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ESTIMATION OF A FUNCTION WITH DISCONTINUITIES

VIA LOCAL POLYNOMIAL FIT

WITH AN ADAPTIVE WINDOW CHOICE

SPOKOINY� V�G�

Weierstrass Institute for Applied Analysis and Stochastics�
Mohrenstr� ��� ����� Berlin

Abstract� We propose a method of adaptive estimation of a regression function
and which is near optimal in the classical sense of the mean integrated error� At
the same time� the estimator is shown to be very sensitive to discontinuities or
change�points of the underlying function f or its derivatives� For instance� in
the case of a jump of a regression function� beyond the interval of length �in
order� n�� logn around change�points the quality of estimation is essentially
the same as if locations of jumps were known� The method is fully adaptive
and no assumptions are imposed on the design� number and size of jumps� The
results are formulated in a non�asymptotic way and can be therefore applied for
an arbitrary sample size�

�� Introduction

The change�point analysis which includes sudden� localized changes typically occur�
ring in economics� medicine and the physical sciences has recently found increasing
interest� see M�uller ������ for some examples and discussion of the problem�
Let data Yi� Xi � i 	 �� � � � � n obey the regression model

Yi 	 f�Xi� 
 �i� i 	 �� � � � � n� �����

where Xi � R� � i 	 �� � � � � n � are given design points and �i are individual
independent random errors� We consider the case of a nonparametrically described
regression function f having possibly jumps or jumps of derivatives� The goal is to
recover the function f but we pay also special attention to change�point analysis�
In the regression nonparametric analysis of function with change�points� one

may highlight two di�erent directions� The �rst approach deals with a generally
smooth curve allowing a �nite number of change�points� Further the analysis may
focus either on estimation of locations and magnitudes of jumps� as in Korostelev
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������ Yin ����� Wang ������� or on estimating the function itself� In the
last case� some pilot near optimal estimates of locations of change�points are still
required as a technical step in the estimation procedure� Having estimated all
the locations of change�points� the function itself can be estimated separately on
each interval between every neighbor change�points� see M�uller ������� Wu and
Chu ������� Oudshoorn ������� The most remarkable fact here� due to Korostelev
������ is that the location of a single jump of a given magnitude can be estimated
with the rate n�� where n is the number of observations� This result can be
generalized to the situation when the jump size is unknown or to the case of a jump
of some derivative of the function f � M�uller ������� and even to the case when a
�nite unknown number of change�points of di�erent order are incorporated in the
model� Yin ����� Oudshoorn ������� As a price for such kind of adaptation� the
rate of estimating the locations of jumps is worse by some logarithmic factor� The
location of a jump of the k �th derivative can be estimated with the rate n�����k���

multiplied again by some log �factor� However� this rate is still much better than
in estimating the corresponding derivative of the regression function and such sort
of procedures leads to asymptotically optimal estimation of a regression function
with change�points� Oudshoorn �������
Another approach to this problem is connected with the concept of spatial adap�

tive estimation� The problem of adaptive and spatially adaptive nonparametric
estimation is now well developed� see Nemirovski ������ Donoho et al �������
Lepski� Mammen and Spokoiny ������� Delyon and Juditski ������� Goldenshluger
and Nemirovski ������� Lepski and Spokoiny ������ among others� A variety of
di�erent adaptive methods can be now applied to estimation of a function with
inhomogeneous smoothness characteristics� non�linear wavelet procedures� kernel
estimators with a variable bandwidth� local polynomials with a variable window
etc� In the context of spatially adaptive nonparametric estimation� change�points
or� more generally� cusps in the curve can be viewed as a sort of an inhomogeneous
behavior of the estimated function� One may therefore apply the same procedures
�for instance non�linear wavelet estimators� and the analysis is focusing on the qual�
ity of estimation when change�points are incorporated in the model� Under this
approach� the main intention is to estimate the regression function �not locations
of change�points�� It is shown in Hall and Patil ������� Hall� Kerkyacharian and
Picard ������ that the wavelet�based estimators provide the same rate of estima�
tion even if a growing number of jumps is allowed� On the other side� this approach
delivers very poor qualitative information about presence� number and locations
of change�points� Moreover� the criteria based on mean integrated errors are not
very sensitive to local quality of estimation� having obtained the optimal rate in
global estimation� we get relatively poor quality of estimation in small vicinities of
change�points�
The aim of the present paper is to propose a method which simultaneously

adapts to inhomogeneous smoothness of the estimated curve and which is sensi�
tive to discontinuities of the curve or its derivatives� Similarly to Goldenshluger
and Nemirovski ������� we apply the local polynomial estimator with a pointwise
adaptive choice of the approximating window� The main di�erence to that paper
is that we allow not necessarily symmetric �around the point of interest� windows�
Namely� we search for a maximal window containing the point of estimation in
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which the function f is �smooth�� �This can be understood in the sense that it
is well approximated by polynomials�� Such a procedure selects automatically a
window without change�points�
The bene�t of this approach is that it is very general in nature and it is not

speci�c for estimating a function with change�points but it provides very sensitive
change�point analysis� One may therefore expect that this method can be extended
to the case of multi�dimensional regression or applied to image denoising where the
quality of estimation near the boundary of images is of special importance� see
Korostelev and Tsybakov �������
The paper is organized as follows� In the next section we present the procedure�

Section � contains the results describing the quality of this procedure� In Section �
we specify the general results to the case of the equidistant design� We show in
particular that the locations of jumps can be estimated with the rate n�� logn and
that this rate is optimal if more than one jump is allowed� The proofs are mostly
deferred to Section ��

���� The model assumptions

Throughout the paper� we consider model ������ We proceed with a �xed non�
random design which is not supposed to be equidistant or regular� Note also that
the case of a random design X�� � � � � Xn can be considered as well� Then all the
analysis is to be done conditionally on the Xi �s�
With respect to the errors �i � i 	 �� � � � � n we suppose that they are i�i�d�

N ��� ��� random variables with a given variance �� � These assumptions allow to
simplify our exposition and illustrate more clearly the main ideas� Note� however�
that the assumption of normality can be relaxed to the assumption that the errors
�i are independent with a bounded exponential moment� Moreover� the variance
�� of the errors �i which is typically unknown� can be easily estimated by data�
see Subsection ����

�� Estimation Procedure

���� Preliminaries

The idea of the proposed method is quite simple and natural� We assume that the
function f is well approximated by a polynomial P����x�� in some neighborhood
U of the point of interest x� � where � is the vector of coe�cients of this polyno�
mial� We try to �nd by data the maximal interval �window� with this property over
the prescribed class U of intervals� For this� for each interval U from U contain�

ing x� � we construct an estimator b� of � from the observations fYi� Xi � Xi � Ug
and then calculate the residuals �i 	 Yi�P

b��Xi�x�� � Next we test the hypothesis
that the residuals �i 	 �i�Xi� corresponding to the interval U can be treated as a
pure noise� Finally the procedure selects the maximal interval �in the length or in
the number of design points inside� for which this hypothesis is not rejected� We
show that this method provides both a spatial adaptive estimation in the sense of
mean integrated losses and a high sensitivity to change�points of f �
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���� The family of windows

Let an integer number m be �xed� First we introduce the family U of intervals
containing x� � This family can be de�ned in di�erent ways� One possible choice
is to consider all intervals with the edges at design points containing at least m
design points�

U 	 f�X�i�� X�i��� � X�i� � x� � X�i��� i
� � i � mg� �����

Here X��� � � � � � X�n� is the ordered sequence of design points� This choice is
theoretically possible and it allows to make very precise estimation� see Section �
below� but it leads to a serious computational e�ort because the number of consid�
ered intervals is of order n� � The cardinality of U and hence the computational
di�culties can be reduced in the following way� We �rst select two sets of points
Al 	 fal � al � x�g and Ar 	 far � ar � x�g which both contain essentially
smaller than n points� Then we set

U 	 fU 	 �al� ar� � al � Al� ar � Arg� �����

We present one possible example of such sets but there is a lot of possibilities here�

Example ���� Let X��� � � � � � X�n� be the ordered sequence of design points�
Suppose for simplicity that x� coincides with one of them� say X�k� � Let us �x
an integer number k� and a constant a � � � We de�ne the sequence of indices
k� 	 � and kj 	 �k�a

j��� for j � � � where �c� means the integer part of c � Then
we set

Al 	 fX�k�kj�� j 	 �� �� �� � � � � kj � kg�
Ar 	 fX�k�kj�� j 	 �� �� �� � � � � kj � n� kg�

Evidently the cardinality of Al and of Ar is at most �
loga�n�k�� and hence the
cardinality of U is at most j�
 loga�n�k��j� � For applications� the choice k� 	 m
and a 	

p
� can be recommended�

Given U � U � set NU for the number of the points Xi falling in U �

NU 	 �fXi � Xi � Ug�
By de�nition� it holds NU � m for each U � U �

���� Local polynomial estimation

Now we construct a polynomial P of degree m � � which minimizes the sumP
�Yi � P �Xi��

� over U � For this we apply the standard least squares method�
Let � denote a column�vector in Rm � � 	 ���� � � � � �m���

T and let P��z� be the

polynomial with the coe�cients � � P��z� 	 ��
 ��z 
 � � �
 �m��z
m�� � De�ne b�U

by the least squares methodb�U �	 arginf
�

X
U

�Yi � P��Xi � x���
��

Here
P

U means summation over the index set fi � Xi � Ug �
For an explicit representation of b�U � it is useful to introduce matrix notation�

Let �U be the m�NU �matrix with elements sk�i 	 �Xi�x��k � k 	 �� �� � � � � m�� �



ESTIMATION OF A FUNCTION WITH DISCONTINUITIES �

and let YU be the NU �column vector with elements Yi where only indices i with

Xi � U are considered� Then the vector b�U satis�es the normal equation

�U�
T
U
b�U 	 �UYU � �����

If the matrix DU 	 N��
U �U�

T
U is non�singular� then b�U can be de�ned byb�U 	 ��U�

T
U�

���UYU � �����

Otherwise we can use the same representation� understanding ��U�
T
U�

�� as a
pseudo�inverse matrix�

The vector b�U provides non�parametric estimators of the function f and its
derivatives at x� � Namely� we use the values of the approximating polynomial

P
b�U
and its derivatives at x� for estimating f and its derivatives� Thus� k�b�U�k is

the estimator of f �k��x�� � In particular� bfU�x�� 	 b�U�� is the estimator of f�x�� �
The residuals �U�i at points Xi � U are de�ned by Yi � P

b�U
�Xi � x�� � that is�

�U�i 	 Yi � b�U�� � b�U���Xi � x��� � � �� b�U�m���Xi � x��
m���

Using matrix notation� we get

�U 	 YU � �T
U
b�U 	 YU � �T

U��U�
T
U �

���UYU 	 YU � �UYU � �����

Note that �U 	 �T
U��U�

T
U �

���U is the projector in the space RNU on the lin�
ear subspace generated by polynomials of degree m � � � �Here we identify each
polynomial P with the vector �P �Xi�� Xi � U� ��

���� A data�driven choice of an optimal window

Our adaptation method is based on the analysis of the residuals �U�i � We introduce
another family V�U� of intervals V � each of them is a subinterval of U � As
previously for the family U � we require that NV �	 �fXi � V g � m for all
V � V�U� � Also we require that V 	 U � U � � V�U� for each U � � U � Note that
we do not require that each V from V�U� contains x� �
A reasonable way to de�ne this family is as follows

V�U� 	 fV 	 UnU � or V 	 U � U � � U � � U � NV � mg�
If the set U is of the form ������ then we obviously have

V�U� 	 fV 	 �a�� a�� � a�� a� � Al � Ar� V � U� NV � mg� �����

Below we need in some upper estimate of the cardinality of V�U� in the form
�V�U� � N�

U �����

with some 	 � � � In the case of the �maximal� set U from ������ and with
V�U� from ������ the bound ����� easily meets with 	 	 � � For the set U from
Example ��� and for V�U� due to ������ the cardinality of V�U� is obviously
bounded by ��
 loga�n�k���

� and therefore� ����� meets with a very small 	 � if n
is su�ciently large�
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For each V � V�U� and for every k 	 �� �� � � � � m� � � set
TU�V�k 	

�

�
p
dV��kNV

X
V

�Xi � x��
k�U�i� ����

where

dV�k 	
�

NV

X
V

�Xi � x��
k� k 	 �� �� � � � � �m� �����

De�ne now


U�V 	 �

�
max

��k�m��
jTU�V�kj � t

p
logNU

�
where

t 	 �� 

p
m�
p
��	 
 p��

The parameter p means the norm in which we measure losses of estimation� Typ�
ically p 	 � �
We say that U is rejected if 
U�V 	 � at least for one V � V�U� i�e� if 
U 	 �

where


U 	 sup
V �V�U�


U�V 	 �

�
sup

V �V�U�

max
��k�m��

jTU�V�kj � t
p
logNU

�
�

Here ��A� means the indicator function of an event A �
The adaptive procedure selects among all non�rejected U from U such one

which maximizes NU �

U� 	 argmax
U�U

fNU � 
U�V 	 � for all V � V�U�g ������

and bf�x�� 	 bfU��x�� 	 b�U���� ������

For technical reason� we need to bound the considered class of functions� Namely
we suppose that the function f is bounded in the absolute value by some known

constant f� � Accordingly we truncate the estimate bf�x�� from ������� i�e� we

apply the estimate �f� 	 bf�x�� 
 f� �

���� The case of an unknown variance �
�

If the variance �� of errors �i is unknown then� as usual in nonparametric regres�
sion� some pilot estimator b�� can be plugged in place of �� � Following to Gasser
et al� ����� or Buckley et al� ����� we set

b�� 	
�

��n� ��
n��X
i��

�Y�i��� � Y�i��
�

where Y�i� is the observation at X�i� and X��� � X��� � � � � � X�n� is the ordered
sequence of the design points�
Next we de�ne the test statistics TU�V�k by ���� with b� in place of � � Further

we proceed as previously�
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�� Main results

In this section we describe some properties of the proposed estimation proce�
dure� We distinguish between two extreme cases� either the function f is regular
�smooth� near the point of interest x� or this function has a jump in the nearest
vicinity of this point�
To formulate the results� we introduce an important characteristic of the function

f which describes the accuracy of approximation of f by polynomials� Given
U � U � de�ne �U�f� by

�U�f� 	 inf
P�Pm

sup
x�U

jf�x�� P �x� x��j

where Pm is the set of all polynomials of degree m�� � Obviously �U ��f� � �U�f�
if U � � U � It is well known� see e�g� Triebel ������� that if the function f belongs
to a H�older ball H��� L� with the H�older exponent � and the Liptschitz constant
L and if m is the maximal integer smaller than � � then it holds for each U of
the form U 	 �x� � h� x� 
 h�

�U �f� � Lh��m��

���� The regular case

Now we consider the case when the function f is regular near the point of interest
x� in the sense that there is some window U from U containing x� with some its
neighborhood and such that �U �f� is small�
The �rst results claims that if �U �f� is small enough then the probability to

reject U is very small�

Proposition ���� Let U � U be such that

�U�f� � C���
�N��

U logNU �
��� �����

where

C� 	
p
��	 
 p�

Then

P f�
U 	 �� � mN�p
U �

Motivated by this result� we denote by U� the subset of U whose elements U
obey ������

U� 	 fU � U � ��
U�f� � ����	
 p�N��

U logNUg� �����

An interesting feature of the above result is that no assumptions were made about
the design on U except that it contains at least m design� For the next statement�
as usual for the local polynomial estimation� we introduce some condition on the
design� Given U � U � denote by GU the m�m �matrix with elements gU�k�k� 	
dU�k�k��

p
dU��kdU��k� � k� k

� 	 �� �� � � � � m� � � see ������ It is convenient to use the
following matrix notation� Let  U be the diagonal matrix with diagonal elements

d
����
U��k �

 U 	 diag��� d����
U�� � � � � � d����

U��m���
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Then

GU 	  UDU U � �����

Our condition on the design means that the matrix GU is invertible and we measure
the quality of the design in U by the norm kG��

U k of the matrix G��
U

kG��
U k � sup

w�Rd�kwk��

kG��
U wk�

�Here kwk means the Euclidean norm of a vector w � i�e� kwk� 	 w�
� 
 � � �
w�

d ��
It can be easily seen that for the case of a regular �e�g� equidistant� design� this
value kG��

U k is bounded by some constant depending on m only�
Now we state the result about the quality of estimation in the regular case� To

begin by� we introduce the class of �symmetric� windows� Let us �x some positive
d� � We say that some window U 	 �x� � h�� x� 
 h�� from U belongs to the class
Us�d�� if� for U� 	 �x� � h�� x�� � U� 	 �x�� x� 
 h�� � it holds

��� � NU��NU� � ��

kG��
Uj
k � d��

� � j 	 �� ��

The �rst condition here justi�es the notion of a �symmetric window� for U �
Us�d�� �
Theorem ���� Suppose that jf�x��j � f� � Let� for some d� � � � there be a
window U 	 �x� � h�� x� 
 h�� from Us�d�� satisfying also ������ that is� U �
U� � Us�d�� � Then

Ef j bf�x��� f�x��jp � �C��
�N��

U logn�p�� 
m��f��
pN

�p��
U

where

C� 	 �d��
� ��C� 
 C� 
 C�p���

	 �d��
�

h
�m
 � 
 �

p
m�
p
��	
 p� 
 C�p�

i�
� �����

and C�p� � � �

Discussion ���� The previous result prompts the following de�nition of the �opti�
mal symmetric� window Uf �

Uf 	 argmaxfNU � U � U� � Us�d��g�
In fact� the variance of the local polynomial estimate bfU�x�� is equal to Const���N��

U �
and the bias of this estimate can be bounded by �U �f� � see the proof of Propo�
sition ��� in Section �� Therefore� the inequality ��

U�f� � Const� ��N��
U logNU

can be regarded as a sort of a balance relation between the bias and the variance
of this estimate adapted to the problem of pointwise adaptive estimation� cf� Lep�
ski and Spokoiny ������� This justi�es the de�nition of an �optimal� window as
the maximal one for which the bias is still less than the standard deviation of the
stochastic component multiplied by some log�factor�
The statement of Theorem ��� shows that the adaptive procedure provides the

accuracy of estimation of the same order as if the �optimal symmetric� window

Uf were known and if we just apply the corresponding estimator bfUf �
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Note also that the result of the theorem is valid for an arbitrary positive d� �
Having chosen a very small d� � we get very mild conditions on the regularity of
the design within a window U from U � But at the same time� the obtained upper
bound of the risk of estimator is proportional to d��

� and it becomes very large for
small d� �

���� Estimation near a change�point

Now we are interested in the quality of estimation of the function f at the point x�
supposing that there is a change�point with a location xcp near x� � We understand
the fact that the function f has a change�point at xcp in the sense that there are
two small intervals V� and V� � the �rst from the left of xcp and the second from
the right of xcp such that the function f can be well approximated by polynomials
on V� and on V� but the coe�cients of these polynomials are essentially di�erent�
First we show that any window U containing both V� and V� will be rejected

with a probability close to ��

Proposition ���� Let U � U and let there be V�� V� � V�U� such that

N��
Vj

X
Vj

jf�Xi�� P�Vj �Xi � x��j� � ��Vj � j 	 �� �� �����

where �V� � �V� are vectors of coe	cients and �V� � �V� are some positive constants�
If� for some k 	 �� � � � � m� � �

j�V��k � �V��kj � bV��k 
 bV��k �����

with

bV�k 	 d
����
V��k kG��

V k
h
C	�N

����
V

p
logNU 
 �V

i
�����

where V equals V� or V� and

C	 	 C� 

p
�p 	

p
�p
 �m
 �

p
m�
p
��	 
 p�� ����

then

P f �
U 	 �� � N�p
U � �����

Now we are in a position to state the result about the quality of estimation near
a change�point� For this we have to be more de�nitive with our procedure� We
assume that the set U is de�ned as above in Section � by two sets of end�points
Al and Ar �

U 	 fU 	 �al� ar� � al � Al� ar � Ar� NU � mg�
Let also A 	 Al �Ar and let� for each U � U � the set V�U� be due to ������ that
is�

V�U� 	 fV 	 �a�� a�� � a�� a� � A� V � U� NV � mg�
Similarly to the above� we suppose that two small intervals V� and V� one from

the left and another from the right of the change�point xcp are �xed which verify
the conditions of Proposition ���� Without loss of generality we suppose that V�

and V� are as close as possible to xcp We denote also by V 	 �a�� a�� the interval
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between V� and V� � This interval contains xcp and it is small if the set A is
dense near this point�
The result stated below describes the quality of estimation at a point x� which

lies beyond V�� V� V� � To be more de�nitive� let us assume that the point x� is
from the right of V� � As previously� we suppose that there is some U � U�

containing x� � But now this window cannot be �symmetric� around x� because
of the change�point at xcp and it has to be from the right of this point� Let
U� 	 �a�� x�� be the interval containing V� and with the right end�point x� � We
treat the fact that x� is near xcp by supposing that NU� � �NU with some small
positive � � The considered situation is illustrated in Figure ��

Figure �

Theorem ���� Let the function f be bounded by f� � Let V�� V� � V � U and U�

be introduced above and

NU� � �NU � ������

Let then vectors �V� � �V� be such that

N��
Vj

X
Vj

jf�Xi�� P�Vj �Xi � x��j� � ��Vj � j 	 �� ��

and also� for some d� � � � it holds

kG��
U � k � d��

�

for every U � � U such that U � � U and NU � � �� � ��NU � Next� let for some
k 	 �� �� � � � � m� � �

j�V��k � �V��kj � bV��k 
 bV��k

where bV��k and bV��k are de
ned in ������ Then

Ej bf�x��� f�x��jp �
�
��� ����C��

�N��
U logNU

�p��

 �m
 ����f��

pN�p��
U

where C� is as in Theorem ����
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Discussion ���� The result of the theorem can be treated in the following way� If
we knew the location xcp of the change�point� then by estimating the function
f at the point x� near xcp we would select a one�sided window satisfying the
relation ������ see Discussion ���� Now we proceed adaptively and the procedure
provides essentially the same rate of estimation as if the location xcp and the
optimal one�sided window U were known�

�� The case of an equidistant design

Below we specify the general results from Section � to the case of an equidistant
design with the aim to compare our results with the existing in the literature� We
consider the regression model ����� with n the design points Xi 	 i�n within the
interval ��� �� � Note that all the results given below for the equidistant design�
can be generalized to the case of an arbitrary design which is regular in some local
neighborhood of the point of interest x� �
We examine our procedure with the �maximal� set U from ������ Note how�

ever that the family of windows from Example ��� can be considered as well� see
Discussion ����
First we notice that for the regular equidistant design� there exists a constant

d� � � depending on m only and such that for every interval U with NU � m �
it holds

kG��
U k � d��

�

where the matrix GU is de�ned in ������ In particular� for d 	 � � this bound
meets with d� 	 ��� �
We begin by reformulating the statement of Theorem ��� for windows U of

the form U 	 �x� � h� x� 
 h� with h 	 k�n � k 	 m�m 
 �� � � � � n � Obviously
NU � nh 
 � and NU 	 �nh
 � if U � ��� �� �

Theorem ���� Let jf�x��j � � and let h be such that for U 	 �x� � h� x� 
 h� �
��� �� �

�U �f� � C���h
��n�� logn����� �����

where C� 	
p
��	 
 p� � see Theorem ���� Then

Ef j bf�x��� f�x��jp � ��C��
�h��n�� logn�p��

where C� is due to ������

Discussion ���� Now we can also reformulate the de�nition of the �optimal sym�
metric window� Uf �see the discussion after Theorem ���� in terms of �optimal
bandwidth� hf �

hf 	 argmaxfh � �
x��h�x��h��f� � C���h
��n�� logn����g� �����

The statement of Theorem ��� shows that the adaptive procedure provides the
accuracy of estimation corresponding to the choice of the �optimal bandwidth�
hf � It was proved in Lepski� Mammen and Spokoiny ������ that each estimation
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procedure with such properties is automatically rate�optimal for a wide range of
Sobolev or Besov classes�
Note that more standard way to de�ne the �optimal bandwidth� is based on the

assumption that the function f is m times di�erentiable and the m th derivative
f �m� is uniformly bounded �at least in some neighborhood of the point x� ��

jf �m��x�j �Mm��

In this case one has easily �
x��h�x��h��f� � Mhm and the balance equation

Mhm  �h��n�� logn leads to the bandwidth hf  ���M��n�� logn�����m��� �
However� our smoothness condition ����� is weaker than the last one and hence the
balance rule ����� seems to be a bit more !exible�

Now we turn to the case when change�points are incorporated in the model�
Let xcp be a change�point� Without loss of generality we may assume that xcp
coincides with a grid point ai 	 i�n � As above in Theorem ��� we assume that the
function f is regular from the left and from the right of xcp and it has a jump of
k th derivative at xcp with k from � to m�� � This is understood in the following
way� Let some small h� � � be �xed and let

V� 	 �xcp � h�� xcp��

V� 	 �xcp� xcp 
 h���

Let also �V� and �V� be the coe�cients of the approximating polynomials for V�

and V� � A jump of k th derivative of f means that �V��j and �V��j are equal or
very close to each other for j 	 �� � � � � k� � and the di�erence �V��k� �V��k di�ers
signi�cantly from zero�
We are mostly interested to describe the minimal distance h� between the

change�point xcp and the point of estimation x� which is enough for a rate�
consistent estimation of f�x�� � Particularly� it is of interest to understand how
this distance h� depends on what derivative f �k� has a jump and on the jump
size�

Theorem ���� Let the function f be bounded by �� Let h� � V� � V� � �V� and
�V� be introduced above and let� for some k from � to m� � � it holds

j�V��k � �V��kj � �b�

Let also there be some h � �h� such that

��x��x��h��f� � C���h
��n�� logn����� �����

�
x��h�x���f� � C���h
��n�� logn����

with C� from Proposition ���� If

h�k��
� � C�b

����n�� logn

with

C� 	 �C	 
 C��
�d��

� ��k 
 �� 	 ��k 
 ��
hp

�p
 �m
 � 
 �
p
m�
p
��	 
 p�

i�
d��
�

then for each x� � �xcp 
 h�� xcp 
 h� or x� � �xcp � h� xcp � h�� � one has

Ef j bf�x��� f�x��jp � ���C��
�h��n�� logn�p��
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where C� is from Theorem ����

Discussion ���� This result shows that the presence of a change�point leads to poor
quality of estimation only in some small neighborhood of this change�point� The
radius h� of this neighborhood depends on the type of change �jump of a function
itself or its k th derivative� and on the size b of jump�

h� �
�
b��n�� logn

�����k���
�

Particularly� the proposed estimation procedure is able to detect about b�n� logn
�in order� jumps of a size b � � � Similarly� for jumps of k th derivatives� the
detectable number of change�points is about �b�n� logn�����k��� �

Discussion ���� The result of Theorem ��� applies not only to the "maximal� set
of windows from ����� but also to an arbitrary family U of the form ����� if the
related sets Al and Ar are �dense� near the point x� in the following sense� for
every h � m�n � the interval �x� � h� x�� contains at least two points a� and a�
from Al such that ja� � a�j � h�� � and similarly for the interval �x�� x� 
 h� � It
can be easily seen that the family U from Example ��� veri�es this condition�

To conclude� we discuss shortly the question of optimal estimation of the location
of a change�point� It is well known that a single jump can be estimated with the
rate n�� � see� for example� Hinkley ������� Ibragimov and Khasminskii ������
Korostelev ������ Our procedure provides the rate n�� logn � The following
result shows that this extra log�factor is not only the price for adaptation� Even
in the case when only two jumps are allowed� their locations cannot be estimated
with a better rate than n�� logn � Similarly it can be shown that the optimal rate
for estimation of a jump of k th derivative is �n�� logn�����k��� � if more than one
jump is considered�
Introduce a class Fh of piecewise constant functions with two possible values

�� � having two jumps at points x� and x� inside the interval ��� �� separated
with the distance h �

jx� � x�j � h�

Theorem ���� There exists C � � such that for h�n� 	 Cn�� logn and for
arbitrary estimates bx�� bx� � the following asymptotic bound holds

sup
f�Fh�n�

maxfP f �jbx� � x�j � h�n���P f �jbx� � x�j � h�n��g � �� n���

�� Proofs

In this section we present the proofs of the results from Sections � and ��

���� Proof of Proposition ���

Using equation ������ rewrite the vector of residuals �U in the form

�U 	 fU � �UfU 
 �U � �U�U 	 fU � �UfU 
 �U � U �
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see ������ Here fU means the vector with elements f�Xi� � Xi � U � and U 	
�U�U � The �test� statistic TU�V�k can be represented now in the form

TU�V�k 	
�

�
p
dV��kNV

X
V

�Xi � x��
k�f�Xi�� �Uf�Xi�� 


�

�
p
dV��kNV

X
V

�Xi � x��
k�i � �

�
p
dV��kNV

X
V

�Xi � x��
kU�Xi�

	 S� 
 S� 
 S	� �����

We analyze each sum in this expression separately starting from the �rst one�
By de�nition of �U �f� � there exists for each � � � a polynomial P � Pm such

that
P

U jf�Xi� � P �Xi � x��j� � NU�
�
U �f� 
 � � To simplify the exposition� we

suppose that this inequality holds with � 	 � � Since �U is the projector on the
space generated by polynomials of degree m� � � then �UP 	 P and hence

kf � �Ufk�U 	 kf � P � �U�f � P �k�U � kf � Pk�U � NU�
�
U�f�

where kfk�U 	
P

U f
��Xi� � Now we get using Cauchy�Schwarz inequality and

condition �����

S� 	
�

�
p
dV��kNV

X
V

�Xi � x��
k�f�Xi�� �Uf�Xi��

�
�

�

��dV��kNV

X
V

�Xi � x��
�k

	��� �X
V

�f�Xi�� �Uf�Xi��
�

	���
� ���kf � �UfkV � ���kf � �UfkU � ���

p
NU�U �f�

�
p
��	
 p� logNU � �����

Next� since the errors �i are Gaussian zero mean random variables� the same is
true for the sum S� in ������ Moreover� using independence of the �i �s�

ES�
� 	

�

��dV��kNV

X
V

�Xi � x��
�k
E��i 	 � �����

and hence S� is standard Gaussian�
It remains to estimate S	 � The vector U 	 �U�U is Gaussian as the linear

transform of the Gaussian vector �U � Obviously EU 	 � � Moreover� we easily
obtain

EU
T
U 	 ���T

U ��U�
T
U �

���U �

Here we have used that E�i�j 	 ���i�j � This impliesX
U

E�U�Xi� 	 trEU
T
U

	 �� tr�T
U ��U�

T
U �

���U

	 �� tr��U�
T
U �

���U�
T
U

� �� tr Im 	 ��m

where trA stands for the trace of matrix A and Im means the unit m�m �matrix�



ESTIMATION OF A FUNCTION WITH DISCONTINUITIES ��

Now� using again the Cauchy�Schwarz inequality� we obtain

ES�
	 	

�

��dV��kNV

E

�X
V

�Xi � x��
kU�Xi�

	�

�
�

�

��dV��kNV

X
V

�Xi � x��
�k

	�X
V

E�U�Xi�

	
� ���

X
U

E�U�Xi� � m� �����

Clearly the sum of the Gaussian variables S� and S	 is also Gaussian with zero
mean� see ������ and along with ������ �����

E�S� 
 S	�
� 	 ES�

� 
ES
�
	 
 �ES�S	

� ES�
� 
ES

�
	 
 ��ES

�
�ES

�
	�

���

� �� 

p
m���

Summing up ����� through ������ we get

P f



jTU�V�kj � �� 


p
m�
p
��	 
 p� logNU

�
� P



jS� 
 S	j � �� 


p
m�
p
��	 
 p� logNU

�
� �



�� #


p
��	 
 p� logNU

��
� expf��	 
 p� logNUg 	 N

����p�
U �

Here # means the Laplace distribution and we have used that ��#�z� � exp��z����
for z � � � This estimate and condition ����� allow to bound the probability of
rejecting U in the following way

P f�
U 	 �� �
X

V �V�U�

m��X
k��

P f



jTU�V�kj � �� 


p
m�
p
��	
 p� logNU

�
� m�V�U�N����p�

U � mN�p
U

as required�

���� Some technical results

Now we present two more technical statements� The �rst one explains how much
information can be extracted from the fact that 
U�V 	 � for some U � U and
V � V�U� � Let matrix GV be due to ������

Proposition ���� Let U � U � V � V�U� and let 
U�V 	 � � If j detGV j � � �
then

k ��
V �

b�U � b�V �k � C�kG��
V k���N��

V logNU �
���

where k�k� 	 ��� 
 � � �
 ��m�� and

C� 	
�
m 
 �

p
m
�p

��	
 p��
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In particular�

j bfU�x��� bfV �x��j � C�kG��
V k���N��

V logNU�
���

and

jb�U�k � b�V�k�j � C�d
����
V��k kG��

V k���N��
V logNU�

���� k 	 �� �� � � � � m� ��
Proof� Let �U�V be m �vector with coordinates

�U�V�k 	 �N����
V TU�V�k 	

�

NV

p
dV��k

X
V

�Xi � x��
k�U�i�

	
�

NV

p
dV��k

X
V

�Xi � x��
k

�
Yi �

m��X
k���

b�U�k��Xi � x��
k�

	
�

k 	 �� �� � � � � m � � � Using matrix notation� we can rewrite this equality in the
form

�U�V 	 N��
V  V



�V YV � �V�

T
V
b�U� �

The de�nition of the least squares estimate b�V implies the equality

�V YV 	 �V�
T
V
b�V

see ������ Hence

�U�V 	 N��
V  V�V�

T
V


b�V � b�U� 	  VDV �b�V � b�U ��
When denoting

�U�V 	  ��
V �

b�V � b�U�� �����

we get

�U�V 	 GV �U�V � �����

The fact that 
U�V 	 � means

j�U�V�kj � r

where

r 	 N
����
V ��� 


p
m�
p
��	
 p� logNU �

In particular�

k�U�V k� �	
m��X
k��

� �U�V�k � mr�� �����

It remains to understand what follows from this inequality for the vector �U�V 	
G��
V �U�V see ������ By �����

k�U�V k 	 kG��
V �U�V k � r

p
mkG��

V k�
In view of ������ the assertion follows�



ESTIMATION OF A FUNCTION WITH DISCONTINUITIES ��

The next statement is nothing else as the standard decomposition of the lo�
cal polynomial estimator into deterministic and stochastic terms� compare Stone
������� Cleveland ������� Katkovnik������ ����� Tsybakov ������ Korostelev and
Tsybakov ������� Goldenshluger and Nemirovski ������� In particular it shows that
if the function f is regular on U and the matrix GU is well de�ned� then the

estimator b�U provides a good accuracy of estimation of the function f and its
derivatives at x� �

Proposition ���� Let U � U and let GU be nonsingular� see ������ Let also

N��
U

X
U

jf�Xi�� P��Xi � x��j� � ��U ����

with some �U � � and � 	 ���� � � � � �m��� � Here P��z� 	 ��
��z
� � �
�m��z
m�� �

Then it holds for the vector b�U from �����

 ��
U �

b�U � �� 	 �UG
��
U wU 
 �N

����
U G

����
U �U �����

where wU 	 �wU��� � � � � wU�m��� is a nonrandom vector in Rm such that

jwU�kj � �� k 	 �� � � � � m� �� ������

�U � N ��� Im�� ������

and for every k 	 �� �� � � � � m� �
b�U�k � �k 	 d

����
U��k kG��

U k�z��U 
 z��N
����
U ��U�k� ������

where jz�j � � � jz�j � � and ��U�k � N ��� �� �

Proof� Denote �U 	  ��
U �

b�U � �� � Then� using ������ ����� and ������ we obtain

�U 	  ��
U ��U�

T
U�

���U �YU � �T
U��

	 N��
U G��

U

�
 U�U �fU � �T

U�� 
  U�U�U
�
	

	 �UG
��
U wU 
 �N

����
U G

����
U �U �

Here fU means the vector in RNU with elements f�Xi� � Xi � U � Also we denoted
by wU a non�random vector in Rm de�ned by wU 	 ���

U  U�U �fU ��T
U�� and by

�U a random vector in Rm with �U 	 ���G
����
U  U�U�U �

For ������ it remains to check ������ and ������� Note that

�fU � �U��i 	 f�Xi��
m��X
k��

�k�Xi � x��
k

and in view of ����

N��
U

X
U

j�fU � �U��ij� � ��U �
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Next� using the Cauchy�Schwarz inequality

jwU�kj 	 ���
U d

����
U��k

�����X
U

�Xi � x��
k�fU � �U��i

�����
� ���

U

�
NUd

��
U��k

X
U

�Xi � x��
�k

	��� �
N��
U

X
U

�fU � �U��
�
i

	���
� ��

Finally we observe that �U is a Gaussian vector with the covariance matrix

E�U�
T
U 	 ���N��

U G
����
U  U�UE�U�

T
U�

T
U UG

����
U 	 Im�

Statement ������ is a consequence of ������ In fact� let us �x some k � f�� �� � � � � m�
�g � Then d

���
U��k�

b�U�k � �k� is the k th component of  ��
U �

b�U � �� � Next� arguing

as at the end of the proof of Proposition ��� we obtain that j�G��
U wU�kj � kG��

U k �
Similarly� the k th component ��U�k of the Gaussian vector G

����
U �U is a Gaussian

random variable with zero mean and E���U�k�
� � kG��

U k � kG��
U k� � This implies

�������

���� Proof of Proposition ���

The event 
U 	 � implies 
U�Vj 	 � � j 	 �� � � Let V be V� or V� � By
Proposition ���

jb�U�k � b�V�kj � C�kG��
V kd����

V��k ��
�N��

V logNU�
����

Next� by application of Proposition ��� we getb�V�k � �V�k 	 d
����
V��k kG��

V k�z��V 
 z��N
����
V �V�k�

with �V from ������ jz�j� jz�j � � and �V�k � N ��� �� � Along with these inequalities
and ����� we obtain

P f



jb�U�k � �V�kj � bV�k

�
� P



j�V�kj �

p
�p logNU

�
� N�p

U � V 	 V� or V��

This and ����� obviously imply ������

���� Proof of Theorem ���

Let U� be selected by the adaptive procedure� see ������� We distinguish between
two cases� NU� � NU and NU� � NU � �Recall that due to Proposition ����

U 	 � with probability close to � and hence typically NU� � NU ��

Note �rst that� by construction� j bfx�j � f� and by theorem�s condition jf�x��j �
f� � Hence j bf�x��� f�x��j � �f� and

Ef j bf�x��� f�x��jp��NU� � NU� � ��f��
p
P f �NU� � NU��

Obviously P f �NU� � NU� � P f�
U 	 �� and by Proposition ��� we obtain

Ef j bf�x��� f�x��jp��NU� � NU� � ��f��
pmN�p

U � ������

Next we consider the case with NU� � NU � Clearly U� contains either �x� �
a�� x�� or �x�� x�
 a�� � By making use of the de�nition of the class Us�d�� � we get
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either for V 	 V� or for V 	 V� that V � U �U� � NV � minfNV� � NV�g � NU��
and kG��

V k � d��
� � The fact that 
U� 	 � implies in particular that 
U��V 	 � �

Using now the result of Proposition ��� we conclude that

j bfU��x��� bfV �x��j � C���
�N��

V logNU������ ������

Next� since V � U � then �V �f� � �U �f� and the application of Proposition ���

to bfV �x�� givesbfV �x��� �V�� 	 �N
����
V kG��

V k
h
zV��C�

p
logNU 
 zV���V��

i
������

where jzV��j� jzV��j � � and �V�� � N ��� �� � From the de�nition of �V �f� it follows
that jf�x��� �V��j � �V �f� � �U �f� � Along with ������ and ������ and applying
kG��

V k � d��
� � we conclude

Ef j� bf�x��� f�x��jp��NU� � N�

� Ef

��� bfU��x��� bfV �x�� 
 bfV �x��� �V�� 
 �V�� � f�x��
���p

� �pN
�p��
V d�p� Ej��C� 
 C��

p
logn 
 �V��jp

� ��C� 
 C� 
 C�p��p�pd�p� ��N��
U logn�p���

Here we have used the inequality Ej� 
 �jp � �� 
 C�p��p for a standard normal
� and some positive constant C�p� � � � This and ������ prove the assertion�

���� Proof of Theorem ���

By Proposition ����

P �
U 	 �� � mN�p
U

and by Proposition ���� if some U � contains V� and V� and if NU � � NU � then

P �
U � 	 �� � N�p
U �

Using the arguments from the proof of Theorem ��� we can reduce our consideration
to the case when 
U 	 � �U is accepted� and 
U � 	 � for every U � with V��V� �
U � �every such U � is rejected��
Let U� be selected by the adaptive procedure� Since 
U 	 � � the de�nition of

U� implies NU� � NU � Furthermore� U
� does not contain V� � Indeed� otherwise

U� contains also V� because x� � U� and V� is between V� and x� � hence

U� 	 � does hold�
Denote U� 	 U � U� � Then the inequalities ������ and NU� � NU imply that

NU� � ��� ��NU � ������

In fact� let a	 be the right end�point of U � If a	 � U� � then also U� � U� and
U � U� � U� � and hence NU� � NU � NU� � �� � ��NU � Next� if a	 �� U� � then
U� � U� � U� � and it follows from NU� � NU that

NU� � NU �NU� � ��� ��NU �

By the conditions of the theorem� we also have kG��
U�
k � d��

� �
Now� by Proposition ����

j bfU��x��� bfU��x��j � C�kG��
U�
k���N��

U�
logn�����
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and by Proposition ����bfU��x��� f�x�� 	 �N
����
U�

kG��
U�
k�z�C�

p
logNU� 
 z���

where jz�j� jz�j � � and � � N ��� �� �
These inequality allow to complete the proof in the same way as for Theorem ����

���� Proof of Theorem ���

We derive this result as a consequence of the general result of Theorem ���� First
we assume without loss of generality that

NV� 	 NV� 	 nh�

and similarly for U 	 �x�� x� 
 h�

NU 	 nh�

Now condition ����� means that U � U� � see ������ and condition ������ of Theo�
rem ��� is ful�lled with � 	 ��� � Next� we easily obtain for V 	 V� or V 	 V�

and x� � xcp 
 h�

dV��k 	 �nh��
��

X
Xi�V

�Xi � x��
�k � h�k� ���k 
 ���

Therefore� all the conditions of Theorem ��� are satis�ed and the application of
this theorem leads to the desirable assertion�

���� Proof of Theorem ���

As usual for such kind of results� we change the minimax problem by a speci�c
Bayes one� Let some positive C � � be �xed� Set h�n� 	 Cn�� logn � Without
loss of generality we assume that nh�n� 	 C logn is an integer number and that
M 	 ��h�n� 	 n��C logn� is also integer� Let us split the whole interval ��� ��
into M subintervals of length h�n� and denote this partition by I � Each interval
I from I contains N 	 nh�n� 
 � 	 C logn 
 � design points� Now we assume
that our function f is random and with probability M�� it coincides with the
function fI which is one on I and zero outside� Now our original problem can be
clearly reduced to the problem of estimating I �as an element of the �nite set I �
from observed data�
Denote by ZI�n the log�likelihood

ZI�n 	 log�dP fI�dP ��

where P � corresponds to the function f � � � It follows easily from ����� that

ZI 	
�

�

X
i�n�I

�
Y �
i � �Yi � ���

�
	
X
i�n�I

Yi �N���

Now the Bayes estimate bI of I for the indicator loss function ��bI �	 I� is of
obvious structure� bI 	 arginf

I

�

M

X
I� ��I

expfZI�g 	 argmax
I

ZI �



ESTIMATION OF A FUNCTION WITH DISCONTINUITIES ��

Let us �x an arbitrary I� � I and consider the probability P I��bI �	 I�� where
the measure P I� corresponds to the function fI� � First we note that under P I�

it holds with probability � X
I�

Yi 	
p
NI� 
N�X

I

Yi 	
p
NI � I �	 I�

where I 	 N����
P

I �i � and obviously all I are standard normal� Now

P I��bI �	 I�� 	 P

�
max
I ��I�

I �
p
N�� � I� 


p
N��

�
	 P

�
max
I�I

I �
p
N

�
�

Therefore� it holds for the Bayes measure P B 	M��
P

I PI�

inf
eI
P B�eI �	 I� 	 P B�bI �	 I� 	M��

X
I��I

PI��bI �	 I�� 	 P

�
max
I�I

I �
p
N

�
�

Here the in�mum is taken over the class of all possible estimators of I � It is well
known� see e�g� Petrov ������� that for each 	 � �

P

�
max
I�I

I �
p
	 logM

�
� �� M ���

Therefore� the desirable assertion follows if 	 logM � N or equivalently

C logn 
 � � 	 log�n��C logn���

It remains to observe that the latter property holds true for C � 	 � � and n
large enough�
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