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ESTIMATORS IN PARTIALLY LINEAR
SINGLE-INDEX MEASUREMENT
ERROR MODELS *

Hua Liang and Naisyin Wang
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TX 77843-3143, USA

Abstract

Counsidering partially linear single-index errors-in-variables model which can be
described as Y = n(XTag) + ZT By + ¢ when the Z's are measured with additive
errors. The general estimators established in literature are biased when ignoring the
measurement errors. We proposed two estimators in this setting. Their theoretical
properties were derived and compared.
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1 INTRODUCTION

We consider the semiparametric partially linear single index measurement error models

(PLSIMEM),
Y; = n(X] ) + Z]' By + &i, with ||| = 1 (1.1)

where Y; is a response variable; X;, Z; are respectively exactly measured and error-prone
covariates; 7(-) is a smooth unknown function; and the errors ¢; are independent with
E(g1|X,7) = 0 and E(¢?|X, Z) < oo. The restriction ||ag|| = 1 assures identifiability.

When Z; were exactly observed, this model is a natural generalization of the single-
index and the partially linear models. The former case, where 3y, = 0, has been elaborately
studied by Ichimura (1987), Héardle, Hall and Ichimura (1993) and more recently by
Bonneu, Delecroix and Hristache (1995). The latter model with X being a scalar and
a = 1 was introduced by Engle, et al. (1986) to study the effect of weather on electricity
demand, and was further investigated by Heckman (1986), Chen (1988), Speckman (1988),
Cuzick (1992a,b), Severini & Staniswalis (1994) and Mammen and Geer (1997).

Model (1.1) with exactly measured Z is also a special case of the generalized partially
linear single index models (GPLSIM) studied by Carroll et al (1997), where (1.1) is
replaced by

9 HEY, X3, Z:)} = n(X] ao) + Z] B, (1.2)

with g being a known link function. The result in this paper proved some building blocks
to investigate model (1.2) when Z are measured with errors. Further detailed research is
needed for the complete development of methodology in this general setting though.

We are interested in estimation of the unknown parameters 8, and « and unknown
function 7(-) in model (1.1) when the covariates Z are measured with error, and instead
of observing Z, we observe its surrogate W;. The description of PLSIMEM is completed

by using an additive measurement error model to relate W & Z:
W; = Z; + U, (1.3)

where the measurement errors U; are independent, independent of (V;, X;, 7Z;), and iden-
tically distributed symmetry random errors with covariance matrix ¥,,. The linear and

nonlinear measurement error literature has been surveyed by Fuller (1987) and Carroll,
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Ruppert & Stephanski (1995), respectively. More recently, Liang, Héardle and Carroll
(1999) consider a combination of a partially linear model and (1.3), which is a special
case of PLSIMEM.

We briefly describe the motivation and the estimation procedure of Liang, et al.
(1999), and extend it to a “pseudo-likelihood” type of procedure (pseudo-# method) to
accommodate the single index structure and the multivariate X. The estimation proce-
dure and the asymptotic properties of this estimator is provided in section 2. To avoid
the “curse of dimensionality” in nonparametric regression, a new estimator which utilizes
local estimating equations is proposed in Section 3. A theoretical comparison the two

proposed estimators is discussed in Section 4.

2 PSEUDO-g METHOD

If the Z’s were completely observable, estimation of 3, at ordinary rates of convergence can
be obtained by the following algorithm. We assume that the observed data (X;, Z;, Y;), 1 <
i < n, are generated by the relation of (1.1), and 7n(-) is an unknown piecewise smooth
and continuous univariate function. g is a p—variate unit vector. E(e;|X,Z) = 0 and
E(e?]X, Z) < oo. As indicated by Schick (1996),

B(Y[X:) = n(X] ao) + E(Z]X:)" Bo (2.1)
A combination of (1.1) and (2.1) yields that
Yi — E(Y|X;) = {Z; — B(Z| X))} Bo + e

Suppose that the regression functions F(Y|X) and E(Z|X) are smooth, using the usual
nonparametric smoothing techniques such as kernel regression, we can easily establish
the estimator of 3y by employing least squares, maximum likelihood or quasilikelihood
methods. For surveys of various nonparametric methods, see Hérdle (1990).

Let E(Y|X) and E(Z|X) be the kernel regressions of ¥ and Z on X with bandwidth
h and kernel function K;(-). Then

n
~

5. = [z - B@IX)HZ - Bzx)y]

i=1

2 — B(ZIX)}Y: - BY|X). (2.2

=1



Under some regularity conditions and a proper order of A,
n'/?(B; — Bo) —* Normal(0, I'7/, SoI'7y), (2.3)

where I'; x is the covariance matrix of Z — E(Z|X) and X, is the covariance matrix of
e{Z — E(Z|X)}.

The least squares form of (2.2) can be used to show that if one ignores measurement
error and replaces Z by W, the resulting estimator is inconsistent for (3;. For the partially
linear model, Liang, et al. (1999) apply the so-called “correction for attenuation” approach

and propose to estimate (3 by
-~ n ~ . _1
B = [ (Wi = EGWIX)HW: = BWI XY = n¥]
i=1

AW = EWIX)HY: - E(VIXi)} (2.4)
By deducting nX,, from the first term of the right-hand side of (2.4), they verify that
0™ S (Wi E(W[X)HWi— E(W[ X))} and n™' S (Wi— E(W | X) HYi-E(Y|X,)}
converge to I'zx + ¥y, and 'z x/3, respectively, and prove that Bn is consistent. The
estimator ﬁn can be directly adopted in the partially linear single-index setting by using
a multivariate nonparametric estimator for E(W|X;). We shall show that /3, is consistent
as well as asymptotically normal. Before giving the first main result, we assume the

following conditions.
Condition 1.
(i) Tzx = E{Z — E(Z|X))(Z — E(Z|X)}" is a positive-definite matrix.

(ii) Each entry of the Hessian matrices of F(Z|X) and E(Y|X) are continuous and
squared integrable, where the (i,j) entry of a Hessian matrix of ¢g(z) is defined as

(iii) by, € [Cin VP Cyn= Y@+ for 0 < O < Cy, where p is the dimension of X.

(iv) Ky (e) is a bounded p—variate kernel function with compact support and a bounded

Hessian.

/Kl(u)du =1 and K;(u) = K;(—u)



(v) Weight functions wy;(-) satisfy:

n

(i) g%’;j;wm({]}) =0(1),
(é4) max wni(T;) = O(bn),
(i) lrgg);j;wnj(ﬂ)f(ﬂ} =T > en) = O(cn),

where b, = n= 1t/ ¢ = VP Jogn.

Theorem 2.1 Suppose the condition 1 hold and E(e* + ||U|[*) < co. Then B, is asymp-
totically normal,

"2 (B — o) = N(0,T7xSsrl 5x),

where Sgp = Bl(e — UT){Z — E(Z|X)}]** + B{(UU" — $4,)50}® + E(UU"¢?).
If € is homoscedastic and independent of (Z, X ), Lgp can be simplified to 02T 71 x+X,
where 02 = E(e — UT3y)? and Yy = E{(UUT — 3,,)50}%% + Tyu0? with A®? = AAT.

The proof of Theorem 2.1 is similar to that of Theorem 3.1 in Liang, et al. (1999), to

which we refer for details. The key step is to obtain

~

V(Bn = o) = n72T 1, i[{Zi +U; — B(Zi|Xi)}(ei — Uy Bo) + BuuBo] + 0p(1)
i=1

=0T S~ BUZX)Y e~ UF ) — (UUF — Su)y

=1

+Uiei] +0,(1), (2.5)

which leads to the result of Theorem 2.1 directly.

Theorem 2.1 indicates that theoretically, when proper orders of bandwidths are cho-
sen, the asymptotic distribution of the estimated coefficient, Bn, of Z has the same struc-
ture regardless of the dimension of X. However, one should note that, in practice, if the
dimension of X is high, a large n is required in order to reach the asymptotica. When
p is small, Bn provides a simple consistent estimator. Without the assumption that U is
symmetry, one need to take into account the covariance between U and UU?. The exact

asymptotic covariance in a more complicated form can be obtained using (2.5).
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After obtaining the estimate of 3y, we pretend it were fixed and utilize the following
“modified” model

Y;_ZiTBn:"?(XZTQ’o)-{—& and W, =Z7,+U;

to estimate agp and 7(+).

In literature, there exist several methods which estimate o at the /n—rate and
n(-), at the usual nonparametric rate. For example, single-index estimation (Hérdle, et
al., 1993), projection pursuit regression (Friedman and Stuetzle. 1981) and Hall (1989),
average derivative estimate (ADE) (Héardle and Stoker, 1989) and sliced inverse regression
(Li, 1991). We estimate n(-) and ag by a nonparametric kernel method. Suppose « is a

unit p—vector and define
n(ula) = E(Y — Z* Bylz" a = u).

A simple version of the estimate of 7(-) suggests that

n(u|a) = {iY Wﬁn KQh(u—aT }/{ZK% U— X)}

j=1

where Kop(-) is a one dimensional kernel function and A is a corresponding bandwidth.
Let A; = X'a and /A\, = X!'@, an iterative estimation procedure can be described as

follows.
Step 0. Obtain an initial estimate of &.

Step 1. Find 7j(u, &, 8,) = ¢ by minimizing

S {c+ W B, — Yi}2 Kon(Ri — u)

=1

Step 3. Update a by
12 ~ ~
arg m(;én ﬁ Z{ﬁ(Ala aa ﬂn) + VI/ZT/BTL - Y;}Q
i=1

Iterate steps 1 and 2 until convergence.
Note that the estimate, ,@p, is fixed as given in (2.4) throughout the iterations, as often

been done for the pseudo-likelihood estimators in the parametric literature (Gong and
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Sammaniego, 1981). We therefore call the foregoing estimators the “Pseudo-/3” estimators

~

and denote them by @ p, Bp and 7jp, respectively. The sub-index “P” stands for “pseudo”.
Before stating the asymptotic result about &p and 7j(ug), we require the following
condition.

Condition 2.

(i) The density function of X, f(z), is bounded away from 0 and has two bounded

derivative;
(i) n(-) and the density function of X, (-), have two bounded, continuous derivatives;

(iii) Kop(+) is supported on the interval (—1,1) and is a symmetric probability density,

with a bounded derivative;

For simplicity in notation, we will denote S—F/(S|A) by S, for example, X; = X;—F (X|A))
and Z; = Z; — E(Z|A;).

Theorem 2.2 Under the conditions 1 and 2.
N 1 &= =
Vnlap(ap — ap) = 7 S X' (M) (e — U Bo) — T1(Bp — Bo) + 0,(1), (2.6)
i=1

where Top = E{X1'(A)}®2, Ty = E{XZ"n/(A)} with A = X" oy. Furthermore \/n(ap —
o) is asymptotic N(0,T,pYXaplp). When € is independent of X, Z,

Sap = Da0f + T1T, xSuT, 5T,

where Ty = E{X1/(A) = 1T,y Z}®? = Top — [T, IT .

Note that the second term in (2.6) corresponds to the extra variation due to estimating
B. When X and Z are independent given A, I'y = 0. That is, the asymptotic variance of
ap are the same regardless (3 is estimated or not.

The outline of the proof is given at Appendix A.1, whereas the exact influence function

of ap is given at (A.7).



3 LOCAL QUASILIKELIHOOD METHOD

In section 2 we first directly derive an estimate of 3y, and then estimate «g and 7(-).
Although this method is simple and intuitive, the estimator of 3y does not fully utilize the
information given in (1.1), but instead rely on a high dimension nonparametric estimation.
It is therefore expected that a more efficient estimator can be derived. In this section,
we consider a local estimating equation approach motivated by Severini and Staniswalis
(1994) and Carroll, et al. (1997). The idea is that we can approximate n(v), for v in a

neighborhood of u, by a constant or by a linear function:
n(v) = n(u) +n'(u)(v—u) = a+bv —u)

where a = n(u) and b = n'(u).

To estimate «p, By and 7(+), we first estimate n(-) as a function of @ and 3 to obtain
N(«, B). Letting n = 7f(«, #), we then estimate the parametric component.

This procedure for the problem is equivalent to the following iterative algorithm with-

out measured error (see Carroll, et al., 1997).
Step 0: Given initial values (@1, 31), set @y, = @1/]|@1|| and A; = XTay,.
Step 1: Find 7j(u, ar, ﬁL) = @ by maximizing the local log-quasilikelihood

local constant : 3" {a + W5, — Y;}2Kan(A; — v)

(3.1)
local linear : " {a+b(A; —u) + WTBL — Y V2K (A — u)
with respect to a, b.
Step 2: Update (ay, EL) by maximizing
1 5
- S {n(Aisar, Br) + Wi B - Y} — 3780 (3.2)
i=1

with respect to o and f.
Step 3: Continue Steps 1 and 2 until convergence.

Step 4: Fix (o, ) at its estimated value from Step 3. The final estimate of 7(-) is
7i(u, @y, Br) = @ where (@, b) is obtained by (3.1).

8



We now concentrate on the local linear case and discuss the properties of &y, and BL.
In the proof of Theorem 3.1 we would point out that the asymptotic distributions of &y,
and [y, stay the same when 17 is estimated using local constant smoother. We assume that
ar and B are in a \/n— neighborhood of respectively ag and Sy, i.e. ar —ag = Op(n='/?)
and B — By = Op(n~'/?2).

Theorem 3.1 Under the conditions 1 and 2, and the assumption that the random vector
Z has a bounded support, for the estimator defined by (8.2), we obtain the following

properties:

VnTar (@ — ag) = n™* 3 [{ X (M) — TAT 7, Zi e — U] Bo)
i=1
005 (UU] = Zuu) o — T1T 5, Uiei] + 0,(1)

and

Vnlsr(Br — Bo) = n~'/? i[{z‘ — IIT 5 X (M) Hei — U Bo)
=1

_(UZUzT - Euu)ﬂﬂ + Uzgz] + Op(l)‘

with Tza = B(ZZ]); Tar, = Tap — TiT;4TT, and Ty, = Ty — T{T 3Ty, Therefore,

Vn(@r — ap) is asymptotic normal with mean zero and asymptotic variance T} Yoz T, 1,

while the asymptotic distribution of \/ﬁ(ﬁL — o) 1s N(0, FELlEgLng), where
Sar = T507 + Tl 4 Sul 44115 T =Tap — ThT,,T7,
and
Sor = B{Z = ITTp X1 (A)}*%07 + S,

with 0% and Xy defined in Theorem 2.1.

4 COMPARISON AND DISCUSSION

Intuitively, the local likelihood method should gain efficiency comparing to the pseudo—(
method due to the dimension reduction. What we find is that the dimension reduction

does contribute to the variance reduction, particularly when
var{ E(Z|X)} > var{E(Z|\)}; (4.3)
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recall that A; = X/ a. Here, matrices A > B implies A — B is semi-positive-definite. (4.3)
is generally true when the dimension of X is high. Never the less, this is not sufficient to
guarantee the superiority of the local likelihood method.

To appreciate this, we use the expression that
avar(fp) = ofF}ﬁX + FgﬂXEMFgﬁX
and that
2\ 21 -1 x  —1 x  —1
avar(fr) = o,l'zn  + Tz Sulzn

where avar(-) indicates the asymptotic variance function, and I'y, = Tgr = I'zp —
I'TTply. Note that 'z x = E{var(Z|X)} and I'z )y = E{var(Z|A)}. By the equality,

var(Z) = var{ E(Z|X)} + E{var(Z|X)},

we have I';jx < T'za when (4.3) holds. Also note that comparing avar(f3;,) and avar(8p)
is equivalent to comparing P*Z| A_l and P§|lx- However FITF;};Pl is semi-positive definite,
which indicates a cost of estimating « in the local likelihood approach. This implies that
avar(Bp) > avar(f,) when I'ya—Tzx > TTI,pIy, that is, when the reduction in variation
due to dimension reduction is larger than the cost of estimating o simultaneously.
Similarly, observing the asymptotic variance expressions of &p and &y, in Theorem 2.2

and Theorem 3.1, respectively, and using similar arguments, it can be shown that
-1 -1 -1 -1
FZ\XEMFZ|X > FZ|AEMFZ|A’

but Iy > I'y. That is, avar(ap) could still be smaller than avar(ar). When X and Z
are independent, the two variances are exactly the same. Therefore, one may prefer the
pseudo— 3 method over the local quasilikelihood approach because of its simplicity when

X and Z are weakly correlated and when the dimension of X is low.

5 APPENDIX

5.1 APPENDIX A.1

Lemma 5.1 (Liang, 1999) Let Vi,...,V,, be independent random variables with means
zero and finite r—th moment (r > 2), i.e., Sup;<;<, E|V;|" < C < oo. Assume (ay;, k,i =

10



1...,n) be a sequence of positive numbers such that sup,<; y<, |lars| < n7Pt for some
0<pi <1 and X} aj; = O(n??) for po > max(0,2/r — pi). Then

max|2aszk‘ O(n~*logn) for s=(p1—p2)/2. a.s.

1<i<n

5.2 APPENDIX A.2: The proof of Theorem 2.2

The proofs of Theorems 2.2 and 3.1 follow a similar technique used to prove Theorem 4
of Carroll, et al. (1997). Therefore, only the key steps are given. Let A; = X g and
A = XTap. We will need the asymptotic expansions of 7j(ug, ap, 31:), which we state
below and prove after the statement.

ii(uo, @p, Bp) — n(ug) = f Z Kon(Ai —uo)(ei — UL Bo) — (B — Bo)"E(Z|A)
—(@p — ao)" E{Xn'(A)|A} + op(n'/?). (A.1)
Let ¢ = 7j(uy, ap, Bp), which solves
nZKQh i —uo){Y; — W Bp — 2}
Via Taylor expansion and using the condition on A, we obtain
= Z Kon(Ai — uo){Y; = W By — ¢} = Bui(¢ — ¢) — (Bp — Bo)" Bua
—(@p — )" Bpz + op(n /%) + Op(h?). (A.2)

Here B,; (j = 1,2,3) are the resulting sample matrices of kernel form. (A.1) is a
direct result of (A.2) since By = 1+ 0,(1); Bpo = E(Z|A = wuo){l + 0,(1)} and
By = E(X7/(A)[A = uo){1 + 0p(1)}-

We now prove Theorem 2.2. Some straight forward calculations show that &p solves

5 ZXW' e+ {n(Ai) — 77(7\1, ap, 319)}
— W[ (Bp = Bo) = U Bol{1 + 0,(1)} = 0. (A.3)

By Taylor expansion and the continuity of 7'(+), ﬁ(/A\i, ap, Bp) —n(A;) can be approximated
by

' (M) XE (@p — o) + A(As, @, Bp) — n(A:) + op(n™2). (A4)
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Substituting the expression for (A, @p, Bp) — n(A;) in (A.4) into (A.3), by further cal-
culation and (A.1), we obtain

%Zn;{gz X (Ai){gi - X' (A)(@p — ao) — m Zn: Kon(Aj — Aj) (g5 — U]-Tﬁo)

+E(Z7|N:)(Be — fo) + B(X 0 (A)|A) (@ — o)
~W(Be = o) = Ul o} = op(n /%),

which can be rewritten as

n X n
WY X (A e UF o) 2 30 L) ZK% (A — Ad)(e; — UF fio)
i=1 i=1 nf(Az)
T
Y X ST (ar a0 )4
~ Z; +U; Bp — Bo P
Note that the second term of the left-hand side of (A.5) is
R 1Z Kon(Aj — ;)
n-1/2 Ei—UiTﬂ =S X (A 2’1—’
2 U, L T
which is shown to be
_1/22 — Ui Bo) E{ X0 (A)|As} + 0p(1). (A.6)

Combining (A.5) and (A.6), we obtain (2.6).
Recall that the asymptotic influence function of 3p is given at (2.5), which leads to
the following asymptotic expression of ap,

VnTap(Gp — ap) Z({Xm ) =TT Zi (e — U Bo)
+F1FZ\X{(UZUZT - Zuu)ﬂo - Uzsz}) + op(1)7 (A7)

Theorem 2.2 then follows the central limit theorem.

5.3 APPENDIX A.3: The proof of Theorem 3.1
As in A.2, we need the following asymptotic expansion of 7(uo, &z, f1) :
(o, @r, Br) — nluo Z Ksn(Ai — uo) (e — U; Bo)
—(Br — Bo)"E(Z|A = uo) — (61, — 040) E{Xﬂ (A =uo} + op(n'/?), (A.8)

12



which is analogous to (35) of Carroll, et al. (1997).
Let a = n(ug) and b = hn'(ug). The local linear estimates solve

=%éth(&—uO)<Ai1uO>{Y W BL —a—b(Ai — uo)/h},

which implies
1 & 1
=~ >~ Ksn(A = uo) ( A — ug ) {Yi = W Bo — a — b(A — o) /h}
i=1 !

—B ( ?): bo ) (B = B0)" Bus — (@1, — a0) "B
+op(n '/?) + Op(h?).

As in (A.5) B, (j = 1,2,3) are the resulting sample matrices of kernel form. Replacing
B,,; by their asymptotic counterparts, we obtain (A.8). Note that, when a local constant
smoother is used, the proof of the expression at (A.8) follows the steps between (A.1)
and (A.2) with (ap, Bp) replaced by (&g, 3L) A comparison between (A.1) and (A.8)
indicates that whether one uses local constant or linear smoother, 7 — 1 has the same
asymptotic expression. Since the rest of the proof only use this expression for 7}, the
resulting asymptotic distribution of (ay, BL) would be the same.
We know that (&, 4,) is the solution to

L5 L s toth -t )

1

— W (BL — Bo) — U/ o] + ( 0 ) =0. (A.9)

EuuBL

Following (A.6) and (A.7) as well as using the expression for ﬁ(/A\Z, ar, BL) —n(A;) in
(A.9), we have that

n

i ( );mJ'r(/[\}) ) {e = XTI/ (A)(61 — a0) - m ZKsh(AJ
(65 = Uj Bo) + E(Z" M) (B — o) + E(XT7/ ()] z)( ar, — ao)

+0P(n_1/2) - VViT(ﬂL — Bo) — UTﬂo + < g . ﬂL ) 0,

which implies

n!/? Z ( Zi+ U) ) (= Ul =" 3 ( );Z([l\f) ) ”féAi)

i=1

13



X {i Kan(Aj — Ni)(ej — U]-Tﬁo)}

~ T
1 & X' (M) X' (M) 0 0 ar —
_ o121 i\ LT\ _ ~ A.10
" [ni—zl<zi+Ui><Zi+Ui 0 Yuu Br—0B ) ( )
By interchanging the summations, the second term of the left-hand side is
/o 1 & n'(A;) \ Ksn(A; — Ay)
e () ) Kald A
n € ; .
2 2\ Zvu ) i)
This is essentially the same as

i=1

Combining (A.10) and (A.11), we obtain:

e (G ) e vim ()

YT 20 A (77 NT ool ( A
XzXz' n (Az) Xz(Zz + UZ) n (Az) ) ( ay — a )
EUU

_ —1/2n "
- Zl( Br — B

(Zi+ U)X (N) (Z:+U)(Z:+ U;)" -
Law of Large Numbers yields that

.
/2 ( Faj{’ Iy ) ( ar — oy ) —p 12 ER: ( Xin'(As)(e: — Ui Bo) )
T Tza Br — Bo =L\ (Zi 4+ Ui)(e; — UL Bo) + SuulBo

+op(1),(A.12)

which gives

nl/QFaP(a’L - CYo) + n1/2PI(EL - ﬂo) =n /2 ZZHI(AO(&' - UiTﬂo) + Op(l);

i=1

nl/QFlT(&L - (1/0) + nl/QFZM(BL — 60) = n_1/2 Z(ZZ + Uz)(&?z - UZTﬂ())

=1

+Euuﬂ0 + OP(l)'

A direct simplification deduces the expressions of n!/2Ip(ay, — o) +n'/2I' (B, — o) and
n'/2TT (&, — ag) +1"/2T 7o (B, — Bo). Their asymptotic distributions follow a central limit
theorem. We thus complete the proof of Theorem 3.1.
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