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Combining rational choice and evolutionary
dynamics: The indirect evolutionary approach*

Manfred Konigstein and Wieland Miiller
Humboldt-University Berlin'

May 11, 1999

Abstract

In this study we propose a formal framework for the indirect evolution-
ary approach as initiated by Giith and Yaari (1992). It allows to endogenize
preferences and to study their evolution. We define two-player indirect evolu-
tionary games with observable types and show how to incorporate symmetric
as well as asymmetric situations. We show how to apply solution concepts
that are well known from game theory and evolutionary game theory to solve
these games. For illustration we include two examples.

1. Introduction

In this paper we describe a special technique in modelling and analyzing human
behavior: the indirect evolutionary approach. It was initiated by Giith and Yaari
(1992) in a study on the evolution of reciprocal behavior and subsequently applied
to investigate e.g. the evolution of trust (Giith and Kliemt, 1994), monopolistic
competition (Giith and Huck, 1997), the evolution of altruism within a duopoly
framework (Bester and Giith, 1998) and within ultimatum games with production
(Kénigstein, 1997).

The indirect evolutionary approach (IEA) comprises modelling and solving an
indirect evolutionary game. We focus on two—player games. In such games a large
population of players is matched in pairs. Fach pair plays a two player game.
Like in any other noncooperative two player game, each player chooses a strat-
egy and the strategy profile determines the utilities of both players. In addition,
each strategy profile determines a fitness vector, with fitness being a measure of
reproductive (evolutionary) success. A key idea of the IEA is that utility and
evolutionary success need not coincide; while individuals may act rationally by

*We wish to thank Werner Giith, Steffen Huck, Jérg Oechssler, and two anonymous referees
for helpful comments and suggestions.
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choosing strategies that maximize utility, this may not maximize their evolution-
ary success. If individuals differ in evolutionary success, the personal character-
istics of more successful individuals will spread within the population faster than
the characteristics of the less successful ones. This leads to a dynamic process that
determines the long run distribution of personal characteristics within a society.
The characteristics are usually modelled as parameters of the utility functions.
Along with studying the evolution of preferences the analysis also determines the
long run distribution of strategy choices that are associated with the evolving
preferences.

In solving an indirect evolutionary game two classes of familiar solution concepts
are combined: solution concepts of noncooperative game theory (Nash equilib-
rium, subgame perfect equilibrium, etc.) and static or dynamic solution concepts
of evolutionary game theory (ESS, LESS, (asymptotically) stable fixed points of
evolutionary dynamics, etc.).

The indirect evolutionary approach has emerged via applications, and, so far, only
little work has been done on establishing a formal conceptual framework. Here
we take one step into this direction. We define the class of two player indirect
evolutionary games with observed types, which is the class of games studied in
most applications to date and present a unifying description of symmetric as
well as asymmetric games. We present two examples; a symmetric one where we
apply a static evolutionary solution concept (ESS) and an asymmetric one where
we apply a dynamic solution concept (asymptotically stable fixed point of the
replicator dynamics). We conclude with a methodological discussion in which we
address some potential criticism of the IEA and point to extensions. One kind of
extension would be a substitution of the perfect rationality assumption by some
kind of boundedly rational learning process or by substituting the evolutionary
dynamic by some other kind of social dynamic, e.g. imitation. The formalism
of the TEA is suited for such applications as well and such extension could be
fruitful.

2. Two—Player Indirect Evolutionary Games with Observable Types

2.1. Game Models

In an indirect evolutionary game I' there is a large population of individuals
(throughout we will actually assume an infinite population) who are repeatedly
matched in pairs to play a two—person game which we refer to as the base game
of I'. Player ¢ (i = 1,2) chooses a strategy s; in order to maximize individual
utility u; and inherits his type ¢; (with w; depending on ¢;) to the next generation
depending on evolutionary success r;. Formally, we define I' as follows:

Definition 1. A two—player indirect evolutionary game with observable types is
described by the 8-tuple

['= ((S:, T3, us, 1i)s-1,2) -



e 5; denotes a nonempty set consisting of player #’s pure strategies s;. The
tuple s = (s1, s2) represents a pure strategy vector. The set S = {(s1, s2) |
s; € S;} = S1 x Sy is the set of all pure strategy vectors.

e T; is a nonempty set of possible fypes of player ¢ (type space). A single
element of set T; is denoted by ¢;. The tuple ¢t = (¢1,%2) consisting of both
players’ types is referred to as a type vector, and we will write T' = {(¢1,%2) |
t; € T;} = Th x Ty for the set of all type vectors. In this study a player’s
type is assumed to be a parameter of his utility function. So, the term
“type” essentially refers to a type of preferences. The types are assumed to
be observable.

e u; denotes player ¢’s utility function. It is a mapping u; : S x T — R.

e 7; is player i’s evolutionary success (fitness function). It is a mapping r; :

S —R.

e For a given type vector ¢ the components S; and u; define a game GZ(t):

P (tn,t2) = ((Sivu)i 1)

(t1,t2)

which we will refer to as a base game of I'. Accordingly GP = {G’B(t) |t e T}
denotes the set of base games. Modelling an indirect evolutionary game ba-
sically means embedding a set of base games into an evolutionary system.

e Throughout the paper we investigate evolution in one population models,
and with the population being of infinite size.! Thus, each individual of a
single population of players is randomly matched with one other individual
to play the base game G2(t1,15). They play only once and then inherit their
respective type to their “children” with reproductive success of ¢ according
to r;. In the next period the population of children is matched and plays
the game. This process continues forever.

e The assumption of a one—population model implies that an individual can
be assigned to either of the two roles 2 = 1 or 2 in the base game. So, an
individual should actually be endowed with a type vector (1, t2) instead of
a one-dimensional type ¢;. This will be assumed within asymmetric games.
However, within symmetric games an individual is sufficiently characterized
by t;.

So, an indirect evolutionary game combines two familiar types of theoretical
models: a non—cooperative game and an evolutionary system. Each base game
GPB(t1,19) is just a usual non—cooperative game with strategy spaces Sy, S and

Tt will be obvious later on how to extend the indirect evolutionary approach to two—
population models.



with ¢; and ¢2 being parameters of the players’ utility functions (which are com-
monly known). T; is the set of possible utility parameters and it is the mutation
space of the evolutionary system. The population share of individuals of type ¢;
which is present in period 7+ 1 depends on evolutionary fitness r; in period 7 and
on mutations. We will say something more specific about evolutionary dynamics
below.

A key idea of the indirect evolutionary approach is that, in general, utility and
evolutionary success are not the same; i.e. the functions u; and r; differ. This
should not be viewed as a critical assumption. Rather it is the specific purpose of
the indirect evolutionary approach to investigate evolution of behavior when the
motives (preferences) that drive individual decisions differ from the forces that
determine long-run survival of motives (preferences) within a society.

Another special feature of indirect evolutionary games is that r; does not depend
on t, at least not directly. Remember that ¢; is the characteristic of an individual
that is the object of mutation and inheritance within this model. That fitness
does not directly depend on it may be surprising from the perspective of usual
evolutionary games. However, we will show below that the assumption of utility
maximizing players leads to strategy choices s; that depend on t. Since r; is
defined on S, and s is a function of ¢, it follows that evolutionary success does
ultimately depend on types. This will become clear when we now describe how
to solve an indirect evolutionary game.

2.2. Solution Concepts

Within an indirect evolutionary game a player ¢ is endowed with a utility function
u; with an individual preference parameter ¢; and his choice variable is $;.2 In ac-
cordance with standard economic theory we assume that ¢ will choose s; in order
to maximize his utility; i.e. we assume that players are rational. Within strategic
games this assumption implies that the chosen strategy profile is a Nash equilib-
rium. We denote by s*(¢) a Nash equilibrium of GB(t,%5) which is considered the
unique solution of the game. Saying that s*(¢) is considered the unique solution
of the game implicitly assumes that if the base game exhibits multiple equilib-
ria then some kind of equilibrium refinement® or equilibrium selection theory* is
applied to determine a unique solution.

In determining their equilibrium strategies the players take into account utility
but not evolutionary success. However, we can determine the evolutionary success
of each player 7 as

ri(tr, 1) = r(s1(0), s3(0)),

2We assume that the players choose pure strategies in order to simplify our exposition. Thus,
we will assume that a solution in pure strategies exists. However, it will be obvious how to extend
the approach to allow for mixed strategies.

3For details see van Damme (1991).

4See Harsanyi and Selten (1988).




i.e. by evaluating the evolutionary success function r; at equilibrium strategies.
In the terminology of dynamic optimization the function 7} is a value function.
We will refer to it as the “indirect evolutionary success function”. Indirect evolu-
tionary success 7} depends only on the players’ types. These types are inherited
from generation to generation and may mutate within the limits of the type space
T;. Note that at this stage we have all ingredients of a “usual” evolutionary game
GF which is described by the type spaces T; and the indirect evolutionary success
functions r}:

GP = (T3, 7])i=1,0)

We will refer to the usual models investigated in evolutionary game theory® as
“direct evolutionary games” in order to distinguish them from an indirect evolu-
tionary game I'. Accordingly, GF will be referred to as the “direct evolutionary
game that is associated with ['.

In direct evolutionary games, evolutionary success depends directly on types. One
could have started with modelling the dependence of r} on ¢; and ¢, instead of
deriving G¥ from the indirect evolutionary game I' — which is what we do here.
But, by doing so we motivate the specification of r} by some underlying structure
that allows for rational strategy choices s; based on inherited types. We view this
as an advantage of the indirect evolutionary approach and we get back to this
point in the discussion section.

We spent this effort on explaining differences and similarities of direct and indirect
evolutionary games in order to show that we do not have to develop new solution
concepts to solve the evolutionary part (G¥) of an indirect evolutionary game I
Rather we can simply apply one of the static or dynamic solution concepts that
are well known for direct evolutionary games® to analyze G¥. We will show how
to do this below. But before we want to generally characterize the solution of an
indirect evolutionary game as follows:

Definition 2. A solution of a two player indirect evolutionary game I as defined
above consists of:

1. atype vectort* = (t},1%) (or a set of type vectors) which is (are) the solution
of the game GF which is associated with I' and

2. the equilibrium strategy choices s!(t3,15) that are associated with t* (re-
spectively the set of equilibrium strategies that are associated with the
solution set of types).

Up to the point where GF is established by determining ry both symmetric as
well as asymmetric indirect evolutionary games proceed in the same manner. The
above definition summarizes what comprises the solution for both kinds of games.

5See e.g. the textbooks by Weibull (1995) and Vega—Redondo (1996) or the article by Ham-
merstein and Selten (1994).
See e.g. Weibull (1995).



Some special concerns in the analysis of symmetric versus asymmetric games will
be shown in the following sections.

2.3. Symmetric Games

In this section we show more specifically how to solve an indirect evolutionary
game by applying the concepts of an evolutionarily stable strategy (ESS) to a
symmetric game [, respectively by looking for stable fixed point of replicator
dynamics. The ESS concept belongs to the class of static solution concepts while
the latter is a dynamic solution method.

A symmetric indirect evolutionary game I is defined as above with the additional
restrictions S = Sy, T1 = Ty as well as

U1(81, 82}7513 t2) = ’LL2(82, 81, t27 tl)

and
r1(s1, s2) = r2(s2, 51).

We will show later on how to solve asymmetric games. We can solve the base
games GB(t1,t3) by determining s*(¢) for all ¢ = (¢1,%9) € T. Accordingly, the
indirect evolutionary success function

ri (b, ta) = 73(s1(t), 53(1))
together with 7; (¢ = 1, 2) defines the symmetric direct evolutionary game
GF = (T, 7])i=1,2)

that is associated with I'. Within symmetric games the players’ roles 1 or 2 are
meaningless and it is customary in evolutionary game theory to drop the role
index ¢. We kept it up to this point to show how symmetric games fit into the
general framework of indirect evolutionary games.

The important point in analyzing a symmetric game is that the evolutionary
solution has to be derived only for one of the two roles. So, within symmetric
games an individual is characterized by a single type rather than a type vector.
We therefore assume without loss of generality that the evolutionary success of
an individual of type ¢* when matched with an individnal of type #' is given by

GRAETNY

with ¥ ¢! € Ty. Accordingly r*(t*, t*) is the evolutionary success of a t* individual
when matched with a t*-individual.”

7Of course, the definitions of 7*, t* and ¢! (thereby dropping the role index) are not necessary.
However, readers who are familiar with direct evolutionary games may appreciate to see the
customary notation.



tk*

An ESS of the indirect evolutionary game [ is given by an ESS of the associ-

ated game GF. The ESS concept requires that the following conditions hold:
PR ) > e (R ) for all tF € Ty (2.1)

and
* (tk*, tk) > ’l“*(tk, tk)

for all t* #£ t"* that satisfy r*(t"*, t5*) = r* (¢, ") (2.2)

To see that the solution of a symmetric game ' fits into the formalism of a
solution for general indirect evolutionary games as defined above just note that
t* = (t1,t3) is given by (t**,t#*) and that the according solution strategies are
st(tk, %) and sh(tF, %),

While ESS is a static solution concept one might as well apply dynamic solution
concepts to solve G¥ (and thus I'). For example we briefly sketch how to use
the continuous-time replicator dynamics® (see Weibull, 1995) within a symmetric
indirect evolutionary game. Again, we simplify the notation and consider an in-
dividual’s type as given by t* € Ty = {t!,...,#"}; i.e., T} is now assumed a finite
set of n different types.

Let the state of the population at time 7 be given by z(7) = (x4 (1), ...,z (7))
with 37 x4 (7) = 1 where x4 (7) is the population share of individuals that
are endowed with type t* at time 7. The dynamics for the population share zx

is given by
Tp= [ex Az — T Az|T 8 (2.3)
with
() - ()
A= : . : (2.4)
) e ()

where z,x denotes the time derivative of z and ey the k-th unit vector. Again,
without loss of generality, r*(t*,¢!) = r] (tk, tl) represents the evolutionary success
of a tF—individual when paired with a ¢!-individual (for all k,1 = 1,...,n). One may
now look for population states x*(7) which are stable or asymptotically stable
fixed point of the dynamics 2.3.”

8Note that the replicator dynamics as will be described here operate on a finite set of types (or
strategies). This is the usual modeling approach in the literature (see e.g. Weibull, 1995 or Vega-
Redondo, 1996). Replicator dynamics operating on mixed strategies are discussed in e.g. Zeeman
(1981), Akin (1982), Thomas (1985), and Bomze (1991). For recent research about evolutionary
dynamics on continuous action spaces see e.g. Binmore and Seymour (1995), Friedman and Yellin
(1996), Hopkins and Seymour (1996), and Oechssler and Riedel (1998).

®Roughly, a fixed point z*(7) (i.e. a point at which the right hand sight of the equations in
2.3 vanish) is stable if a small perturbation of the population mixture cannot lead far away from
x*(7), and the fixed point is asymptotically stable if it is stable and if any sufficiently small
perturbation is followed by a movement back to z* (7).



We have shown in these examples how to solve G¥ (and thus I') via a static
or a dynamic solution concept. Other solution concepts for indirect evolutionary
games suggest themselves: Since GF is formally no different than usual direct
evolutionary games one can transfer other static solution concepts and define
e.g. neutral evolutionarily stable strategies (NESS), limit evolutionarily stable
strategies (LESS) or evolutionarily stable sets for indirect evolutionary games.
Furthermore, all dynamic solution concepts which are common in evolutionary
game theory can be applied to analyze indirect evolutionary games as well. On
the other hand, solving an indirect evolutionary game faces the same problems
known for direct evolutionary games, and the choice of a solution concept will
depend on the specifics of the game G¥ at hand. But, importantly, the fact that
GF was derived from I' does not raise any new issues regarding the solution of
GF other than what is known for direct evolutionary games.

2.4. Example 1: Symmetry and ESS

As an example of a symmetric two player indirect evolutionary game we inves-
tigate whether firm owners that care not only for profit but also for consumer
surplus may survive evolution. The base game is modelled as a duopoly market.
Consider a two duopolists (players 1 and 2) playing a Cournot game on a ho-
mogenous market. Their quantity choices are s; and s9 with s; € S; = [0, %] We
assume a linear demand function which is suitably normalized such that player
1’s profit 7; is given by

Wi(si,sj) = (1 — 8; — sj))sz-

fori,j € {1,2}, i # j. Player ¢’s preferences are described by the following utility
function:

ui(85, 85, t:) = timi(si,85) + (1 —15)C (84, 85)
where

81+82
Cloes) = [ (1= )y = (1= = 3y) (s + )

is net consumer surplus and with ¢; € [%, 1}. Thus, ¢ is not only concerned with
his own profit but also with the welfare of consumers. Specifically, #’s utility is a
weighted average of his own profit and consumers’ surplus. The weight ¢; is an
individual preference parameter (i’s type). It is observable and is the object of
evolution; i.e., ¢; will spread according to the evolutionary success of player 7.1°
Note that the specification of the utility function allows for preferences that are
usually assumed in economics. Namely, for ¢; = 1 player ¢ only cares about his

own profit.

0Within this model u; does not (directly) depend on t;. This is just a special case of the class
of functions u;(s;, s;,t;,t;) that was assumed in the general description of indirect evolutionary
games we gave above.



Given preference parameters ¢y, t9 for both players, the strategy spaces S; and
the utility functions u; define the base game G (t1, t3) of an indirect evolutionary
game ['. Furthermore, by identifying 7; = [%, 1] we have a type space, so that
the only missing component for an indirect evolutionary game is the evolutionary
success function r;. We assume that

13(84, 85) = mi(si, 85).

So, evolutionary success is given by monetary success. From an economist’s per-
spective this is certainly a natural assumption: While individuals may entertain
various kinds of subjective preferences as captured by u;, the long run survival of
a preference type and the associated strategy choices depend on their monetary
consequences. We think that measuring evolutionary success by monetary payoff
is a very useful specification of an indirect evolutionary game and we will discuss
it later on.

Having defined all components of the indirect evolutionary game the solution is
derived as follows: Maximizing u; with respect to s; gives the system of first order
conditions

gui(si, Sj,ti) = SZ'(]. — 3752') + Sj(l — 275@') +t;=0fori=1,2,
S3

which can be solved for equilibrium strategies s} (¢):!!

it 4+t — 1
L e B3 fori,j=1,2.

si(t)=si(tity) = ¢~ — —
ilg 7 7

Note that s7(¢;,t;) > 0 for ¢;,1; € [%, 1].

The functions s}(¢) characterize a unique solution for every base game GP(t) of
the indirect evolutionary game I'. Substituting s1 and sg in 7;(s1, s2) by s7(¢) and
s5(t) gives the following indirect evolutionary success function (¢, ¢;):

(3titj — tj — tz') (titj + tj — ti)
(5tit; —t; — t;)*

ri(ti 1y) = ri(si(1), s5(1)) =

for 7,7 = 1,2. The type spaces T; together with r define the symmetric di-
rect evolutionary game G that is associated with I'. Without loss of generality
we consider 7*(t*,#!) = r}(t*,¢!) as a t*~individual’s evolutionary success when
matched with a ¢! individual (with ¢* ¢/ € T1). In order to derive an ESS t** (see
Maynard Smith, 1982) one first has to solve the following first order condition

o
w’r*(tk,tl) = 0

"UGince %'[lﬂi(Si,S]‘,ti) = 1 — 3t;, the second order condition for a maximum is satisfied if
i

t; > % which holds by definition.



for
e i (4t —1)

(2 —5th 4+ 1

Setting t* = ¢/ = t** and solving the resulting quadratic equation with respect
to t** results in two candidates for an ESS of GF (and thus of T): tF* = g%éj

or th* = glwlﬁ . Since 9;16@ < % the second candidate is not feasible given the

definition of 7. So, only the candidate t** = %ﬁ remains. The stability require-
ment (2.1), ie. r*(t¥* tF*) > r*(¢*, %), is equivalent to (166" — 9 — \/17)2 >0
which is always satisfied. Moreover, since 7*(t**, t%*) = r*(¢*,t%*) is satisfied only
for t* = tk* the stability requirement (2.2) is also fulfilled. Thus we have the
following

Proposition 1. In the symmetric indirect evolutionary game as defined above
th = % =2 0.82 is the unique evolutionarily stable strategy.

Proposition 1 says that within our model of evolution based on duopoly inter-
action only those types of firm owners survive evolution who care for consumer
welfare. Egoistic preferences — as they are assumed throughout most of economic
theorizing  would die out in such markets.

2.5. Asymmetric Games

We will now show how to solve asymmetric two-player indirect evolutionary
games with observed types. These are games I' in which one or several of the
following inequalities hold:

S1 # So
T, 4+ T

u1(517527t17t2) 7& u2(527817t27t1)

or
r1(s1, s2) # r2(s2, s1).

We still keep the assumption of a one-population model. So, each individual of a
single population will be paired with one other individual, and one of the paired
individuals is assigned role 1 while the other is assigned role 2. It is assumed that
each of the two role assignments is equally likely.

Within asymmetric games it is important to read s; as role #’s strategy to dis-
tinguish it from a individual j’s strategy (j = 1,2) which shall be defined as the
individual j’s behavior strategy s’:

s7 = (s], ).

10



Here s (s3) is individual j’s strategy when assigned player role 1 (role 2). Anal-

ogously, one can define individual j’s type vector #:
= (ﬂ? tj2)

The vectors s7 and #/ will become important when we analyze GF which is the
direct evolutionary game that is associated with ' (see below). However, we drop
the superscript index for the individual whenever this should not cause confusion.
In solving the asymmetric game I' we solve

GP(t, 1) = <<Si7ui)i:l,2)

(t1,t2)

for all ¢ = (t1,12) € T. The solution is s*(t) = (sj(t), s5(t)) for all £ € T
The equilibrium strategy profile s*(¢) can be plugged into r;(s) to give the indirect
evolutionary success function r}(t) = r;(s*(¢)). Accordingly the game

G¥ = ((T,, Tf)i:l,z)

that is associated with I' is now a direct evolutionary game with role asymmetry.
So, in solving G¥ (and thus I') we have to apply the methods that are suited for
asymmetric games (see e.g. Weibull, 1995, pp. 64 or Selten, 1980). We therefore
consider two individuals (players) 7 = 1,2 who are characterized by their type
vectors t1 = (t{,t}) and 2 = (¢2,3), respectively. We call (¢! x #?) a pairing and
(t%, t%) the match in which player 1 is assigned to role 1 and player 2 is assigned
to role 2. Accordingly, (t%, t%) is the match in which player 1 has role 2 and player
2 has role 1. We can distinguish the equilibrium strategy profiles (of the base
games GB(t)) for both matches as

s (t},t%) and s* (t%, t%)
and furthermore the indirect evolutionary success of each player in each match:
1,2 142
T (t17t2) T (t17t2)
and
* (42 41\ ok (42 41
i () .75 (6, 13) -

The indirect evolutionary success of player 1, respectively player 2, in the pairing
(t! x ¢2) will thus be determined as the expected success of both matches:!?

1t x %)

NN

1
TI (t%a t%) + 57'; (t% t%)

and

[N

1
1 (8,t3) + =73 (41, 43)

2t x %) 5

12This is the usual asumption in direct evolutionary games with role asymmetry.

11



Note that r* (¢! x t2) = 72*(¢2 x t!); so, by assuming that each match is equally
likely and determining evolutionary success as the expected success of both matches
we have essentially removed the asymmetry. Without loss of generality we can
now interpret r*(t*¥ x t!) = r* (¢! x12) with t*, #! € T = Ty x T} as the evolutionary
success of an individual which is endowed with type vector t* within a population
of t-individuals.'® We are now ready to look for a solution of G¥ according to e.g.
the notion of ESS or some other static or dynamic solution concept. Thus, a so-
lution of I' (in case a unique solution exists) will be a type vector t¥* = (ti*, tk*)
(i.e. the solution of G¥) and the associated solution strategies s}(t%*,t5*) and
s5(tk* th*). This illustrates that the solution of asymmetric games fits into the
general definition of a solution for indirect evolutionary games as given above.
We want to remark that the formal requirement that an individual is endowed
with a type vector # does not necessarily imply role dependent types nor that T}
and Ty have to be regarded as two separate mutation spaces where a mutation of
the role 1 type is independent of a mutation of the role 2 type. For instance, a quite

plausible restriction is to require ¢] = t]2., i.e., an individual’s type is independent

of its role. It was applied e.g. by Koénigstein (1997) in a study on the evolution of
altruism within an asymmetric bargaining game. The restriction that the degree
of altruism is independent of an individual’s role within a bargaining procedure
seems reasonable. Formally, such a restriction means that t/ € 79 C T =T, x T;

i.e., the mutation space T7 = {tj ¥ eT, = t%} for individual types ¢/ is a
subspace of 1.

2.6. Example 2: Asymmetry and Replicator Dynamics

The following example serves two purposes: to show how to handle asymmetric
games and how dynamic solution concepts can be applied. We consider the game
that is shown in Figure 2.6; as in Gale et al. (1995) we refer to it as the “ultimatum
minigame”. In this game “role 1” first proposes how to divide a pie of size ¢ >
0. The choice labelled “F” represents a fair offer, inducing an equal split of c.
The choice “U” (unfair offer) results in an uneven split of ¢ given that “role 2”
subsequently chooses “A” (accept). In this case, 1 earns (1 — ¢)c while 2 gets ec
with 0 < e < % If, instead, 2 chooses “R” (reject), then both roles earn nothing.
These payoffs are monetary payoffs and they are assumed to be the measure
of evolutionary success. However, each individual has a utility function of the
following kind: in case of rejection the role 2 utility is ¢y with ¢ € {m,m} and
0 < m < m whereas the role 1 utility is ¢; = 0 (i.e., it is equal to monetary
payoff for all individuals). For all other cases utility is equal to monetary (and

3Note that t*, ' now represent elements of T while in symmetric games these variables were
used to denote elements of 77.

14We use the term “role i’ instead of “player i” here to avoid confusion; remember that a
player in an indirect evolutionary game is an individual person out of a large population who
gets assigned either of the two roles.
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thus evolutionary) payoff. Thus Figure 2.6 shows utility payoffs. The parameters
m and T can be thought of as measuring 2’s “feeling of revenge” when rejecting
an unfair offer; if {9 = ™ this means that the individual acting in role 2 has a
strong feeling of revenge, otherwise it has a weak feeling of revenge (to = m). To
make things interesting we will assume furthermore m < ec < m.

Figure 2.1: ”Ultimatum Minigame”

With these definitions we have essentially modelled an asymmetric two—player
indirect evolutionary game with observed types I' = ((S;, T3, i, 73) )41 o- For the
sake of exposition we will write down its components explicitly:

Sy = {F,U}, 5 = {A, R}
Ty = {O}a Ty = {m’ m}

(Gede)  for (s.0) € {(FA)(FR)} x {(0,m), (0,7)}
(ur,ug) = ((1—¢)c,ec) for (s, t) € {(U,A)} x {(0,m), (0,7m)}
(0,22) for (s, 1) = {(U, R)} x {(0,m), (0,/m)}
Gele)  for se{(FA)(FR)
(ri,rme) = (1 —e)e,ec) for s=(U,A)
(0,0 for s=(U,R).

To solve the game I' we first solve the associated base games GP(t,t5) for the
equilibrium strategies.!® Perfect rationality (with respect to utility) implies the

B Gince T} is a singleton we don’t need t; as an identifier of a generic element of 77. But, for
the sake of exposition we will nevertheless do it.
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following subgame perfect equilibrium strategies:

(s] (t1,t2), 85 (t1,t2)) = { Eg: fég for ty = m'

= (2.5)

for t9=m

This describes the solution for every base game GB(t1,t5). By evaluating r;(s) at
s*(t) we get the asymmetric direct evolutionary game G¥ = ((T},7});—1,2) with
the indirect evolutionary success functions

(r] (t1,t2) ,75 (t1,12)) = { E(%lc’_%i))q ) for tz =

Since GF is asymmetric we consider player j = 1,2 as being endowed with type
vector ! = (],15) = (0,#}). Pairing (¢! x #2) results in one of the two possible
matches (t1,t3) = (0,3) or (¢2,t1) = (0,#) with each match being equally likely.
The “ultimatum minigame with random role assignmen

2.6.

2

is illustrated in Figure

Figure 2.2: “Ultimatum Minigame with Random Role Assignment”

The indirect evolutionary success of player 1 in a pairing with player 2 (r1*(¢! x#2))

is described by the following matrix where rows refer to ¢! and columns refer to
12

14



(Om)| e 11+ 22)e
(2.7)

(0,m) | 1(3—2e)c ic

The cell entries represent player 1’s evolutionary success in a pairing with 2. To
show how to get these formula we derive r!*(t! x 2) = r1*((0,m) x (0,m)), i.e.,
the evolutionary success of player 1 with ¢3 = m when paired with player 2 with
t2 = m. The other payoffs can be calculated similarly. So, note first that player
1’s role 1 success T (t t%) is determined in match (tl t2) by the strategy profile
(s1*, s2*) = (F, R) (see (2.5)); the result is r{* = Lc (see (2.6)). Player 1’s role
2 payoff 71 is determined in match (t%, ) by the strategy profile (s2*,si*) =
(U, A) (see (2.5) and note that in this model it is the role 2 player’s type that
determines the equilibrium strategies); the result is 74* = ec (see (2.6)). Therefore
r1*((0,m) x (0,/m)) = 3ri* + 3r3* = 1 (1 + 2¢) c.

To illustrate the use of a dynarmc solution concept we apply the replicator dy-
namics to solve GF (and thereby I'). Let the state of the population at time 7 be
given by z(7) = (xm(7), zm(7)) = (zm(7),1 — zm (7)) where z,,(7) is the popu-
lation share of (individuals endowed with) type vectors (0, m) at time 7.1® With
the payoff matrix given in (2.7) the replicator dynamics (2.3) becomes:

o }10(1 %) (T — 1) (2.8)
b = — .

For all 2, (0) > 0 the solution of the system of ordinary differential equations in
(2.8) is given by

1

1+ ¢y exp(at)’ zm(t) =1 - zm(l)

Tm(t) =

where ¢ = = m’"go()o) >0anda——c(1—25) >OsinceO<6<%.

The population states z = (1,0) and =z = (0,1) are the only fixed points of
system (2.8). Since for every zm,(0) > 0 it holds that ¢; > 0 it follows that
limy_, o0 2, () — 0, i.e. the population state (0,1) is globally asymptotically sta-
ble. Thus, if initially only a single type vector is present in the population, this
state does not change over time as long as no other type vector appears via mu-
tation. In every mixed population the (0,72) individuals are more successful than

% Note, here, that for convenience we use m and 77, respectively, as a shorthand for (0, m)
and (0, m), respectively.
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the (0,m) individuals. Therefore the population share of the latter will converge
to 0 over time. So, in the long-run the population will consist only of (0,7) in-
dividuals, i.e., of players that exhibit strong feelings of revenge when rejecting an
unfair offer. Furthermore, the associated strategy choices are such that only fair
offers occur and that unfair offers would be rejected. We summarize these results
by formulating

Proposition 2. The population state x = (Zy,,zm) = (0,1) is globally asymp-
totically stable in the replicator dynamics, i.e. for all completely mixed initial
conditions the population will consist only of (0, m) individuals for t — oo.

Note that Huck and Oechssler (in press) also investigate a version of the ulti-
matum minigame using the indirect evolutionary approach. They assume a finite
population of players interacting in small groups and relax the assumption of
observable types. Under specific assumptions regarding the dynamics used they
show that if the maximal group size is sufficiently small almost all proposers will
offer the fair split in the long run (for arbitrary initial conditions). So, their result
is in line with ours.

3. Discussion

We summarize that the indirect evolutionary approach (IEA) allows to model
endogenous preferences and to study their evolution.!” The reproduction of pref-
erences depends on the strategy choices which they induce. So, evolutionary suc-
cess depends indirectly rather than directly on the preference types. We have
presented a unifying description of 2 player indirect evolutionary games with ob-
served types, which, we hope, makes it easier to see the conceptual links between
applications one finds in the literature. The IEA is a combination of existing meth-
ods of modelling and analyzing human behavior. We have shown how to model
such games and how the solution concepts that are known from game theory and
(direct) evolutionary game theory can readily be applied.

The process of evolution is not necessarily to be interpreted as biological evolution.
One might as well think of it as social evolution: “Memes (ideas, learning rules,
behavioral norms, etc.) are just as much the object of evolutionary pressures
as genes, but memes multiply through imitation [italics in original] rather than
physical replication” (Binmore, 1988, p. 16, paraphrasing Dawkins, 1976).

This interpretation of evolution may lead to applications of the IEA which we
find quite appealing. Namely, to model the development of social norms within a
society and how this depends on the strategy choices which they induce. E.g. a
norm may be thought of a special kind of preference. Within social interaction,

There are other approaches to explain the change of preferences. For instance, see Bowles
(1998) for a recent review of models and evidence upon the impact of economic institutions on
preferences. We see this work as complimentary.
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individuals are not programmed to choose certain actions independent of their
own norms and those of the other interacting persons, but may derive choices
taking these norms into account. So, in the short run, human behavior depends
on existing norms. However, in the long—run, the norms themselves may change,
and their spreading within a society may depend on material (e.g. monetary)
success. It is especially this view upon the dynamics of social behavior why we
think that the TEA is a useful modelling tool: it is the combination of rational
behavior and social evolutionary dynamic.

One might wonder whether the change of preferences or norms could also be
modelled as rational choice rather than evolution. We acknowledge that this may
be possible. But, there are phenomena (like changes in fashion, tastes, corporate
culture, etc.) that seem better described, for instance, as imitation process rather
than rational choice. Furthermore, evolutionary solution concepts and rational
choice concepts do not coincide, in general.

On the other hand, from the perspective of direct evolutionary game theory one
might wonder about substituting the rational choice part of the IEA by another
evolutionary process. Namely, rational choice based on preference types as it is
captured by the equilibrium strategy sf(¢) can be thought of as a behavioral
rule which is parametrized by ¢. Instead of deriving s?(¢), as we did it here, one
could start out by modelling a space of such rules, which would be the usual
direct evolutionary approach. Huck and Oechssler (in press) show for a simple
example how this can be achieved. However, they also show that the solution
of such a fully evolutionary model and the solution of the indirect evolutionary
game do not necessarily coincide. Moreover, we view the incorporation of rational
choice as a structural advantage of the IEA compared to pure evolution. Afterall,
human beings are endowed with a cognitive system that allows for behavioral
adjustments based on reasoning. It may nevertheless be fruitful to think of relax-
ations of strong rationality assumptions as they are required by game theoretical
equilibrium concepts.

In the examples we gave here, we assumed that evolutionary success is repre-
sented by monetary payoff. This is not necessary. The formalism allows for any
other specification of the evolutionary success function. However, all applications
we are aware of used monetary payoff as success measure. Furthermore, since in-
come levels can be observed relatively easy within a society this seems a natural
specification, especially within economic models.

Finally, we want to point to two important restrictions of our presentation: we
assumed infinite populations and observability of preference types. Evolution in
finite populations and/or imperfect observability of types requires a richer descrip-
tion of an indirect evolutionary game than what we allowed for. For applications
of such models see e.g. Huck and Oechssler (in press) or Giith and Kliemt (1994).
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