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Some Nonparametric Tests for

Unit Roots and Cointegration

Jorg Breitung
Humboldt University Berlin
Institute for Statistics and Econometrics
Spandauer Strasse 1
D-10178 Berlin, Germany

May 3, 1999

Abstract

Following Bierens (1997a,b) and Vogelsang (1998a,b), unit root tests
can be constructed which are asymptotically invariant to parameters
involved by the short run dynamics of the process. Such an approach
is called nonparametric by Bierens (1997b) and can be used to test a
wide range of nonlinear models. We consider three different versions
of such a test. However, simulation results suggest that only the vari-
ance ratio statistic is able to compete with the traditional augmented
Dickey-Fuller test. A straightforward generalization of the variance
ratio statistic is suggested, which can be used to test the cointegra-
tion rank in the spirit of Johansen (1988).

* The research for this paper was carried out within Sonderforschungsbereich 373 at the
Humboldt University Berlin and the Training and Mobility of Researchers Programme of
the European Commission (contract No. ERBFMRXCT980213). I thank Uwe Hassler

and Rolf Tschernig for valuable comments on an earlier version.



1 Introduction

In recent papers by Bierens (1997a,b) and Vogelsang (1998a,b) it was ob-
served that it is possible to construct test statistics that asymptotically do
not depend on parameters involved by the short run dynamics of the process.
Accordingly, it is not necessary to estimate the nuisance parameters such as
the coefficients for the lagged differences in a Dickey-Fuller regression or the
“long-run variance” (27 times the spectral density at frequency zero) by us-
ing a kernel estimate as in Phillips and Perron (1988). Such an approach
is called “model free” in Bierens (1997a) and “nonparametric” in Bierens
(1997b). Albeit both terms may be somewhat misleading, we follow Bierens
(1997b) and use the term “nonparametric”. In fact, asymptotically the tests
only involve the parameter under test and it is difficult to think of any test,
which is “less parametric”.

The idea behind this approach can easily be explained as follows. Let
{y:}Z_, be an integrated time series such that under the null hypothesis
Ay; = yy — Y41 is stationary with E(y;) = 0. It is known (e.g. Phillips,
1987) that under suitable conditions

T
TN Ay, = oW (1)

t=2
T 1
T_QZth = 02/ W (r)%dr ,
t=1 0

where, as usual, the symbol = signifies weak convergence with respect to

the associated probability measure, W (r) represents a standard Brownian
(e e]
motion and o is the long-run variance defined as 0 = Y. +;, where v; =

j=-00

E(Ay;Ayy ;). These results suggest to consider the statistic

. (28] S W )
T2 ET: 2 fol W (r)2dr

t=1




2 as T — oo. Unfor-

which does not depend on the nuisance parameter o
tunately, a test based on 7 is inconsistent. The reason is that under the
alternative of a stationary process, the numerator and denominator are of the
same order of magnitude so that ¢r is O,(1) under the alternative as well.
Bierens (1997a) resolves this problem by using the squares of the weighted
sum

T 1

TS gt/ T)Au = ogOW ()~ [ Veaw ) (@)

t=2 0
as the numerator in (1), where Vg(r) denotes the derivative of g(r).! For
some appropriate weight function g(r) it can be shown that the weighted sum
is of the same order of magnitude under both the null and the alternative
hypothesis.

In this paper a similar idea is adopted. However, instead of using weighted
sums in the numerator of the test statistic we follow Vogelsang (1998a,b)
and use functionals on the partial sum Y; = Z;Zl y;. The advantage of
this approach is that no weights are needed to make the test consistent.
Furthermore, it turns out that our tests are more powerful than (the stylized
version of) Bierens’ (1997a) test and may even outperform the augmented
Dickey-Fuller test.

The plan of the paper is as follows. In Section 2, a general framework is
suggested which allows for a wide range of nonlinear processes generating the
transitory component u;. The power of Bierens’ tests is considered in Section
3. In Section 4, regression and variance ratio statistics based on partial sums
are proposed. The inclusion of deterministic terms is considered in Section 5
and Section 6 generalizes the variance ratio statistic to cointegrated systems.
Section 7 presents the results of a Monte Carlo comparison of the different
test statistics and Section 8 concludes.

In fact, Bierens’ (1997a) test is more complicated because he uses vector weights and
extra terms to accommodate a nonlinear mean function. However, for our purpose it is
sufficient to consider a simplified version of his test given by (2).



2 Basic Assumptions

Let {z;}7 be an observed time series with D; = E(z;) and define y; = z;— D;.
Under the null hypothesis the following assumption applies to y;:

Assumption 1: There exists a decomposition y; = & + uy with the prop-
erties:

(i) T Y¢r = oW(r),
T

(i) T ui=o0p(1)
t=1

for some constant o and [a] denotes the largest integer smaller than a.

For a linear process Ay, = > v,e;—; with 9 =1, E(g;) = 0 and E(e?) =
i=0

02 < oo the assumption is satisfied whenever the process admits a Beveridge-
o0

Nelson decomposition, i.e., if Y j*y7 < oo (cf Phillips and Solo 1992).

§=0
For nonlinear processes, a Beveridge-Nelson (BN) type of decomposition

may be constructed as follows. Let

E(yt+h|yta Yt—1,-- ) - E(yt+h|€t: Y¢—1,Yt—2, - - )
= EWunlye—1,Y-2,---) + E(Yrnler) ,

where e, = y; — E(y¢|ys 1,Ys 2, .. .). Accordingly we obtain

Uth = Yt—1,h41 T V2 (3)

where 7, , denotes the prediction of y,., based on the information available
at t and vy = 7(e;) is a function of the innovation. Note that the well
known “updating formula” for linear stationary processes (e.g. Granger and
Newbold 1986, p. 131) is a special case of (3), by inserting v; = E(ynler) =
0Brer, where [, is the coefficient at lag h in the moving average representation
of y;.

If the prediction converges with increasing lag horizon, i.e.,

lim ¢4 p41 — Ge—1,0 = 0
h—o00
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we have
Yt,oo = Yt—1,00 T Ut

and it is seen that & = ¥; (the permanent component according to BN
(1981)) can be represented as a random walk process with v; as increments.
Whenever v, satisfies the requirements of functional central limit theorem
(e.g. Herrndorf 1984) then &; converges to a Wiener process.

To illustrate the use of the BN decomposition for nonlinear processes
consider the bilinear process

Ay = d(e—1Ayp—1 — 02) + &

where ¢, is a white noise process with E(e?) = o2. Since E(Ay1|ye, Yi—1,.-.) =
d(e:Ay, — 02) and E(Ayiij|ys, Y1—1,---) = 0 for j > 1, the permanent com-
ponent results as

& =y + dleAy — 0?)

and the increment of the random walk component is given by

v = Ay + oAy — ei-1Ayi—1)
= &+ Ay, .

It turns out that E(vv;_;) = 0 for j # 0 and if E|g[*™ < oo for some § > 0,
the component ; satisfies Assumption 1 (i). Similarly, it can be seen that the
“transitory component” u; = y; — & = —d(e;Ay; — 0?) satisfies Assumption
1 (ii).

Finally, it may be interesting to note that Assumption 1 allows u; to be
fractionally integregated with (1— L)%u; = ¢; where L is the lag operator, d is
a real number and ¢; is white noise. From Sowell (1990, Theorem 1) it follows
that for 1/2 < d < 3/2 the variance of u; is O(7?%"1) and, thus, Assumption
1 (ii) is satisfied for d < 1. In such situations, the augmented Dickey-Fuller
test is expected to have poor power, because a high augmentation lag is
needed to account for the long memory of the errors.



3 Bierens’ Approach

In this section we consider a Bierens type of a nonparametric test statistic.
As already mentioned, the statistic we consider is a “stylized version” of the
test suggested in Bierens (1997a). Since we neglect a (possibly nonlinear)
time trend and consider a scalar weight function, the test statistic simplifies
to

T (tZET)lg(t/T)Ayt>2

(4)

T = T
Ui

t=1

Bierens (1997a) construct the weights using Chebishev time polynomials but
any other differentiable weight function may be used as well. It is interesting
to consider the effects of the weight function on the the power of the test.
The following proposition characterizes the asymptotic behavior of the test
statistic under the alternative of a stationary process.

o0
Proposition 1: Let y; = Y vje; be stationary and ergodic, E(¢?) = o?

7=0
and the roots of the polynomial v(z) = Yo + 712 + Y22 + - - - are all outside
the complex unit circle. For T — oo we have

A

where

v =1+ 250, & =E(AyAy.,)/E@),
j=1

T
cir =T 1> gt/T)gl(t + 7)/T), and ¢; = Tlim cjr- and x* is a x? dis-
t=1 — 00

tributed random variable with one degree of freedom.
PROOF: From the central limit theorem for stationary processes (Hall
and Heyde, 1980) it follows that

T
T3 " g(t/T)Ay; = N(0,07) ,

t=1



where
o0

oy = Z ¢ E(Ayi Ay ).

j=—o00
Furthermore, 77! 3" y? converges in probability to E(y?), so that /v, =
x*, where v, = 02 /E(y7?). B

This proposition shows that the power of the test crucially depends on
the weight function. Thus, it is important to specify the weight function
carefully. For illustration consider the trigonometric weights

gk(t/T) = cos(wit/T),

where wy, = k- 2w, k =1,2,.... Such a weight function is also considered in
Bierens (1997b). The main difference between g, (¢/7) and the Chebychev
polynomial used in Bierens (1997a) is that the Chebychev polynomial intro-
duces a phase shift. However, this does not have any effect on our discussion.

A second order Taylor expansion gives

. . . ,
t
CoS (wk ;j> ~ cos(wit/T) + sin(wkt/T)]% — cos(wit/T) <J;jk>

and, thus,

(jwr)?

-

If y; is white noise, we have 6; = —1 and J; = 0 for 7 > 2. Accordingly, to

QCj,T =1-

achieve a good power of the test, c; r should therefore be as small as possi-
ble, that is, a high frequency should be used for the trigonometric weights.
On the other hand, if Ay, is positively correlated, a low frequency is more
appropriate. This example demonstrates, that there is no uniformly optimal
weight function for the test and it is difficult to specify the weight function
without an idea about the autocorrelation function of the series (see also
Tschernig 1997).

Another problem is that the frequency of the trigonometric weight func-
tion must be low relative to the sample size. Assume that the frequency
grows with the sample size such that k = T'/(2¢) and, therefore, g,(t/T) =

7



cos(mt/q), where ¢ = 1,2,.... For the maximal frequency ¢ = 1 the weight
function flips between the values 1 and —1. From the above reasoning we
expect that setting ¢ = 1 yields a test with optimal power against a white
noise series. However, as shown by the following proposition, the asymptotic
theory for such a test is different.

Proposition 2: Let g,(t/T) = cos(wt/q), where ¢ < 0o and assume that
Yy obeys Assumption 1. Then, as T — oo we have

T
T cos(tr/q) Ay = 7V2fay(w/g)W (1), (5)
=2
where fa,(m/q) denotes the spectral density of Ay, at frequency 7/q.

PrOOF: From eq. (32) of Phillips & Solo (1992) and Assumption 1 we
have

T s
Z cos(tm/q)Ay: = Re Z et/ Ay,
t=2 =

T
= Re ’y(e”/q)Ze”/qet—i-Op(l)]

= 3 {Rely(e™/9)] cos(tm/q) — Im[(e™/*)]sin(tr/g)} + O,(1)

where Re(a) and Im(a) denote the real and imaginary part of the complex
number a.
The phase of the filter (L) is defined as

¢(w) = tan™" {=Im[y(e™™)]/Rely(e™™)]} .
Furthermore,
a cos jw + bsin jw = cos[jw + tan~'(—b/a)].

This gives
T T
Z cos(tr/q) Ay, = Z cos[tm/q + &, (m/q)ler + Op(1).
t=1 t=1
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Using the results of Chan and Wei (1988) we have

27TfAy (’/T/q)

s W)

T
TN " cosftr/q + ¢(7/q)le; =
t=1
which yields the desired result. B

T
Note that lim T='Y cos(tm/q)* = 1/2 so that if Ay, is white noise the
—00 t=1

expression (5) is normally distributed with variance 02/2. Furthermore, it
follows from Proposition 2 that, in general, the limiting distribution of the
test statistic 7 depends on fa,(7/q).

To summarize, Bierens’ (1997a) asymptotic theory is valid for the weight
function ¢(t/T) = cos(k2nt/T). However, if k& — oo at the rate 7', then a
different asymptotic theory applies implying that the test statistic depends
on parameters characterizing the short run dynamics of Ay,. We therefore
expect that a trigonometric weight function with a high frequencies results
in a size bias and, thus, there is a trade off between size bias and power of
the test.

4 Nonparametric Unit Root Tests Based on
Partial Sums

Assume that y; is I(1) as defined in Assumption 1 and consider the (unbal-
anced) regression

Yi=ay: + e,
t
where Y; = > y; denotes the partial sum of ;. The least-squares estimator
j=1
of a is
T
Z Yiye
ar ==, (6)
> Ui
t=1



and using standard results of the asymptotic theory for unit root processes
(e.g. Hamilton 1994) the asymptotic distribution is given by

fo L[y W (s)ds]W (r)dr
fo W( )2dr

T 'ar

which does not depend on the nuisance parameter o2.

Second, we construct the “variance ratio statistic”

M=

Y;2

~

—

—~~
~

~—

or = 7
>yt
t=1
which is asymptotically distributed as
T2, fo [fy W (s)ds]*dr ®)
fo W (r)2dr

and, thus, does not depend on nuisance parameters as well.
The following proposition shows that these tests are consistent against
stationary alternatives.

Proposition 3: Let Y be stationary with Wold representation y, =

Z Yj€i—j, where yp = 1, Z v; < oo, and €, is white noise with E(ey) = 0

and E(e?) = o2. Under thzs alternative we have as T' — oo

. T2y —
T 207
o2 )2
T—IQT fO dr
g
where ¥ = Z Yj, O Z vio? and x* denotes a x*-distributed random

7=0
variable with one degree of freedom Consequently, Pr{T'ar < c,} — 1

and Pr{or < c,} — 1 for ¢, >0 and ¢, > 0.

10



Proor: Using standard results from the asymptotic theory for unit root
processes (e.g. Hamilton 1994) we get

Ty v = vt [ Waw) + Gt + o),

t=1
where we use g
i 2 = (55) o=
and . o
A B (T_ltz_;Ytyt) =E (;ylylﬂ) (Vo2 +02)/2.

It is well known that [2 fol W (r)dW (r) + 1] is x? distributed.
Furthermore we have

1
T3V = 70! / W (r)?dr
0

T

Using these results and 7-! 3" y?—+02, the limiting distributions follow im-
t=1

mediately. B

It is interesting to compare these test statistics with Bierens’ approach.
The latter statistic uses a weighted sum as numerator that is of the same
order of magnitude under the null and alternative hypothesis. In contrast
we use functionals on the partial sum yielding a numerator that differs by a
factor of O,(T~2?) when moving from the null to the alternative hypothesis.
This difference in the asymptotic properties dominates the difference in the
denominator of the test statistic and a consistent test results.

5 Including Deterministic Terms

To accommodate processes with a nonzero mean we assume that the mean

function E(y;) = Dy = ¢'d; is a linear function of deterministic variables like

11



a constant, time trend or dummy variables stacked in the k£ x 1 vector d; and
c is a vector of unknown coefficients. In this case it is natural to remove the
mean of the time series by using the residuals from the regression function
y; = ¢dy + 1y, where ¢ denotes the least-squares estimator of ¢. The test
statistic ar is obtained from a regression of ?t on u;, where l/}t = Zﬁzl U;
denotes the partial sum of #;. Similarly, the variance ratio statistic o is
computed as gy = 3. Y2/ Y a2,

Unfortunately, this approach fails for the statistic ar if d; contains a
constant term. This is stated in the following proposition.

Proposition 4: If an element of d, is constant, then ar = —1/(2T).

PRrRoOOF: We have

so that

However, since in a regression with a constant ) u; = 0 so that ?T =0, and,
thus, ar = —1/(27). B

Therefore, in this case the series 3; must be adjusted for a constant mean
by using a different approach such as subtracting the first observation. In
other cases the test statistic can be computed by replacing y; by the residuals
1. As usual the asymptotic distribution of the test statistic is affected by
such data transformations. For example, if d; = 1, then the asymptotic
distribution of the variance ratio statistic is as in (8) but with Brownian
bridges W (r) — rW (1) instead of standard Brownian motions.

12



6 Testing the Cointegration Rank

The variance ratio statistic for a nonparametric unit root test can be ge-
neralized straightforwardly to test hypotheses on the cointegration rank in
the spirit of Johansen (1988, 1991). As in Section 2, it is assumed that the
process can be decomposed into a g-dimensional stochastic trend component
& and a (n — ¢)-dimensional transitory component wu;.

Assumption 2: There exists an invertible matriz QQ = [v, 3], where 7
and (3 are linearly independent n X q¢ and n x (n — q) matrices, respectively,

with 0 < g < n such that
o | &] _
=[] =[] ==
Tﬁl/Qf[aT] = Wq(a)

T
T2 Juy=0(1)
t=1

where Wy(a) is a g-dimensional Brownian motion with unit covariance ma-

triz.

Note that to allow for some general nonlinear processes generating &4, we
do not assume that the “error correction term” wu; is stationary. Instead we
assume that the trend component & is “variance dominating” in the sense
that the variance of & diverges with a faster rate than wuy.

The dimension of the stochastic trend component &; is related to the
cointegration rank of a linear system by ¢ = n —r, where r is the rank of the

matrix IT in the so-called vector error correction representation
Ay, = Ty 1 + vy, 9)

and v, is a stationary error vector. In a linear system, the hypothesis on the
number of stochastic trends is equivalent to a hypothesis on the cointegration
rank as in Johansen (1988). However, since we do not assume that the process

is linear, the representation of the form (9) may not exist.

13



Our test statistic is based on the eigenvalues \; of the problem

|)\jBT - AT| == O ; (10)
where
T T
Ar=> "wy,, Br=> WY/
t=1 t=1

and Y; = 22:1 y; denotes the n-dimensional partial sum with respect to
y:. The eigenvalues of (10) are identical to the eigenvalues of the matrix
Rr = ApB;'. For n = 1 the eigenvalue is identical to the statistic 1/or and,
thus, the test can be seen as a generalization of the variance ratio statistic
to multivariate processes.

The eigenvalues of (10) are given by

N — n; AT,
7 B,

(11)

where 7); is the eigenvector associated with the eigenvalue A;. If the vector
n; falls inside the space spanned by the columns of v, then 7} Arn; is 0,(T?)
and 7 Brn; is Op(T*) so that the eigenvalue is O,(7"?). On the other hand,
if the eigenvector n; falls into the space spanned by the columns of 3, it
follows that 72); tends to infinity, as T — oo. Therefore, the test statistic

Ay =T\ (12)

has a nondegenerate limiting distribution, where A\; < Ay < ... < A, denote
the eigenvalues of the matrix Ry. In contrast, if the number of stochastic
trends is smaller than ¢, then A, eventually diverges T' to infinity. The
following proposition gives the limiting null distribution for the test statistic
Aq.

Proposition 5: Assume that y; admits a decomposition as in Assumption
2 with 0 < q <n. Then, asT — oo

A, = tr { /0 W ()W, (a)da [ /0 1 vq(a)vq(a)'da] _1}

14



W, is a q-dimensional standard Brownian motion and Vy(a) = [;' Wy(s)ds.

¢

PROOF: Let Z; = ) z; denote the partial sum with respect to z; = Q'y; =
j=1

(€1, uj]’. Then, the eigenvalues of problem (10) also solves the problem

|)\jDT — CT| =0 s
where
T T
Cr=> auz, Dr=Y 77
Partition the corresponding eigenvectors 7j; = [ff;;, 7p;]" such that 7}z =

71616 + Tlgjuat, and Z; is partitioned accordingly. We normalize the eigenvec-
tors as

- - - I
Th = [77117"'7771(1] = [@;]

so that 7},2; = ;s +®puy, where £j; denotes the j-th component of the vector
&;. It follows that

i Cr;
77} DTﬁj

T
& +o(T?)

A=

T
> ijt + 0p(T*)
t=1

t
where Z;; = > &;5. As T — oo we therefore have
s=1

T é N o= tr { /0 W (a)W, () da [ /0 1 Vq(a)Vq(a)'da] 1}

15



From this proposition it follows that the distribution of the ¢ smallest
eigenvalues of the problem (10) does not depend on nuisance parameters
and, thus, we do not need to select the lag order of the VAR process as in
Johansen’s approach or the truncation lag as for the test of Quintos (1998).

7 Small Sample Properties

In this section we present the results of some Monte Carlo experiments. It
is not intended to give a comprehensive account of the merits and draw-
backs of our test relative to other unit root tests based on a parametric or
nonparametric adjustment for short run dynamics. Rather, we try to give
a rough idea of the relative performance of the tests, where the augmented
Dickey-Fuller test is used as a benchmark.

For the univariate tests, the data is generated by the process

Yt = QY1 T €t — PEr1 (13)
and z; = y; + D;, where &, ~ niid(0,1) and D; is a constant or a linear
trend. The sample size is T" = 200. Under the null hypothesis ¢ = 1 and
B < 1. For 8 # 0 the model does not possess a finite AR representation
and following Said and Dickey (1984) and Schwert (1989) we account for
correlation by including, respectively, p = 4 and p = 12 lagged differences in
the autoregression. The test is denoted by ADF(p).

For a stylized version of Bierens’ (1997a) test we use a trigonometric
weight function given by gx(t/T) = cos(k2nt/T), where k = 1,4,16,32. The
respective test is labeled as 7r(k). The critical values with respect to a
significance level of 0.05 are obtained from 10.000 Monte Carlo runs of the
model with ¢ = 1 and # = 0. To adjust for the mean Dy, the test statistic
is constructed using the residuals from a regression of y; on a constant or a
linear trend.

For the regression statistic ar we subtract the first observation to correct

for a constant mean and in the case of a linear time trend we regress (y; —

16



y1) on t (without a constant) and form the statistic with the residuals of
this regression. This modification is necessary to sidestep the difficulties
mentioned in Section 5.

Finally, the variance ratio statistic is computed using the residuals from
a regression of y; on a constant or a linear trend. The respective test statistic
is denoted by pr. Selected critical values for this test are presented in the
Appendix.

Table 1 a) presents the empirical sizes computed as the relative rejection
frequencies for Hy : ¢ = 1 and various values of 4 in a model with a constant
mean. Since the critical values are computed from the same random draws,
the empirical sizes are exact 0.05 for 71 (k), ar and gr. For low frequencies
it turns out that the empirical sizes of the Bierens type tests are close to
the nominal ones for all values of 3. However, if the frequency increases to
k = 32 the test shows a serious size bias for [ different from zero. This is due
to the fact that for high frequencies, the asymptotic distribution involves the
parameter (3 (see section 2).

The test statistic ar is quite robust against different values of § and even
for 5 = 0.8 only a small size bias is observed. The actual null distribution of
the statistic g7 is much more affected by a positive value of 3. For § = 0.5
the size bias is moderate but for § = 0.8 the test is severely biased towards
a rejection of the null hypothesis. A similar outcome is observed for the
ADF(4), however, if the ADF test is augmented with 12 lagged differences,
the empirical size is close to the nominal size for values up to g = 0.8.

The empirical powers of the test procedures for different values of ¢ are
presented in Table 1 b). It turns out that using a trigonometric weight
function with a low frequency yields a poor performance of the Bierens’ type
of test. As expected (see Section 3) the power of the test improves with an
increasing frequency. However, since the actual size of the test increases as
well, it is quite difficult to select an appropriate frequency. The regression
test using o performs as poor as the former test with a low frequency but
the power of the variance ratio test pr is much better. For ¢ = 0.95 the test
is even slightly better than the ADF(4) test whereas for other values of ¢,

17



the power of the variance ratio test is larger than the ADF(12) statistic but
smaller than the ADF(4) statistic. The results for a model with a linear time
trend are qualitatively similar (see Table 2).

To investigate the properties of the nonparametric cointegration test we
generate data according to the “canonical” process (Toda 1994)

Ayyy 10 1,t—1 €1 05 0 €1,t—1

e It g vl Y v R
where E(c2,) = FE(e3,) = 1 and E(eyee) = 6. To test the hypothe-
sis r = 1, we let ¢y = 1 and ¥y = 0.8. Under the alternative we set
¥ € {0.95,0.9,0.8,0.5}. Furthermore, we let # = 0 and § = 0.8 to in-
vestigate the impact of the error correlation. The sample size is T = 200
and 10.000 samples are generated to compute the rejection frequencies of the
tests.

For Johansen’s LR trace test, the process is approximated by a VAR(p)
process, where p is 4 and 12, respectively. The respective tests are denoted
by LR(4) and LR(12). The nonparametric test statistic is A, and the critical
values are taken from Table A.2 in the appendix. First, consider the results
for testing Hy : ¢ = r = 1. From empirical sizes it turns out that for
6 = 0, a VAR(4) model is not sufficient to approximate the infinite VAR
process, whereas a VAR(12) approximation yields an accurate size. The
nonparametric statistic A, possesses a negligible size bias, only. The power
of A, is substantially smaller than the power of LR(4) but clearly higher
than the power of LR(12). Similar results apply for the tests letting § = 0.8.
However, the LR(12) statistic now possesses a moderate size bias, whereas
A, is nearly unbiased. Moreover, the power of A, is closer to the (favorable)
LR(4) statistic than in the case of 6 = 0.

We now turn to the test of Hy : r = 0. Under the null hypothesis the
difference of the variables are generated by a multivariate MA process. In
this case, all three test statistic are substantially biased, where the size bias
does not depend on the parameter 6. Although the sizes bias differs for the
three test, the differences are moderate and some general conclusions with
respect to the relative power of the tests can be drawn. For § = 0 and
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¢1 close to unity, the nonparametric test A, is slightly more powerful than
the LR(4) test, whereas for ¢; = 0.8 the power of LR(4) is slightly higher.
Finally, the power of LR(12) is much smaller than the power of the other
two tests. For § = 0.8 a different picture emerges. The relative power of A,
drops substantially and for ¢; close to one, the power is even lower than the
power of the LR(12) test. The results for a model with a linear time trend
are qualitatively similar and are not presented for reasons of space.?

8 Concluding Remarks

Following Bierens (1997a,b) and Vogelsang (1998a,b), unit root tests can be
constructed which, asymptotically, do not depend on parameters involved by
the short run dynamics of the process. We have considered three different
versions of such a test. Our simulation results suggest, however, that among
these statistics only the variance ratio statistic is able to compete with the
traditional augmented Dickey-Fuller test.

For practical applications of the tests, several points deserve attention.
First, the invariance to the short run dynamics of the process is an asymp-
totic property and need not be encountered in small or moderate samples. In
particular, if the variance of the transitory component is important relative
to the variance of the random walk component, the size bias may be severe.
Second, we have shown that under the alternative of a stationary process,
the appropriately normalized test statistics converge to a random variable
as T' tends to infinity. On the other hand, the normalized Dickey-Fuller test
converge to a constant under the null hypothesis and, therefore, the test gen-
erally has more favorable properties than the nonparametric counterparts.
Finally, in many empirical applications it is not difficult to select an appro-
priate augmentation lag or the test statistic turns out to be quite robust
against different lag orders or truncation lags for the Phillips-Perron type of
tests. In these cases the nonparametric test statistics have nothing to offer

2The results for further values of ¢, and 8 as well as the results for the model with a
time trend are available on request.
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and the conventional unit root statistics are clearly preferable.

However, there are a number of situations, the nonparametric approach
may be attractive. Since the short run component does not affect the asymp-
totic null distribution of the test statistic, the test is robust against deviations
from the usual assumption of linear short run dynamics. Thus, whenever the
sample size is large, there is reason to expect that the random walk compo-
nent dominate the sampling behavior of the test statistic and the asymptotic
theory provides a reliable approximation to the actual null distribution. If,
in addition, a high augmentation lag is needed and the results depend sensi-
tively on the number of lags included in the Dickey-Fuller regression, it may
be useful to apply nonparametric tests.
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Appendix: Critical values

The critical values are computed from the empirical distribution of 10.000
realizations of the limiting expressions of the test statistics, with random walk
sequences instead of Brownian motions. Regarding the poor performance of
the regression test based on ar, we only present the critical values of the

variance ratio statistic.

author on request.

Critical values for T 'ar are available from the

Table A.1: Critical Values for T 2pr

T ] 01 | 005 [ 001
mean adjusted

100 | 0.01435 0.01004 0.00551

250 | 0.01433 0.01003 0.00561

500 | 0.01473 0.01046 0.00536
trend adjusted

100 | 0.00436 0.00342 0.00214

250 | 0.00442 0.00344 0.00223

500 | 0.00450 0.00355 0.00225

Note: The hypothesis of a unit root process
is rejected if the test statistic falls below the
respective critical values reported in this table.
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Table A.2: Critical Values for A,

r=n—gq¢| 01 | 005 [ 0.1
mean adjusted
1 67.89 95.60 185.0
2 261.0 329.9 505.8
3 627.8 741.1 1024
4 1200 1360 1702
5 2025 2255 2761
6 3177 3460 4045
7 4650 5049 5905
8 6565 7061 8032
trend adjusted
1 222.4 281.1 443.6
2 596.2 713.3 976.1
3 1158 1330 1689
4 1972 2184 2699
5 3107 3429 4120
6 4572 4954 5780
7 6484 6984 8012
8 8830 9388 10714

Note: The hypothesis » = rq is rejected if
the test statistic exceeds the respective critical
values. The simulation are based on a sample
size of T' = 500.
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Table 1: Rejection Frequencies for a Constant Mean

a) Empirical size

test statistic 8 =-05 6=0 6=0.5 6 =0.8
7r(1) 0.050 0.050 0.042 0.020
r(4) 0.049 0.050 0.042 0.023
7r(16) 0.048 0.050 0.076 0.197
(32) 0.033 0.050 0.167 0.451
ar 0.050 0.050 0.055 0.066
or 0.047 0.050 0.072 0.223
ADF(4) 0.049 0.052 0.062 0.373
ADF(12) 0.058 0.060 0.055 0.074

b) Empirical power

test statistic ¢ =0.95 ¢ = 0.90 ¢ = 0.80 ¢ = 0.50
7r(1) 0.033 0.016 0.007 0.006
r(4) 0.179 0.212 0.170 0.052
7(16) 0.204 0.325 0.447 0.494
r(32) 0.211 0.335 0.483 0.638
ar 0.169 0.172 0.154 0.106
or 0.292 0.543 0.808 0.990
ADF(4) 0.262 0.680 0.982 1.000
ADF(12) 0.202 0.417 0.715 0.923

Note: The entries of the table display the rejection frequencies based on 10.000 replications
of model (13), where Dy is constant. The sample size is T' = 200 and the nominal size of the
test ist 0.05. Since the critical values are computed from the same random draws, the empirical
sizes are exact 0.05 for 7r(k), ar and gr. The sample size is T = 200 and the nominal size of
the test ist 0.05.
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Table 2: Rejection Frequencies for a Linear Trend

a) Empirical size

test statistic 8 =-0.5 =0 6=0.5 6 =0.8
7r(1) 0.053 0.050 0.036 0.008
7r(4) 0.052 0.050 0.036 0.008
77(16) 0.047 0.050 0.071 0.146
77(32) 0.033 0.050 0.169 0.399
ar 0.052 0.050 0.056 0.068
or 0.045 0.050 0.102 0.452
ADF(4) 0.048 0.055 0.073 0.533
ADF(12) 0.057 0.058 0.057 0.088

b) Empirical power

test statistic ¢ =0.95 ¢ = 0.90 ¢ = 0.80 ¢ = 0.50
7r(1) 0.013 0.002 0.001 0.001
r(4) 0.101 0.116 0.074 0.013
7r(16) 0.118 0.206 0.313 0.365
7r(32) 0.120 0.214 0.350 0.518
ar 0.087 0.107 0.114 0.089
or 0.182 0.420 0.788 0.995
ADF(4) 0.162 0.454 0.901 1.000
ADF(12) 0.127 0.260 0.491 0.765

Note: The entries of the table display the rejection frequencies based on 10.000 replications of
model (13), where D; is a linear time trend.
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Table 3: Testing Hypotheses on the Cointegration Rank

Hy:r=1, P2 =0.8

test statistic o =1 ¢ =0.95 ¢ =0.90 ¢1 = 0.80
=0
Ar 0.059 0.346 0.604 0.853
LR(4) 0.072 0.428 0.894 0.999
LR(12) 0.048 0.180 0.389 0.636
#=0.8
Ar 0.043 0.295 0.566 0.853
LR(4) 0.057 0.310 0.793 0.999
LR(12) 0.063 0.190 0.382 0.636
H() L r = 1 y ¢2 =1
test statistic o =1 ¢ =0.95 ¢ =0.90 ¢1 = 0.80
=0
Ar 0.107 0.300 0.582 0.900
LR(4) 0.083 0.241 0.558 0.962
LR(12) 0.094 0.166 0.290 0.506
#=0.8
Ar 0.107 0.240 0.508 0.854
LR(4) 0.083 0.511 0.949 1.000
LR(12) 0.094 0.352 0.581 0.768

Note: The entries of the table report the rejection frequencies based on 10.000 replications of
model (14), where E(y;) is constant.
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