAPPR�

� �t�� � ��n�t�� � oP �n
�������A����

where cmAPPR�
� �t�� �

�

n

nX
i��

�i�n���t���i

with some uniformly bounded functions �i�n���

sup
��i�n

sup
t��S

�

T��

�i�n���t�� � O����

The function ��n has been dened in Theorem ����

Furthermore� using similar arguments as in the proof of Theorem ��	 one can show

that

E�cm�
��t�� � ���t� � ��n�t�� � �cmAPPR�

� �t�� � oP �n
�����

with cmAPPR�
� �t�� �

�

n

nX
i��

�i�n���t���i

for some uniformly bounded functions �i�n���

Together with �A���� and a stochastic expansion of �� this gives that uniformly for t�
in S�T��� cm���t��� E�cm�

��t�� � cmAPPR�
� �t�� �cmAPPR�

� �t�� � oP �n
�����

��



with cmAPPR�
� �t�� �

�

n

nX
i��

�i�n���t���i

for some uniformly bounded functions �i�n���

Claim �A���� follows from

nX
i��

Wi

ncmAPPR�
� �Ti���

o�
� oP �h

������

nX
i��

WicmAPPR�
� �Ti���cmAPPR�

� �Ti��� � oP �h
������

nX
i��

���WicmAPPR�
� �Ti���

��� � oP �n
���h������

nX
i��

���WicmAPPR�
� �Ti���

��� � oP �n
���h������

These bounds can be shown by calculation of expectations of the terms on the left

hand side�

Proof of �A����� Because of Theorem ���� we have that b� � � � OP �n
����� andb�� � � OP �n

������ Moreover we can easily show that

sup
t�
j#��t��� �

n

X
i

#��Ti���j � OP ���� �

It follows that

sup
��i�n

j �Wi �Wij � OP

�
�� � n����

�
�

Now�

jU � Rj � sup
��i�n

j �Wi �Wij
nX
i��

fcm��Ti���� E� cm�
��Ti���g�

� OP

�
�� � n����

�
OP �h

���

� oP �h
������

This shows �A��	��

A
 Proof of Theorem ���

This theorem follows by replication of the arguments in the proof of the last theorem

for the �Bootstrap world��

��



A� Proof of Theorem ���

The proofs for Models A and B can be done as in Neumann and Polzehl ��

��� where

wild bootstrap of one�dimensional regression functions has been considered� In this

paper it has been shown that the regression estimates in the bootstrap world and in

the real world can be approximated by the same Gaussian process� For this purpose

one shows that cm��t�� � E�cm��t��jZn� and cm�
��t�� � E��cm�

��t��� have linear stochastic

expansions� In particular� using the expansions given in the proof of Theorem ���� one

shows that

sup
t��S

�

T��

�����cm��t��� E�cm��t��jZn�� �

n

nX
i��

a��Xi� t�� Ti����fT��
�Ti����Kh�t� � Ti����i

�����
� OP �n

����
q
logn��

Here� for � � � small enough we have put S�T�� � fs � there exists an u �� ST�� with

js�uj � �g� �Then� if � is small enough we have that w��t�� � � for s �� S�T���� Similarly

one can see that

sup
t��S

�

T��

�����cm�
��t��� E��cm�

��t����
�

n

nX
i��

a��Xi� t�� Ti����fT��
�Ti����Kh�t� � Ti����

�
i

�����
� OP �n

����
q
logn��

By small modications of the arguments of Neumann and Polzehl ��

�� one can see

that their approach carries over to our estimates�

We will give now a sketch of the proof for Model C� First note that dK�L��S��L�S���
� in probability where L� denotes the conditional distribution given Zn � ��X�� T���� � � � �

T��d�� � � � � �Xn� Tn��� � � � � Tn�d��� This can be seen as in Neumann and Polzehl ��

���

The proof of the theorem will be based on strong approximations� For this purpose

we introduce random variables Y �
� � Y ��

� � � � � � Y �
� � Y

��
� � � � � � Y �

n � Y
��
n by the follow�

ing construction� choose an i�i�d� sample U�� � � � � Un that is independent of Zn� We

put Y �
i � F��

i �Ui� and Y ��
i � G��

i �Ui�� where Fi and Gi are the distribution func�

tions of L��Yi� and L��Y �
i �� respectively� Then we have� that given the original

data �X�� T�� Y��� � � � � �Xn� Tn� Yn�� �Y �
� � Y ��

� �� � � � � �Y �
n � Y

��
n � are conditionally i�i�d��

L��Y �
i � � L��Yi� and L��Y ��

i � � L��Y �
i �� Furthermore we have that

max
��i�n

E�jY ��
i � Y �

i j � OP ������A����

Here E� denotes the conditional expectation given the original data �X�� T�� Y��� � � � � �Xn�

Tn� Yn�� Note that L��Y �
i � and L��Y ��

i � belong to the same exponential family with

expectation �i or ��i� respectively� Property �A���� follows from

E�jY ��
i � Y �

i j �
Z �

�
jF��

i �u��G��
i �u�j du

�
Z �

��
jFi�v��Gi�v�j dv

� O��i � ��i� � OP �����

��



Put ��i � Y �
i � �i and ���

i � Y ��
i � ��i� The estimate of the rst component that is

based on the sample Y �
� � � � � � Y

�
n is denoted by cm�

� �t��� The estimate that is based on

Y ��
� � � � � � Y ��

n is denoted by cm��
� �t���

We argue now that for  � � small enough

max
��i�n

sup
��t��

E�j���
i � ��i j�

n
� � exp�tj��i j� � exp�tj���

i j�
o
� OP ������A��	�

This can be seen by straight forward calculations using �A���� and the fact that the

natural parameter of L��Y �
i � and L��Y ��

i � is bounded away from the boundary of the

natural parameter space of the exponential family� see �A	��

It can be shown that for a sequence cn � o��� and for all an � bn with bn � an �
cn logn �nh����� one has that P �S �� �an� bn�� converges to �� This can be seen similarly

as for kernel smoothers in one�dimensional regression� see e�g� Neumann and Polzehl

��

��� The statements of Theorem ��� follow from

sup
t��S

�

T��

j����t��� ���t��j � oP �����A����

sup
t��S

�

T��

j�����t��� ���t��j � oP ��logn�
�����A����

sup
t��S

�

T��

���hcm��
� �t���cm��t��

i
�A����

�
hcm�

� �t���m��t��
i��� � oP ��nh�

�����logn�������

We give here only the proof of �A����� One shows rst that

sup
t��S

�

T��

jcm�
� �t���m��t��� �

n

nX
i��

a��Xi� t�� Ti����Kh�t� � Ti����
�
i j

� oP ��nh�
�����logn�������

sup
t��S

�

T��

jcm��
� �t���cm��t��� �

n

nX
i��

a��Xi� t�� Ti����Kh�t� � Ti����
��
i j

� oP ��nh�
�����logn�������

This can be done by using expansions of the type �A	��	�� Note that the bias of cm�
� �t��

and cm��
� �t�� is of order oP ��nh�

�����logn������� So� for �A���� it remains to show

sup
t��S

�

T��

j �
n

nX
i��

a��Xi� t�� Ti����Kh�t� � Ti�����
�
i � ���

i �j�A����

� oP ��nh�
�����logn�������

For the proof of this claim we use a standard method that has been applied for calcu�

lation of the sup�norm of linear smoothers� We show rst that for all constants C� � �

��



there exists a constant C� such that

sup
t��S

�

T��

P �

�
j �
n

nX
i��

a��Xi� t�� Ti����Kh�t� � Ti�����
�
i � ���

i �j � C��n

�
�A����

� oP �n
�C���

where �n�nh	���
�����logn���� and where P � denotes the conditional distribution given

given the original data �X�� T�� Y��� � � � � �Xn� Tn� Yn�� Note that �n � o��nh������logn�������

Equation �A���� shows that �A���� if the supremum runs over a nite set with O�nC��

elements� This implies �A���� by taking a crude bound on

sup
t��S

�

T��

����� ��t� �n
nX
i��

a��Xi� t�� Ti����Kh�t� � Ti�����
�
i � ���

i �

����� �
It remains to show �A����� Note that

P �

�
�

n

nX
i��

a��Xi� t�� Ti����Kh�t� � Ti�����
�
i � ���

i � � C��n

�

� E� exp

�
logn���

n

�

n

nX
i��

a��Xi� t�� Ti����Kh�t� � Ti�����
�
i � ���

i �


exp�logn���

n C��n�

� n�C�

nY
i��

E� exp

�
logn

�nn
a��Xi� t�� Ti����Kh�t� � Ti�����

�
i � ���

i �


�

We use now the expansion exp�x� � ��x�x�		 f��exp�x�g� Because of E���i ����
i � �

and because of �A��	� this gives that the last term is bounded by

� n�C�

nY
i��

�
� � C

�logn��

��nn
�
a��Xi� t�� Ti����K

�
h�t� � Ti�����


�

where C is a constant� We use now � � x � exp�x�� This gives the bound

� n�C� exp

�
nX
i��

C
�logn��

��nn
�
a��Xi� t�� Ti����K

�
h�t� � Ti�����


�

With another constant C � this can be bounded by

� n�C� exp

�
C � �logn�

�

��nnh
��


� nC

��C� �

For C� large enough� this is of order o�nC��� This shows �A�����
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