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Abstract
It is shown how to test revealed preference data on choices under uncertainty for 
consistency with fi rst and second order stochastic dominance (FSD or SSD). The axiom 
derived for SSD is a necessary and suffi  cient condition for risk aversion. If an investor is 
risk averse, stochastic dominance relations can be combined with revealed preference 
relations to recover a larger part of an investor‘s preference. Interpersonal comparison 
between investors can be based on intersections of revealed preferred and worse sets. 
Using a variant of Yaari‘s (1969) defi nition of “more risk averse than”, it is shown 
that it is suffi  cient to compare only the revealed preference relations of two investors. 
This makes the approach operational given a fi nite set of observations. The central 
rationalisability theorem provides strong support for this approach to comparative risk 
aversion. The entire analysis is kept completely nonparametric and can be used as an 
alternative or complement to parametric approaches and as a robustness check. The 
approach is illustrated with an application to experimental data of by Choi et al. (2007). 
Most subjects come close to SSD-rationality, and most subjects are comparable with 
each other. The distribution of risk attitudes in  the population can be described by 
comparing subjects‘ choices with any  given preference, which is also illustrated.
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1 introduction

1.1 Overview

Suppose an investor who wishes to invest 1 unit of money has the choice between two risky assets
representing claims in the harvest of two agricultural goods x1 and x2. After the investment has
been made, one of two states of the world occur: With probability π1 ∈ (0, 1) it rains very little, in
which case only asset x1 pays off. With probability π2 = 1−π1, it rains heavily and only asset x2 pays
off. The price of one unit of asset xi is pi > 0. Suppose we observe many different portfolio choices
x i = (x i

1 , x i
2) of such an investor, each choice for a different price vector pi = (pi1, pi2). What testable

conditions on the set of observations {(x i , pi)} are necessary and sufficient to conclude that the
investor maximises a utility function which is (i) monotonically increasing, (ii) monotonically
increasing and concave, (iii) monotonically increasing and concave and the investor is risk averse
in the sense that he always prefers a portfolio x over a portfolio y if y has second order stochastic
dominance over (or is a mean preserving spread of) x?

Suppose we have the answer to question (iii). Suppose we observe the portfolio choices of two
investors, A and B; then (iv) what is a reasonable way to compare the two investors and conclude
that A is more risk averse than B, without relying on particular restrictive forms of risk aversion;
and, given such a measure, (v) are there practically testable conditions on the set of observations
of the two investors to reach such a conclusion?

The sets of alternatives for the investors to choose from correspond to standard competitive
budget sets. Hence the answers to questions (i) and (ii) are given by the well known Afriat’s
Theorem, and Varian’s (1982) Generalised Axiom of Revealed Preference (Garp) is an easily
testable necessary and sufficient condition. This paper gives an answer to question (iii) and adopts
a variant of Yaari’s (1969) definition of “more risk averse than” to give an answer to question (iv).
Based on these answers, it also provides an answer to question (v).

In particular, this papers shows how to combine first or second order stochastic dominance
(Fsd or Ssd) relations with revealed preference relations. This allows to test if an investor prefers
portfolios which have Fsd or Ssd over other portfolios. The axiom derived for Ssd is a necessary
and sufficient condition for risk aversion. If an investor is indeed risk averse, the combined relations
allow to recover a larger part of the investor’s preference underlying his decisions. In the framework
considered here, Garp is not a sufficient condition for the existence of a utility function which
obeys Ssd, as Garp does not interpret the assets as such. An investor who has an intrinsic taste for
one of the assets can still satisfy Garp: Suppose that an investor always invests all his money into
asset x1. Then Garp will be satisfied, but the investor does not necessarily obey Ssd.

Yaari’s (1969) definition of “more risk averse than” is useful to analyse the ordering of various
classes of utility functions in terms of risk aversion (see, for example, Bommier et al. forthcoming).
However, it can also be directly applied to revealed preference relations and used as a nonparametric
method to compare the risk aversion of two investors. We show how intersections of revealed
preferred and worse sets can be used to make interpersonal comparisons. The variant of Yaari’s
(1969) definition of “more risk averse than” which is employed here states that investor A is partially
more risk averse than investor B if there are least two portfolios x and y, where x has a higher
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expected value than y, and A prefers y over x while B prefers x over y. Then if A is partially more
risk averse than B, and B is not partially more risk averse than A, we conclude that A is more risk
averse than B. While the definition is stated in terms of revealed preferred and revealed worse
sets, which can be computed for any portfolio and not just those observed as a choice, it is shown
that it is not only necessary but also sufficient to compare only those portfolios which have been
observed as a choice by one of the two investors.

The entire analysis is kept completely nonparametric and makes no assumptions on particular
functional forms of utility. The approach is illustrated with an application to the experimental data
of Choi et al. (2007a). The data is tested for consistency with Ssd and consistency for many subjects
is confirmed, based on the Afriat Efficiency Index (or Critical Cost Efficiency Index) supported by
Monte-Carlo simulations. The comparative risk aversion approach is then applied to the data.

If neither of two investors is more risk averse than the other, then either (i) they have very
similar preferences, or (ii) their extent of risk aversion is different for different income ranges, or
(iii) they act according to distinct notions of risk aversion. Case (i) is a helpful result to classify two
investors as belonging to the same category of risk preferences, as we cannot reject the hypothesis
that the two investors have the same risk preferences. Cases (ii) and (iii) highlight the problem
with a “one size fits all approach”; in particular, they show that comparisons based on parameter
estimates rely on the specified form of the utility function. However, most experimental subjects
are indeed comparable if choices are corrected by efficiency levels. If neither of two subjects is
more risk averse than the other, it is mostly because they have similar preferences.

The analysis provides a strong test of robustness for conclusions based on parameter estimates.
Furthermore, while the nonparametric approach does not give a distribution of parameters of risk
aversion in a population, it nonetheless allows to characterise the distribution of risk attitudes:
The nonparametric approach tells us what percentage of the population is less or more risk averse
than any given preference. This is illustrated by comparing the choices of subjects with several
parameters of a utility function estimated by Choi et al. (2007a).

While none of the basic elements of the paper are new, it is the combination of several strands of
the literature that distinguishes its approach. The theoretical literature on risk preferences, choice
under uncertainty, and comparative risk aversion is combined with the nonparametric analysis
based on operational revealed preference theory. This combination can—and indeed is—applied
to data. It is not claimed that the nonparametric approach should replace other approaches. The
analysis here complements them and should, at the very least, be applied before further steps are
taken, as it allows to draw strong conclusions about preferences without the need of restrictive
assumptions on functional form.

1.2 Related Literature

This paper is related to the theoretical literature on choice under uncertainty and the discussion
of what “risk” is, the comparative risk aversion literature, the revealed preference approach and
the nonparametric analysis of choice data within consumer demand theory, and the experimental
literature on risk preferences by subjects who are asked to make properly incentivised choices
under controlled conditions.
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Rothschild and Stiglitz (1970, 1971) provide a definition of “risk” and analyse its economic
consequences. In particular, they call a random variable y “more variable” than a random variable
x if x is equal to y plus a disturbance term with expected value of 0. Then y is a mean preserving
spread (Mps) of x, and x has second order stochastic dominance over x. For two random variables
with the same mean, they show that every element u in the set of all concave utility functions
yields u(y) > u(x) if and only if x is an Mps of y. Defining risk aversion in terms of second order
stochastic dominance is therefore the least restrictive reasonable definition.

Similarly, Hadar and Russell (1969) note that comparing uncertain prospects in terms of
moments is problematic if the utility function of an investor is not known. They define dominance
of portfolios in terms of first- and second order stochastic dominance and show that any increasing
utility function yields u(y) > u(x) if and only if y has Fsd over x, and any increasing concave
utility function yields u(y) > u(x) if and only if y has Ssd over x. See also the early contribution
of Hanoch and Levy (1969) in the same year with similar results, and Levy (1992) for a survey.

Yaari (1969) answers the question of when an investor A is more risk averse than B within a
framework with one risky asset. Any investment in the risky asset is a gamble, and the acceptance
set is the set of all gambles which are preferred to the status quo by an investor. Yaari suggests
to call investor A more risk averse than investor B if the acceptance set of A is contained in the
acceptance set of B. Similar approaches to uncertainty and ambiguity aversion are developed by
Epstein (1999), Ghirardato and Marinacci (2002), and Grant and Quiggin (2005)

A seminal article by Pratt (1964), and similarly the work by Kihlstrom and Mirman (1974),
analyses a measure of risk aversion based on certainty equivalents. In a recent paper, Bommier et al.
(forthcoming) provide a formal framework for analysing comparative risk aversion of different
investors, with a focus on intertemporal choice. They use their approach to analyse several classes
of utility functions common in the literature.

In the revealed preference approach it is assumed that the researcher only observes the set of
alternatives a decision maker has and the alternative which he actually chooses. Thus, revealed
preference relations, like preferences, are binary relations which we observe due to an individual’s
choices combined with theoretical reasoning about what these choices reveal about the individual’s
preferences. While with a finite number of observations a revealed preference relation will always
be only a partial binary relation, the theoretical reasoning about revelations can allow to recover
a lot about underlying preferences. An advantage of the approach is that we do not need to
assume any particular functional form of utility (or demand); the revealed preference approach
therefore lends itself to a nonparametric analysis of choice data. Afriat’s (1967) analysis, for example,
makes the revealed preference approach operational when the sets of alternatives are competitive
budget sets. Varian (1982, 1983a) refines this approach and provides highly valuable tools for the
nonparametric analysis of such data. Clark (2000) considers the problem of recovering expected
utility from observed choice behaviour, but does not provide extensive tools for the analysis of
revealed preference data.

Varian (1983b) provides a condition which is necessary and sufficient for the existence of
an expected utility function which rationalises a set of investment decisions. His condition is
expressed as a linear feasibility system which has to have a solution. He applies his framework
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to a mean variance model of utility maximisation. The approach described here is more directly
rooted in the axiomatic revealed preference approach and shows how to enrich revealed preference
relations with Fsd- and Ssd-relations, and the recovered preferred and worse sets are shown to be
useful for comparative risk aversion.

Experimental economics allows researchers to collect choice data of subjects under controlled
conditions. “Induced budget experiments”, where subjects are asked to make choices on competi-
tive budget sets, are increasingly common. Such experiments allow to collect extensive data on
individuals’ preference. Choi et al. (2007a), in particular, collect fifty decisions of each of ninety
three subjects in an induced budget experiment on choice under uncertainty. They test the data for
consistency with Garp. Furthermore, they estimate parameters of utility functions to characterise
the distribution of risk preferences.

1.3 Main Results

In the theoretical part, it is shown how the assumption that investors obey Ssd can be imposed on
revealed preference relations. If portfolio x has second order stochastic dominance over portfolio
y, then any risk averse consumer will prefer x over y. Second order stochastic dominance leads to
the definition of an incomplete binary relation ≿SSD. Then ≿SSD can be combined with the revealed
preference relation R to form the new relation RSSD. It is shown that when adding only finitely
many new data points to a set of observations and testing this extended set for consistency with a
condition called Ssd-Garp, passing the test is necessary and sufficient for the existence of a utility
function which rationalises the set of observations and obeys Ssd.

The theoretical part then proceeds by translating Yaari’s (1969) definition of “more risk averse
than” to the framework of this article. The next step is to translate this definition to the revealed
preference case: With only finitely many observations, we will never observe a complete preference
relation, but we can use the incompletely revealed preference relation to construct “revealed
preferred” and “revealed worse” sets for all portfolios. This is based on Varian’s (1982) framework
for nonparametric analysis of demand data. This leads to an important and very useful result: To
test whether one investor is more risk averse than another—for all portfolios—it is necessary and
sufficient to only compare those portfolios which have been observed as a choice by either of the
investors. This makes the approach completely operational and allows to compare the risk aversion
of two investors without the need of specifying a functional form of utility.

The second part uses experimental data of Choi et al. (2007a) and applies the theoretical
concepts to this data. There were two experimental treatments: In the symmetric treatment, the
probability that each of the two assets pays off was 1⁄2 . In the asymmetric treatment, one of the
two assets had a 1⁄3 probability of paying off, and the other paid off with probability 2⁄3 . We find
that most subjects in the symmetric treatment show very high efficiency in terms of Ssd-Garp. In
the asymmetric treatment, subjects score somewhat lower, but compared to random choices their
efficiency is still high.

For those subjects with reasonably high efficiency, the nonparametric comparison of risk
aversion shows that most subjects are indeed comparable with most other subjects if choices are
corrected by efficiency levels. That is, we find that of two subjects, either one subject is clearly more
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risk averse than the other, or we cannot reject the hypothesis that the two subjects have the same
preferences.

The subjects are also compared with choices generated by a utility function using parameters
estimated by Choi et al. (2007a) for different percentiles. For the symmetric treatment these
comparisons offer very strong support for the parameter estimates, and somewhat less so for the
asymmetric treatment.

1.4 Outline

The rest of the paper is organised as follows: Section 2.1 introduces the framework and the notation.
Section 2.2 reviews the necessary revealed preference literature and extends the approach using
stochastic dominance relations. It derives the Fsd-Garp and Ssd-Garp, both of which are easily
testable and which correspond to Varian’s (1982) Generalised Axiom of Revealed Preference
(Garp). In particular it is shown that Ssd-Garp is necessary and sufficient for the existence of a
monotonically increasing and concave utility function which rationalises the observations and
which obeys second order stochastic dominance; Ssd-Garp is therefore a necessary and sufficient
condition for risk aversion. Section 2.3 introduces the nonparametric approach to compare the
extent of risk aversion of two investors. Section 3 applies the methods to the experimental data of
Choi et al. (2007a). Section 4 discusses the results and concludes. All proof can be found in the
appendix in Section A.

2 theory

2.1 Preliminaries

A set of observed investment choices consists of a set of chosen portfolios of assets and the
prices and incomes at which these assets were chosen.1 The asset space is A = RL

+ and the price
space is RL

++, where L ≥ 2 denotes the number of different assets.2 Investors choose portfolios
x i = (x i

1 , . . . , x i
L)′ ∈ X when facing a price vector pi = (pi1, . . . , piL) ∈ RL

++; these choices are the
demand we observe. A budget set is then defined by Bi = B(pi) = {x ∈ A ∶ pix i ≤ 1}; we will
sometimes refer to a budget using the characterising price vector. The entire set of N observations
on an investor is denoted as Ω = {(x i , pi)}Ni=1. Unless otherwise noted, we assume that demand is
exhaustive (i.e., pix i = 1).

There are L different states which can obtain after the portfolio choice has been made. In each
state i ∈ {1, . . . , L}, asset i is the only asset that pays off. State i occurs with probability πi ∈ Δ(L),
where Δ(L) is the (L − 1) probability simplex, i.e., πi ≥ 0 for all i and∑L

i=1 πi = 1. Let Π(x) denote
the ex post realised payoff of a portfolio x. Let A(π) denote an asset space with the probability
vector π; we will often drop the π when the reference is clear or unnecessary.

1“Portfolios” correspond to the term “lotteries”.
2The following notation is used: For all x , y ∈ RL , x ≧ y if xi ≥ yi for all i = 1, . . . , L; x ≥ y if x ≧ y and x ≠ y;

x > y if xi > yi for all i = 1, . . . , L. We denote RL
+
= {x ∈ RL ∶ xi ≧ (0, . . . , 0)} and R

L
++
= {x ∈ RL ∶ x > (0, . . . , 0)}.
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We assume that an investor can be represented by transitive, complete, and continuous binary
relation3 on A. This binary relation ≿ ∈ A × A represents his preference according to which he
decides which portfolio to choose on a budget. The interpretation is as usual, i.e. (x , y) ∈ ≿, also
written x ≿ y, means that to the investor x is at least as good as y. For ≿ (and similarly for all
other complete relations defined below) ≻ denotes the asymmetric part of ≿ and ∼ denotes the
symmetric part, i.e., x ≻ y if x ≿ y and [not y ≿ x], and x ∼ y if x ≿ y and y ≿ x.

Let E(x , π) = ∑ πixi be the expected value of a portfolio x ∈ A(π). Let ≿πE ∈ A ×A be defined
as

x ≿πE y if E(x , π) ≥ E(y, π).

We will drop the π if the reference is clear (i.e., we will write E(x) and x ≿E y if there is no
confusion). Let ∼E and ≻E denote the symmetric and asymmetric part of ≿E, respectively.

Let F ∶ R × A × Δ(L) → [0, 1] be the cumulative distribution function of a portfolio, i.e.,
F(ξ, x , π) = Prob(Π(x) ≤ ξ) gives the probability that the payoff from a portfolio x ∈ A(π) is less
than or equal to ξ ∈ R. Let ξi ∈ R+, for i = 1, . . . , n ≤ 2 L, be one of the payoffs of two portfolios x
and y, i.e., ξi ∈ {x1, . . . , xL} ∪ {y1, . . . , yL}, sorted in increasing order, with n denoting the number
of distinct xi and yi . Then let ≿FSD and ≿SSD be binary relations on A, defined as

x ≿FSD y if F(ξi , x , π) ≤ F(ξi , y, π) for all ξi

and

x ≿SSD y if
ℓ
∑
i=1

F(ξi , x , π)[ξi+1 − ξi] ≤
ℓ
∑
i=1

F(ξi , y, π)[ξi+1 − ξi] for all ℓ < n and ξi .

The relations are called the first and second order stochastic dominance relations, respectively (see
Hadar and Russell 1969): x hast first order stochastic dominance (Fsd) over y if x ≿FSD y, and
second order stochastic dominance (Ssd) if x ≿SSD y. Suppose x has Fsd (Ssd) order stochastic
dominance over y. Then every expected utility maximiser with a monotonically increasing (and
concave) utility function will prefer x over y (see, for example, Hanoch and Levy 1969).

Note that x ≿SSD y and y ≿SSD x if and only if F(ξi , x) = F(ξi , y). Thus, x ≻SSD y if and only if
x ≿SSD y and F(ξi , x) ≠ F(ξi , y). The same is true for ≿FSD.

Axiom A preference ≿ satisfies the Axiom of First Order Stochastic Dominance (Afsd) if ≿FSD⊂≿.
A preference ≿ satisfies the Axiom of Second Order Stochastic Dominance (Assd) if ≿SSD⊂≿.

Note that Assd⇒ Afsd but not vice versa. We will also say that investors whose preferences
satisfy Afsd or Assd are Fsd-rational or Ssd-rational.

3A binary relation ≿ is transitive if [x ≿ y and y ≿ z] implies x ≿ z; it is complete if for every two bundles x , y,
either x ≿ y or y ≿ x; it is continuous if for all x the sets {y ∶ x ≿ y} and {y ∶ y ≿ x} are closed.
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Let 2A be the set of all subsets ofA. We then define the correspondenceP ∶ A×(A×A)×Δ(L) →
2A as

P(x , Q, π) = {y ∈ A ∶ yQ x given the probability distribution π},

for some arbitrary binary relation Q on A. We record a first lemma to be used later but indepen-
dently worth mentioning.

Lemma 1 The relation ≿SSD is quasi-concave, i.e., P(x , ≿SSD, π) is a convex set for any π ∈ Δ(L).

All proofs can be found in the appendix.

As before, we will drop the π from P(x , Q, π) when there is no confusion.
The convex hull CH of a set of points Y = {y i} and its convex monotonic hull CMH are defined

as

CH(Y) = {x ∈ RL
+ ∶ x = ∑

i
λi y i , λ ≥ 0,∑

i
λi = 1}

CMH(Y) = interior of CH({x ∈ RL
+ ∶ x ≧ y i for some i}),

and CMH is the closure of CMH. For some binary relation Q on A we also write CMH(x , Q) =
CMH ({y ∈ A ∶ yQ x}).

Define recursively for some sequence of indices {i j}nj=1, n ≤ L − 1, 1 ≤ i j ≤ L,

M(x , {i1}) = {y ∈ A ∶ y = argmax{ ỹ ∈P(x ,≿SSD∩∼E)} ỹi1},
M(x , {i j}nj=1) = {y ∈ A ∶ y = argmax{ ỹ ∈M(x ,{i j}n−1j=1 )}

ỹin}.

The understand the construction of M, consider first the two dimensional case (L = 2). Consider
the set of portfolios which have the same expected value as x and have Ssd over x (i.e., P(x , ≿SSD
∩ ∼E)). Of these portfolios, M(x , {1}) and M(x , {2}) select the ones that have the maximal payoff
in state 1 and 2, respectively. Note that M(x , {i}), i = 1, 2, are singletons, and one of these sets
contains x if x1 ≠ x2; if x1 = x2, M(x , {1}) = M(x , {2}) = x. This is shown in Figure 1 for the
portfolio x0.

For L = 3, M(x , {1}) again selects the set of all portfolios in P(x , ≿SSD ∩ ∼E) which have the
maximal payoff in state 1; here, M(x , {1}) is not necessarily a singleton. Then, M(x , {1, 2}) selects
the one portfolio in M(x , {1}) which has the maximal payoff in state 2. One more example for
L = 4: M(x , {1, 4, 2}) selects the one portfolio in M(x , {1, 4}) which has the maximal payoff in
state 2 (i.e., take the set of portfolios in P(x , ≿SSD ∩ ∼E) which have the maximum payoff in state 1;
of those take those which have the maximum payoff in state 4; of those take the portfolio which
has the maximum payoff in state 2). Note that M(x , {i j}L−1j=1 ) is always a singleton.

By construction y ∈ M(x , {i j}L−1j=1 ) has second order stochastic dominance over x and the
same expected value as x. Note that x is a mean preserving spread (Mps) of all elements in
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P(x , ≿SSD ∩ ∼E), which plays an important role in the analysis of Rothschild and Stiglitz (1970).
Let M̂(x) denote the union of all M(x , {i j}L−1j=1 ) for every permutation of indices from 1 to L.

Lemma 2 For all x ∈ A,
(i) P(x , ≿SSD ∩ ∼E) = CH(M̂(x))
(ii) P(x , ≿SSD) = CMH(x , ≿SSD ∩ ∼E), and thus P(x , ≿SSD) = CMH(M̂(x))

See also Figure 1.(a) below for an example of P(x , ≿SSD).

2.2 Revealed Preference

Revealed preference relations, like preferences, are binary relations on A which we observe due
to an investor’s choices combined with theoretical reasoning about what these choices reveal.
While with a finite number of observations a revealed preference relation will always be only an
incomplete binary relation, we would like to recover the greatest possible part of an investor’s
preference given a set of observations Ω = {(x i , pi)}Ni=1.

Let Q ⊆ A ×A be any binary relation. Then the transitive closure (Q)+ of Q is defined as the
smallest transitive relation that contains Q, that is,

(Q)+ = {(x , y) ∈ A ×A ∶ xQ, x′, x′Q x∗, . . . , x○Q x●, x●Q y
for some sequence of portfolios x′, x∗, . . . , x○, x●}.

We the use the following definitions to recover an investor’s preference that is implicit in a set of
portfolio choices:

• The portfolio x i is directly revealed preferred to a portfolio x, written x i R0 x, if pix i ≥ pix.
• The portfolio x i is strictly directly revealed preferred to a portfolio x, written x i P0 x, if
pix i > pix.

• Let R = (R0)+. Then the portfolio x i is revealed preferred to a portfolio x if x i R x.
• The portfolio x i is strictly revealed preferred to a portfolio x, written x i P x, if for some

sequence of observations x i R x j, x j P0 xk , xk R x.

Axiom (Varian 1982) A set of observations Ω satisfies the Generalised Axiom of Revealed Prefer-
ence (Garp) if [not x i P0 x j] whenever x j R x i .

The strength of Garp is based on the fact that it is an easily testable condition and is a necessary
and sufficient condition for utility maximisation, as Afriat’s Theorem demonstrates. We say that a
utility function u ∶ A⇒ R rationalises a set of observations Ω if u(x) ≥ u(y) whenever x R y. Let
U denote the set of all continuous, non-satiated, monotonic, and concave utility functions.

Afriat’sTheorem (Afriat 1967, Diewert 1973, Varian 1982) The following conditions are equivalent:
1. there exists a u ∈U which rationalises the set of observations Ω;
2. the set of observations Ω satisfies Garp.
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The revealed preference relations can be extended by imposing axioms Afsd or Assd. If the
hypotheses are correct, then R is the subset of some preference ≿. If the investor’s preference
satisfies first order stochastic dominance, then ≿FSD is a subset of the same preference ≿. Thus
(R∪ ≿FSD) ⊂≿, and similarly for ≿SSD. Define

RFSD = (R∪ ≿FSD)+, RSSD = (R∪ ≿SSD)+, P0
FSD = P0 ∪ ≻FSD, P0

SSD = P0 ∪ ≻SSD,
PFSD = {(x , y) ∈ A ×A ∶ x RFSD z P0

FSD z′RFSD y for some z, z′ ∈ A}, (1)
PSSD = {(x , y) ∈ A ×A ∶ x RSSD z P0

SSD z′RSSD y for some z, z′ ∈ A}.

Let σℓ(x) denote the ℓth permutation of x, with σ1(x) = x. Let L! denote the factorial of L.
Define

σ(Ω) = {y ∈ A ∶ y = σℓ(x i) for some i = 1, . . . ,N and some ℓ = 1, . . . , L!} .

We will refer to the elements in σ(Ω) as s i ; the ith element of σ(Ω) will be denoted σ(Ω)i . Note
that all x i ∈ σ(Ω); let the set be sorted such that σ(Ω)i = x i for i = 1, . . . ,N . Define

τ(Ω) = {y ∈ A ∶ y ∈ M̂(x i) for some i = 1, . . . ,N} .

We will refer to the elements in τ(Ω) as t i . Again we have x i ∈ τ(Ω); let τ(Ω) be sorted in the
same way as σ(Ω).

Axiom A set of observations Ω satisfies the Fsd-Garp if for all si ∈ σ(Ω),

[not s i PFSD s j] whenever s j RFSD s i .

It satisfies the Ssd-Garp if for all r i ∈ τ(Ω),

[not t i PSSD t j] whenever t j RSSD t i .

We say that a utility function u Fsd-rationalises a set of observations Ω if u(x) ≥ u(y)whenever
x RFSD y; it Ssd-rationalises Ω if u(x) ≥ u(y) whenever x RSSD y.

Theorem 1 The following conditions are equivalent:
1. there exists a u ∈U which Fsd-rationalises (Ssd-rationalises) the set of observations Ω;
2. the set of observations Ω satisfies Fsd-Garp (Ssd-Garp).

Note that Ssd-Garp is a necessary and sufficient condition for risk aversion in the Ssd-sense.
Following Varian (1982), we now turn to the question of recoverability of preferences. Let

Ax(Q) denote the axiom associated with the relation Q, that is, Ax(R) is Garp, Ax(RFSD) is
Fsd-Garp, and Ax(RSSD) is Ssd-Garp. Let ϕ(Q) be the strict relation associated with Q, that is,
ϕ(R) = P etc. Given some portfolio x0 ∈ A which was not necessarily observed as a choice, the set
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of prices which support x0 is defined as

S(x0, Q) = {p0 ∈ RL
++ ∶ {(x i , pi)}Ni=0 satisfies Ax(Q) and p0x0 = 1}.

Varian (1982) uses S(x0, R) to describe the set of all bundles (here: portfolios) which are revealed
worse and revealed preferred to a portfolio x0: If for any price vector at which x0 can be demanded
without violating Garp x0 must be revealed preferred to x, then x is in the set of all portfolios
revealed worse to x0, and similarly for revealed preferred sets. Thus, the set of all portfolios which
are revealed worse than x0 is given by

RW(x0, Q) = {x ∈ A ∶ for all p0 ∈ S(x0, Q), x0 ϕ(Q) x}

and the set of all portfolios which are revealed preferred to x0 is given by

RP(x0, Q) = {x ∈ A ∶ for all p ∈ S(y, Q), x ϕ(Q) x0}.

These definitions are well motivated by the equivalence of Garp with the existence of a concave
utility function which rationalises the data: Any utility function which rationalises a set of ob-
servations must have u(x) > u(x0) if x ∈ RP(x0, R), etc. Note that if a utility function which
rationalises a set of observations represents a preference ≿, then Garp implies that R ⊆ ≿, P ⊆ ≻,
RW(x0, R) ⊆ P(x0, ≾), and RP(x0, R) ⊆ P(x0, ≿). See Figure 1 for an example.

Proposition 1 For all x ∈ A and all Q ∈ {R,RFSD,RSSD},

CMH(x0,Q) ⊆RP(x0,Q) ⊆ CMH(x0,Q)

Varian (1982) and Knoblauch (1992) prove the proposition for Q = R. We omit the proof, which
is along the lines of Knoblauch’s (1992) proof; Lemma 2 makes the extension quite simple.

If a set of observations satisfies Ssd-Garp, there exist price vectors for every x0 such that
{(x i , pi)}Ni=0 satisfies Ssd-Garp. Any p ∈ S(x0, RSSD) can be chosen, and thus, we can augment a
set of observations by arbitrarily many new observations, and construct utility functions, using for
example the algorithms in Varian (1982). In particular, we can find price vectors for all t i ∉ {x i}Ni=1
and construct utility functions accordingly.

2.3 Interpersonal Comparison

Let ⊵∈ ⨉4
i=1A be the more risk averse than relation. For two preferences ≿̆ and ≿̂ which satisfy

Assd (and therefore Afsd), define

≿̆ ⊵ ≿̂ if [≿̂ ∩ ≺E] ⊆ [≿̆ ∩ ≺E].

That is, an investor ≿̆ is more risk averse than an investor ≿̂ if the set of portfolios with a lower
expected value than x which are preferred to x by ≿̂ is a subset of the corresponding set of ≿̆. Let ⊳
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x1

x2

x0

y ∈ M̂(x0)

P(x0 , ≾SSD)

P(x0 , ≿SSD)

(a)

x1

x2

x0

x1

B(p1)

RW(x0 , RSSD)

RP(x0 , RSSD)

(b)

Figure 1: Example with probabilities (π1 , π2) = (1⁄3 , 2⁄3). The dashed line shows all portfolios with the same expected
value as the portfolio x0. (a): The set of portfolios which have second order stochastic dominance over x0, and the set
of portfolios over which x0 has second order stochastic dominance. (b): Revealed preferred and revealed worse set
of x0 with one observation (x 1 , p1), based on the extended relation RSSD. The dashed parts show what is added by
combining R and ≿SSD.

be the asymmetric part of ⊵, that is, ≿̆ is strictly more risk averse than ≿̂, written ≿̆ ⊳ ≿̂, if ≿̆ ⊳ ≿̂
and [not ≿̂ ⊳ ≿̆].

The definition of more risk averse is closely modelled on Yaari’s (1969) concept, who considers
acceptance sets of gambles. If investor A prefers all gambles over the status quo which investor
B also prefers over the status quo, and there are additional gambles which A prefers but B does
not, then B is more risk averse than A. The definition of ⊵ translates this concept to the framework
considered here.

Let RPL(x0, R) =RP(x0, R) ∩P(x0, ≺E) and RWL(x0, R) =RW(x0, R) ∩P(x0, ≺E). We
will now consider two investors, on which we have sets of observations Ω̆ and Ω̂, and we will refer
to these two investors by their revealed preference relations R̆ and R̂.

How can ⊵ be made operational given a finite set of observations on an investor and the revealed
preference relation based on these observations? One problem is that a revealed relation Q is
only an incomplete relation, and therefore x ∉RP(x0, Q) does not imply x ∈RW(x0, Q). Thus,
it would be presumptuous to base the statement that investor R̆ is more risk averse than R̂ on
the fact that RPL(x0, R̂) ⊂ RPL(x0, R̆). In fact, a single observation on a slightly risk averse
investor would make this investor “more risk averse” than any investor on which we do not have
any observations. We therefore introduce a more careful concept: If, for some x, there is a portfolio
y with a lower expected value than which is preferred to x by investor R̆, and at the same time
investor R̂ prefers x to y, then investor A is at least partially more risk averse than R̂. If R̆ is partially
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more risk averse than R̂, but R̂ is not partially more risk averse than R̆, then we conclude that R̆ is
more risk averse than R̂.

Define ⊵RA∈ A ×A as

Q̆ ⊵RA Q̂ if there exists x ∈ A such that RPL(x , Q̆) ∩RWL(x , Q̂) ≠ ∅; (2)

if Q̆ ⊵RA Q̂, we say that Q̆ is partially revealed more risk averse than Q̂. Then Q̆ is revealed more
risk averse than Q̂, written Q̆ ⊳RA Q̂, if Q̆ ⊵RA Q̂ and [not Q̂ ⊵RA Q̆].

Define

δ(Ω̆, Ω̂) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if there are x̆ i ≺E x̂ j and
([x̆ i R̆ x̂ j and x̂ j P̂ x̆ i] or [x̆ i P̆ x̂ j and x̂ j R̂ x̆ i]),

0 otherwise.

The following theorem only considers data which satisfy the Ssd-Garp. To see why, consider
two portfolios x and y and let L = 2, π = (1⁄3 , 2⁄3), x = (12, 0) and y = (6, 6), such that y ≻E x and
y ≻SSD x. An investor may prefer x over y even though y has a higher expected value, but this
cannot be the result of risk aversion. Such an investor can satisfy Garp, but not Ssd-Garp, and his
behaviour cannot (should not) be considered a sign of risk aversion.

Theorem 2 Suppose Ω̆ and Ω̂ satisfy Ssd-Garp.
1. The following conditions are equivalent:

(i) δ(Ω̆, Ω̂) = 1 and δ(Ω̂, Ω̆) = 0;
(ii) R̆SSD ⊳RA R̂SSD;
(iii) there exist ŭ, û ∈U which Ssd-rationalise Ω̆ and Ω̂, respectively, and there do not exist

v̆ , v̂ ∈ U which Ssd-rationalise Ω̆ and Ω̂, respectively, such that for all x , y ∈ A with
E(x) < E(y), û(x) > û(y) ⇒ ŭ(x) > ŭ(y) and v̆(x) > v̆(y) ⇒ v̂(x) > v̂(y).

2. The following conditions are equivalent:
(i) δ(Ω̆, Ω̂) = δ(Ω̂, Ω̆) = 1;
(ii) R̆SSD ⊵RA R̂SSD and R̂SSD ⊵RA R̆SSD;
(iii) there do not exist ŭ, û ∈U which Ssd-rationalise Ω̆ and Ω̂, respectively, such that for all

x , y ∈ A with E(x) < E(y), û(x) > û(y) ⇒ ŭ(x) > ŭ(y) or ŭ(x) > ŭ(y) ⇒ û(x) >
û(y).

3. The following conditions are equivalent:
(i) δ(Ω̆, Ω̂) = δ(Ω̂, Ω̆) = 0;
(ii) [not R̆SSD ⊵RA R̂SSD] and [not R̂SSD ⊵RA R̆SSD];
(iii) there exist ŭ, û ∈U and v̆ , v̂ ∈U which Ssd-rationalise Ω̆ and Ω̂, respectively, such that

for all x , y ∈ A with E(x) < E(y), û(x) > û(y) ⇒ ŭ(x) > ŭ(y) and v̆(x) > v̆(y) ⇒
v̂(x) > v̂(y).

Theorem 2 is quite powerful: It shows that it is necessary and sufficient to compare only choices
observed by one of the two investors, even though the definition of ⊵RA uses all x ∈ A. The theorem
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therefore provides a nonparametric way to compare the risk aversion of two investors with only a
finite number of comparisons. The third statement in the three parts of Theorem 2 provides strong
support for the suggested definition of “revealed more risk averse than”.

We say that two investors are (a) similar if [not R̆SSD ⊵RA R̂SSD] and [not R̂SSD ⊵RA R̆SSD] and
(b) not comparable if R̆SSD ⊵RA R̂SSD ⊵RA R̆SSD. Cases (a) and (b) are the two possible cases if
[not R̆SSD ⊳RA R̂SSD] and [not R̂SSD ⊳RA R̆SSD].

Case (a) implies that the two investors have very similar preferences which do not, in the strict
sense, disagree which each other. The two investors are, in a different sense, still comparable: The
comparison leads to the conclusion that the preferences of the two investors are not sufficiently
different. Indeed, we cannot reject the hypothesis that the two investors have the same preferences
underlying their choices, and we can find rationalising utility functions which either imply that
the first investor is more risk averse than the second or vice versa (see Theorem 2.3.iii). Case (b)
implies that either (1) the extent of risk aversion of at least one of the investors is not constant over
the entire income range, or (2) that the two investors have different notions of risk.

3 application

3.1 Preliminaries

Theorem 1 provides a testable condition for Ssd-rationalisation. If an investor does not satisfy
Ssd-Garp (or not even Garp), we would like to have a test for “almost optimising” behaviour, or a
measure for the severity of the violation of the axiom. One such measure is the Afriat Efficiency
Index (Aei, Afriat 1972) or Critical Cost Efficiency Index, which is arguably the most popular of
such measures. Reporting the Aei is a standard in experimental economics.4

To obtain the Aei for Garp, budgets are shifted towards the origin until a set of observations
satisfies Garp. We will use the same idea to measure efficiency of choices in terms of Ssd-Garp:
For e ∈ [0, 1], define the relations R0(e) and P0(e) as x i R0(e) x j if e pix i ≥ pix and x i P0(e) x j if
e pix i > pix, and let R(e) = (R0(e))+ be the transitive closure. Then define RSSD(e) and PSSD(e)
accordingly as is Eq. (1). The relation ≿SSD (e) is defined as x ≿SSD (e)y if e x ≿SSD (e) y. We
then say that Ω satisfies Ssd-Garp(e) if [not x i PSSD(e) x j] whenever x j RSSD(e) x i . Then the
Ssd-Aei is the largest number e such that Ssd-Garp(e) is satisfied. The Aei, of course, is defined
in the same way, applied to the R relation. Note that the Aei can be interpreted as a measure of
wasted income; that is, an investor with an Ssd-Aei of, say, 9⁄10 could have obtained the same level
of utility by spending only 90% of what he actually spent to obtain this level. This is, however,
based on the assumption that the investor is Ssd-rational; an investor who satisfies Garp but has a
low Ssd-Aei should not be considered risk averse.

Bronars (1987) suggests a Monte Carlo approach to determine the power the test has against
random behaviour. The approximate power of the test is the percentage of random choices which
violate Garp; this can also be applies to Ssd-Garp. A high power does not, however, imply that
the power remains high once we “allow” investors to deviate from 100% efficiency. This is also

4See, for example, Sippel (1997), Mattei (2000), Harbaugh et al. (2001), Andreoni and Miller (2002), Février and
Visser (2004), Choi et al. (2007b), Fisman et al. (2007).
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related to the problem that there is no natural definition for what constitutes a “high” or “low”
Aei. But it is important to know what efficiency levels can be considered as high enough when
screening the data for efficiency before further analytical steps are taken. Heufer (forthcoming)
provides a detailed discussion of this point together with a procedure based on Monte-Carlo
simulations and the reduction of the power the test has against random behaviour to determine
which set of observations can be considered close enough to Garp. This can easily be adopted for
Ssd-Garp. For the application to data in Section 3.2 we use the “measure of success” adaptation in
Heufer (forthcoming) to determine which subjects to use. It is based on Selten’s (1991) measure of
predictive success for area theories and maximises the difference between the fraction of subjects
and the fraction of random choice sets accepted as close enough to an axiom based on the efficiency
index.

3.2 Data Analysis

We are using data by Choi et al. (2007a); for a detailed description the reader is referred to their
article. Choi et al. asked ninety three subjects to choose one portfolio on each of fifty budget sets.
In the symmetric treatment, the two assets paid off with probabilities (π1, π2) = (1⁄2 , 1⁄2). In the
asymmetric treatment, the two assets paid off with probabilities (π1, π2) = (1⁄3 , 2⁄3). In one of the
sessions the probabilities were (π1, π2) = (2⁄3 , 1⁄3) which is taken into account.

Only one of the subjects satisfies Garp, but even this subject does not satisfy Ssd-Garp.5 Like
Choi et al. (2007a), we therefore compute efficiency indices for the subjects and for generated sets
of random choices. Figures 2 and 3 show the distribution of the Ssd-Aei for subjects and random
choices, for the two different treatments, based on 1860 random choice sets. While most subjects in
the asymmetric treatment show substantially higher Ssd-efficiency than random choices, a notable
fraction of 41.3% (17.39%) has an efficiency level of less than .9 (.8), while this is the case for only
21.28% (12.77%) of subjects in the symmetric treatment. Subjects in the symmetric treatment have
generally somewhat higher efficiency levels, but stochastic dominance is a rather simple concept
with equal probabilities. It might indicate that a few subjects have some minor difficulties applying
the concept of stochastic dominance in the asymmetric case.

Tables 1 and 2 summarise some results. For the symmetric treatment, based on the procedures
described in Heufer (forthcoming), we should consider an Aei and and Ssd-Aei of ē = .8401 as
sufficient. For the asymmetric treatment, these values are ē = .8396 for the Aei and ē = .7791 for
the Ssd-Aei. We require that subjects satisfy both requirements.

We compare the choices of subjects corrected by their individual Ssd-Aei-level, that is, we base
the comparison on the RSSD(e) relation, where e is the subject’s Ssd-Aei.6 With 41 accepted subjects
for the symmetric treatment (39 for the asymmetric treatment) we have 1640 (1482) comparisons.
In 63.54% of all cases we find that one of the subject is revealed less or more risk averse than the
other (54.25% for the asymmetric treatment). In 8.29% (12.96%) of the cases, neither subject is

5In fact, this subject has an Ssd-Aei of .7341, which is the 5th lowest of all subjects in the asymmetric treatment.
The choices indicate that this subject treated x1 and x2 as homogeneous goods despite the asymmetric probabilities.
This highlights the importance of testing Ssd-Garp.

6We subtract an additional .001 from the efficiency level, as the computation of the efficiency levels is only an
approximation.

17



0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.

.1

.2

.3

.4

ssdaei

fr
ac

ti
on

of
su
bj
ec
ts

random

actual

Figure 2: Ssd-Aei for symmetric treatment: shows the distribution for random choices, for actual subjects.
Data from Choi et al. (2007a).
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Figure 3: Ssd-Aei for asymmetric treatment: shows the distribution for random choices, for actual subjects.
Data from Choi et al. (2007a).
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partially more risk averse than the other, that is, these subjects have similar preferences. In 28.17%
(32.79%) of all cases, both subjects are partially revealed preferred to each other, rendering them
incomparable.

We also compare subjects at the minimum Ssd-Aei-level of each pair of subjects, that is, we
apply the same (low) efficiency standard to both of them, which somewhat increases the fraction
of subjects who are comparable. Tables 1 and 2 summarise these main results.

symmetric treatment

aei ssd-aei both

efficiency requirement ē .8401 .8401
no. of subjects with e ≥ ē 41 41 41

correlation between pearson spearman rank

subjects’ aei and ssd-aei .9954 .9936
random aei and ssd-aei .9811 .9786

of those subjects which satisfy ē requirements:

correlation between pearson spearman rank

aei and ssd-aei .9721 .9904

comparability of risk aversion more/less neither both

fraction at individual ssd-aei 63.54% 8.29% 28.17%
fraction at minimum ssd-aei 63.66% 20.73% 15.61%

Table 1: Summary statistics for the symmetric treatment with (π1 , π2) = (1⁄2 , 1⁄2). See text for a description. Data
from Choi et al. (2007a).

Choi et al. (2007a) estimate parameters α and ρ of a utility function U ∶ A → R, where
U(x) = min{(π2/π1) α u(x1) + u(x1), u(x1) + (π2/π1) α u(x2)} and u ∶ R+ → R takes the form of
a power utility function u(xi) = x1−ρi /(1− ρ). If α > 1, this utility function exhibits disappointment
aversion (Gul 1991). Thus, α is a measure of disappointment aversion, and ρ is the Arrow-Pratt
measure of relative risk aversion.

We compare all subjects to choices generated by maximising the utility functionU for different
parameters. As parameters, we choose the α and ρ for different percentiles, that is, we use α and ρ
such that 5%, 25%, 50%, 75%, and 95% of all subjects have the same or lower individual estimates.
Table 3 shows the result for the symmetric treatment for which we find that the nonparametric
comparison corresponds very well to the parameter estimates. For example, using the median
α and ρ we find that at individual Ssd-Aei-levels 31.71% of subjects are less risk averse, 9.76% of
subjects have similar preferences, and 34.15% of subjects are more risk averse. Table 4 shows the
same result for the asymmetric treatment, where only 2.56% of subjects are less risk averse while
58.97% of subjects are more risk averse than the preferences described by a utility function with
median parameters.

As Choi et al. (2007a) estimate a two-parameter utility function, they cannot represent risk
aversion as a single parameter. They therefore compute a risk premium r for every subject, which
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asymmetric treatment

aei ssd-aei both

efficiency requirement ē .8396 .7791
no. of subjects with e ≥ ē 42 40 39

correlation between pearson spearman rank

subjects’ aei and ssd-aei .7192 .6671
random aei and ssd-aei .8866 .8585

of those subjects which satisfy ē requirements:

correlation between pearson spearman rank

aei and ssd-aei .6653 .6967

comparability of risk aversion more/less neither both

fraction at individual ssd-aei 54.25% 12.96% 32.79%
fraction at minimum ssd-aei 44.26% 35.63% 20.11%

Table 2: The same summary statistics as in Table 1, here for the asymmetric treatment with (π1 , π2) = (1⁄3 , 2⁄3). Data
from Choi et al. (2007a).

symmetric treatment

crra subject risk aversion
percentile α ρ less neither more both

5th: 1.000 0.048 0.00% 0.00% 100.00% 0.00%
25th: 1.000 0.165 0.00% 7.32% 87.80% 4.88%
50th: 1.179 0.438 31.71% 9.76% 34.15% 24.39%
75th: 1.477 0.794 68.29% 12.2% 4.88% 14.63%
95th: 2.876 3.871 80.49% 9.76% 0.00% 9.76%

Table 3: Nonparametric comparison of subjects’ risk aversion with a choices generated by a utility function with
different parameters, here for the symmetric treatment. See text for a description. Data from Choi et al. (2007a).

asymmetric treatment

crra subject risk aversion
percentile α ρ less neither more both

5th: 1.000 0.048 0.% 2.56% 92.31% 5.13%
25th: 1.000 0.165 0.% 2.56% 82.05% 15.38%
50th: 1.179 0.438 2.56% 17.95% 58.97% 20.51%
75th: 1.477 0.794 41.03% 20.51% 17.95% 20.51%
95th: 2.876 3.871 56.41% 0.00% 2.56% 41.03%

Table 4: The same statistics as in Table 3, here for the asymmetric treatment. Data from Choi et al. (2007a).
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is the fraction of initial wealth that gives the same utility as a lottery with 50-50 odds of winning
or losing the initial amount. We can compare the ranking of subjects’ risk aversion obtained by r
with the nonparametric interpersonal comparison. If of two subjects, the first has a higher r than
the second, then ideally the first subject is revealed more risk averse than the second. If this is not
the case, and the second subject is revealed more risk averse than the first or both have similar
preferences, then the difference ranking of the two subjects by r should be small. Table 5 shows
how often the ranking of two subjects, of which one is revealed more risk averse than the other,
differ by more than 1, 2, 4, 8, and 12 ranks.

For the symmetric treatment, a measure of risk aversion can also be obtained by computing
the share of tokens allocated to the cheaper asset. The higher the share, the less risk averse a subject
should be. Table 5 also shows how often the ranking of two subjects differs by this measure of risk
aversion, where we use the average share of tokens and call this measure r̃.

symmetric treatment

by more than . . . ranks
fraction of comparisons which 0 1 2 4 8 12

disagree with ranking by r 23.55% 20.04% 17.56% 14.26% 8.88% 6.20%
disagree with ranking by r̃ 23.84% 21.70% 19.18% 15.00% 9.47% 6.71%

asymmetric treatment

by more than . . . ranks
fraction of comparisons which 0 1 2 4 8 12

disagree with ranking by r 27.36% 25.05% 22.02% 17.33% 11.12% 7.94%

Table 5: Difference in ranking of subjects by measures of risk aversion and their nonparametric comparisons. See
text for a description.

Tables 6 and 7 in the appendix give the complete list of interpersonal comparisons between all
subjects in the symmetric and asymmetric treatment, respectively, at individual Ssd-Aei-levels.
Figure 4 shows examples of revealed preferred and revealed worse sets of four different subjects
based on the extended relation RSSD. The first one is revealed more risk averse than most other
subjects, the second on is revealed less risk averse than most other subjects. The third one is an
intermediate case which is similar to several other subjects, and revealed more and revealed less
risk averse to some others. The last one is a subject that is incomparable with several others. The
last one is particularly interesting as it nicely illustrates why some subjects are not comparable:
This subject exhibits almost risk neutrality around the 45○ line, with a sudden sharp increase in
risk aversion as the amount of any assets drops below 15.

4 discussion and conclusion

We have provided a method to account for first and second order stochastic dominance when
analysing choice under uncertainty. This allows to test if there exists a well behaved utility function
which rationalises such data and obeys stochastic dominance, and to extend the revealed preference
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Figure 4: Examples of subjects’ revealed preferred and revealed worse sets, from the symmetric treatment. (a) Subject
number 23 (ID 304): A subject who is revealed more risk averse than most other subjects. (b) Subject number 26 (ID
307): A subject who is revealed less risk averse than most other subjects. (c) Subject number 8 (ID 208): A subject
who is revealed more risk averse and revealed less risk averse than some other subject and has similar preferences as
many other subjects. (d) Subject number 5 (ID 205): A subject who is incomparable with some other subjects. Data
from Choi et al. (2007a).
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relations recovered from such data. The application to the experimental data of Choi et al. (2007a)
shows that while most subjects are reasonably close to such Ssd-rationality, although some clearly
are not. On the one hand, the result therefore confirms previously drawn conclusions to a large
extent. On the other hand, it shows that there are, albeit few, subjects who come close to Garp but
exhibit strong violations of Ssd-rationality. This highlights that it is important to apply the tests
for Ssd.

We have also provided a way to make Yaari’s (1969) idea for comparative risk aversion opera-
tional based on revealed preferred and revealed worse sets. The central rationalisability theorem
shows that if and only if the conditions for “revealed more risk averse” are satisfied, there exist utility
functions which rationalise the two observations on two investors, such that the utility function
of the more risk averse investor exhibits greater risk aversion for every portfolio. Furthermore
there do not exist rationalising utility functions which exhibit greater risk aversion for the less risk
averse investor.

The theorem also shows that it is sufficient to only compare a finite number of portfolios,
namely those observed as choices, even though the revealed more risk averse relation is defined in
terms of the revealed preferred and worse sets of all portfolios. It therefore leads to a nonparametric
way to compare the risk aversion of two investors without relying on particular forms of utility.

Testing the experimental data of Choi et al. (2007a) for consistency with Ssd-rationality shows
that, compared to random choices, strong consistency of most subjects is confirmed. The non-
parametric approach to comparative risk aversion is useful as an alternative or complement to
parametric estimation of risk aversion. It can serve as a robustness check for the parametric ap-
proach; the analysis in Choi et al. (2007a) is found to be quite robust for both treatments, but more
so for the symmetric treatment. Obviously a nonparametric approach does not offer a distribution
of parameters to describe risk attitudes in a given sample. However, it can be used to compute the
fraction of investors which are less or more risk averse than any given preference and can therefore
also offer a characterisation of risk preferences in a population.

Interpersonal comparisons based on revealed preferred and worse sets can also be usefully
applied to other aspects of preferences, such as sense of fairness (Karni and Safra 2002a,b) or
impartiality (Nguema 2003). For example, Karni and Safra (2002b) apply Yaari’s (1969) notion of
“is more risk averse than” to the concept of “has a stronger sense of fairness than”. The results here
can be translated to suit this interpersonal comparison of the sense of fairness. In particular, it
is possible to compare two decision makers with only a finite number of comparisons between
observed choices.

a appendix

We only consider the Ssd case here; proofs for the Fsd case are simpler.

a.1 Proof of the Lemmata

Proof of Lemma 1 This follows directly from the fact that every risk averse expected utility
maximiser will prefer x over y whenever x ≿SSD y: Let EUu(x) denote the expected utility of
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x ∈ A with u ∶ A→ R being a continuous, increasing, and concave utility function. Then x ≿SSD y
if and only if EUu(x) ≥ EUu(y) for all such u. Suppose z = μx + (1 − μ)y for μ ∈ (0, 1); then
EUu(x) ≥ EUu(y) implies EUu(z) ≥ EUu(y), and thus z ≿SSD y.

Proof of Lemma 2
(i) Let ma(x , i) denote the maximal value of yi such that y ≿SSD x. Then the set

HC(x) = {y ∈ A ∶ min({y1, . . . , yL}) ≥ min({x1, . . . , xL})
and yi ≤ ma(x , i) for all i = 1, . . . , L}

is a hypercube in RL
+ which intersects the hyperplane P(x , ∼E) (except when xi = x j for all

i , j = 1, . . . , L, in which case the two sets only share the point x). Then P(x , ≿SSD ∩ ∼E) ⊆
HC(x)∩P(x , ∼E). By construction of M̂(x), HC(x)∩P(x , ∼E) = CH(M̂(x)) and y ≿SSD x
for all y ∈ M̂(x). Then by Lemma 1, CH(M̂(x)) ⊆ P(x , ≿SSD ∩ ∼E), and the first part of
Lemma 2 follows.

(ii) It is obvious that P(x , ≿SSD) ⊆ CMH(x , ≿SSD ∩ ∼E). As y ≿E x is a necessary condition for
y ≿SSD x, consider any y ≻E x, y ∉ CMH(M̂(x)), and suppose y ≿SSD x. Let y j = max(y)
and let z ∼E x be such that zi = yi for all i ≠ j and z j < y j. Then F(ξi , y) = F(ξi , z) for all
ℓ < n. Thus if y ≿SSD x then z ≿SSD x. But that contradicts the first part of Lemma 2.

a.2 Proof of Theorem 1

Note that yR z implies y ∈ {x i}Ni=1 and that ≿SSD is transitive.

Lemma 3 If x i R0 y ≿SSD x j, then x i RSSD x j. If x i P0 y ≿SSD x j, then x i PSSD x j. This holds for all
y ∈ A, not just for y ∈ τ(Ω).

Proof We have y ≿SSD x j ⇔ y ∈ P(x j, ≿SSD) = CMH(M̂(x j)) by Lemma 2. Then x i R0 y ⇔ y ∈
B(pi) implies B(pi) ∩ CMH(M̂(x j)) ≠ ∅. Then for some tk ∈ M̂(x j) we must have tk ∈ B(pi),
thus x i R0 tk. Because tk ∈ τ(Ω) and tk ≿SSD x j it follows that x i RSSD x j. Similarly for P0.

Proof of Theorem 1
(1)⇒ (2): This follows from non-satiation of the utility function which Ssd-rationalises the set of
observations. The proof is very similar to the proofs that can be found in Varian (1982) or Forges
and Minelli (2009), and we omit it.

(2)⇒ (1): The existence of a utility function u ∈U which rationalises Ω follows from Afriat’s
Theorem. It is obvious that there are u ∈ U which rationalise ≿SSD (i.e., u(x) ≥ u(y) whenever
x ≿SSD y; see also the proof of Lemma 1). The existence of a continuous and non-satiated (but
not necessarily concave) utility function which rationalises the set τ(Ω) follows from Forges and
Minelli’s (2009, Proposition 3) generalisation of Afriat’s Theorem.

We need to show that a utility function which rationalises τ(Ω) is also concave and Ssd-
rationalises the data. Suppose x RSSD y; we will show that [not y PSSD μ(x , y)] for all μ ∈ (0, 1)

24



with μ(x , y) = μx + (1 − μ)y: x i R x j P μ(x i , x j) is excluded by Garp, x ≿SSD y ≻SSD μ(x , y)
is impossible by Lemma 1. So suppose x i R z ≿SSD x j R xk P0 xℓ R0 μ(x i , x j). Then by Lemma 3
and transitivity, x i P xℓ and x j P xℓ. But xℓ R0 μ(x i , x j) is equivalent to μ(x i , x j) ∈ B(pℓ), and
all budgets boundaries are hyperplanes which separate A into two half-spaces; therefore either
xℓ R0 x i or xℓ R0 x j or both. But this is excluded by Ssd-Garp, and the existence of a u ∈U which
rationalises τ(Ω) follows. That this u also Ssd-rationalises the data follows with Lemma 3.

a.3 Proof of Theorem 2

Lemma 4 Suppose Ω̆ and Ω̂ satisfy Ax(Q). Then there exist choices of the two investors, x̆ j

and x̂ i , such that [x̂ i Q̂ x̆ j and x̆ j ϕ(Q̆) x̂ i] or [x̆ i Q̆ x̂ j and x̂ j ϕ(Q̂) x̆ i] if and only if RP(x0, Q̆) ∩
RW(x0, Q̂) ≠ ∅; this holds for all (Q̆, Q̂) ∈ {(R̆, R̂), (R̆FSD, R̂FSD), (R̆SSD, R̂SSD)}.

Proof By Garp there is no x ∈RP(x0, R̂) such that x0 ≥ x. Then by the definition of RW(⋅, R̆),
for all x ∈ RW(x0, R̆), p̆i x̆ i ≥ p̆ix ⇔ x ∈ B(p̆i) for at least one i = 1, . . . , N̆ . As B(p̆i) is a
hyperplane and, by Proposition 1, RP(x0, R̂) is a convex polytope whose vertices are x0 and all
x̂ j R̂ x0, there is at least one x̂ j ∈RP(x0, R̂) ∩RW(x0, R̆). By definition, x̂ j ∈RW(x0, R̆) implies
that x̂ j, if chosen by consumer R̆, cannot be revealed preferred to x0 without violating Garp: If
x̂ j R̆ x0, then x̂ j R̆ x̆k and x̆k P̆ x̂ j. But x̂ j R̂ x0, thus x̂ j R̂ x̆k. Then x̂ j R̂ x̆k and x̆k P̆ x̂ j; and similarly
for [x̆ i R̆ x̂ j and x̂ j P̂ x̆ i]. Thus the Lemma holds for R̆ and R̂. The rest follows from the fact that
≿FSD and ≿SSD are the same for both investors.

Lemma 5 Suppose Ω̆ and Ω̂ satisfy Ssd-Garp. Then R̆SSD ⊵RA R̂SSD if and only if δ(Ω̆, Ω̂) = 1.

Proof The theorem states that R̆SSD ⊵RA R̂SSD ⇔ δ(Ω̆, Ω̂) = 1. It is obvious that δ(Ω̆, Ω̂) = 1 ⇒
R̆SSD ⊵RA R̂SSD. We will show that δ(Ω̆, Ω̂) = 0 implies [not R̆SSD ⊵RA R̂SSD].

Suppose δ(Ω̆, Ω̂) = 0 and R̆SSD ⊵RA R̂SSD. Then there does not exist a x̆ i ≾E x̂ j such that
x̆ i R̆SSD x̂ j P̂SSD x̆ i , but still RPL(z0, R̆SSD) ∩ RWL(z0, R̂SSD) ≠ ∅. Then by Proposition 1 and
Lemma 4, there is an t̆ i ∈ τ(Ω̆) such that t̆ i ∈RPL(z0, R̆SSD)∩RWL(z0, R̂SSD). By Ssd-Garp and
Theorem 1, we cannot have z0 ≻SSD t̆ i , and because z0 ≻E t̆ i , we cannot have t̆ i ≿SSD z0. Then either
t̆ i = x̆ i R̆ z0 or there is an x̆ i such that t̆ i ≿SSD x̆ i R z0; in either case, x̆ i ∈ RPL(z0, R̆SSD) ∩
RWL(z0, R̂SSD).

As x̆ i ∈RWL(z0, R̂SSD) and [not z0 ≿SSD t̆ i], there must be some t̂ j R̂SSD x̆ i , such that either (i)
z0 R̂SSD t̂ j or (ii) z0 ≿SSD μ t̂ j+(1− μ)x̆ i for some μ ∈ (0, 1). In case (ii), t̂ j = x̂ j, x̂ j ≻E z0, and x̂ j R̂ x̆ i ;
but then δ(Ω̆, Ω̂) = 1, a contradiction. Thus, z0 R̂SSD t̂ j. Because t̂ j = x̂ j = z0 implies δ(Ω̆, Ω̂) = 1,
z0 R̂SSD t̂ j implies z0 ≿SSD t̂ j as z0 cannot be preferred to t̂ j in any other way.

Then x̆ i R̆SSD z0 and z0 ≿SSD t̂ j imply x̆ i R̆SSD t̂ j ≿SSD x̂ j, where t̂ j ∈ M̂(x̂ j). But then x̆ i R̆SSD x̂ j,
thus δ(Ω̆, Ω̂) = 1 implies that x̆ i ≻E x̂ j. Then t̂ j ∼E x̂ j implies [not t̂ j ≿SSD x̆ i], thus x̂ j R̂SSD x̆ j.

To summarise, we have z0 ≿SSD x̆ i , x̆ i ≻E x̂ j, x̆ i R̆SSD x̂ j, and x̂ j R̂SSD x̆ i . Then with

P(z0, ≾SSD) ∩P(x̆ i , ≺E) ⊆ P(x̆ i , ≺SSD),
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we obtain that z0 ≿SSD x̂ j and x̆ i ≻E x̂ j implies x̆ i ≻SSD x̂ j. But x̂ j R̂SSD x̆ i , which contradicts
Ssd-Garp.

Proof of Theorem 2 By assumption, the data satisfy Ssd-Garp, thus Ssd-rationalising utility
functions exist.

The equivalence of (i) and (ii) for all three parts of the theorem follows immediately from
Lemma 5.

By definition of the revealed preferred and worse sets and rationalisation of a utility function,
if RPL(y, R̆SSD) ∩ RWL(y, R̂SSD) = x, then for all ŭ and û which Ssd-rationalise Ω̆ and Ω̂,
respectively, ŭ(x) > ŭ(y) and û(x) < û(y). Conversely, if for some x ≺E y, all ŭ and û which
Ssd-rationalise Ω̆ and Ω̂ must be such that ŭ(x) > ŭ(y) and û(x) < û(y), then x ∈RPL(y, R̆SSD)
and x ∈RWL(y, R̂SSD). Thus, (ii)⇔ (iii) for all three parts of the Theorem.

a.4 Tables: Interpersonal Comparisons of Subjects

Tables 6 and 7 show the complete list of interpersonal comparisons between all subjects in the
symmetric and asymmetric treatment, respectively.
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Symmetric Treatment: Part I

2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23

2 – – – – – – – –
3 – – – – – – – – –
4 – – – – – – – – – – –
5 – – – – – – – – – – –
6 – – – – – – – – –
7 – – – – – –
8 – – – –
9 – – – – – –
10 – –
12 – – – –
13
14 – – – – – – – –
15 – – – – – – – – – – – – – – – –
16 – – –
17 – – – – – –
18 – – – – – – – – – – – – –
19 – – – –
20 – – – – – –
21 – – –
22 – – – –
23 – – –
24 – – – – – – – – – – – – – – – – – – – –
25 – – – –
26 –
27 –
28 – – – –
30 – – – – –
31 – – – – –
32 – – – – –
33 – – – – – – – –
34 – – – – – – – – – –
35 – –
36 – – –
37 – –
38 – – – – –
39 – – – – – – – – –
41 – – – – – –
42 – – – – –
43
45 – – – – – –
46 – – – – – – – – – – – –

Table 6: Part I of the “more risk averse than” table for the symmetric treatment with π = (1⁄2 , 1⁄2) at individual
Ssd-Aei-level. A indicates that the row subject is revealed more risk averse than the column subject, indicates
that the column subject is revealed more risk averse than the row subject, and indicates that neither of the subjects
is partially revealed more risk averse to the other. A “–” indicates that both subjects are partially more risk averse
than the other. Subject numbers correspond to subject IDs 201-219 and 301-328, i.e. number 20 has ID 301 etc. Data
from Choi et al. (2007a).
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Symmetric Treatment: Part II

24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 41 42 43 45 46

2 – – – – – – – –
3 – – – –
4 – – – – – – – – – –
5 – – – – – – – – – –
6 – – – – – –
7 – –
8 – – –
9 – – –
10 – – – –
12 – – – – –
13 – – –
14 – – – –
15 – – – – – – – – – – –
16 – – –
17 – – – – – – – – –
18 – – – – – – – –
19 – – – – –
20 – – – –
21 – – – –
22 – – – –
23 – – –
24 – – – – – – – – – – – – – – –
25 – – –
26 –
27 – – – –
28 – – – – –
30 – – – –
31 – – –
32 – – – –
33 – – – –
34 – – – – – – –
35 –
36 –
37 – –
38 – – – – – –
39 – – – – – – – – – –
41 – – – – – –
42 – – – – –
43 –
45 – – – – – – –
46 – – – – – – – – – – –
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Asymmetric Treatment: Part I

1 2 3 4 5 7 8 9 10 11 13 14 15 16 17 18 19 20 22 23

1 – –
2 – – – – – – – –
3 – – – – – – – – –
4 – – – –
5 – – – – – – –
7 – – – – – – – – – – –
8 – – – – – – – – – –
9 – – –
10 – – – – – – – –
11 –
13 – – – – – – – – – – – – – –
14 – – –
15 – – – – – – – – – – – –
16 – – – – – –
17 – – –
18 – –
19 – – – – – –
20 – – – –
22 – – – – – – –
23 – – – – – – – –
24 – – – – –
26 – – – – – – – –
27 – – – –
28 – – – – – – –
29 – – – – – –
30 – – – –
31 – – – – –
32 – – – – – – – –
33 – – – – – – – – – –
34 – – – – – – – – – –
36 – – – – – – – – – – – –
37 –
38 – – – –
39 – – – – – – – –
41 – – – –
42 – – – – – – – –
43 – – – – –
44 – – – –
46 – – – – – – – –

Table 7: Part I of the “more risk averse than” table for the asymmetric treatment with π = (1⁄3 , 2⁄3) at individual
Ssd-Aei-level. Subject numbers correspond to subject IDs 401-417, 501-520, and 601-609, i.e. number 18 has ID 501,
number 38 has ID 601, etc.

29



Asymmetric Treatment: Part II

24 26 27 28 29 30 31 32 33 34 36 37 38 39 41 42 43 44 46

1 – – – –
2 – – – – – – – –
3 – – – – – – – –
4 – – – – – – –
5 – – – – –
7 – – – – – – – –
8 – – – – – – – – – – –
9 – –
10 – – – – – –
11
13 – – – – – – – – – – – – –
14 – – –
15 – – – – – – – – – –
16 – – – – – – –
17 – – –
18 – –
19 – – – – – – – – –
20 –
22 – – – – – –
23 – – – – – – – –
24 – – – – – –
26 – – – – – –
27 – – – –
28 – – – – – –
29 – – – – –
30 – – – – –
31 –
32 – – – – – – – –
33 – – – – – – –
34 – – – – – – – – – – –
36 – – – – – – – – –
37
38 – – –
39 – – –
41 – – – – – – – –
42 – – – – – – – – – – –
43 – – – – – – –
44 – – – – – –
46 – – – – – – – – – –
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