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SEMIPARAMETRIC BOOTSTRAP APPROACH
TO HYPOTHESIS TESTS AND CONFIDENCE INTERVALS
FOR THE HURST COEFFICIENT

Peter Hall! Wolfgang Hérdle? Torsten Kleinow? Peter Schmidt?

ABSTRACT. A major application of rescaled adjusted range analysis (R—
S analysis) is to the study of price fluctuations in financial markets. There,
the value of the Hurst constant, H, in a time series may be interpreted as an
indicator of the irregularity of the price of a commodity, currency or similar
quantity. Interval estimation and hypothesis testing for H are central to com-
parative quantitative analysis. In this paper we propose a new bootstrap, or
Monte Carlo, approach to such problems. Traditional bootstrap methods in this
context are based on fitting a process chosen from a wide but relatively conven-
tional range of discrete time series models, including autoregressions, moving
averages, autoregressive moving averages and many more. By way of contrast
we suggest simulation using a single type of continuous-time process, with its
fractal dimension. We provide theoretical justification for this method, and ex-
plore its numerical properties and statistical performance by application to real
data on commodity prices and exchange rates.
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1. INTRODUCTION

R-S analysis has its roots in early work of the British hydrologist H.E.
Hurst, who investigated dependence properties of phenomena such as levels of
the River Nile. The Hurst constant H, as the index of dependence is often called,
always lies between 0 and 1, and equals % for processes that have independent
increments. Particular interest focuses on the hypothesis that H > %, indicating
relatively long-range dependence. For example, Hurst observed that H = 0.91 in
the case of Nile data, indicating a strength of dependence that was well beyond

what could be adequately explained assuming independent increments.

Today, a principal application of R—S analysis is to the study of fluctuations
in financial markets, where the value of H is variously interpreted as an indicator
of range of dependence, of irregularity and of nervousness. (Adler, 1981, coined
the word ‘erraticism’ to denote a quantitative measure of ‘nervousness’.) To
elucidate this point we note that the fractal dimension D of sample paths of
a locally self-similar or self-affine random process increases monotonically with
the irregularity of those paths; and that D = 2 — H (see e.g. Berry and Hannay,
1978; Sayles and Thomas, 1978; Adler, 1981, Chapter 8; Mandelbrot, Passoja
and Paullay, 1984; Hall, Matthews and Platen, 1996). Therefore, a process with
higher Hurst constant is more regular, or less erratic, or less ‘nervous’ then one
with a lower value. For example, a time series of commodity prices that is
characterised by a larger Hurst constant enjoys greater stability, over at least
short periods of time; and trade in that commodity might be said to be subject

to less nervousness. See for example Peters (1994).

Thus, point and interval estimation of the Hurst constant can be basic
to quantitative descriptions of market fluctuations. And testing for significant

differences between two Hurst constants, or between one constant and the value



%, is fundamental to comparative quantitative analysis of market ‘nervousness’.
In this paper we suggest bootstrap, or Monte Carlo, methods for constructing

confidence intervals and hypothesis tests for Hurst indices.

Our methods are based on the estimator H of H derived from R-S analysis,
and involve simulating the sampled process using a time-adjusted version of
fractional Brownian motion. We argue that, since the ‘S’ part of R-S analysis
corrects for inhomogeneities in the data, it is unnecessary to reproduce them in

the bootstrap algorithm.

This approach differs fundamentally from more traditional methods cur-
rently used for simulation, where the model is taken to be a relatively conven-
tional discrete time series such as an autoregression, or moving average, or au-
toregressive moving average. See for example Peters (1994, Chapter 5). Instead,
we suggest simulating a single type of continuous stochastic process, where the
degree of irregularity is determined empirically through an estimator of H. We
justify this approach through theoretical analysis, and assess its numerical and

statistical properties using applications to real data on stock prices.

The idea of basing the bootstrap method on a continuous rather than a
discrete stochastic process has been suggested before, but in the very different
context of bootstrap methods for spatial samples of data on surface roughness
(Davies and Hall, 1998). There, the ‘S’ part of R-S analysis is usually omit-
ted, since the observed process is generally scale-homogeneous. Such bootstrap
methods are nonstandard, not least because they conform to neither the para-
metric nor nonparametric bootstrap approaches. They fall midway between the

two, and might fairly be said to be semiparametric bootstrap methods.

2. METHODOLOGY AND THEORY



2.1. R-S Analysis. We observe a stochastic process X; at time points t € 7 =
{0,...,N}. Let n be an integer that is small relative to N (asymptotically, as
n/N — o0), and let A denote the integer part of N/n. Divide the ‘interval’ Z into
A consecutive ‘subintervals’, each of length n and with overlapping endpoints.
In every subinterval correct the original datum X for location, using the mean
slope of the process in the subinterval, obtaining X; — (t/n) (Xan — X(4—1),) for
all t with (a —1)n <t <an and for alla =1,...,A. Over the a’th subinterval
Zo = {(a=Dn,(a—1)n+1,...,an}, for 1 < a < A, construct the smallest
box (with sides parallel to the coordinate axes) such that the box contains all
the fluctuations of Xy — (t/n) (Xan — X(a—1)n) that occur within Z,. Then, the

height of the box equals

t
fla = (a-1)nSi<an {Xt = 5 (Xan — X(a—l)n)}

. t
i {0 = T

Let S, denote the empirical standard error of the n variables X; — X;_,, for
(a—1n+1 <t < an. If the process X is stationary then S, varies little
with a; in other cases, dividing R, by S, corrects for the main effects of scale

inhomogeneity in both spatial and temporal domains.

The total area of the boxes, corrected for scale, is proportional in n to

(%)n = A1 g: ];—:. (2.1)

The slope H of the regression of log(R/S), on logn, for k values of n, may be
taken as an estimator of the Hurst constant H describing long-range dependence
of the process X. See for example Beran (1994, Chapter 1) and Peters (1994,
Chapters 4-6).

This R-S analysis, or ‘rescaled adjusted range’ analysis, dates from Hurst



(1951). If the process X is stationary then correction for scale is not strictly
necessary, and we may take each S, to be the constant 1. In that case the
R-S statistic H is a version of the box-counting estimator that is widely used
in physical science applications; see for example Carter, Cawley and Mauldin
(1988), Sullivan and Hunt (1988) and Hunt (1990). The box-counting estima-
tor is related to the capacity definition of fractal dimension (Barnsley, 1988, p.
172ff), and the R-S estimator may be interpreted in the same way. Statisti-
cal properties of the box-counting estimator have been discussed by Hall and

Wood (1993).

A more detailed analysis, exploiting dependence among the errors in the
regression of log(R/S), on logn, may be undertaken in place of R-S analysis.
See Kent and Wood (1997) for a version of this approach in the case where scale
correction is unnecessary. However, as Kent and Wood show, the advantages of
the approach tend to be asymptotic in character, and sample sizes may need to

be extremely large before real improvements are obtained.

2.2. Approximating the distribution of H. Depending on the value of H, and
on the nature of the stochastic process X, the asymptotic distribution of i (as
N — oo, for fixed k) can be Normal or Rosenblatt; the latter was introduced
by Taqqu (1975), following work of Rosenblatt (1961). (More concisely, in the
Rosenblatt case the asymptotic distribution of H is that of a finite linear form in
correlated Rosenblatt-distributed random variables, but for simplicity we shall
refer to this as a Rosenblatt distribution.) Indeed, the asymptotic distribution
of H can be Rosenblatt for 3/4 < H < 1 and Normal for 0 < H < 3/4; see
section 2.4. The Rosenblatt distribution that is relevant here is particularly
complex, and its shape depends intimately on the unknown value of H. The

distribution has not been tabulated.



If the value of k is large, i.e. the number of values of n for the linear
regression is large then the Rosenblatt approximation becomes, by virtue of
the central limit theorem, similar to the Normal approximation. However, the
asymptotic variance is difficult to calculate. Moreover, it is known from work of
Hall and Wood (1993) and Constantine and Hall (1994) that, due to long-range
dependence, statistical performance of the estimator H generally deteriorates
for large k, and in fact optimal mean squared error properties are often achieved

by keeping k fixed as N increases.

These considerations motivate Monte Carlo analysis, rather than more con-
ventional asymptotic methods, in the range 3/4 < H < 1. Even when H lies
outside this interval there is much to be said for taking a Monte Carlo approach,
however. Monte Carlo simulation can be expected to capture many of the penul-
timate, second-order effects that describe departure of the distribution of H from
its asymptotic limit, so that even if the limiting distribution were known, the
Monte Carlo approach would be expected to provide somewhat greater accuracy
than the conventional asymptotic approximation. The second-order effects arise
from finiteness of IV, and from the fact that stochastic fluctuations of the scale
correction in R—S analysis influence the true distribution of H even though they

do not affect the limit distribution.

A more familiar example of the same phenomenon is use of Student’s ¢
distribution to approximate the distribution of a Studentised ratio, even when
the sampled distribution is not exactly Normally distributed. The Student’s ¢
approximation represents a ‘penultimate’ form of the Normal ‘ultimate’ limiting
distribution. Even for data from a skew distribution the Student’s ¢ approach
generally captures finite-sample properties better than the Normal approxima-

tion, despite the fact that it does not capture all second-order departures from



Normality.

We shall show in section 2.4 that in many cases the limiting distribution
of H depends only on H and a temporal scale factor. The spatial scale of the
process X, and the process’s potential heteroscedasticity and non-Gaussianity,
do not feature in first-order asymptotic results. In large part this is a result of
the ‘S’ component of R—S analysis. Therefore, the limiting distribution of "
is the same as it would be if X; were (¢, where ( is an elementary self-similar

Gaussian process.

The Gaussian process that we have in mind is fractional Brownian motion,
defined by P({op = 0) = 1, E(¢;) = 0 and E(Cs4¢ — (5)? = [t|* for all s and ¢,
where a = 2H € (0,2). Equivalently, (; is defined to be that Gaussian process

with zero mean and covariance

(s,) = cov(Ce, G) = 5 (Is|” + [t* — s —#|%) -

See for example Beran (1994, p. 51ff) and Peters (1994, p. 183ff).

We may simulate from a discrete approximation to (;, say on the points
t; = j/v for a large integer v, by forming the (2pv + 1) x (2pv + 1) covariance
matrix, M, of which the (i, j)’th element is y(t;,t;) for —pr <i,j < pv (p an
integer); and then using the spectral decomposition of M to generate Gaussian
random (2pv+ 1)-vectors with this covariance. Alternatively, methods of Davies
and Harte (1987), or those of Wood and Chan (1994) or of the many authors

whose work is surveyed by Wood and Chan, may be employed.

Denote the original data set {X7,..., Xy} by X. Our bootstrap algorithm
is as follows. Compute the estimator H , and in the steps below, take a = 2H
when constructing the fractional Brownian motion ¢, conditional on X. Let X},

for 0 < t < N, denote a realisation of the process (. Compute the corresponding



value H* of H. Take the conditional distribution of H *, given the data X, to
be a Monte Carlo approximation to the unconditional distribution of B ; or
alternatively, take the conditional distribution of H* — H to approximate the
unconditional distribution of A — H. These approaches give rise respectively to

the two percentile methods discussed in section 2.3.

Some of the second-order properties that this approach does not capture
may be addressed by fitting a smooth estimate of scale to the process (. For
example, we might model the variance function o(¢)?2 = var(X;), and thereby
compute an estimator (-) of ¢(-); and simulate from the process &(t) [t|=%/2 ¢;
rather than from (;. In this case we should translate the time interval so as to

avoid the origin.

2.3. Confidence regions and hypothesis testing. Confidence intervals and hy-
pothesis tests for H may be constructed using either of the two standard boot-
strap percentile methods. For example, a nominal 95% confidence interval
for H is given by (H®,H®), where H® and H® are defined by either
P(H* < HY|X) = P(H* > H®|X) = 0.025 or P(H* — H < H - H®|x) =
P(H*—H > H—HW|X) = 0.025. A test at the 5% level of the null hypothesis
that H = %, corresponding to X being a random walk, is to reject the null if

(HW, H®) does not contain the point 1.

Given two independent samples from long-range dependent processes, lead-
ing to respective estimators ﬁl and ﬁ2 of Hurst constants, we may generate
independent realisations from respective stochastic processes (V) and ¢(?, and
thereby compute a bootstrap approximation to the distribution of ﬁl - ﬁg or
of I:ﬁ - I:TQ — (Hy — H,). As before, this may be used as the basis of percentile-

bootstrap confidence intervals and hypothesis tests for H; — Ha.

These techniques, being based on the percentile bootstrap, lack the piv-



otalness that bootstrap methods for confidence procedures should ideally enjoy.
However, they have asymptotically correct levels, as NV increases. Moreover,
even when the statistic H admits a Normal asymptotic distribution we lack a
simple, computable variance estimator with which to correct for scale. And
when the limiting distribution is Rosenblatt, rather than Normal, scale correc-
tions are not sufficient to produce pivotalness, since the shape of the Rosenblatt
distribution depends on the unknown Hurst constant through more than simply
scale. For these reasons we argue that the percentile-t bootstrap, often suggested
in simpler problems as a pivotal method for constructing confidence intervals
and hypothesis tests with relatively accurate levels (see for example Hall, 1992,
p. 14f; Efron and Tibshirani, 1993, p. 158f; Shao and Tu, 1995, p. 94f; Davison

and Hinkley, 1997, p. 29f), is not appropriate in the present setting.

Instead, level accuracy may be enhanced by using the double bootstrap (see
for example Hall, 1992, p. 20ff; Efron and Tibshirani, 1993, p. 263ff; Shao and
Tu, 1995, p. 155ff; Davison and Hinkley, 1997, p. 103ff). However, the relatively
high orders of accuracy associated with double-bootstrap confidence procedures
in simpler problems cannot be expected to be generally available here, since
our Gaussian model based on fractional Brownian motion does not necessarily
reflect all second-order features of the distribution of the sampled stochastic
process X. It seems difficult to improve on this situation without introducing

relatively complex high-order models for X.

2.4. Theoretical properties. Suppose the data X;, ¢ € Z, are generated as
Xi = g(Yet, t), where

(a) g is a smooth bivariate function,

(b) Y is a Gaussian process whose sample paths have fractal dimension D =



2 — H, and
(c) € denotes a small positive constant.

The function g represents a possibly nonlinear transformation of Y, implying in
particular that the observed process X is not necessarily Gaussian. Importantly,
it allows a wide range of different types of inhomogeneity. By taking e small we
ensure that even if ¢; is moderately distant from ¢2, X;, can be strongly cor-
related with Xy,. This confers long-range dependence on the observed process.
There is no difficulty in extending our results to the case where X is a function
of a vector of Gaussian processes, say X; = g(Ye(tl), ceey Yégk) ,t). Here the Hurst
index that prevails equals 2 minus the fractal dimension of sample paths of the
process Y () that has the roughest sample paths. It is also possible to incor-
porate a smooth, monotone, nonlinear transformation of the time variable ¢.
However, the simpler setting prescribed by condition (a) conveys the important

characteristics of these more complex models.

We claim that, under models of the type characterised by (a)—(c), H is
consistent for H and has an asymptotic distribution that is either Normal or
of the type introduced by Rosenblatt (1961). To formulate this assertion as a

mathematical theorem we first elaborate on (a)—(c), as follows. Assume that
(A) the derivatives
9512 (y,1) = (8/0y)” (8/0t)" g(y, 1)
are bounded for each ji,j2 > 0, and g1 does not vanish;

(B) the Gaussian process Y satisfies E(Y;) = 0, and for constants ¢ > 0,
a=2H € (1,2) and 8 > min(},2—a), E(Y,y - Y;)? = ¢[t|* + O(|t|*FF),

uniformly in s € J =[0,1], as t — 0; and

10



(C) e=1/N =0,

and we define H by regression of log(R/S), on logn for a fixed number, k, of
values £1m, ..., ¢km of n, where £q,... ¢ are fixed and m = m(e) = oo as

€ — 0, in such a manner that m~! +me = O(e?) for some a > 0. Define £ = me

and
g2(1-H) if3/4< H<1
te =14 (tloget)"* if H=3/4
£L/2 if0< H<3/4,

which converges to 0 as € — 0. Then, we claim that H-H may be expressed
as t¢ Z¢, where Z¢ has a proper limiting distribution as e — 0. (The regularity
conditions may be relaxed in many circumstances. For example, the restriction
in (B) that a > 1 may be dropped if g(y,t) =y, and also in some other cases.

The boundedness condition on derivatives of g may also be relaxed.)

Crucially, the limiting distribution of H depends only on H and /4, ..., {;
it does not depend on g or on the scale constant, ¢, appearing in the first-order
approximation to covariance. The main effects of scale and heteroscedasticity,
entering through g and ¢, have cancelled due to rescaling by the terms S, in
(2.1). The limiting distribution is Normal when 0 < H < 3/4, and a finite linear
combination of correlated Rosenblatt distributions when 3/4 < H < 1. Outline

proofs of all these assertions are given in the appendix.

The results are foreshadowed by those of Hall and Wood (1993) for box-
counting estimators, of which H may be regarded as a scale-corrected version.
We do not give the form of the limits, since it is complex (particularly in the
Rosenblatt case), but it is of the type discussed by Hall and Wood (1993, p.
252). The relationships between statistical properties of a Gaussian process (e.g-
Y’), and of a smooth function of that process (e.g. X), have been addressed by
Hall and Roy (1994).

11



The fact that the limiting distribution depends only on H and #4,...,¢
justifies the bootstrap methods suggested in section 2.2. Specifically, since the
bootstrap algorithm preserves the way in which H and /4, ...,/ contribute to
the limiting distribution, and since H — H at a rate that is polynomial in £
(indeed, at rate t¢), then the bootstrap produces confidence intervals and hy-
pothesis tests that have asymptotically correct coverage. The fractional Brow-
nian motion (, used as the basis for our simulations, is just one of many that

could have been employed, satisfying condition (B) above.

Note particularly that we keep k fixed as e decreases. If our regularity
conditions were to allow k = k(e) to diverge then the Rosenblatt limit would
change to Normal, but as discussed by Constantine and Wood (1994), this would

generally be at the expense of increased mean squared error of g.

3. APPLICATION TO DATA

The aim of this section is to obtain an estimator H of the Hurst coefficient
H and to construct hypothesis tests and confidence intervals for H for the

logarithm of the price process of certain German stocks.

Denote the logarithm of the price process of a stock (or index) by {X; :
0 <t <T}. To estimate the Hurst coefficient H we applied R-S analysis, as
described in section 2.1, to N discrete observations {X,, : n =1,..., N} of {X,}

at times t) <t2 <...<ltn,

For the empirical study we used 6900 observations (N = 6900) of 24 Ger-
man blue chip stocks obtained form the Datastream/Primark’s database from
8th of January 1973 to the 18th of June 1999. The blue chips are included
in the DAX, an index comprising 30 German blue chip stocks. We analysed

Datastream performance indices instead of prices in order to avoid jumps in the

12



respective time series due to dividend payments or rights issues. The obtained
Hurst coefficients are shown in Table 1. Figure 1 shows the R—S plot for the
price process of the stock of Volkswagen. The R-S plot also includes a line with

slope 0.5, which correspond to Brownian motion. As one can see, the R-S line

R/S statistic for Volkswagen

log(R_{i}/S {i})

T T T T T
3 4 5 6 7
log(length of interval i)

Figure 1: R-S plot for VW, H = 0.606

has a different slope then it would have if the underlying process corresponded
to a Brownian Motion.

In the first step of our empirical analysis we tested whether the Hurst
coefficient of an asset was significantly different from 0.5 or not. A significant
difference from 0.5 would indicate that X; did not follow a Brownian Motion. In
order to test the null hypothesis that H = 0.5, against the alternative H # 0.5,
ie.

ho: H=0.5 hy: H#0.5,
we approximated the distribution of H — H conditional on the null hypothesis,

and calculated the p-values, P{|ﬁ - EfI| > |Hobserved — EfI| | ho}, of the

13



estimated H. For this approximation the bootstrap algorithm described in
Section 2 was used. For H = 0.5 the fractional Brownian Motion coincided with
usual Brownian Motion, which we simulated as a random walk. An estimate
of the conditional density of B - H , computed from 400 simulated random

walks of length 6900, is shown in figure 2. Table 1 shows the p-values for the

15 20

density f(x)
10

0.02 0.04 0.06 0.08 0.1
X

Figure 2: Estimated density of H — H for 400 simulated Brownian Motions with
length 6900. The vertical lines determine the 0.05, 0.95 quantiles.

estimated Hurst coefficient of the stocks.

Our analysis suggests that the difference between the estimated Hurst index
of the prices of BMW, Daimler, Mannesmann, Preussag, Siemens and Volkswa-
gen, and the value the Hurst index would take if the stochastic process describing
prices were Brownian motion, is so great that it cannot be adequately explained

by stochastic fluctuations.

We studied the assets for which the estimated Hurst coefficient H was

significantly different from 0.5. For our further analysis we assumed that the

14



asset H | p-value

Allianz | 0.5642 0.6

BASF | 0.5390 0.24

Bayer | 0.5288 0.073

BMW | 0.5851 0.05
Commerzbank | 0.5536 0.88
Dt. Bank | 0.5743 0.22
Daimler | 0.5859 0.05
Degussa Hiils | 0.5629 0.68
Dresdner Bank | 0.5625 0.7
Hoechst | 0.5420 0.37
HypoVereinsbank | 0.5533 0.86
Karstadt | 0.5552 0.95
Lufthansa | 0.5584 0.89
Linde | 0.5583 0.90

MAN | 0.5605 0.79
Mannesmann | 0.5856 0.05
Miinchner Riick NA | 0.5589 0.88
Preussag | 0.5884 | 0.035
RWE | 0.5398 0.29

Schering | 0.5772 0.17
Siemens | 0.6007 0
ThyssenKrupp | 0.5794 0.13
Veba | 0.5426 0.38
Volkswagen | 0.6049 0

Table 1: Estimated Hurst coefficient of German stocks

15



logarithm of the price processes are self similar with stationary increments, i.e.
¢ (Xet)ier =4 (Xe)ier forall ¢>0 (1)

and for any k£ > 1 and any time points t1,...,t,
(X(t1),..., X () =a (X(t1 +¢),...,X(tr+¢)) forall celR (2)

Here, Y =4 Z means that Y and Z have the same distribution. These assump-
tions are often made in literature on financial market analysis. A well known
model is the Multifractal Model of Asset Returns (MMAR) introduced by Cal-
vet, Fisher and Mandelbrot (1997). In this model the logarithms of prices are

assumed to follow a fractional Brownian Motion, i.e.
X(t) — X(0) = Bu(6(t)),
where 6(t) is a multifractal process with continuous, non-decreasing paths and

stationary increments.

Under assumptions 1 and 2 the autocorrelation function p(k) = E[{X (¢) —
EX(t)}{X(t+k)— EX(t+k)}] of X(¢t) is approximately of the form ck27—2.

More precisely, the following holds (see Beran, 1994):

p(k)
H(2H — 1)k2H~2

1
—1 0<H<1,H7£§, k — oo.

This means that for H > 0.5, X; has long memory. Stocks where long memory

was detected are displayed in bold face in table 1.

The second step of our analysis was construction of confidence intervals.
For this purpose we approximated the distribution of H-H by that of B —H ,
where H* denotes the estimated value of the Hurst coefficient of simulated
fractional Brownian Motions with coefficient @ = 2H. That is, we computed

the conditional (on X (t)) distribution of the bootstrap form of H* — H, as

16



asset | 0.9 confidence region | 0.95 confidence region
BMW [0.475,0.579] [0.466, 0.594]
Daimler [0.476,0.581] [0.467,0.596]
Mannesmann [0.476,0.580] [0.467,0.596]
Preussag [0.481,0.585] [0.472,0.601]
Siemens [0.506,0.610] [0.497,0.626]
Volkswagen [0.514,0.619] [0.505,0.634]

Table 2: Confidence regions for Hurst coefficients

an approximation to the unconditional distribution of H-H. We applied
the bootstrap method described in section 2. To simulate fractional Brownian
motion we used methods from section 2.2 with p = 1 as well as the algorithm
described in Beran (1994, p. 216). The latter is based on the finite Fourier
transform of the autocovariance function of fractional Gaussian noise. Both

methods lead to similar results.

The bootstrap densities for the different Hurst values of the assets which
have significantly larger Hurst coefficient than a Brownian Motion were approx-
imately the same except for the mean value. For this reason we calculated only
the density of H* — H of the Volkswagen stock. It is shown in figure 3. The
confidence intervals for the other assets were obtained by correcting this den-
sity for the different estimated Hurst coefficient. Table 2 shows the resulting

confidence regions.
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Figure 3: Bootstrap density of H — H for the Volkswagen stock. The vertical lines
determine the 0.05, 0.95 quantiles.
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APPENDIX: Technical arguments

Put Z; = g(Y3,t) and let J = [0,1]. Given B > 0, choose an integer B’ so

large that B'a > 2B. Then, uniformly in #;,t; € 7,

B’ B’
1 : .
Zn=Zu =) Y, J1liol (Vo =Yoo )" (t1 = 12)" g1 (Vo t2) + Op (|1 — 12| 7) .
J1=1 jo=1 470

(A1)
This formula provides the opportunity to develop Taylor expansions of quan-
tities such as R,/S,. It turns out that only the first term in such expansions
contributes to asymptotic results. Nevertheless, higher-order Taylor-expansion
terms should be included since, prior to correction for their means and analy-
sis of their size, they are potential first-order contributors to limit theory for
(R/S)n. In our work the contributions of these high-order terms will be denoted
by Q1,Qs,.... For the sake of simplicity we ignore the mean correction in the

definition of S,.

Let 7 C J denote a set of n + 1 equally-spaced points tg < ... < t, within
an interval of width § = ne, and write S+ and Uy for the empirical standard
errors of the ‘samples’ {Z;, — Z,_,, 1 <i <n}and {¥;, —Y;,_,, 1 <i<n},

respectively. Then by (A.1), for all > 0,

5% = g10(Yis 2)2 U + Q1 + Oy (/D +B=m) | (A.2)

Ry = maxyer Z¢ — minge7 Z4

=5910(YVezs t2)| (Yrr = V1y) + Q2+ 0p(37) , (A3)
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where T'r = argmax, . Z;, T = argmin, .+ Z;, and s denotes the sign of gio.

Hence, for all > 0,

];—'Tf = UiT (Yrr = Yo ) + Qs + Oy (6/2B(0/27m 4 6B = (2/2)7m) | (A.4)
where @3 represents a series of ratios of terms, of the form V/Ur, in Taylor
expansions (in this sense, each summand is like the first term on the right-hand
side of (A.4)), and the O,(-) remainder is of the stated order uniformly in 7.
Note particularly that in forming the leading ratio in (A.4) the contribution
g10(Yt,, t2) has cancelled from the leading terms in (A.2) and (A.3), and likewise
the effect of the constant ¢ (see condition (B) in section 2.4) may be seen to
cancel. This results from the scaling aspect of R-S analysis, and explains why

the process ¢ from which we simulate when applying the bootstrap does not

need to reflect either the properties of g or the value of c.

We deal with each ratio, V/W where W = Ur, by expressing it as w1 (v +
Ay)(1+3Aw + 3A%, +...), where Ay =V —v, Ay = —(W? —w?)/w?, v =
E(V) and w? = E(W?). For purposes of exposition we shall confine attention to
the three main terms in such an expansion, i.e. to (v/w)+(Ay /w)+ 1v(Aw jw),
in the case V = Y, — Yo and W = Ur. (Without loss of generality, s = 1.)
Other terms may be treated similarly, although the argument is lengthy.

Let Ay,, Awa, v, and w, denote versions of Ay, Ay, v and w when
T = T,, the latter defined in section 2.1. Note that, by condition (B), w, =
w®{1+ O(£?)} uniformly in a, where w® does not depend on a or n. Since 8 >
min(%,2—a) (see condition (B)) then &7 = o(t¢). Arguing thus it may be proved
that A~' times the sum over 1 < a < A of v, /w, equals C§*/%(w®) =" {14o(t¢)},

where C' > 0 is a constant not depending on .

Put u = A='67%/2y°, and let S¢(n) equal v times the sum over 1 <
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a < A of the term Ay,/w,. Methods of Hall and Wood (1993) may be used
to show that S¢(n) has variance asymptotic to a constant multiple of ¢Z, and
that for the k values of n being considered, the variables S¢(n)/t; have a joint
asymptotic distribution which is k-variate Normal when 0 < H < 3/4, and

k-variate Rosenblatt (Rosenblatt, 1961; Taqqu, 1975) when 3/4 < H < 1.

By considering properties of the variogram estimator of fractal dimension,
methods of Constantine and Hall (1994) may be employed to prove that u
times the sum over a of v,Aw,/w, equals op(t¢). (Here it is critical that m
diverge to infinity.) If B is sufficiently large then u times the sum over a of
the Op () remainder at (A.4) also equals 0,(t¢), and similar methods may be
applied to terms represented by @3 in the Taylor expansion. (The high-order
contributions to bias of H include terms of order &2, but since we assumed
o > 1 then this equals o(t¢).) Arguing thus we may ultimately show that
(R/S),, = C8%/?(w®)~ {14 S¢(n)+0,(t¢)}. Hence, log(R/S),, equals a quantity
which does not depend on n and which goes into the intercept term in the
regression, plus (a/2)logn + S¢(n) + op(te). The result asserted in section 2.3

follows from this property.
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