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ABSTRACT

In this paper we motivate, specify and estimate a model in which the intra-day volatilty

process affects the inter-transaction duration process and vice versa. In order to solve the

estimation problems implied by this interdependent formulation, we first propose a GMM

estimation procedure for the Autoregressive Conditional Duration model. The method is then

extended to the simultaneous estimation of the interdependent duration-volatility model. In an

empirical application we utilize the model for an indirect test of the hypothesis that volatility

is caused by private information that affects prices when informed investors trade. The result

that volatility shocks significantly increase expected inter-transaction durations supports this

hypothesis.
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1. INTRODUCTION1

The accessibility of financial time series on the transaction level, labelled ultra high frequency

data by Engle (1996), offered new perspectives to empirical finance and stimulated

econometric model development. An essential benefit of ultra high frequency data is that it

provides the appropriate basis for empirical tests of market microstructure theories and

hypotheses, due to the availability on the micro-level where the theoretical models are

originally formulated. A common feature of the market microstructure models proposed by

Easley and O’Hara (1992), Diamond and Verrechia (1987), Glosten and Milgrom (1995),

Hasbrouk (1988) and O’Hara (1995) is that the duration between events like transactions or

quote updates contains information which affects the behavior of market makers and traders,

and thus the price formation process. Hence, the possibility to exploit the information content

of the inherent irregular spacing of financial transaction data in an empirical model is a big

advantage, but it also involves methodological problems: With the exception of the

econometric analysis of transition processes (Lancaster 1990), standard panel and time series

models assume that the time interval between the observations is always of equal length. In

order to provide an econometric framework for the analysis of irregularly spaced time series

data, Engle and Russell (1998b) propose the Autoregressive Conditional Duration (ACD)

model which combines elements from hazard rate and Autoregressive Conditional

Heteroscedasticity (ARCH) models. ACD models have been exclusively employed to model

financial transition processes such as quote updates and inter-transaction durations.

Extensions and applications of ACD models have been provided by Bauwens and Giot

(1998b), Coppejans and Domowitz (1998), Engle and Russell (1997), Ghysels and Jasiak

(1998b), Grammig and Maurer (1998) and Meddahi, Renault and Werker (1998). Related

approaches for modeling duration processes on financial markets have been proposed by

Bisière and Kamionka (1998), Ghysels, Gouriéroux and Jasiak (1998) and Hautsch (1998).

Models for duration processes on financial markets become especially interesting if they are

linked to the intra-day price process. Two classes of models can be distinguished: Bauwens

and Giot (1998a) and Engle and Russell (1998a) model inter-transaction durations and

discrete price movements in a multiple spell-competing risks framework. Hausman, Lo and
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MacKinlay’s (1992) ordered probit specification, which was extended by Gerhard, Hess and

Pohlmeier (1997), shares the feature that discrete price movements depend on the length of

the spell between successive transactions. However, the inter-transaction duration process is

not recognized as endogenous. The second class of models focuses on modeling volatility and

inter-transaction duration processes. The first approaches have been presented by Pai and

Polasek (1995) and Engle (1996), who specifies a model that includes expected inter-

transaction durations, estimated using an ACD model, as additional explanatory variables in

the conditional variance equation. Meddahi, Renault and Werker (1998) also propose a

framework for the econometric modeling of volatility and duration processes, but as yet the

empirical performance has only been tested for the duration part of the model. Ghysels and

Jasiak (1998a) estimate a model where the volatility process depends on the inter-transaction

durations process, but, unlike in Engle’s (1996) approach, as the driver of the time variability

of the parameters of a Generalized ARCH (GARCH) model2.

A common characteristic of these approaches is that a feedback of the volatility into the

duration process is not considered. We will argue that this feature restricts empirical

implementations and testing of market microstructure models. We therefore motivate, specify

and estimate an interdependent model for volatility and inter-transaction duration processes.

The paper has two main scopes: On the one hand, we aim to show the model’s usability for

empirical tests of market microstructure hypotheses: In an empirical study, the model is

employed for an indirect test of the hypothesis that volatility is predominantly caused by

private information which affects prices when informed investors trade. On the other hand,

we want to address and propose a solution to the econometric problems implied by the

interdependent specification. The challenge from the methodological point of view implied by

the interdependent model is that the two step estimation procedure for volatility-duration

models applied by Engle (1996) and Ghysels and Jasiak (1998a) is no longer applicable. This

two step procedure consists of a first step estimation of an ACD model in order to produce a

series of estimated conditional expected inter-transaction durations, which are used in the

second step to estimate a GARCH model for irregularly spaced data. In the interdependent

model that we propose, the volatility and the inter-transaction duration process evolve

simultaneously. Since this has to be taken into account, the complexity of the - now inevitably

simultaneous - parameter estimation procedure increases. As a convenient estimation
                                                          
2

A new type of model is considered by Hafner (1998) who proposes a trivariate approach for inter-
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framework for the interdependent model, we first propose a GMM estimation procedure for

ACD models which is then extended to the simultaneous estimation of the interdependent

duration-volatility model. In a Monte Carlo study, we assess the robustness of the GMM

estimation procedure under various data generating processes. For the empirical application of

the interdependent model,  we use transaction data from the initial public offering (IPO) of a

formerly state owned European telecommunication company. The dynamics of an IPO are

found to provide an interesting environment to analyze the interaction of volatility and

transaction intensity.

The remainder of this paper is organized as follows: In section 2.1, we outline the economic

and statistical foundations of the interdependent duration-volatility model. A brief review of

the ACD approach is provided in section 2.2. Section 2.3 contains the econometric

formulation of the model. Estimation issues are addressed in section 3.1. Section 3.2 explains

the ACD-GMM estimation approach, and section 3.3 the extension to the interdependent

duration-volatility model. Results of a Monte Carlo study, carried out to assess the

performance of the ACD-GMM estimation procedure, are reported in section 3.4. Section

contains the empirical application. Background information on the IPO and the data

generating process, as well as descriptive data analyses are reported in section 4.1. Section 4.2

contains the estimation results and their interpretations, as well as model simulations based on

the estimated parameters. Section 5 concludes.

2. ECONOMIC AND STATISTICAL FOUNDATIONS,  AND ECONOMETRIC

SPECIFICATION

2.1 Economic and stochastic processes to be considered for econometric modeling

In this section, we outline the economic and statistical background for an interdependent

duration-volatility model. Three building blocks will be considered: semi-strong market

efficiency, time varying volatility persistence, and the feedback of the volatility process into

the inter-transaction duration process.

Semi strong market efficiency

We assume semi-strong market efficiency which implies that the transaction price iy  that is

observable at time it  - i.e. the time at which two market participants agree to trade the security

- can be written as the expectation of some “fundamental value” *y  conditional on public

information available at time it , iF :
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( )i
*

i F|yEy = . [1]

As this also holds for the following transaction at 1it + , the expected return is,

 ( ) ( ) ( ) ( ){ } 0F|F|yEF|yEEF|rEF|yyE ii
*

1i
*

i1iii1i =−==− +++ . [2]

Time varying volatility persistence

Because shocks and news often occur in clusters, periods of turbulence are often encountered

by financial markets after they have underwent times of calmness or side movement. This

implies that despite returns retaining their martingale property [2], squared returns exhibit

significant serial correlation. Standard econometric tools that are employed to account for this

phenomenon of volatility persistence are ARCH type models which are heavily applied in

empirical studies which analyze market microstructure processes. Bollerslev, Chou and

Kroner (1992) provide a survey of the extensions to the standard models developed in the

seminal papers by Engle (1982), Bollerslev (1986) and Taylor (1986). In order to apply

ARCH models to ultra-high frequency data, the data is often thinned, aggregated or filtered in

such a way that equally spaced data result. Recent contributions based on high frequency, but

equally spaced data include the papers by Andersen and Bollerslev (1997, 1998), Covrig and

Melvin (1998) and Paolella (1998).

For the scope of this paper, the irregular spacing of financial transaction data - trading of a

security can take place at any time during the trading day - must remain intact, as it is the

duration between two events which is assumed to contribute important information to the

volatility process. In this paper, we adopt Ghysels and Jasiak’s (1998a) idea to conceive the

irregular spacing of the data as a continuously changing sampling frequency. This approach

allows to utilize Drost and Nijman’s (1993) and Drost and Werker’s (1996) results on the

temporary aggregation of GARCH processes, which extend related work on linear processes

by Amemiya and Wu (1972), Harvey and Pierse (1984), Palm and Nijman (1984) and

Lütkepohl (1986). The GARCH temporary aggregation formulae generalize Diebold’s (1988)

result who showed that conditional heteroskedasticity disappears if the sampling interval

increases to infinity.

insert figure 1 about here

Figure 1 shows, how the parameters of a weak GARCH(1,1) that is sampled at a given

frequency would change, if the same GARCH process were observed at a lower or higher
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frequency3. It is obvious that the serial dependence of the GARCH process is no longer

present if the sampling interval goes to infinity, which confirms Diebold’s (1988) result.  The

intuition behind is that lagged conditional variances and squared returns that are available at

it  do not contribute information for the forecast of the future squared return at 1it + , if the time

interval i1i tt −+ , is large, because the effect of the events that occur within this spell dominate

the effect of the information available at it .

Feedback of the volatility  process into the inter-transaction duration process

We have outlined above, how inter-transaction durations influence the conditional variance

(squared return forecast). The well known hypothesis, first stated by French and Roll (1986),

that volatility is caused by the private information which affects prices when informed

investors trade, implies the existence of an effect that works also in the opposite direction, i.e.

that the inter transaction duration process depends on the volatility process. A direct indicator

for the presence of private information (or informed trading) is of course not available in the

data. If the hypothesis is valid, however, and volatility is an indicator for informed trade, then

two arguments can be put forward, how and why volatility should affect the inter-transaction

duration process:

 In Easley et al.’s (1996) model, informed market participants enter the market only if private

information is present which is not available to non-informed market participants. If only

public information is present, the arrival rate of informed market participants is zero. The

crucial assumption is that the arrival rate of non-informed traders is assumed to be constant,

regardless whether private information is present or not. If volatility is caused by private

information, then one would expect an higher transaction intensity if volatility is high and

vice versa. This implies that the expected inter-transaction durations decrease. This effect is

an outcome of Easley et al.’s (1996) assumption of an insensitive behavior of the non-

informed market participants which arrive at a constant rate that is not affected by the

presence of private information.

Dropping the assumption of insensitive non-informed market participants inverts the effect of

volatility on expected inter-transaction durations: If non-informed market participants believe

that volatility is caused by private information then it is most likely that non-informed market

participants will exploit the information content of an observable volatility indicator. If this

indicator signals informed trading, then the non-informed market participants will seek to

                                                          
3
 The definitions of weak, semi-strong and strong GARCH processes are given by Drost and Nijman (1993).

The figure shows the results of  the temporary aggregation formulae for flows.
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disclose the private information - by consulting analysts and information screens - and in the

meantime avoid transactions with possibly better informed counterparts. This behavior to

avoid adverse selection costs will slow the trading intensity down and cause longer expected

durations between transactions.

It follows that if the hypothesis that volatility is caused by private information is valid, then a

dependence of the inter-transaction duration process on the volatility process has to be

considered, regardless whether we assume the non-informed market participants to be

volatility insensitive or not. To summarize:

a) Assessing whether the feedback of the volatility into the duration process is economically

and statistically significant (in either direction), provides an indirect test of the hypothesis

that volatility is caused by private information. If the hypothesis is not true, then no

feedback effect should be identifiable.

b) A significant positive feedback indicates that volatility is used as an measure for private

information by non-informed market participants. A negative significant feedback

suggests deficits in processing the (publicly available) information on volatility.

2.2 The Autoregressive Conditional Duration model

In the previous section, we have outlined the economic and statistical foundations of an

interdependent model for volatility and inter-transaction duration processes. Before turning to

the formulation of the econometric model in the next section, it is helpful to briefly review the

econometric framework for modeling financial transition processes proposed by Engle and

Russell (1998) as it will serve as another building block of the econometric model.

One obvious reason for the irregular spacing of transition process data from financial markets

is the occurrence of events during the trading day which are known in advance, such as the

opening and closing of international exchanges, lunch breaks, etc.. These events are

responsible for a deterministic intra-day seasonality of the time interval between transactions,

1iii ttx −−≡  , the inter-transaction duration. Engle and Russell (1998) assume that the

duration process 1iii ttx −−≡  is decomposable into a stochastic component ix~ , and a

deterministic, diurnal  factor ( )1it −Φ  which is dependent only on the time of day,

( )1iii tx~x −Φ⋅= . [3]
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Dividing the observed durations by the seasonal factor we obtain a series of diurnally adjusted

durations ( )1i

i
i t

x
x~

−Φ
= , with unconditional expectation ( )ix~E =1.4

The diurnally adjusted durations ix~  provide the starting point for the econometric formulation

of the Autoregressive Conditional Duration (ACD) model. The key variable in the ACD

approach is the expected normalized duration5 conditional on the information at time it ,

( ) 1ii1i F|x~E ++ ψ≡ , which is assumed to depend on past expected and realized adjusted

durations and additional explanatory variables iz , that may be suggested by market

microstructure theories ,

i1pip,di1,d1qiq,di1,dd1i zx~x~ ζ+ψβ++ψβ+α++α+ω=ψ +−+−+ �� . [4]

Engle and Russell’s (1998) key assumption is that the standardized durations

( )i

i

f

x~

ψ
[5]

where ( ) ++ →⋅ RR:f  is a continuous function, are i.i.d. random variables with density

function

( ) ( ) ⎟⎟⎠

⎞
⎜⎜⎝

⎛
θ

ψ
=⎟⎟⎠

⎞
⎜⎜⎝

⎛
θ

ψ − g
i

i
g1i

i

i ;
f

x~
g;F

f

x~
g . [6]

Engle and Russell (1998) propose assuming that 1
iix~ −ψ  is Exponential ( )λ  under the

restriction that λ  is equal to one,

⎟⎟⎠

⎞
⎜⎜⎝

⎛
ψ i

ix~
g = ⎟⎟⎠

⎞
⎜⎜⎝

⎛
ψ

−
i

ix~
exp . [7]

This specification produces the Exponential-ACD model. Less restrictive implied hazard

functions can be achieved by assuming that 1
iix~ −φ , where

( )[ ] 1
ii 11 −γ+Γ⋅ψ≡φ [8]

is Weibull ( )γλ,  under the restriction that the Weibull-distribution parameter λ  is equal to

one,

                                                          
4
 Engle and Russell (1995a) implement this concept by assuming a linear spline function for the diurnal

factor ( )1it −Φ  using hours as nodes,  Engle and Russell (1998) use cubic splines.
5
 To simplify the notation, we use the expression „duration“ instead of  „diurnally adjusted durations“ if it is

unambiguous to do so.
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟⎠

⎞
⎜⎜⎝

⎛
φ

−⎟⎟⎠

⎞
⎜⎜⎝

⎛
φ

γφ=⎟⎟⎠

⎞
⎜⎜⎝

⎛
γ

φ

γγ

i

i

i

i

i

i

i

i x~
exp

x~

x~
;

x~
g [9]

 This defines the Weibull-ACD model which nests an Exponential-ACD as a special case if

1=γ .

2.3 Econometric specification of the interdependent duration-volatility model

Based on the economic and statistical foundations and the review of the ACD approach in the

previous subsections, we now specify an interdependent econometric model for volatility and

inter-transaction duration processes. As outlined in section 2.1, we adopt Ghysels and Jasiak’s

(1998a) idea to conceive the irregular spacing of  transaction data to be a permanent change of

the sampling frequency. Our rationale behind the econometric specification, however, differs

from Ghysels and Jasiak’s (1998): Consider a hypothetical situation in which all inter-

transaction durations are exactly equal to the value predicted by the diurnal factor ( )itΦ , i.e.

all diurnally adjusted inter-transaction durations are equal to one. Expressed in transaction

time, this implies that the data can be conceived as being equally spaced, or, equivalently,

sampled at a constant frequency.  We assume that in this hypothetical situation, the squared

returns follow a weak GARCH(1,1) process:

( ) ih
2

ihh1i1ii
2

1i hrh ,...r,r|rP ⋅β+⋅α+ϖ== +−+ , [10]

where ( ),...r,r|rP 1ii
2

1i −+  denotes the best linear predictor in terms of ( ),...r,r,....,r,r,1 2
2i

2
1i2i1i −−−− .6

Because the inter-transaction durations (expressed in calendar time) are exactly equal to the

values predicted by the deterministic diurnal component, we will denote the weak GARCH

process in equation [10]  as  “normal duration GARCH process”. Although the normal

duration GARCH process is virtually unobservable in reality, it is pivotal for the model

specification. The question that we need to answer is, how the properties of the normal

duration GARCH process will be affected if the inter-transaction durations differ from the

diurnal component ( )itΦ . To address this issue, we maintain the assumption that up to time

it , the inter-transaction durations had been equal to the diurnal factor. If at time it  the next

inter-transaction duration is expected to be higher than predicted by the diurnal factor, i.e.

1i+ψ > 1, we can conceive this as an expected aggregation of the normal duration GARCH

                                                          
6
 Different to a semi-strong GARCH process, where ih  is defined as a conditional variance, ih  in a weak

GARCH process is defined as the best linear predictor of 2
ir  in terms of ,....r,r,....,r,r,1 2

2i
2

1i2i1i −−−− , i.e.:

( )( ) 0r,...r,r|rPrE l
ni2i1i

2
i

2
i =− −−− , for 1i ≥  and l = 0,1,2. See Drost and Nijman (1993) for details.
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process to a lower sampling frequency. An expected inter-transaction duration that is smaller

than predicted by ( )itΦ , i.e. 1i+ψ < 1, implies that the expected sampling frequency is higher

than for the normal duration GARCH process. After the next transactions at ,...t,t 2i1i ++ , the

expected inter-transaction durations will most likely be revised again. The normal duration

GARCH process in equation [10] is therefore subject to a permanent change of expected

sampling frequencies. For the econometric specification, we can now utilize Drost and

Nijman’s (1993) temporary aggregation formulae for weak GARCH processes, and obtain a

GARCH(1,1) model with time varying parameters which depend on expected inter-

transaction duration,

( ) ( ) ( ) ih1iDN
2
ih1iDNh1iDN1i h,r,,h ⋅θψβ+⋅θψα+θψϖ= ++++ [11]

where ( )′κβαω=θ hhhhh ,,, , and hκ  denotes the kurtosis of  the return distribution7. The

terms ( )h1iDN ,θψϖ + , ( )h1iDN ,θψα +  and ( )h1iDN ,θψβ +  denote the elements of Drost and

Nijman’s (1993) temporary aggregation formulae for symmetric weak GARCH processes.

Appendix A-2 contains the exact formulae to be used as well as the theorem that justifies their

application using arbitrary real aggregation parameters 1i+ψ .8

Equation [11] describes how the volatility model depends on expected inter-transaction

durations.  In section 2.1, we have identified economic processes that necessitate modeling

also the feedback, i.e. the dependence of the duration process on the volatility process. In

order to implement the concept in an econometric model, we assume that the diurnally

adjusted inter-transaction durations follow a semi-strong ACD process.9 Since it is a-priori

uncertain whether it is expected or unexpected volatility which may induce the economic

processes outlined in section 2.1, we include two volatility indicators as additional

explanatory variables in the ACD model’s conditional expected duration equation. The first is

ih - the “expected volatility component” - and the second is the ratio of the squared return and

ih  - the “volatility shock component”. The conditional expected duration equation takes on

the form:

                                                          
7
 More precisely, the kurtosis hκ  is associated with a distribution of returns that are measured in the

hypothetical situation that the normalized durations are all equal to one. For identification purposes, hκ  is

not treated as a parameter to be estimated but fixed on the kurtosis of the normal distribution.
8
 Drost and Nijman’s (1993) temporary aggregation formulae hold only for weak GARCH(1,1) processes.

Strong and semi-strong GARCH processes do not temporary aggregate.

9
 Strong, semi strong, and weak ACD processes are defined in appendix A-1.
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i

2
i

2i11pip,di1,d1qiq,di1,dd1i h

r
hx~x~ ζ+ζ+ψβ++ψβ+α++α+ω=ψ +−+−+ �� [12]

It follows from our theoretical considerations in section 2.1 that either a statistically and

economically significant positive or negative sign of the slope parameters 1ζ  and 2ζ   would

be compatible with the hypothesis that volatility is caused by private information. Equations

[11] and [12] constitute the interdependent duration-volatility model. We now turn to the

estimation issues involved by this specification.

3. ESTIMATION ISSUES

3.1 Estimation of recursive volatility-duration models

Despite the fact that in Engle’s (1996) model the expected inter-transaction durations affect

conditional heteroskedasticity in a different way, this and Ghysels and Jasiak’s (1998a)

approach share a common feature. Both employ the Autoregressive Conditional Duration

model to produce a forecast for the conditional expected duration, 1i+ψ , which is needed for

the squared return forecast 1ih + . The crucial point is that both approaches do not consider a

feedback from the volatility into the inter-transaction duration process. This assumption

significantly facilitates parameter estimation, because the procedure can be separated into two

parts. The first step consists of an estimation of an Autoregressive Conditional Duration

model and the computation of a series of estimated conditional expected durations, { }T

1iψ̂ . In

the second step, this series is then used for the estimation of the parameters of a GARCH

model for irregularly spaced data. Engle (1996) and Ghysels and Jasiak (1998a) use ML

estimators in both steps. The interdependent model in equations [11] and [12] precludes the

application of the two step estimation procedure, since the interdependent evolution of the

series ih  and iψ  has to be taken into account. In order to provide a simultaneous estimation

procedure for the interdependent model, we first derive the orthogonality conditions for

Generalized Method of Moments (GMM) estimation of the Autoregressive Conditional

Duration model in section 3.2 which is then extended for simultaneous estimation in section

3.3.

3.2 Orthogonality conditions for a GMM estimation of the ACD model

With the exception of Meddahi, Renault and Werker’s (1998) approach, the Maximum

Likelihood method has exclusively been used to estimate the parameters of Autoregressive

Conditional Duration models, as e.g. in Engle (1996), Ghysels and Jasiak (1998a), Engle and
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Russell (1995a, 1997, 1998) and Bauwens and Giot (1998b). The GMM approach proposed in

the following does not deliver estimates for the distribution parameters of the ACD model,

which implies that survior or hazard functions cannot be estimated. However, since only an

estimate of the parameter vector ( )′βββαααω=θ p,d2,d1,dq,d2,d1,ddd ,..,,,,...,,,  is needed, this is

no restriction as long as dθ  can be estimated consistently and with acceptable efficiency. The

results of a Monte Carlo study designed to assess the performance of the GMM- compared to

ML-estimation of ACD models are reported in section 3.4. After deriving orthogonality

conditions for the ACD-GMM estimation, we provide the orthogonality conditions for the

simultaneous estimation of the interdependent model proposed in the previous section.

Using the definitions of strong, semi-strong and weak ACD processes in appendix A-1, we

are able to derive a set of orthogonality conditions which provide the basis for the GMM

estimation of the ACD model. Regardless of the  type of ACD process, we can utilize the

serial independence (strong ACD) or zero autocorrelation (semi strong and weak ACD)

assumption for the standardized durations 1
iix~ −ψ  to obtain the following J+1 orthogonality

conditions,

( ){ } 01
x~

Ev,fE
i

i
id1,1,d =⎟⎟⎠

⎞
⎜⎜⎝

⎛
−

ψ
=θ [13]

( ){ } J1,...,jfor    01
x~

1
x~

Ev,fE
ji

ji

i

i
id1j,1,d ==

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

ψ⎟⎟⎠

⎞
⎜⎜⎝

⎛
−

ψ
=θ

−

−
+ , [14]

where iv  denotes a vector of variables observable at time it . Using the weak ACD process

definition (appendix A-1), we can derive additional orthogonality conditions utilizing the

assumption that the implicit error in forecasting the duration at 1it + ,

1i1i1i,d x~w +++ ψ−= , [15]

 is uncorrelated with the lagged durations,

( ){ } ( ) 0ZwEv,fE i,d1i,did2,d ==θ + , [16]

where

( )′′= − i,d1iii,d Z
~

,...,x~,x~,1Z . [17]

i,dZ
~

 denotes a vector of additional variables assumed to be uncorrelated with the forecasting

error 1i,dw + . The orthogonality conditions in equations [13], [14] and [16] provide the basis
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for the GMM estimation of the ACD model to which we come back later. We now turn to the

simultaneous GMM estimation of the interdependent volatility-duration model.

3.2 Simultaneous GMM estimation

Orthogonality conditions for the volatility equation of the interdependent model in equations

[11] and [12] can be derived from Drost and Nijman’s (1993) definition of weak GARCH

processes which is characterized by the assumption that the implicit error in forecasting  the

squared return,

1i
2

1i1i,h hrw +++ −= , [18]

is uncorrelated with lagged returns and squared returns. The implied orthogonality conditions

have been outlined by Bates and White (1988), Ghysels and Jasiak (1998a), Hamilton (1994)

and Rich, Raymond and Butler (1991),

( ){ } ( ) 0ZwEv,fE i,h1i,hi1,h ==θ + [19]

where

( )′′= −− i,h
2

1i
2
i1iii,h Z

~
,....r,r,...,r,r,1Z . [20]

i,hZ
~

 denotes a vector of additional instruments that are assumed to be uncorrelated with the

forecasting error 1i,hw + . The parameter vector ( )′ζζθ′βαω=θ 21dhhh ,,,,,  also includes the

parameters from the conditional duration equation, since in the interdependent model in

equations [11] and [12], the time varying GARCH parameters depend on the parameters of

the conditional expected duration equation and vice versa.

The weak market efficiency assumption implies additional orthogonality conditions of the

form

( ){ } ( ) 0ZrEv,fE i,m1ii1,m ==θ + [21]

where

( )′′= − i,m1iii,m Z
~

,....r,r,1Z . [22]

is a vector of  lagged returns and other instruments available at it  that are assumed to be

uncorrelated with the return at 1it + .
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It is now possible to collect the orthogonality conditions for the duration and the volatility

part of the model,

( ){ } ( ) 0ZrEv,fE i,m1ii1,m ==θ + [23]

( ){ } ( ) 0ZwEv,fE i,h1i,hi1,h ==θ + [24]

( ){ } 01
x~

Ev,fE
i

i
i1,1,d =⎟⎟⎠

⎞
⎜⎜⎝

⎛
−

ψ
=θ [25]

( ){ } J1,...,jfor    01
x~

1
x~

Ev,fE
ji

ji

i

i
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⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

ψ⎟⎟⎠

⎞
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⎛
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ψ
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+ [26]

( ){ } ( ) 0ZwEv,fE i,d1i,di2,d ==θ + , [27]

where

( )′′= −− i,d
2

1i
2
i1iii,d Z

~
,....r,r,...,x~,x~,1Z . [28]

Because of the model’s interdependency, the ACD orthogonality conditions in equations [25]
– [27] are a function of all the model parameters, and the vector of instruments i,dZ   is now

augmented with lagged squared returns. The parameter estimation must be carried out

simultaneously, since computation of ih  requires the availability of the conditional expected

duration iψ , and in order to compute iψ , 1ih −  is needed. Both iψ and ih  depend on the

parameter vector ( )′βαωθ′=θ hhhd ,,, . In order to carry out the simultaneous estimation, we

collect the GMM disturbances in a vector

( )
( ) ( ) ( ) ( ) ( ){ }′θθθθθ

=θ

+ ´v,f´,v,f´,v,f,v,f,.,v,f

v,f

i1,mi1,hi2,di1J,1,di1,1,d

i
[29]

and define the sample means of ( )iv,f θ  as

( ) ( )∑
=

− θ=θ
T

1i
i

1
T v;fTS;g [30]

where ( )11TTT v,...v,vS ′′′= −  contains the observations of a sample size T. A  consistent

estimate θ̂  is obtained by minimizing

( ) ( ) ( )TTTT S;gWS;gS;Q θ′θ=θ [31]
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with respect to θ , where TW  is a positive-semidefinite weighting matrix which satisfies

∞→
=

T
W       Wlim 0T . In order to ensure stationarity and non-negativity of the ih  and iψ -series,

it is required that the maximization is carried out subject to the constraints

0h >ϖ [32]

1hh <β+α [33]

0d >ϖ [34]

1
p

1j p,d

q

1j q,d <β+α ∑∑ ==
. [35]

When computing an estimate for the minimum asymptotic variance weighting matrix
1

TW −Ω= , where

( ) ( )
∞→ ⎥⎦

⎤
⎢⎣
⎡ ′θ⋅θ⋅=Ω

T      
S;gS;gE     Tlim TT , [36]

it must be taken into account that the vector process ( ){ }∞
−∞=θ iiv,f  is serially correlated.

Hence, we use an autocorrelation consistent estimator such  as the one proposed by Newey

and West (1987)10,

( )T,T,

M

1
T,0

ˆˆ
1M

1ˆˆ
νν

=ν

Γ′+Γ⎟
⎠
⎞⎜

⎝
⎛

+
ν−+Γ=Ω ∑

( )[ ] ( )[ ]∑
+ν=

ν−
−

ν
′θ⋅θ=Γ

T

1i
ii

1
T, v,ˆfv,ˆfTˆ [37]

If only an estimate of the ACD model is needed, the procedure outlined above can be applied

by using only the orthogonality conditions [13], [14] and [16]. Conditional expected durations

must then be computed using eq.  [4].

3.4  Monte Carlo study

We test the robustness of the ACD-GMM procedure outlined in the previous subsection in a

Monte Carlo study in which two data generating processes are taken into account: The first is

                                                          
10

 Alternative estimators have been proposed by Gallant (1987), Andrews (1991), Andrews and Monahan
(1992), and West (1997). The standard GMM estimation algorithm is applied which consists of obtaining
initial estimates of  the parameters θ  by choosing IWT = . The initial estimate for θ  is used to compute the

weighting matrix Ω̂  which is then used to obtain an updated estimate θ̂ . The procedure is repeated until
convergence. We have written programs for the GMM estimation of ACD models and the interdependent
duration-volatility model in GAUSS. These algorithms require the Constraint Optimization module.
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an (strong) Exponential-ACD(1,1) process where 2.01,d =ϖ , 1.01,d =α , and 7.01,d =β , and

the second a (strong) Weibull-ACD(1,1) with identical parameters, and 6.0=γ . The

parameter values are chosen so that they are similar to those found in empirical applications

of ACD models. For the ACD-GMM estimation, we set the lag order J in eq. [14] equal to 24.

Past durations up to lag 12 are used as instruments in eq. [17]. The lag order M in eq. [37] is

set to 6. For each DGP we simulate 1000 replications of the particular ACD process with

15000 observations in each sample and estimate the model parameters using the Maximum

Likelihood method - employing the likelihood function that matches with the true DGP - and

the GMM procedure proposed in the previous subsection. Table 1 reports mean, variance,

mean squared error, mean absolute error, and the quantiles of the distributions of the

estimated parameters. In order to provide a graphical comparison of the distributions of the

ML and GMM estimated parameters,  figures 2 and 3 depict  kernel density plots.

insert table 1 about here

The Monte Carlo results confirm that the GMM estimation procedure proposed above

produces parameter estimates that are quite close to those obtained by the ML estimation

using the likelihood function of the true DGP. Root mean squared errors, mean and median

absolute errors produced by the GMM estimation can be considered small and comparable to

the ML estimation results, especially for the case where the DGP is an Exponential ACD

process. Comparing the kernel plots in figure 2 for the Exponential ACD-DGP, the

distributions produced by the ML and GMM estimators appear similar. The difference in

distributions is larger in the case of the Weibull-ACD DGP, with a somewhat flatter and

skewed distribution of the GMM estimates (figure 3).

insert figure 2 about here

insert figure 3 about here

4.  EMPIRICAL APPLICATION

4.1 Data

4.1.1 The Deutsche Telekom IPO

To perform an empirical application of the interdependent model and estimation procedures

developed in the previous sections, we use transaction data from the first 5 weeks of the

November 1996 Deutsche Telekom initial public offering (IPO), the first step of the largest
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ever privatization project in Germany. With Deutsche and Dresdner Bank as well as Goldman

Sachs as global coordinators and unprecedented marketing efforts, the first tranche of 713

million shares, about 25 % of the total shares of the formerly 100 % state owned

telecommunication monopolist, was offered to private investors. Special incentive programs

for private households, including price reductions and bonus issues, led to a 5-6 fold

oversubscription. 23 million of the offered shares were distributed among the Telekom’s

employees. The remaining shares were bought by German private (174 million shares) and

institutional investors (254 million shares). International investors were located in the USA

(14 % of shares), the UK (8 % of shares), other Europe (6 % of shares) and Asia (5% of

shares). The issue price was 28.5 DEM (18.89 USD) per share resulting in total issue

proceeds of 13.3 billion USD. Nov 18, 1996 was the first day the Deutsche Telekom share

traded on the Frankfurt and New York stock exchanges. In Tokyo, trading started one day

later. Due to expected extraordinary trading intensity, the trading hours of the German

electronic trading system (IBIS) were extended from 08:30 h – 17:00 h to 08:30 h – 19:00 h.

Deutsche Telekom was immediately included in the DAX, the top 30 blue chip index for

German stocks, ranking as number 9 in terms of market capitalization.

4.1.2 The data generating process

Transaction data of the Telekom IPO is obtained from the electronic trading system IBIS -

(short for “Integrated Stock Exchange Trading and Information System”). IBIS is an

electronic market in which participants trade securities in an interactive double auction

framework11. A trader is able to view the complete system order book for the securities of

interest on a computer screen, where price ascending bids and price descending asks,

including the volume of each bid and ask, are displayed. Market participants can enter and

delete their bids and asks in the electronic order book, but the quotes entered in the system are

binding. As the system does not automatically match quotes, a transaction must always be

initiated by a market participant who is willing to sell to the bid side or buy from the ask side.

A trader willing to buy from the order book is restricted to hitting the cheapest ask unless the

volume that the initiator wants to buy is smaller or larger than the volume offered by the

cheapest ask and this offer to sell the security contains a special mark indicating that the

supplier of the ask is only willing to trade the volume entered in the system (and not less). In

this case the initiating buyer is allowed to hit the next ask in the order book. A buying initiator

can simultaneously select more than one asks from the list, under the condition that they are

                                                          
11

 In 1997 IBIS was replaced by its successor system named XETRA which retained the same basic
functionality.
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chosen in the correct price ascending order12. Each observation in the data contains the

transaction price, the transaction volume, the security ID and the date and time of the

transaction with an accuracy in hundredths of seconds. If a trader has initiated a transaction by

hitting more than one of the asks or bids within a very short time period, the database contains

the sub-transactions (each bid or ask hit) as separate observations, because the entries in the

electronic order book may have been entered by different market participants requiring

separate settlement. Of course, the recorded time interval between the sub-transactions of a

“split transaction” is very short (but always nonzero). The algorithm applied to consolidate

split transactions is contained in appendix A-3.

4.1.3 Data filtering and descriptive analyses

The split transaction consolidated sample contains 12057 transactions of the Deutsche

Telekom security between Nov 18, 1996 and Dec 20, 1996. We exclude the first transaction

of each day (otherwise the inter-transaction duration, 1iii ttx −−≡ , would cover the non

trading time between the days) and transactions during the prolonged trading hours of the first

Deutsche Telekom trading week. We also remove the observation immediately after a system

breakdown on Dec13, 1996 between 09:00 a.m. and 10:30 a.m.. The following adjustments to

the raw data inter-transaction durations and returns are carried out:

- In order to account for duration diurnality, we follow Engle and Russell (1998) and

estimate cubic spline functions using half hours as nodes and diurnally adjust the

durations as described in section 2.2.  As the diurnal duration factor varies with different

types of trading days, we fit separate splines for the weekdays, US-holidays and expiry

dates at the Frankfurt futures and options exchange.

- In order to obtain return series which is free of the bid ask bounce that affects financial

transaction prices, we compute the residuals of an ARMA(2,0) model for returns13.

Having obtained the white noise ARMA residual, intra-day volatility seasonality is

accounted for by applying the method proposed by Andersen and Bollerslev (1997).

insert figure 4 about here

insert figure 5 about here

Figures 4 and 5 depict the resulting adjusted return (in DEM/100) and squared return series.

The empirical mean and variance of the adjusted return (adjusted duration) series are equal to
                                                          
12

 For a seller willing to hit the bids in the electronic order book, the same logic applies.
13

 The lack of best bids and asks in the data precludes using mid-quotes.
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–0.002 (1.009) and 4.926 (1.746), and the skewness and kurtosis are 0.103 (3.225) and 4.067

(17.551). In order to get an impression of the distribution of durations and returns in the

sample, figures 6 and 7 depict kernel density plots for the adjusted duration and return series.

insert figure 6 about here

insert figure 7 about here

4.2 Estimation results and model simulations

Before presenting the estimation results of the interdependent model, we first carry out an

independent estimation of the ACD part of the model, in order to test the empirical

applicability and robustness of the ACD-GMM estimation method proposed in section 3.

Table 2 contains a comparison of the results of a GMM and a ML estimation of an ACD(1,2)

model. The latter is based on the likelihood function of a Weibull-ACD model.

insert table 2 about here

An ACD(1,2) specification is selected on the basis of likelihood-ratio test, AIC and BIC.

Comparing parameter estimates and their standard errors reported in table 2, it becomes

evident that the GMM and ML results barely differ, that their values are approximately equal

to those found in other empirical applications of ACD models, and that the standard errors are

acceptably small. The unconditional expected duration implied by the GMM (ML) estimates

is 1.001 (1.007), which is an almost perfect result, because the values are very close to one.14

Computation of the Ljung-Box test statistic for the estimated series { }T

1
1

ii ˆx~ −ψ , assumed to be

independent for ML and uncorrelated for GMM estimation, also yields positive results. The

white noise null hypothesis is rejected at neither of the lags at which the Ljung-Box statistic is

computed. The results confirm the Monte Carlo evidence reported in section 3.4, indicating

that the ACD-GMM procedure provides a useful alternative for the estimation of the

Autoregressive Conditional Duration model.

insert table 3 about here

Table 3 contains the GMM estimation results for the interdependent duration-volatility model

in equations [11] and [12].15 The parameter estimates reported in table 3 are not untypical

                                                          
14

 Recall the construction of diurnally adjusted durations in section 2.2.
15

 After computing initial parameter estimates - using the unity matrix as a weight in the optimization -  two
successive runs of the GMM procedure were carried out, involving a minimization of the GMM objective
function using the updated estimate of the optimal weighting matrix The convergence of the minimization
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compared to those found in estimations of GARCH models using high frequency financial

data. The standard errors are acceptably small, and the sum hh
ˆˆ β+α   is clearly smaller than

one, i.e. the normal duration GARCH process is far away from being an I-GARCH. The lag

order chosen for the duration part of the model is the same as in the independent ACD-GMM

estimation. The parameter estimates 2,d1,d ˆ,ˆ αα , and 1,dβ̂  do not change very much compared to

the results reported in table 2 and their standard errors remain  small. The implied

unconditional squared return forecast is 4.27, and  the unconditional duration is 1.02. 16. The

latter acceptably close to one. The significance level of Hansens χ2 test of the overidentifying

restrictions is  27.9%.

In the context of our paper, the sign and significance of the parameter estimates 1ζ  and 2ζ  are

of key interest, allowing for the first time an empirical assessment of the impact of volatility

indicators on the inter-transaction duration process. The statistically significant and positive

parameter estimates 1ζ̂  and 2ζ̂  imply that both an increase of the expected volatility

component - the best linear predictor for squared returns, ih  - and the unexpected volatility

component - the volatility shock 1
i

2
i hr −  - lengthen expected inter-transaction durations. In

section 2.1 we have argued that this result can be interpreted as an indirect support for the

hypothesis that volatility is caused by private information that affects prices when informed

investors trade. If this hypothesis is true, and non-informed market participants perceived

volatility as an indicator for informed trading, then the empirical result that expected and

unexpected volatility indicators causes a prolongation of the expected inter-transaction

duration is a logical consequence. Analyzing the economic importance of the expected and

unexpected volatility component it is evident that - because of the size of the estimated

parameters 1ζ̂ , 2ζ̂  and the GARCH-parameter hα̂  - it is the effect of the volatility shock (the

unexpected component), which is the main driver behind the prolongation of expected inter-

transaction durations. Although a volatility shock will also cause an increase of the expected

volatility component, 1ih + , the duration prolonging effect is clearly weaker than the initial

effect of the volatility shock on expected durations. However, the positive parameter 1ζ

implies that the effect of a volatility shock persists longer in the conditional expected duration

process.

insert figure 8 about here

                                                                                                                                                                                    
algorithm is, though computer intensive, numerically stable and acceptably fast on a well equipped UNIX
workstation.

16
 These values are obtained by a forward solution of the simultaneous difference equation system [11] and

[12]. kih +  and ki+ψ  , k>1, are used  to replace future 2
kir +  and kix~ + .
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To illustrate that the effect of a volatility shock on expected inter-transaction durations is

significant not only from a statistical, but also from an economic point of view, we carry out

the following sensitivity analysis. Figure 8 shows graphically the effect of a simulated

volatility shock on the series ih  and iψ . The simulation is based on the parameter estimation

results in table 3. Before the shock at transaction number 50, the best linear predictor ih  is

equal to 5.15 and the conditional expected duration (diurnally adjusted) is equal to 0.89. The

last simulated squared return is 0.95 and the two recent inter-transaction durations 0.28 and

0.04. In this situation, a volatility shock is introduced by a squared inter-transaction return

equal to 100 (DEM/100)2. This is a rare, but not an unlikely event in our Telekom study.

According to the definition above this translates into a volatility shock (squared return divided

by conditional variance) of 19.4. After the shock, the best linear predictor ih   increases to

14.50, and the conditional expected duration goes up to 1.26. Assuming the diurnal factor to

be equal to three minutes, this translates into an increase in the expected duration of about 65

seconds after the shock, certainly an economically significant period of time. The last inter-

transaction duration before the volatility shock was 0.5, hence it is not a large lagged duration

that causes this increase.

insert figure 9 about here

Figure 9 shows the persistence of a volatility shock in the conditional volatility and duration

processes. Starting from a situation in which the best linear predictor ih  and the last squared

return are equal to the unconditional squared return forecast (4.27), and the conditional

expected duration and the two previous durations are equal to the unconditional mean (1.02),

a volatility shock is introduced - again, a squared return of 100 (DEM/100)2. A forward

solution of  the simultaneous difference equation system [11] and [12]  produces the multi-

step forecasts depicted in figure 9. It turns out that the persistence of a volatility shock is even

higher in the conditional expected duration process: The half life of the volatility shock is 11

transactions for the conditional expected duration process and 9 transactions for the

conditional volatility process.

5. CONCLUDING REMARKS AND OUTLOOK

The common feature of recently developed econometric models for financial markets inter-

transaction duration and volatility processes is their recursive structure: The duration between

the events of interest, like transactions or quote updates, is assumed to influence the volatility

process, whilst the volatility process does not feed back into the inter-transaction duration
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process. Although this recursive specification facilitates parameter estimation, it is quite

restrictive from the economic point of view, because the model structure precludes empirical

tests and econometric implementations of financial market microstructure models. We

propose an econometric model in which the inter-transaction duration process is allowed to

affect the volatility process, as in the case of the recursive approaches estimated by Engle

(1996) and Ghysels and Jasiak (1998a). The innovation is the economic motivation,

econometric specification and empirical application of an interdependent alternative in which

(conditional) volatility indicators feed back into the inter-transaction duration process.

Although our interdependent formulation allows greater flexibility in modeling market

microstructure processes in financial markets, it also involves methodological problems that

need to be solved: Unlike in a recursive specification, the parameter estimation can no longer

be separated into a first step estimation of the parameters of the Autoregressive Conditional

Duration model  in order to obtain a conditional expected durations series that can be used for

the estimation of a GARCH model for irregularly spaced data in the second step. In order to

provide an estimation procedure which is both able to solve these problem and empirically

tractable, we first propose a new Generalized Method of Moments estimation procedure for

Engle and Russel’s (1998) Autoregressive Conditional Duration model. The GMM procedure

is extended to the simultaneous GMM estimation of the interdependent duration-volatility

model. A Monte Carlo study is provided to assess the performance of the GMM procedure.

Applying the model to the data of an initial public offering of a European telecommunication

company, we provide an indirect test of the hypothesis that volatility is caused by private

information that affects the price process when informed investors trade. The empirical result

that volatility shocks significantly increase expected inter-transaction durations supports this

hypothesis.

The model proposed in this paper allows to address a variety of frequently discussed issues: It

seems especially interesting to study the influence of different research efforts by stock

market analysts: Does the result that volatility shocks increase expected inter-transaction

durations also hold for standard blue chip securities which are subject to intensive research,

and is the result different for less frequently traded,  less intensively analyzed stocks? It is

also planned to apply the model to parallel (non-anonymous) floor and (anonymous) screen

trading processes. Because adverse selection costs are assumed to be lower in floor trading,

where you know your counterpart, compared to screen trading, where you cannot identify

whom you are trading with, we would expect significant differences of the volatility effects

on expected durations.



22

APPENDIX A-1

DEFINITIONS OF AUTOREGRESSIVE CONDITIONAL DURATION  PROCESSES

The following definitions of Autoregressive Conditional Duration processes correspond to

Drost and Nijman’s (1993) GARCH definitions. Let { }Zi,x~i ∈  be a sequence of stationary

durations normalized such that ( ) 1x~E i = . Define operators ( ) ∑ α+= q

j

j
j,d L1LA  and

( ) ∑ β−= p

j

j
j,d L1LB  and let the sequence { }Zi,i ∈ψ  be defined as the stationary solution of

( ) ( ){ } 2
idi x~1LALB −+ω=ψ . [A-1]

We assume that ( )LA  and ( ) ( )LA1LB −+  have roots outside the unit circle and hence are

invertible.

Definiton 1 (Strong ACD): The sequence { }Zi,x~i ∈  is defined to be generated by a strong

ACD(p,q) process, if dω , ( )LA  and ( )LB  can be chosen such that

 ~
x~

i

i
i ψ
=ς i.i.d. with density ( )gi ;g θς [A-2]

Definition 2 (Semi-strong ACD): The sequence { }Zi,x~i ∈  is defined to be generated by a

semi-strong ACD(p,q) process, if dω , ( )LA  and ( )LB  can be chosen such that

( ) i2i1ii ,......x~,x~|x~E ψ=−− [A-3]
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Definition 3 (Weak ACD): The sequence { }Zi,x~i ∈  is defined to be generated by a weak

ACD (p,q) process, if dω , ( )LA  and ( )LB  can be chosen such that

( ) i2i1ii ,......x~,x~|x~P ψ=−− [A-6]

where ( ) i2i1ii ,......x~,x~|x~P ψ=−−  denotes the best linear predictor of ix~  in terms of

,....x~,x~,x~,1 2i2i1i −−− i.e.,

( ){ } 0x~,...,x~,x~|x~Px~E l
ni2i1iii =− −−−  for 1i ≥  and l = 0,1, [A-7]
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APPENDIX A-2

 DISCRETE TIME GARCH AGGREGATION

Theorem A.1 [Drost and Werker (1996), p. 47-48]:

Let 0h >  and suppose { }hNt,y t)h( ∈  is a weak GARCH process with parameter

( )hhhhh ,,, κβαϖ=θ , where hκ is the kurtosis of t)h(y  . Then, for each integer 1m ≥  the

process ( )
( )

( ){ }∑ −

= + ∈= 1m

1i ihth
m

tmh mhNt,yy  is symmetric weak GARCH with parameter

( )mhmhmhmhmh ,,, κβαϖ=θ  (with 1mh <β )

( ) ( )
( )hh

m
hh

hhDNhm 1

1
m,m

β+α−
β+α−

ω=θϖ=ϖ [A-10]

( ) ( ) h
m

hhhDNhm ,m β−β+α=θα=α [A-11]

( )hDNhm ,m θβ=β  is the real solution of

( )( ) ( )
( ) ( ){ } ( )m,,b21m,,,a

m,,bm,,,a

1
hh

m2
hhhhh

hh
m

hhhhh
2
hm

hm

βα−β+α+κβα

βα−β+ακβα=
β+

β
[A-12]
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[A-15]

Let DNθ  be the transfer function corresponding to Theorem A.1 that transforms high-

frequency parameters into low frequency ones, i.e. ( ) mhhDN ,m θ=θθ . The interpretation of

theorem A.1 implies ( )[ ] ( )hDNhDNDN ,mnn,,m θθ=θθθ . Drost and Werker (1996) argue that

the latter equality holds true if the integers m and n are replaced by arbitrary reals. If a weak

GARCH process with parameter hθ  is known to be the aggregate over m periods of some

other higher frequency GARCH process, then the parameter of the latter high-frequency

process is given by ( )m/1,hDNm/h θθ=θ . If one assumes that the observed process at

frequency, say, g is infinitely divisible, i.e. if one assumes that for each integer m there exists

an underlying high frequency GARCH process such that the observed process is the sum over

m periods of the high-frequency process, then the transfer function q determines the
parameters by ( )g/h,gDNh θθ=θ .

APPENDIX A-3

 ALGORITHM TO CONSOLIDATE IBIS SPLIT TRANSACTIONS

We consolidate IBIS split transactions according to the following rules: If we observe two

successive transactions with a transaction duration of less than one second, these two

transactions are recognized as being part of a split transaction. If the time between the second

and third transactions is also within one second, an additional condition must be satisfied

before it can be counted as a sub-transaction of a split transaction: The sequence of

transaction prices for the three transactions to be considered must be either non increasing or

non decreasing. Non-increasing prices would imply that a trader has initiated a split

transaction on the bid side of the order book, i. e. sold to the bid side with falling (or constant)

transaction prices in the sub-transactions. Non-decreasing prices would imply that a trader has

initiated a split transaction on the ask side of the order book and bought increasingly more

expensive (or price constant) asks. The consolidation stops if either the duration between two

successive transactions is no longer less than one second or the condition of non increasing

(non decreasing) prices is no longer met. The time stamp of the first sub-transaction of the

split transaction is then assigned to the consolidated transaction. The volume of the

consolidated transaction is the sum of the volumes of the sub-transactions and the price is the
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volume weighted average of the prices of the sub-transactions. Given the new transaction

definitions,  transaction durations and returns are revised.
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FIGURE 1

Temporary Aggregation of a Symmetric Weak GARCH(1,1) Process for Flow Variablesa
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FIGURE 2

Monte Carlo Results a: DGP: Exponential-ACD(1,1)
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   Gaussian kernel with smoothing parameter as proposed by Silverman (1986) p. 48.
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FIGURE 3

Monte Carlo Results a: DGP: Weibull-ACD(1,1)
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FIGURE 4

Adjusted Return Series
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FIGURE 6

Kernel Density Estimate for Adjusted Returnsa
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FIGURE 7

Kernel Density Estimate for Diurnally Adjusted Durationsa
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FIGURE 8

Model Simulation of a Volatility Shock
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FIGURE 9

Persistence of Volatility Shock and Convergence of iψ and ih  to Unconditional Means
 (Multi-Step Forecast)
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TABLE 1

Monte Carlo Results

DGP: Exponential-ACD(1,1)

i1,di1,dd1i x~ ψβ+α+ω=ψ + ; 7.0,1.0,2.0 1,d1,dd =β=α=ϖ

dω
GMM-
ACD

dω
ML-

Exponent.
ACD

1,dα
GMM-
ACD

1,dα
ML-

Exponent.
ACD

1,dβ
GMM-
ACD

1,dβ
ML-

Exponent.
ACD

Root MSE 0.024 0.022 0.009 0.008 0.028 0.027
Mean AE 0.018 0.017 0.007 0.006 0.022 0.021
Median AE 0.015 0.015 0.006 0.005 0.018 0.017
Mean 0.206 0.201 0.097 0.100 0.696 0.700
Std Dev 0.023 0.022 0.008 0.008 0.027 0.027
10 % Qntl. 0.179 0.173 0.086 0.089 0.660 0.664
25 % Qntl. 0.191 0.185 0.092 0.095 0.678 0.683
50 % Qntl. 0.205 0.200 0.097 0.099 0.696 0.700
75 % Qntl. 0.221 0.214 0.102 0.105 0.715 0.718
90 % Qntl. 0.237 0.231 0.107 0.110 0.731 0.734

DGP: Weibull-ACD(1,1)

i1,di1,dd1i x~ ψβ+α+ω=ψ + ; 6.0,7.0,1.0,2.0 1,d1,dd =γ=β=α=ϖ

dω
GMM-
ACD

dω
ML-

Weibull
ACD

1,dα
GMM-
ACD

1,dα
ML-

Weibull
ACD

1,dβ
GMM-
ACD

1,dβ
ML-

Weibull
ACD

Root MSE 0.030 0.024 0.012 0.010 0.035 0.030
Mean AE 0.024 0.019 0.010 0.008 0.028 0.024
Median AE 0.021 0.016 0.008 0.006 0.025 0.019
Mean 0.212 0.201 0.094 0.100 0.690 0.700
Std Dev 0.027 0.024 0.011 0.010 0.034 0.030
10 % Qntl. 0.178 0.172 0.081 0.087 0.647 0.662
25 % Qntl. 0.193 0.184 0.087 0.094 0.667 0.682
50 % Qntl. 0.210 0.200 0.094 0.099 0.690 0.701
75 % Qntl. 0.231 0.216 0.101 0.106 0.715 0.721
90 % Qntl. 0.248 0.231 0.108 0.112 0.734 0.739
a  R=1000 replications with 15000 observations each.

   RMSE (Root mean square error) : 
2

1
R

1r

o
r

ˆ
R

1
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ θ−θ∑

=

.

   Median AE (Median absolute error): o
rr

ˆmedian θ−θ .

   Mean AE (Mean absolute error): ∑
=

θ−θ
R

1r

o
r

ˆ
R

1  .

  
rθ̂  is the coefficient  estimate in replication r and 0θ  is the true value. θ  stands for 

1,d1,dd ,, βαω .
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TABLE 2

Independent ACD Estimation: ML a and GMM b Results

ML
Estimate

Standard
Error

GMM
Estimate

Standard
Error

dϖ 0.1760 0.027 0.2009 0.041

1,dα 0.1182 0.012 0.0903 0.010

2,dα -0.0314 0.014 -0.0226 0.014

1,dβ 0.7379 0.034 0.7316 0.052

γ 0.8478 0.006

Log-
likelihood -11673.3

AIC 23356.6

BIC 23393.6

Hansen
χ2 test

χ2 (46) = 66.6
 p-value: 0.025

Ljung-Box
statistic

{ }T

1
1

ii ˆx~ −ψ

p-value Ljung-Box
statistic

{ }T

1
1

ii ˆx~ −ψ

p-value

6 d.f. 7.79 0.254 8.89 0.180

12 d.f. 9.77 0.636 14.08 0.295

18 d.f. 17.48 0.491 21.38 0.261

24 d.f. 26.22 0.342 31.58 0.138
a Weibull ACD.
   Lag order selected on the basis of LR, AIC and BIC statistic.
b Instruments used for orthogonality conditition in eq. [17] :

  ( )24i1i1i,d x~,...,x~,1Z −−− =
   Lag order M in eq. [14] : 24
   Lag order J in  eq. [36] : 24
   Three iterations of GMM procedure.
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TABLE 3

 GMM Estimation Results
 Interdependent Model a

GMM
Estimate

Standard
Error

Volatility Process

hϖ  0.3256   0.0344

hα  0.1128  0.0093

hβ  0.8093   0.0145

Inter-Transaction
Duration Process

dϖ   0.2185  0.0585

1,dα  0.0735 0.0086

2,dα -0.0141  0.0124

1,dβ   0.6853  0.0740

1ζ 0.0064 0.0022

2ζ  0.0146 0.0034

Hansen χ2 test χ2 (137) = 146.2
 p-value: 0.279

a Instruments used for orthogonality conditition in eq. [27] :

  ( )2
24i

2
2i

2
1i24i1i1i,d r,....,r,r,x~,...,x~,1Z −−−−−− =

   Instruments used for orthogonality condition in eq. [20] :

  ( )2
24i

2
2i

2
1i24i1i1i,h r,....,r,r,r,...r,1Z −−−−−− =

   Instruments used for orthogonality condition in eq. [22] :

  ( )24i2i1i1i,m r,..r,r,1Z −−−− =
   Lag order J in eq. [25] :  24
   Lag order M in eq. [36] :  24
   Three iterations of GMM procedure.


