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Abstract

The small sample properties of two types of Chow tests are investigated in the context of
multiple time series models. It is found that the tests may have substantially distorted size
if the sample size is not large relative to the number of parameters in the model under study.
In particular the tests reject far too often in this situation. It is shown that bootstrap ver-
sions of the tests have much better properties in this respect. In other words, the bootstrap

can be used to size-adjust the tests.

Key Words: Bootstrap, vector autoregressive process, vector error correction model, stabil-

ity tests

JEL classification: C32, E41, E43

!Financial support was provided by the DFG, Sonderforschungsbereich 373, and the European Commis-

sion under the Training and Mobility of Researchers Programme (contract No. ERBFMRXCT980213).
2Corresponding author: Helmut Liitkepohl, Institut fiir Statistik und Okonometrie, Wirtschaftswis-

senschaftliche Fakultdt, Humboldt-Universitidt, Spandauer Str. 1, D-10178 Berlin, GERMANY, tel. +49-
30-2093 5718, fax. +49-30-2093 5712, email: luetke@wiwi.hu-berlin.de



1 Introduction

In econometric studies based on time series data, it is common practice to test for structural
change during the observation period. Chow tests are standard tools for this purpose. This
study serves to point out problems related to using these tests for checking the structural
stability of vector autoregressive (VAR) models. It will be demonstrated by simulation that
in the small sample situations where these tests are often applied, the distributions of the
test statistics under the stability hypothesis may be substantially different from the assumed
asymptotic x? distributions. In some cases the distortions are so large that the tests become
useless for practical purposes. We will consider bootstrap modifications of the tests which
turn out to be much more reliable in small samples.

The observation that Chow tests may have distorted distributions relative to the asymp-
totic x? or approximate F distributions in dynamic models is not new (see, e.g., Diebold
& Chen (1992) for related results and discussions). However, in systems of equations the
problem becomes so dramatic that we find it worthwhile to demonstrate and analyze it for
this class of models. Because we are considering a small sample problem, the dependence on
the process parameters makes it difficult to obtain general results. Therefore, to demonstrate
the relevance for applied work, we consider empirical models from the literature for which
the tests have been applied and we demonstrate the small sample distortions within the
context of these models by using simulations based on estimated models. In particular we
use a bivariate system of Danish interest rates from Engsted & Tanggaard (1994) and Eng-
sted & Nyholm (2000) and a five-dimensional German monetary macro system from Juselius
(1996, 1998) to illustrate the problems of standard Chow tests. A bootstrap modification is
shown to have superior properties for the example models. In fact, for the example models
considered, the bootstrap versions of the tests have roughly correct size even in relatively
small samples.

This study is organized as follows. In the next section, the test versions which we will
consider are summarized formally and a bootstrap modification is presented. The small
sample performance of the tests is analyzed in Sec. 3 on the basis of the example models

from the literature and conclusions are drawn in the final section.



2 The Chow Tests

Given a set of n time series variables y; = (Y1, - - -, Ynt)’, the basic VAR(p) model considered

in the following has the form
yt:V+A1yt—1+"'+Apyt—p+ut (t:]-aaT): (1)

where v is a constant (n x 1) vector, the A; are (n x n) coefficient matrices and u; =
(u1gy - .., Une)" is an unobservable zero mean white noise process with time invariant positive
definite covariance matrix ¥, i.e., u; ~ iid(0,X). It is straightforward to introduce further
deterministic terms such as seasonal dummy variables or polynomial trend terms in the
model or include further exogenous variables. We use the simple model form (1) mainly
for convenience because it simplifies the presentation of the tests. Moreover, if the system
contains integrated and cointegrated variables it may be preferable to analyze the model in
error correction form. Again such an extension is straightforward and will not be considered
here in detail. In any case, if the unrestricted levels form of the model in (1) has time varying
coefficients,the corresponding error correction version cannot be time invariant. Hence, a
stability test may in fact be performed on the levels form. Clearly, the model (1) is in
reduced form because all right-hand side variables are predetermined or deterministic and
no instantaneous relations are modeled. This is sufficient for the purposes of stability tests
because the structural form cannot be stable if the reduced form is unstable. Therefore
stability tests may be based on the latter.

We consider two versions of Chow tests, sample-split tests and break-point tests (see
Doornik & Hendry (1997)). It is assumed that a structural break may have occurred in period
Tg. The model under consideration is estimated from the full sample of 7" observations
and from the first 7} and the last 75 observations, where 77 < Tg and Ty, < T — Tg.
The resulting residuals are denoted by i, agl) and 1)?), respectively. Moreover, define
S =T EL i, Sip =TT S0 ity + T3 Sy el Sy =11 X8 aMal"" and
EA?(Q) =T;! Z:;F:Tfn 41 aﬁ%@'. Using this notation, the two test statistics can be written as

follows:
Sample-Split (SS) Test

Ass = (Th + 1) log det XA]LQ — T log det f](l) — Ty log det 2(2) ~ Xz(k), (2)

where k is the number of restrictions imposed by assuming a constant coefficient model

for the full sample period, that is, k£ is the difference between the sum of the number of



coefficients estimated in the first and last subperiods and the number of coefficients in the
full sample model. The parameter constancy hypothesis is rejected if the value of the test

statistic \gg is large.

Break-Point (BP) Test

1—(1-R})Ys Ns—gq
Mor =T gy S FOR N ), G

where
n2k? —4 \'? nk
with k£, being the number of regressors in the restricted, stable model and

T\" « -
R2:1—(—> Sl (1S) .
: 7 ) Eol(=)
Again the null hypothesis of parameter constancy is rejected for large values of Agp. This
test is included in the software package PcFimland is therefore used occasionally in empirical

work (e.g., Beyer (1998)).

Bootstrap Tests

Bootstrap versions of the tests are obtained by estimating the model of interest, denoting
the estimation residuals by 4;, computing centered residuals 4y — u,...,ur — u,, where
u, = T3 4, and generating bootstrap residuals u?, ..., u% by randomly drawing with re-
placement from the centered residuals. These quantities are then used to compute bootstrap
time series recursively starting from given presample values y_,41,...,%. The model of
interest is then reestimated with and without stability restriction and a bootstrap version of
the statistic of interest, say A\5q or A;p is computed. Repeating these steps a large number
of times (say M times), a critical value is then obtained as the relevant percentage point,
say A from the empirical distribution of the bootstrap test statistic and the stability

%
crit?
*

crit®

hypothesis is rejected if A > A Alternatively, the p-value of the test may be estimated as
the fraction of times the value of the bootstrap statistic exceeds .

In this particular case the bootstrap can be justified by asymptotic theory if suitable
regularity conditions hold, because the statistic is a continuous function of sample moments
and the statistic is asymptotically pivotal (see Horowitz (1999) for details). Of course, the
theoretical result does not necessarily guarantee a satisfactory performance of the bootstrap

in small samples although Horowitz (1999) reports examples of related cases where the
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bootstrap worked very well in small samples. In the next section we will use simulations
to explore the small sample properties of the tests reviewed in this section, including the

bootstrap versions.

3 Monte Carlo Simulations

Because simulations of bootstrap methods are very computer intensive, we first use small
systems (bivariate models with respectively one and three lags) in the Monte Carlo study
based on two Danish interest rates. To illustrate the impact of increasing the dimension of
the system under consideration we then also perform simulations for a model based on a

five-dimensional German macro system.

3.1 Danish Interest Rates

The first example is based on monthly Danish interest rate data for 1976(1) to 1991(12) so
that we have T = 192 observations.> They were also analyzed by Engsted & Tanggaard
(1994) and Engsted & Nyholm (2000). Specifically the series consist of 1-month (r;) and
3-month (R;) Danish zero-coupon bond yields. In the original paper, the authors consider a
system including the spread S; = R; — r; and the changes in the short rate Ar, = r; — 1.
Therefore we also use a model for these variables. Based on a Markov regime switching
analysis, Engsted & Nyholm (2000) found a structural break in the system around August
1983. Because they use a VAR(1) model we also consider that model in part of our analysis.
In addition we report results for simulations based on a VAR(3) model for the two series to
study the impact of the model size on the properties of the tests.

For analyzing the sizes of the Chow tests we use the data to fit constant coefficient VAR(1)
and VAR(3) models for the full period. The resulting estimated processes are

St 0.0272 0.8045 0.0120 St1 U1y
= + + (4)
Ar, —0.2145 1.5175 0.0470 Ary 4 Uogy

with covariance matrix

0.0107
—0.0687 0.9433

N =

3The data are available from C. Tanggaard’s homepage: http://www.hda.dk/cat/Datafiles/dkrente.txt.



and

Si 0.0194 N 0.5168 —0.0136 Si—1 N 0.2371 —0.0031 Si—o
Ary —0.2052 2.1301  0.0232 AV —0.0611  0.0839 Ary_g

—0.0136 —0.0067 Si—3 n Ut
0.0232 —0.0288 Ary_g Uat

with covariance matrix
0.0100

—0.0652 0.8864

3=

We simulated 10,000 sets of time series with different lengths (7=60 and 100 plus presample
values) using these processes. We then applied the standard tests for checking different
break dates. We also applied the bootstrap tests to 1,000 of the generated time series using
M = 1,000 bootstrap draws in each of the 1,000 applications of the tests. In Table 1 rejection
frequencies for the tests based on a nominal significance level of 5% are presented for a range
of different break dates. Here Ty =Tg and To, =T — T, —p — 1.

Obviously, for moderate sample sizes the size distortions of the original version of the SS
test is unacceptable even if the VAR(1) model with relatively few parameters is considered.
The test performance deteriorates further if a higher order VAR(3) model is used in the sim-
ulations. In contrast the BP test and both bootstrap versions result in rejection frequencies
which are much better in line with the desired significance level, although Agp rejects some-
what too often if a break close to the beginning of the sample is tested (see Tp/T = 0.2).
Both bootstrap test versions have almost ideal size properties even for a sample size as small
as T'= 60 and a VAR order of 3. For the original test versions much larger sample sizes are
necessary for getting such a result. The figures in Table 1 show that 7" = 100 is generally not
sufficient. For larger samples (more than 1,000 observations) we obtain sizes close to 5%.*
Clearly, based on these results, the original SS test is useless for small sample situations
because it is unable to control the size at least approximately even for a very simple DGP
whereas the bootstrap versions of both tests and to some extend also the original BP test
have better properties.

In the light of these results we have used the bootstrap versions of the tests on the original
data. Given the previous simulation results, one would expect that in this situation these
versions of the Chow tests are fairly reliable in terms of size. We report the estimated p-

values of the tests for a series of hypothesized break dates in Figure 1. Clearly, the SS test

4Results are available from authors upon request.



rejects at a 5% level of significance at almost all break dates, that is, the estimated p-values
are clearly less than 5% except at the very beginning and at the very end of the sampling
period. In contrast, the BP test version has estimated p-values well above 5% and, hence,
if that test version is applied, the stability hypothesis cannot be rejected. These results
indicate that the two types of tests have quite different power properties because one of the
tests finds a break whereas the other one does not. Note, however, that the tests give no
indication of where the break has occurred or whether there is perhaps more than one break.

To explore the power of the tests we have simulated the VAR(1) DGP (4) with a shift
of 0.05 in the intercept term of each equation at a fixed date. Then, we have applied the
SS and BP tests using various different null hypotheses not always corresponding to the
actual break date. Thereby we hope to gain insights in the ability of the tests not only to
detect a break in some period but also into their ability of finding the actual break date.
The rejection frequencies of all the tests are presented in Table 2. The figures in the table
are again based on 10,000 replications for the original tests and on 1,000 replications of the
bootstrap tests for which we use again M = 1,000 bootstrap draws within each of the 1,000
replications of the experiment. Notice, that the original tests are based on x? and F critical
values and, hence, suffer from size distortion.

Obviously, the tests have very different power properties. Given that no size adjustment
has been made, the slightly larger power of the original SS tests is not surprising. In fact, it is
perhaps a bit surprising that the bootstrap version has almost as much power as the original
version although it has a much lower rejection frequency under the null hypothesis. Thus
this test has a much better ability to discriminate between stable and unstable processes
than the original counterpart. Notice, however, that none of the two versions of the SS test
is very well able to detect the true break date. In other words, if there is a break both tests
tend to reject the stability null hypothesis even if the break date is misspecified under the
null. In contrast, the BP tests tend to reject the stability hypothesis only if the break date
specified in the null hypothesis lies before the actual break date. This behaviour of the test
is quite plausible because this test can be interpreted as a comparison of the predictions
from the model fitted to the sample before the hypothesized break date with the actual
observations from the period after the break. Clearly, as long as the break occurs after the
hypothesized break date, the predictions will differ markedly from the observed values. If
the break has occurred before the hypothesized date, however, the forecasts will be poor
with large uncertainty related to them and, hence, the test has trouble to detect that the

actual observations are from some other DGP. Both tests tend to have smaller power for



breaks towards the beginning of the sample than for breaks in the middle or at the end.

In summary, the power results in Table 2 indicate that the bootstrap tests have similar
or even better power than the original versions of the tests in many situations even without
correction for the size distortions of the original tests. Whereas the SS tests are not able
to clearly indicate the break point, the BP tests may give at least an indication where the
break may have occurred. Thus, the SS tests are suitable only for a global stability analysis.

These results can explain the fact that the SS test rejects for many different break points
for the example system in Figure 1. They cannot explain well the differences in the p-values
of the two types of tests, however. Of course, one possible explanation may be that the break
is of a different nature than the one in our simulation where a simple shift in the constant
term is used. Clearly, changes in the other coefficients of the DGP such as the residual
covariance or the VAR coefficients are possible as well and the tests may have different

power against such changes.

3.2 German Monetary System

Small systems of the monetary sectors of three European countries were considered by
Juselius (1996, 1998). Here we will focus on her model for Germany because she found
a structural break for this country using a sample-split test. The following variables are con-
sidered: my is the logarithm of M3, y; denotes the logarithm of real Gross Domestic Product
(GDP), p; is the log GDP deflator, r; denotes the yearly rate on private bank deposits and
R; is the yearly rate of the effective yield on bonds in circulation. The set of variables used
in the study is then y; = (y,m — p,Ap, R,r);. In addition to these stochastic variables
the following deterministic terms are included in Juselius’ model: a constant, a linear time
trend, seasonal dummies, a step dummy for the German monetary unification which has the
value 1 starting in the third quarter of 1990 and is zero elsewhere, an impulse dummy for
the second quarter of 1990 and an extra set of seasonal dummies for the period after the
German monetary unification. Juselius uses quarterly, seasonally unadjusted data for the
period 1975(3) - 1994(4)° and she fits a vector error correction model with two lags of the
differenced variables and a cointegrating rank of 2. She diagnoses a structural break in 1983
and supports this finding with a sample-split test among other means. Clearly, given the
simulation results based on the Danish interest rate system, size distortions are expected in

a system of the present size.

5The data are available on http://ise.wiwi.hu-berlin.de/oekonometrie/index.html.



Therefore we have also simulated the stochastic part of Juselius’ model obtained by fitting
a constant coefficient model to the full sample including a constant but deleting the other
deterministic terms. For this purpose we used an unrestricted VAR(3) model.® Simulation
results are given in Table 3 based on the same number of replications as in the Danish
interest rates case (i.e., 10,000 sets of time series are simulated, 1,000 bootstrap tests are
performed from 1,000 of the generated time series using M = 1,000 bootstrap draws each
time). Massive size distortions are observed for both original tests when used with x? and
F' critical values for Ass and Agp, respectively. Even with 7" = 300, observations the SS
tests have unacceptable rejection frequencies in access of 20%. Although the BP test is
somewhat better for the larger sample size, its performance is clearly unacceptable for the
smaller sample of T = 76. Thus, it is clear that both original tests cannot be recommended
for typical macroeconometric applications, for example. Again, the performance of the
bootstrap versions is much better. Their rejection frequencies are close to the ideal 5%
even for the smaller sample size. Thus, the bootstrap may be used as a possibility for size
adjusting the tests.

Obviously, given our simulation results, it is clear that the SS test used by Juselius (1998)
in checking the stability of the system may be spurious and due to the massive size distortion
of the test. Therefore we have applied the bootstrap versions of the tests to the model fitted
to the original data, including this time all the deterministic terms from Juselius’ original
study. In this exercise we also used an unrestricted VAR(3) model. Because such a model
is even less restricted than the vector error correction model used by Juselius, structural
instability due to model misspecification should be less likely in this model than in the one
used by Juselius. The p-values of the bootstrap versions of the tests for different break dates
are presented in Figure 2. It turns out that the p-values of the bootstrap-SS test are below
5% in the mid 80s so that there is some indication of a break in the sampling period. Given
the results of the power simulations for the bivariate VAR(1) model it is not clear where the
break has occurred, however. Again the bootstrap-BP test is not very helpful in dating the
break because its p-values are far away from any common significance level of a usual test.
In other words, based on this test, rejection of the stability hypothesis is not possible in any
period. One possible explanation for this result may be obtained from the power study of
the previous subsection. It was found that the power of the tests is low for breaks close to

the sample beginning and the BP test does not have power for breaks that have occurred

6The precise model used in the simulations is available upon request.



before the date specified in the null hypothesis. Thus, if the break has occurred early on,
e.g., at the beginning of the 1980s, the p-values in Figure 2 are not implausible.

4 Conclusions

In conclusion, we have demonstrated in this study that standard Chow tests may have mas-
sive size distortions in situations where they are often applied in practice. More precisely,
they reject the stability hypothesis far too often for multivariate dynamic models with many
parameters relative to the number of available observations. We have illustrated the problem
using two small macroeconomic systems that have been considered previously in the litera-
ture. The size distortions of the tests are so large that in our view the tests are useless for
applied work unless a size adjustment is made. Of course, this also means that the original
tests should not be used recursively as is sometimes done in applied work. A size adjustment
may be based on the bootstrap and we have pointed out how that may be done. Although
the computational burden is quite reasonable if a single hypothesis is tested, a recursive
procedure may quickly become expensive in terms of computer time. Therefore, instead of
performing a fully recursive check for each sample point one may want to focus on a few
individual time periods throughout the sample period.

In a very limited power simulation we found that the sample-split test is not suitable for
detecting the actual break date. If it rejects the stability hypothesis this indicates that a
break may have occurred somewhere in the sample. It is not clear where it has occurred. The
break-point test may be more suitable for dating the break. It may have considerably more
power if the break date specified in the null hypothesis is before the actual break date than
if it is after the actual break. This property of the test may help in getting some indication
of the break point.
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Table 1. Relative Rejection Frequencies of Tests for Structural Change Based on Bivariate
Model for a Nominal Significance Level of 5%

VAR Ty/T (T = 60) Ty/T (T = 100)

order | Test 0.2 0.4 0.5 0.6 0.7 0.2 0.4 0.5 0.6 0.7
1 Ass | 17.89 12.13 12.07 12.27 19.42 | 12.15 943 840 9.39 12.73
ts | 520 420 4.00 440 6.20| 500 580 480 520 6.20

Agp | 11.13 785 749 707 592| 9.18 645 6.56 598 5.67
p | 6.60 6.00 4.80 480 5.00| 580 4.80 520 4.00 5.80

3 Ass | 53.35 24.17 23.85 28.78 51.70 | 23.46 13.14 12.87 14.60 18.24
tg | 6.60 4.80 4.00 440 3.80| 6.20 560 6.80 540 5.20

App | 12.26 786 7.07 6.62 6.17| 873 6.72 6.18 594 5.75
sp | 9560 5.00 6.20 520 6.40| 460 760 740 4.40 5.20

Table 2. Power Analysis Based on Bivariate Model, Nominal Significance Level 5%

Break Ts/T (T = 60) Tg/T (T = 100)
at Tg/T | Test | 02 04 05 06 07| 02 04 0.5 0.6 0.7

0.2 Ass | 83.05 91.00 78.98 64.14 58.42 | 95.18 94.58 84.19 67.09  60.73
g | 96.65 77.82 64.04 44.00 24.01 | 90.21 90.64 79.60  57.07  37.43
0.4 Ass | 65.17 96.65 88.88 75.50 71.00 | 76.59 99.75 96.81 8731  82.73
Sg | 29.43 89.41 73.85 55.04 32.25 | 5843 99.41 94.20 80.61  54.23
0.5 Ass | 99.75 92.73 98.72 80.89 76.42 | 66.86 98.57 99.91  93.25  90.42
g | 30.62 83.45 96.43 60.21 40.22 | 50.00 98.00 100.00 88.00  62.00
0.6 Ass | 54.84 88.72 97.31 99.55 95.42 | 60.01 95.76 99.54 99.96 97.73
g | 27.05 78.28 92.03 98.05 48.60 | 42.41 92.23 98.81 100.00  75.81
0.7 Ass | 92.69 84.77 94.69 99.11 99.85 | 52.46 90.90 97.86  99.78  99.98
g | 2442 6721 87.42 96.48 99.02 | 33.61 85.20 96.82  99.67 100.00

0.2 App | 90.44 0.04 0.07 0.11 0.28 | 52.16 0.01 0.03 0.03 0.13
Ap | 33.84 020 0.00 0.00 0.00]|37.43 0.00 0.00 0.00 0.00
0.4 App | 94.79 85.95 0.15 0.19 0.26 | 57.59 88.11 0.07 0.17 0.19
Bp | 36.22 80.64 020 0.20 0.40 | 44.82 84.41 0.40 0.00 0.20
0.5 App | 96.00 87.91 95.19 0.35 0.41 | 58.67 89.06 96.41 0.34 0.44
Bp | 3422 8144 91.40 0.20 0.00 | 48.61 86.23  93.87 0.00 0.00
0.6 App | 96.33 88.12 95.57 99.01  0.57 | 58.30 88.98  96.57  99.38 0.78
App | 36.88 84.20 94.63 98.69 0.80 | 48.81 87.83  97.22  99.27 0.61
0.7 App | 9541 87.36 95.58 98.95 99.89 | 57.24 88.25 96.10 99.19  99.92
App | 37.25 81.85 94.02 98.80 99.82 | 46.61 88.68 96.05  99.07 100.00

Note: Columns and lines indicate respectively the date of the fixed break and the date of the
break detection.
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Table 3. Relative Rejection Frequencies of Tests for Structural Change for DGP Based on
German Data with Nominal Significance Level 5%
Tg/T (T = 176) Tg/T (T = 300)

Test 0.3 0.4 0.5 0.6 0.3 0.4 0.5 0.6
Ass | 100.00 99.49 99.27 99.97 | 27.07 20.09 19.92 21.35
Asg 520 4.40 6.60 540 | 4.60 5.80 4.40 4.80
App | 44.11 1797 1253 986 | 6.66 6.66 5.53 5.72
Agp 530 5.00 6.20 5.40| 540 5.60 7.00 5.60

100
BP Test
90
80

707

o [ "\ SS Test 7

i e A~ =) BE™ e - o

Figure 1. Danish Interest Rate System: p-values of Bootstrap Versions of the Tests for

Structural Change
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Figure 2. German Monetary System: p-values of Bootstrap Tests for Structural Change
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